人教版七年级不等式教案
人教版数学七年级下册第9章不等式与不等式组教学设计
一、教学目标
(一)知识与技能
1.理解不等式的定义,掌握不等式的性质,能够运用不等式解决实际问题。
2.学会解一元一次不等式,包括移项、合并同类项、系数化等方法,并能够解决实际问题。
3.理解不等式组的定义,掌握解不等式组的方法,能够解决实际问题。
4.能够运用数轴表示不等式的解集,理解区间表示方法。
(3)采用讲练结合法,让学生在练习中掌握解不等式的方法,提高解题能力。
(4)小组合作学习,培养学生协作解决问题的能力,提高课堂互动性。
2.教学过程:
(1)导入:以实际情境导入,提出问题,引导学生思考,激发学习兴趣。
(2)新知:讲解不等式的性质,引导学生通过实例发现性质,加强理解。
(3)例题:讲解一元一次不等式的解法,通过典型例题,让学生掌握解题方法。
5.引导学生运用数轴表示不等式的解集,培养学生直观想象能力。
(三)情感态度与价值观
1.培养学生对待数学学习的积极态度,增强学生对数学学科的兴趣和信心。
2.引导学生认识到不等式在生活中的广泛应用,激发学生学习数学的积极性。
3.培养学生勇于探索、克服困难的精神,让学生在解决不等式问题的过程中,体验到成功的喜悦。
5.部分学生对数学学习存在恐惧心理,需要教师关注学生的情感需求,鼓励学生积极参与课堂,增强自信心。
在教学过程中,教师应充分了解学生的实际情况,针对不同层次的学生进行差异化教学,关注学生的个体发展,激发学生的学习兴趣,提高学生的数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握不等式的性质,能够熟练运用性质解决实际问题。
3.拓展题:针对不等式组的内容,设计2-3道拓展题,要求学生运用所学知识解决问题,培养学生的综合应用能力。
人教版七年级数学下册9.1.1不等式的概念教学设计
二、学情分析
七年级下册的学生已经具备了一定的数学基础,掌握了基本的算术运算和代数表达式的知识。在此基础上,学生对不等式的概念已有初步的认识,但在理解深度和运用灵活性方面仍有待提高。此外,学生在解决实际问题时,往往难以将问题转化为数学模型,需要教师在教学过程中加以引导。因此,本章节教学应注重以下几点:
4.能够运用不等式的性质解决一些简单的实际问题,如比较大小、求范围等。
(二)过程与方法
1.通过实际问题,引导学生观察、分析、抽象出不等式的概念,培养学生从实际问题中提炼数学问题的能力。
2.引导学生运用数轴辅助分析不等式,培养学生的数形结合思想。
3.通过小组讨论、合作探究,引导学生发现并总结不等式的性质,提高学生的合作能力和逻辑思维能力。
2.从第4题开始,选择至少两道题目进行解答,这些题目涉及将实际问题转化为不等式模型,要求学生能够准确识别问题中的关键信息,并建立相应的不等式关系。
3.设计一道生活情境题,要求学生自己编写一个包含不等式的实际问题,并将其解答出来。这个问题可以涉及购物、交通、饮食等任何与生活息息相关的场景,以此检验学生对不等式知识在实际中的应用能力。
4.学生在讨论过程中,加深对不等式性质的理解,提高解决实际问题的能力。
(四)课堂练习
1.教师出示一系列不等式练习题,包括基础题和提高题,让学生独立完成。
2.教师挑选部分学生解答,展示解题过程,并对错误答案进行讲解。
3.学生通过练习,巩固所学知识,提高解题能力。
(五)总结归纳
1.教师引导学生从概念、性质、应用等方面总结本节课所学内容。
4.小组合作完成一道开放性问题,要求每组分析一个社会现象或科学问题,如人口增长、资源分配等,通过建立不等式模型来探究问题背后的数学原理。
人教版初中数学一元一次不等式教案范文优秀7篇
人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
新人教版七年级数学下册9.1《不等式》教案
新人教版七年级数学下册9.1《不等式》教案9.1.1 不等式及其解集【教学目标】知识技能目标1.了解不等式的意义,能用不等式刻画事物间的相互关系;学会用观察、类比、猜测解决问题.2.通过解决简单的实际问题,使学生自发地寻找不等式的解,理解不等式的解集.3.会把不等式的解集正确地表示在数轴上.过程性目标经历现实生活不等关系的探究过程,体会建立不等模型的思想;通过不等式解集在数轴上表示的探究,渗透数形结合思想.情感态度目标培养学生创新地思考问题的态度和细致地解决和求证问题的意识,产生学数学、爱数学的思想感情. 【重点难点】重点:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.难点:正确理解不等式解集的意义.【教学过程】一、创设情境①两个体重相同的孩子正在跷跷板上做游戏,现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?②一辆匀速行驶的汽车在11:20时距离A地50千米.要在12:00之前到达A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗?从时间上来看:<;从路程上看:x>50.二、新知探究探究点1:不等式的定义问题1:观察引入中两个式子的特点:<和x>50.问题2:类比等式的定义,给这样的式子下个定义.要点归纳:像这样用符号“<”或“>”表示大小关系的式子,叫做不等式.强调:a+2≠a-2也是不等式.【即时训练】判断下列各式是不是不等式?①3<4;②x+3≠0;③4x-2y≤0;④7n-5≥2;⑤3x2+2>0;⑥5m+3=8.答案:①②③④⑤是,⑥不是强调:符号“≥”读作“大于或等于”,也可以说是“不小于”;符号“≤”读作“小于或等于”,也可以说是“不大于”.探究点2:不等式的解(解集)及其表示问题1:创设情境中要使汽车在12:00之前到达A地,你认为车速应该为多少呢?问题2:车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?问题3:我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.上面所说的这些数,哪些是不等式x>50的解呢?问题4:判断下列数中哪些是不等式x>50的解:76,73,79,80,74.9,75.1,90,60.你能找出这个不等式其他的解吗?它到底有多少个解?这些解应满足什么条件?你从中发现了什么规律?(有,有无数个,它们都需要满足x>75)问题5:已知x1=1,x2=2,请在数轴上表示出x1,x2的位置,根据数轴判断x<1,x>2,1<x<2各对应数轴的哪一部分?如图所示:用数轴表示不等式的解集步骤及注意事项:第一步:画数轴;第二步:定界点;第三步:定方向.“>”“<”是空心;“≥”“≤”是实心.“>”“≥”向右画;“<”“≤”向左画.要点归纳:1.我们把使不等式成立的未知数的值叫做不等式的解.2.一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.例题讲解例1 设某数为x,根据某数与2的差小于3,列出关系式并结合数轴取点验证.解析x-2<3.分別取x=-2,-1,0,1,3.1,5,6,10.代入不等式,其中x=-2,-1,0,1,3.1代入后不等式成立,所以x=-2,-1,0,1,3.1是不等式x-2<3的解;x=5,6,10不是不等式x-2<3的解;这个不等式的解集表示为x<5.例2 在数轴上表示下列不等式的解集(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1解析如图:【方法总结】用数轴表示不等式的解集,应记住下面的规律:1.大于向右画,小于向左画.2.>,<画空心圆.三、检测反馈1.把不等式x+1≥0的解集在数轴上表示出来,则正确的是 ( )2.设A,B,C表示三种不同物体,先用天平称了两次,情况如图所示,则这三个物体按质量从大到小应为( )A.A>B>CB.C>B>AC.B>A>CD.A>C>B3.有下列数:5,-4,,0,1,-a2+1,2,2.其中是不等式8-4x>0的解的有( ) A.4个 B.5个C.6个D.3个4.下列式子:①-m2≤0,②x+y>0,③a2+2ab+b2,④(a-b)2≥0,⑤-(y+1)<0.其中不等式有( )A.1个B.2个C.3个D.4个5.表示a,b两数的点在数轴上的位置如图所示,下列结论不正确的是( )A.a>0B.ab<0C.2a-b>0D.b-a>06.下列说法中错误的是( )A.2x<6的解集是x<3B.-x<-4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个7.某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为_______.8.不等式x-3<0的解集是_______.9.用不等式表示下列各式.(1)a与1的和是正数:_______;(2)b与a的差是负数:_______;(3)a与b的平方和大于7:_______;(4)x的2倍与3的差小于-5:_______.10.一个不等式的解集如图所示,则这个不等式的正整数解是_______.11.有甲、乙两种型号的铁丝,每根甲型铁丝长度比每根乙型铁丝少3厘米,现取这两种型号的铁丝各两根分别做长方形的长和宽,焊接成周长大于2.1米的长方形铁丝框.(1)设每根乙型铁丝长为x厘米,按题意列出不等式.(2)如果每根乙型铁丝的长度有以下四种选择:45厘米、50厘米、55厘米、58厘米,那么哪些合适?四、本课小结教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1.什么是不等式?2.什么是不等式的解?3.什么是不等式的解集,它与不等式的解有什么区别与联系?4.用数轴表示不等式的解集要注意哪些方面?五、布置作业课堂作业:课本第115页练习课后作业:课本第119页习题9.1第1,2,3题.六、板书设计七、教学反思①[授课流程反思]本节通过实例创设情境,从“等”过渡到“不等”,进而探究了不等式的概念,解与解集,在数轴上表示不等式的解集.②[讲授效果反思]通过本节教学,学生对不等式有了进一步的认识,能够根据题意列出简单的不等式,并能验证不等式的解及表示不等式的解集.9.1.2 不等式的性质第1课时【教学目标】知识技能目标1.理解不等式的性质.2.利用不等式的性质解不等式.过程性目标经历类比等式的性质探究不等式性质的过程,培养学生自主探究、合作交流的意识,发展学生分析问题和解决问题的能力.情感态度目标通过观察、实验、类比获得新知,体验数学活动的探究性和创造性.【重点难点】重点:不等式的性质.难点:不等式的性质3.【教学过程】一、创设情境1.你能表述下面两个交通标志中的数学符号表示什么意义吗?2.什么是不等式?用“>”或“<”表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式.3.什么是等式?含有等号的式子就叫做等式.4.等式的基本性质有哪些?等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.用符号语言描述:如果a=b,那么a±c=b±c.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用符号语言描述:如果a=b,c>0,那么ac=bc.如果a=b(c≠0),那么=.二、新知探究探究点1:不等式的性质问题1用“<”或“>”填空:(1)5>3,则5+2______3+2,5-2______3-2;-1<2,则-1+3______2+3,-1-3______2-3;a>b,则a±c______b±c;a<b,则a±c______b±c.(2)6>2,则6×5______2×5,____ ,当不等式的两边乘以同一个正数时,不等号的方向______.(3)-2<7,则-2×(-6)_______7×(-6),_______-.当不等式的两边乘以同一个负数时,不等号的方向_______.问题2 观察(1)、(2)、(3)总结其中的规律,概括不等式有哪些性质.要点归纳:不等式性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b,那么a±c>b±c.不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变,用式子表示:如果a>b,c>0,那么ac>bc(或>).不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变,用式子表示:如果a>b,c<0,那么ac<bc(或<).【运用新知,深化理解】1.设a>b,用“<”、“>”填空,并填写理由.(1)5a_______5b.理由:_____________________.(2)a-7_______b-7,理由:___________________.(3)-3a_______-3b,理由:___________________.(4)3a+8_______3b+8,理由:___________________.(5)-7b+1_______-7a+1,理由:___________________.2.判断下列不等式的变形是否正确.(1)若a<b,且c≠0,则<;(2)若a>b,则1-a2<1-b2;(3)若a>b,则ac2>bc2;(4)若ac2<bc2,则a<b.探究点2:应用不等式的性质解不等式例1 (教材P117例1)分析:解不等式,就是要借助不等式的性质使不等式逐步化为x>a或x<a(a为常数)的形式.【教学说明】让学生自主探究,独立完成,然后相互交流,发现问题并及时纠正,教师巡视,适时予以指导. 【方法指导】1.变形时要注意不等式性质3的应用.2.不等式解集的两种表示方法:(1)从“数”的角度:用式子形式(如x>2),即用最简单形式的不等式x>a或x<a(a为常数)表示.(2)从“形”的角度:用数轴标出数轴上的某一区间,其中的点对应的数值都是不等式的解.三、检测反馈1.若x>y,则x-y>0,其根据是 ( )A.不等式性质1B.不等式性质2C.不等式性质3D.以上答案均不对2.由a<b得ac>bc的条件是( )A.c=0B.c>0C.c<0D.无法确定3.若x<y,则下列各式中正确的是( )A.x-3>y-3B.3x≤3yC.-3x>3yD.>4.已知a<b,则下列四个不等式中不正确的是( )A.4a<4bB.-4a<-4bC.a+4<b+4D.a-4<b-45.下列不等式能化成x>-2的是 ( )A.-x>-1B.x>-1C.x<-1D.-x<-16.不等式x+1>2变形为x>1.这是根据不等式的性质_______,不等式两边_______.7.若x<y,用“>”或“<”填空:(1)x-3_______y-3.(2)______ .(3)-3x_______-3y.(4)2x+1_______2y+1.(5)-5x+2_______-5y+2.(6)3x_______2x+y.8.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式,并在数轴上标示出来:(1)5x+2>0.(2)-x+1<x-2.(3)5-x<0.(4)3x-4<0.四、本课小结1.不等式的三个性质.2.运用不等式的性质3时,一定要变号.五、布置作业课堂作业:P119练习T1课后作业:P120习题9.1T4、5、6六、板书设计七、教学反思1.本节课主要学习不等式的三个基本性质,通过实例导入课题,形成不等式的基本性质.不等式的性质也是中学数学的重要内容,它渗透到了中学数学课本的很多章节,在实际问题中被广泛应用,可以说它是解决其他数学问题的一种有利工具.因此不等式的性质的学习对培养学生分析问题,解决问题的能力,体会数学的价值都有较大的作用.在此基础上使我们认识到数学来自于实践,也应回到实践中去,从而提高学习数学的兴趣,培养自觉运用数学的意识.在本节课中,全课着重知识的动态生成,渗透数学的建模、类比、分类等思想方法,促使学生从学会向会学转化.同时要注意不等式性质3是难点,也是重点,在学生理解的同时,应多加训练.2.在处理例题的时候我的原则是夯实基础,基本知识的掌握和基本技能的训练同学们必须非常地熟练,所以在做每一道题的时候我都让他们说出是“为什么”,并在这一节重视用数轴表示不等式的解集.9.1.2 不等式的性质第2课时【教学目标】知识技能目标1.理解“≤”“≥”的含义,并掌握它们与“>”“<”的区别.2.掌握不等式的解集如何在数轴上表示.3.能利用不等式解决简单的实际问题.过程性目标学会运用类比思想来解不等式,培养学生观察、分析和归纳的能力;情感态度目标1.在积极参与数学活动的过程中,培养学生大胆猜想、勇于发言与合作交流的意识和实事求是的态度以及独立思考的习惯.2.让学生感受生活中数学的存在,并且在自主探索、合作交流中感受学习的乐趣.【重点难点】重点:理解“≤”“≥”的含义,并掌握它们与“>”“<”的区别.难点:不等式性质的应用.【教学过程】一、创设情境1.不等式的基本性质是什么?2.上节课我们通过引入实例探索、归纳得到了不等式的性质,并能运用它们将不等式变形成“x>a”或“x<a”的形式.我们知道数学来源于生活,又服务于生活.在日常生活中就有这样的例子.如:(1)乘火车买半票的儿童身高不超1.1米.(2)正常人的血压是60~90毫米汞柱,高压是90~120毫米汞柱.(3)如图所示是一条公路上的交通标志图案,它们有着不同的意义,你知道图中的80所表示的含义吗?试着用不等式表示出来.3.小希就读的学校上午第一节课上课时间是8点开始,小希家距学校有2千米,而他的步行速度为每小时10千米.那么,小希上午几点从家里出发才能保证不迟到?二、新知探究探究点1:认识含“≤”或“≥”的不等式例题讲解例1 下列根据语句列出的不等式错误的是( )A.“x的3倍与1的和是正数”,表示为3x+1>0B.“m的与n的的差是非负数”,表示为m-n≥0C.“x与y的和不大于a的”,表示x+y≤ aD.“a,b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab解析选D.根据题意,找出关键词语“正数”“非负数”“不大于”“不小于”列出不等式即可.A.“x的3倍与1的和是正数”,表示为3x+1>0,正确;B.“m的与n的的差是非负数”,表示为m-n≥0,正确;C.“x与y的和不大于a的”,表示为x+y≤a,正确;D.“a,b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab错误,应表示为3(a+b)≥ab.【方法总结】此题主要考查了由实际问题列出不等式,关键是抓住题目中的关键词,如大于(小于)、不超过(不低于)、是正数(负数)、至少、最多等等,正确选择不等号.要点归纳:两个符号“≥”和“≤”,在不等式中含有等号.1.读法及含义:“≥”读作:“大于或等于”.含义是不小于,包括大于和等于.“≤”读作:“小于或等于”.含义是不大于,包括小于和等于.2.在数轴上表示:含等号的要画实心圆点,不含等号的要画空心圆圈.探究点2:不等式性质的应用根据创设情境中的问题3,思考以下问题:1.若设小希上午x点从家里出发才能不迟到,则x应满足怎样的关系式?2.你会解这个不等式吗?请说说解的过程.3.你能把这个不等式的解集在数轴上表示出来吗?【分组探讨】对上述三个问题,你是如何考虑的?先独立思考然后组内交流,作出记录,最后各组派代表发言.在学生充分讨论的基础上,师生共同归纳得出:x应满足的关系是:x+≤8,根据“不等式性质1”,在不等式的两边减去,得:x+-≤8-,即x≤7这个不等式的解集在数轴上表示如下:【方法指导】强调“≤”与“<”在意义上和数轴表示上的区别.用数轴表示不等式的解集的方法;借助数轴可以将不等式的解集直观地表示出来.在应用数轴表示不等式的解集时,要注意两个:“确定”:一是确定“边界点”,二是确定“方向”.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画,x<a 或x≤a向左画.例2 根据不等式的性质,解下列不等式,并在数轴上表示解集:(1)2x+5≥5x-4.(2)4-3x≤4x-3.(3)-+1≥.分析:先根据不等式的性质1,可以对不等式进行变形,然后根据不等式的性质2或3,可把不等式化为“x>a”“x<a”“x≥a”或“x≤a”的形式.例3 (教材P119例2)分析:(1)新注水的体积V与原有水的体积的和与容器的容积有什么关系?(2)新注入水的体积V可以是负数吗?(3)你能独立求出V的取值范围吗?(4)试将V的取值范围在数轴上表示出来.你认为在数轴上表示需要注意哪些?【方法总结】满足两个条件的不等式的解集在数轴上的表示,是指它们的公共部分.三、检测反馈1.用不等式表示图中的解集,其中正确的是( )A.x>-2B.x<-2C.x≥-2D.x≤-22.不等式-5x≤15的负整数解的积是( )A.-2B.2C.6D.-63.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,所列不等式为( )A.10+8x≥72B.2+10x≥72C.10+8x≤72D.2+10x≤724.用不等式表示下列语句并写出解集:(1)x的3倍大于或等于1.(2)x与3的和不小于6.(3)y与1的差不大于0.(4)y的小于或等于-2.5.用不等式的性质解下列不等式,并在数轴上表示解集:(1)x≤.(2)-8x≥10.6.下列几组数字分别表示三个线段的长,每一组中三个线段能否组成三角形?为什么?(1)3,4,5.(2)2,3,13.(3)2,6,8.(4)4,6,11.7.一罐饮料净重约300g,罐上注有“蛋白质含量≥0.6%”,其中蛋白质的含量为多少克?8.一部电梯最大负荷为1 000 kg,有12人共携带40 kg的东西乘电梯,他们的平均体重x应满足什么条件?四、本课小结1.理解不等式的有关概念,能灵活运用不等式的性质解不等式,并能把不等式的解集在数轴上准确表示出来.2.利用不等式解简单应用题.主要是会分析实际问题中的数量之间的不等关系,在审题过程中应抓关键词,正确理解关键词语的含义,并“翻译”成相应的不等符号.如“非负数”、“最多”、“至少”、“不大于”、“不小于”、“不低于”等.列出不等式,将实际问题转化为数学问题,然后通过解不等式解决实际问题.五、布置作业课本第119页第1,2题六、板书设计七、教学反思本课从发生在学生身边的事情入手,创设问题情境,激发学生的学习兴趣和求知欲望.以问题为中心,使每一位学生都能积极思考,发散思维,让学生在“做数学”的过程中,亲身体验问题的发生、发现、发展与解决的全过程,采取自主探索、合作交流、深入研讨、步步为营的措施,为学生营造一个自主学习、主动发展的广阔空间,开辟探究、研讨、解决问题的广阔天地,使学生快快乐乐地成为学习的主人.教学要以实际生活为背景.学生亲身经历过现实问题数学化的过程,就会获得富有生命力的数学知识,进一步认识数学,体验数学的价值.只有让学生真切地体会到生活中处处有数学,才有生活中处处用数学的可能,以此培养学生的应用意识.教师在教学中要敢于打破教材格局.本课对教材作出全新的调整,注重以问题为线索来探究不等式的解法,再用所学知识去解决问题.放开手脚让每个学生从不同的角度、用不同的方法充分展现“自我”,真正构建起学生的课堂主人的地位,使他们的思维能力、情感态度和价值观念等各个方面都能迈上一个新的台阶.。
七年级数学下册 不等式与不等式组教案(8套)(新版)新人教版
9.1 不等式(第一课时)教学目标1. 感受生活中存在着大量的不等关系.2. 了解不等式和一元一次不等式的意义.3. 通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上.4. 灵活运用不等式性质解法解决相关题目,能举一反三,拓展思维.5. 经历由具体实例建立不等式模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想.6. 通过观察可以获得数学结论,初步体会一元一次不等式的应用价值,发展学生分析问题和解决问题的能力.7. 通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域.教学重点1. 不等式的解集的概念及在数轴上表示不等式的解集的方法.2. 掌握不等式的两条基本性质教学难点1.不等式的解集的概念.2.不等式的基本性质的理解和熟练运用;教学内容不等式.一、导入新课一辆匀速行驶的汽车在11:20时距离A地50 km.要在12:00以前驶过A地,车速应该具备什么条件?若设车速为每小时x km ,能用一个式子表示吗?二、新课教学1. 不等式的概念(1)在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式.(2)下列式子中哪些是不等式?① a +b =b +a ②-3>-5 ③x ≠l④x 十3>6 ⑤2m <n ⑥2x -3上述不等式中,有些不含未知数,有些含有未知数.(3)小组交流:说说生活中的不等关系.分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言.2. 不等式的解、不等式的解集问题1 要使汽车在12:00以前驶过A 地,你认为车速应该为多少呢?问题2 车速可以是每小时85 km 吗?每小时82 km 呢?每小时75.1 km 呢?每小时74 km 呢? 问题3 我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式x 32>50的解? 问题4 除了80和78,不等式x 32>50还有其他解吗?如果有,这些解应满足什么条件? 可以发现,当x >75时,不等式x 32>50总成立;而当x <75或x =75时,不等式x 32>50不成立.这就是说,任何一个大于75的数都是不等式x 32>50的解,这样的解有无数个;任何一个小于或等于75的数都不是不等式x 32>50的解.因此,x >75为使不等式x 32>50成立的x 的取值范围,它可以在数轴上表示.由上可知,在前面问题中,汽车要在12:00以前驶过A 地,车速必须大于75km/h.一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.三、 巩固新知1. 下列哪些是不等式x +3>6的解?哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,122. 求出不等式的解集,并在数轴上表示出来:(1)x+3 > 6 (2)2x < 8 (3)x-2 > 0四、总结归纳1. 不等式的概念.2. 不等式的解与不等式的解集.3. 不等式的解集在数轴上的表示.五、布置作业教材P119习题9.1第1、2题.9.1 不等式(第二课时)教学内容不等式的性质.一、导入新课教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:1. 天平被调整到什么状态?2. 给不平衡的天平两边同时加上相同质量的砝码,天平会有什么变化?3. 不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?4. 如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?二、探究新知1. 用“>”或“<”填空.(1)5>3:5+2 3+2;5-2 3-2.(2)-1<3:-1+2 3+2;-1-3 3-3.(3)6>2: 6×5 2×5;6×(-5) 2×(-5).(4)-2<3:(-2)×6 3×6;(-2)×(-6) 3×(-6).2. 从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.3. 让学生充分发表“发现”,师生共同归纳得出:不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变. 不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.三、巩固新知1. 判断(1)∵a <b ,∴a -b <b -b.(2)∵a <b ,∴3a <3b.(3)∵a <b ,∴-2a <-2b.(4)∵-2a >0,∴a >0.(5)∵-a <0,∴a <3.2. 填空(1)∵2a >3a ,∴a 是 数.(2)∵3a <2a,∴a 是 数.(3)∵ax <a 且x >1,∴a 是 数.3.根据下列已知条件,说出a 与b 的不等关系,并说明是根据不等式哪一条性质.(1)a -3>b -3;(2)3a <3b;(3)-4a >-4b.四、总结归纳在学生自己总结的基础上,教师应强调两点:1. 等式性质与不等式性质的不同之处;2. 在运用“不等式性质3”时应注意的问题.五、布置作业教材P120习题9.1第4、5题.9.1 不等式(第三课时)教学内容不等式的性质.一、导入新课利用不等式的性质解下列不等式(1)x -7>26;(2)3x <2x +1;(3)32x >50;(4)-4x >3. 二、例题分析分析:解不等式.就是要借助不等式的性质使不等式逐步化为x >a 或x<a (a 为常数)的形式. 解:(1)根据不等式的性质1,不等式两边加7,不等式的方向不变,所以x -7+7>26+7.x >33.(2)根据不等式的性质1,不等式两边减2x ,不等式的方向不变,所以3 x -2 x <2 x +1-2x ,x <1.(3)根据不等式的性质2,不等式两边乘23,不等式的方向不变,所以 3223⨯x >50×23 x >75(4)根据不等式的性质3,不等式两边除以-4,不等式的方向改变,所以44--x <43-, x <43-. 教师在数轴上表示(1)(2)的解集,让学生在数轴上表示(3)(4)的解集.教师指出像a ≥b 或a ≤b 这样的式子,也经常用来表示两个数量的大小关系. 例如,为了表示2011年9月1日北京的最低气温是19℃,最高气温是28℃,我们可以用t 表示这天的气温,t 是随时间变化的.但是它有一定的变化范围,即t ≥19℃,并且t ≤28℃,符号“≥”读作“大于或等于”,也可说是“不小于”;符号“≤”读作“x 小于或等于”,也可说是“不大于”,A ≥b 或A ≤b 形式的式子,具有与前面所说的不等式的性质类似的性质.三、巩固新知1. 解下列不等式,并在数轴上表示解集:(1)x+5>-1;(2)4x<3x-5;(3)8x-2<7x+3.2. 用不等式表示下列语句并写出解集:(1)x与3的和不小于6;(2)y与1的差不大于0.四、解决问题例某长方体形状的容器长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3 cm,现准备向它继续注水.用V(单位:cm3)表示新注入水的体积,写出V的取值范围.解:新注入水的体积V与原有水的体积的和不能超过容器的容积,即V+3×5×3≤3×5×10,V≤105.又由于新注入水的体积V不能是负数,因此, V 的取值范围是V≥0并且V≤105.在数轴上表示V 的取值范围如下图所示.五、课堂小结师生共同归纳本节课所学内容:通过学习,我们学会了简单的一元一次不等式的解法.还明白了生活中的许多实际问题都是可以用不等式的知识去解决的.六、布置作业教材P119页练习.9.2 一元一次不等式(第一课时)教学目标1. 感受生活中存在着大量的不等关系,了解一元一次不等式的意义.2. 通过解决简单的不等式,使学生会把一元一次不等式的解集正确地表示到数轴上.3. 能熟练解一元一次不等式.4. 会根据实际问题中数量关系建立数学模型,解决实际问题.5. 了解数学中的转化思想,感知不等式与方程的内在联系.6. 在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯.教学重点1. 正确理解一元一次不等式解集的意义.2. 能熟练解一元一次不等式.3. 列不等式解决实际问题.教学难点1. 正确理解一元一次不等式解集的意义.2. 找出不等关系并用准确的不等式表示出来.教学内容一元一次不等式.一、提出问题我们已经知道了什么是不等式以及不等式的性质,本节我们将学习一元一次不等式及其解法.二、新课教学思考:观察下面的不等式.x -7>26,3x <2x +1,x >50,-4x >3.它们有哪些共同特征?可以发现,上述每个不等式都只含有一个未知数,并且未知数的次数是1.类似于一元一次方程,含有一个未知数,并且未知数的次数是1的不等式,叫做一元一次不等式.从上节我们知道,不等式x -7>26的解集是x >33.这个解集是通过“不等式两边都加 7,不等号的方向不变”而得到的,事实上,这相当于由x -7>26得x >26+7.这就是说,解不等式时也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.一般地,利用不等式的性质,采取与解一元一次方程相类似的步骤,就可以求出一元一次不等式的解集.三、实例探究例 解下列不等式,并在数轴上表示解集.(1)2(1+x )<3; (2)22x +≥312-x .解:(1)去括号,得2+2 x <3.移项,得2 x <3-2.合并同类项,得2 x <1.系数化为1,得 x <21. 这个不等式的解集在数轴上的表示如下图.让学生仿照(1),完成(2)的解答. 这个不等式的解集在数轴上的表示如下图.师提醒学生注意不等式两边都乘(或除以)同一个负数时,不等号的方向改变.三、归纳总结解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a或x>a的形式.四、布置作业教材P126习题9.2第1题.9.2 一元一次不等式(第二课时)教学内容一、导入新课有些实际问题中存在不等关系,用不等式来表示这样的关系,就能把实际问题转化为数学问题,从而通过解不等式得到实际问题的答案.二、新课教学1. 问题去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%.若到明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数要比去年至少要增加多少天?2. 分析(1)去年空气质量良好的天数是365×60 %;(2)用x表示明年增加的空气质量良好的天数,则明年空气质量良好的天数是x+365×60%;(3)与x有关的哪个式子的值应超过70 %?这个式子表示什么?本题的不等关系是什么?不等关系是:明年空气质量良好的天数/365>70 %.(4)怎样解不等式(x +365×60%)/365>70 % ?3. 解答设明年比去年空气质量良好的天数增加了x .去年有365×60%天空气质量良好,明年有(x +365×60%)天空气质量良好,并且3656036500⨯+x >70%. 去分母,得x +219>255.5.移项,合并同类项,得x >36.5.由x 应为正整数,得:x ≥37.答:明年要比去年空气质量良好的天数至少增加37,才能使这一年空气质量良好的天数超过全年天数的70%.注意:用不等式解应用问题时,要考虑问题的实际意义. 问题中的未知数都应是正整数.4. 思考比较解这个不等式与解方程(x +365×60%)/365=70%的步骤,两者有什么不同吗?学生分组讨论,师生共同归纳:一次不等式与解一元一次方程类似,只是不等式两边同乘(或除)以一个数时,要注意不等号的方向. 解一元一次方程,要根据等式的性质,将方程逐步化为x =a 的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x >a (或x <a )的形式.四、课堂练习某工程队计划在10天内修路6 km. 施工前2天修完1.2 km 后,计划发生变化. 准备提前2天完成修路任务,以后几天内平均每天至少要修路多少?设以后几天内平均每天至少要修路x km ,则6x ≥6-1.2.解得x ≥0.8.所以,工程队以后几天内平均每天至少要修路0.8 km.五、布置作业教材P126习题6.2第6题.9.2 一元一次不等式(第三课时)教学内容.一、导入新课前面我们结合实际问题,讨论了如何根据数量关系列不等式以及如何解不等式.在本节课上,我们将进一步探究如何用一元一次不等式解决生活中的一些实际问题.二、新课教学1. 问题甲、乙两方案商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超过100元的部分按90%收费;在乙商场累计购物超过50元后,超过50元的部分按95%收费. 顾客到哪家商场购物花费少?2. 分析在甲商场累计购物超过100元后享受优惠,在乙商场累计购物超过50元后享受优惠. 因此,我们需要分三种情况讨论.(1)累计购物不超过50元.(2)累计购物超过50元但不超过100元.(3)累计购物超过100元.3. 解答(1)当累计购物不超过50元,在甲、乙两商场购物花费有区别吗?为什么?没有区别,因为两家商店都没有优惠.(2)当累计购物超过50元而不超过100元时,在哪家商店购物花费小?为什么?在乙商店购物花费小. 因为乙商店有优惠,而甲商店没有优惠.(3)当累计购物超过100元时,在哪家商店购物花费小?要分三种情况考虑:设累计购物x(x>100)元.①若到甲商场购物花费小,则50+0.95(x-50)>100+0.9(x-100).解得x>150 .②若到乙商场购物花费小,则50+0.95(x-50)<100+0.9(x-100).解得 x <150 .这就是说,累计购物超过100元而不到150元时,到乙商场购物花费少.③ 若50+0.95(x -50)=100+0.9(x -100),解得x =150 .这就是说,累计购物为150元时,到甲、乙两商场购物花费一样.4. 注意问题比较复杂时,要考虑分类解答. 分类要做到不重不漏.四、课堂练习某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?设小明答对x 道题,则10x -5(20-x )>90.解得x >1232. 所以,小明至少要答对13道题.五、布置作业教材P126习题6.2第5、7、8题.9.3 一元一次不等式组教学目标1.理解一元一次不等式组解集的概念,掌握一元一次不等式组的解法.2.会利用数轴解简单的一元一次不等式组.3.通过练习,理解并掌握一元一次不等式组解集的几种情况.4.通过利用数轴来寻求不等式组的解,培养学生的观察能力、分析能力.5. 让学生从练习中发现不等式组解集的四种情况,培养学生归纳总结能力.6. 通过用不等式组解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.教学重点1.掌握一元一次不等式组的解法.2.会用数轴表示一元一次不等式组解集的几种情况.教学难点不等式组解集几种情况的灵活应用.教学内容一元一次不等式组.一、导入新课1. 问题用每分可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水超过1200 t 而不足1500 t,那么将污水抽完所用时间的范围是什么?2. 分析设用x min将污水抽完,则x 同时满足不等式30x>1 200,①30x<1 500.②类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组,记作30x>1 200,30x<1 500.由不等式①,解得x>40.由不等式②,解得x<50.把不等式①和②的解集在数轴上表示出来(下图).从上图容易看出,x 取值的范围为40<x<50.这就是说,将污水抽完所用时间多于40 min 而少于50 min.3. 总结一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.三、课堂小结解一元一次不等式组的步骤:①求出每个不等式的解集;②把不等式的解集在同一数轴上表示;③找出这几个不等式解集的公共部分,可用阴影表示;④不等式组的解集就是这个公共部分.四、布置作业教材P129练习.9.3 一元一次不等式组(第二课时)教学目标1.理解一元一次不等式组解集的概念,掌握一元一次不等式组的解法.2.会利用数轴解简单的一元一次不等式组.3.通过练习,理解并掌握一元一次不等式组解集的几种情况.4.通过利用数轴来寻求不等式组的解,培养学生的观察能力、分析能力.5. 让学生从练习中发现不等式组解集的四种情况,培养学生归纳总结能力.6. 通过用不等式组解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.教学重点1.掌握一元一次不等式组的解法.2.会用数轴表示一元一次不等式组解集的几种情况.教学难点不等式组解集几种情况的灵活应用.教学内容一元一次不等式组的解法.一、导入新课复习上节内容,导入新课的教学.二、新课教学例1 解下列不等式组:(1)⎩⎨⎧-<++>-148112x x x x(2)⎪⎩⎪⎨⎧-<-++≥+xx x x 213521132 解:(1)解不等式①,得x >2.解不等式②,得x >3.把不等式①和②的解集在数轴上表示出来(下图).从上图可以找出两个不等式解集的公共部分,得不等式组的解集x >3.(2)解不等式①,得x ≥8.解不等式②,得x <54.把不等式①和②的解集在数轴上表示出来(下图).从上图可以看到这两个不等式的解集没有公共部分,不等式组无解. 归纳:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.利用数轴可以直观地表示不等式组的解集.例2 x 取哪些整数值时,不等式5x +2>3(x -1)与21x -1≤7-23x 成立.分析:求出这两个不等式组成的不等式组的解集,解集中的整数就是 x 可取的整数值.具体步骤参见教材第129页例2.三、课堂小结解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.利用数轴可以直观地表示不等式组的解集.四、布置作业教材P130习题9.3第1、2题.。
七年级不等式教案
七年级不等式教案教案标题:七年级不等式教案教案目标:1. 了解不等式的概念和符号;2. 掌握解不等式的基本方法;3. 能够在实际问题中应用不等式。
教案大纲:I. 引入(5分钟)A. 引起学生对不等式的兴趣,例如提出一个简单的问题,如:小明有10元钱,他想买一本书,书的价格不超过5元,他还能买这本书吗?B. 引导学生思考不等式的定义和符号。
II. 概念讲解(10分钟)A. 讲解不等式的定义,即比较两个数的大小关系;B. 介绍不等式的符号,如大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等;C. 通过示例和练习,巩固学生对不等式的概念和符号的理解。
III. 解不等式的基本方法(15分钟)A. 解释如何解一元一次不等式,包括加减法、乘除法的运用;B. 通过示例和练习,引导学生掌握解一元一次不等式的基本步骤;C. 引导学生注意解不等式时需要注意的特殊情况,如乘除法时需要考虑符号的变化。
IV. 实际问题应用(15分钟)A. 给出一些与学生生活相关的实际问题,如购物、时间等,要求学生用不等式表示并解决问题;B. 引导学生将实际问题转化为数学不等式,然后解决问题;C. 鼓励学生在解决问题的过程中思考和讨论不等式的意义和应用。
V. 练习与巩固(10分钟)A. 提供一些练习题,包括基础练习和应用题,巩固学生对不等式的掌握程度;B. 鼓励学生自主解答,并进行互相讨论和纠错。
VI. 总结与反思(5分钟)A. 总结不等式的概念、符号和解法;B. 鼓励学生回顾学习过程中的困惑和收获;C. 提醒学生将所学的知识应用于实际生活中。
教案附注:1. 在教学过程中,可以使用多媒体工具展示示例和练习题,提高学生的学习兴趣和参与度;2. 需要根据学生的实际情况和学习进度,适当调整教学内容和难度;3. 鼓励学生积极参与课堂讨论和互动,提高他们解决问题和应用知识的能力。
七年级数学下册不等式与不等式组教案人教新课标版
一、教学目标1. 知识与技能:学生能够理解不等式的基本概念。
学生能够解一元一次不等式。
2. 过程与方法:学生通过实例感知不等式的实际应用。
学生通过合作交流,掌握解不等式的方法。
3. 情感态度价值观:学生培养对数学的兴趣,感知数学与生活的联系。
二、教学重点与难点1. 重点:不等式的概念与性质。
不等式的解法。
2. 难点:不等式组的解法与解的意义。
三、教学方法与手段教学方法:采用问题驱动法、案例分析法、合作交流法。
教学手段:多媒体教学、板书、教学软件。
四、教学内容1. 第一课时:不等式的概念与性质导入:通过生活实例引入不等式概念。
新课:讲解不等式的基本性质。
练习:解简单的不等式。
2. 第二课时:不等式的解法导入:回顾一元一次方程的解法。
新课:引导学生掌握不等式的解法。
练习:解不同类型的不等式。
3. 第三课时:不等式组的解法导入:通过实例引入不等式组的概念。
新课:讲解不等式组的解法。
练习:解复杂的不等式组。
4. 第四课时:不等式应用题导入:通过实际问题引入不等式应用。
新课:讲解不等式在实际问题中的应用。
练习:解决实际问题的不等式应用题。
5. 第五课时:复习与拓展复习:总结不等式与不等式组的主要知识点。
拓展:引导学生思考不等式在生活中的广泛应用。
五、教学反思课后收集学生反馈,评估教学效果。
根据学生掌握情况,调整后续教学计划。
反思教学方法,确保学生能够有效理解和运用不等式知识。
六、教学评价通过课堂练习和课后作业评估学生的掌握情况。
关注学生在解决问题时的思维过程和方法。
结合学生的课堂表现和作业完成情况,全面评价学生的学习效果。
七、教学拓展引导学生将不等式知识应用到其他学科中,如科学实验中的数据比较。
通过数学故事或历史,让学生了解不等式在数学发展中的地位和作用。
鼓励学生参与数学竞赛或研究项目,提高解决复杂问题的能力。
八、教学资源利用互联网资源,如教育平台和数学论坛,获取最新的教学内容和方法。
结合学校图书馆的资源,推荐相关的数学读物,拓宽学生的知识视野。
七年级数学下册《不等式》教案、教学设计
c.引入:今天我们要学习的就是这种表示大小关系的数学表达式,它叫做“不等式”。
(二)讲授新知
1.教学内容:讲解不等式的定义、基本性质、一元一次不等式的解法。
教学过程:
a.介绍不等式的定义,包括不等式的符号、形式等。
b.讲解不等式的基本性质,如传递性、加法和乘法性质等。
a.导入:通过生活实例,引导学生思考如何表示大小关系,自然引入不等式的概念。
b.新课:讲解不等式的定义、性质和解法,结合实际例题,让学生在实践中掌握方法。
c.练习:设计不同难度的练习题,让学生巩固所学知识,并及时给予反馈和指导。
d.小结:引导学生总结本节课所学的不等式知识,强调重点和难点,提升学生的概括能力。
a.布置练习题,包括基础题、提高题和拓展题,以满足不同层次学生的需求。
b.学生独立完成练习题,教师巡回指导,关注学生的解题过程,及时发现问题并进行个别辅导。
c.对学生完成的练习题进行批改,给予反馈,让学生了解自己的学习情况。
d.针对普遍存在的问题,进行集中讲解,帮助学生巩固所学知识。
(五)总结归纳
1.教学内容:对本节课所学的不等式知识进行总结,强调重点和难点,提升学生的概括能力。
3.采用“从特殊到一般”的教学策略,先让学生解决具体的不等式问题,再引导学生总结归纳出一元一次不等式的解法。
4.利用数轴、图像等直观工具,帮助学生形象地理解不等式的解集,提高学生的几何直观能力。
5.引导学生通过自我评价和同伴评价,反思自己在解题过程中的思维方法和策略,培养学生的自我调控能力。
(三)情感态度与价值观
b.在解题过程中遇到的困难和解决方法。
c.对不等式在实际问题中应用的体会。
数学人教版七年级下册不等式与不等式组教学设计
数学人教版七年级下册不等式与不等式组教学设计教学目标:1. 理解不等式的含义,能够用符号表示不等式。
2. 学会解不等式,并能够在数轴上表示出解集。
3. 能够解不等式组,并能够在数轴上表示出解集。
教学重点:1. 不等式的理解和解不等式的方法。
2. 不等式组的理解和解不等式组的方法。
教学难点:1. 不等式组的解集表示及其在数轴上的表示。
教学程序:1. 导入:教师通过提问和情境引入不等式的概念,例如:小明有一些苹果和橙子,苹果的个数比橙子多,用不等号表示苹果的个数比橙子多。
2. 呈现:教师通过示例展示不等式的符号表示法,并解释符号的意义。
3. 讲解:教师向学生讲解解不等式的方法,例如:1)当不等式中含有加法或减法时,可以通过移项的方式得到解;2)当不等式中含有乘法或除法时,需要注意正负号对不等式的影响。
4. 操练:教师设计一些不等式的练习题,让学生进行解答,并在黑板上解答出解。
5. 总结:教师带领学生总结解不等式的方法和技巧,并整理出解不等式的步骤。
6. 引入:教师通过情境和问题引入不等式组的概念,例如:小明和小红要一起去买书,小明有50元,小红有80元,他们想要买的书的价格范围在多少之内?7. 呈现:教师通过示例展示不等式组的符号表示法,并解释符号的意义。
8. 讲解:教师向学生讲解解不等式组的方法,例如:1)当不等式组中含有和或差时,可以通过求解每个不等式得到解集;2)当不等式组中含有乘积或商时,需要考虑正负号对不等式的影响。
9. 操练:教师设计一些不等式组的练习题,让学生进行解答,并在黑板上解答出解集。
10. 总结:教师带领学生总结解不等式组的方法和技巧,并整理出解不等式组的步骤。
11. 练习:教师设计一些综合性的练习题,让学生进行解答,并在黑板上解答出解集。
12. 拓展:教师鼓励学生思考不等式在实际问题中的应用,并给予一些拓展题目进行思考和解答。
13. 归纳:教师和学生一起对本节课所学的内容进行归纳总结,并回顾解不等式和不等式组所用到的方法和技巧。
初中不等式教案
初中不等式教案教学目标:1. 了解不等式的概念,掌握不等式的基本性质。
2. 能够解一元一次不等式,解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 不等式的概念和基本性质。
2. 一元一次不等式的解法。
教学难点:1. 不等式的性质。
2. 一元一次不等式的解法。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入不等式的概念,通过实际例子让学生感受不等式的存在。
2. 引导学生思考不等式与等式的区别。
二、不等式的概念与基本性质(15分钟)1. 介绍不等式的定义,解释不等号“<”、“>”、“≤”、“≥”的含义。
2. 引导学生通过实际例子来理解不等式的概念。
3. 讲解不等式的基本性质,如对称性、传递性等。
4. 进行一些基本的不等式练习,让学生熟悉不等式的性质。
三、一元一次不等式的解法(15分钟)1. 介绍一元一次不等式的定义,解释“解集”的概念。
2. 讲解一元一次不等式的解法,如“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”等。
3. 进行一些一元一次不等式的练习,让学生掌握解法。
四、实际问题解决(15分钟)1. 通过一些实际问题,让学生应用不等式和一元一次不等式的解法来解决问题。
2. 引导学生思考如何将实际问题转化为不等式问题。
五、总结与反思(5分钟)1. 对本节课的内容进行总结,让学生明确不等式的概念、基本性质和一元一次不等式的解法。
2. 引导学生反思自己在学习过程中的困惑和不足,鼓励他们在课后进行自主学习。
教学延伸:1. 进一步学习不等式的其他类型,如二元一次不等式、不等式的组合等。
2. 应用不等式解决更复杂的实际问题。
教学反思:本节课通过引入实际例子,引导学生了解不等式的概念,通过讲解和练习,让学生掌握不等式的基本性质和一元一次不等式的解法。
在教学过程中,要注意关注学生的学习情况,及时解答他们的疑问,并进行适当的引导和启发,培养学生的逻辑思维能力和解决问题的能力。
七年级数学下册不等式与不等式组教案人教新课标版
七年级数学下册不等式与不等式组教案人教新课标版一、教学目标:知识与技能:使学生掌握不等式的概念、性质和基本运算;学会解一元一次不等式及不等式组。
过程与方法:通过观察、实验、探究等活动,培养学生的逻辑思维能力和解决问题的能力。
情感态度与价值观:激发学生学习数学的兴趣,培养学生克服困难、自主学习的品质。
二、教学内容:第一课时:不等式的概念与性质1. 不等式的定义2. 不等式的性质第二课时:不等式的基本运算1. 不等式的加减法2. 不等式的乘除法第三课时:解一元一次不等式1. 一元一次不等式的解法2. 解不等式组的策略第四课时:不等式应用举例1. 应用不等式解决实际问题2. 不等式组在实际问题中的应用第五课时:复习与拓展1. 复习不等式、不等式组的解法及应用2. 拓展练习三、教学重点与难点:重点:不等式的概念、性质,解一元一次不等式及不等式组的方法。
难点:不等式的性质,解一元一次不等式,不等式组在实际问题中的应用。
四、教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究、合作交流,培养学生的数学素养。
五、教学过程:第一课时:1. 导入新课:通过生活中的实例引入不等式概念。
2. 讲解不等式的性质。
3. 练习不等式的基本运算。
第二课时:1. 讲解不等式的加减法运算。
2. 讲解不等式的乘除法运算。
3. 练习不等式的基本运算。
第三课时:1. 讲解一元一次不等式的解法。
2. 讲解解不等式组的策略。
3. 练习解一元一次不等式及不等式组。
第四课时:1. 举例讲解应用不等式解决实际问题。
2. 举例讲解不等式组在实际问题中的应用。
3. 练习不等式及不等式组在实际问题中的应用。
第五课时:1. 复习不等式、不等式组的解法及应用。
2. 拓展练习。
六、教学评价:采用课堂练习、课后作业、小组讨论、个人总结等方式进行教学评价。
重点关注学生对不等式及不等式组的掌握程度,以及在实际问题中的应用能力。
七、教学策略:1. 采用多媒体课件辅助教学,直观展示不等式的性质和运算过程。
七年级数学下册《不等式及其解集》教案设计【6篇】
七年级数学下册《不等式及其解集》教案设计【6篇】在我们上学期间,大家对知识点应该都不陌生吧?知识点在教育实践中,是指对某一个知识的泛称。
还在为没有系统的知识点而发愁吗?读书破万卷下笔如有神,下面本文范文为您精心整理了6篇《七年级数学下册《不等式及其解集》教案设计》,希望能对您的写作有一定的参考作用。
最新七年级数学下册教案人教版例文篇一教学目标1.理解和掌握倒数的意义。
2.能正确的求出一个数的倒数。
3.培养学生的观察能力和概括能力。
教学重点认识倒数并掌握求倒数的方法教学难点小数与整数求倒数的方法教学过程一、基本训练(一)口算=上面各式有什么特点?还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)二、引入新课刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)三、新课教学(一)乘积是1的两个数存在着怎样的倒数关系呢?请看:,那么我们就说是的倒数,反过来(引导学生说) 是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?(二)深化理解教师提问1.什么是互为倒数?2.怎样理解这句话?(举例说明)( 的倒数是,的倒数是,……不能说是倒数,要说它是谁的倒数。
)3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如,,……但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
(三)求一个数的倒数1.例:写出、的倒数学生试做讨论后,教师将过程板书如下:所以的倒数是,的倒数是.(能不能写成,为什么?)总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
2.深化你会求小数的倒数吗?(学生试做)三、训练、深化(一)下面哪两个数互为倒数(演示课件:倒数的认识1)(二)求出下面各数的倒数(演示课件:倒数的认识2)(三)判断1.真分数的倒数都是假分数。
初一不等式教案
初一不等式教案一、教学目标:1.能够理解不等式的概念,区别不等式与等式的差异。
2.能够掌握不等式的基本性质和解不等式的方法。
3.能够应用不等式解决实际问题。
二、教学重点与难点:1.理解不等式的概念与解不等式的方法。
2.解决实际问题的能力。
三、教学准备:1.多媒体教学设备。
2.不等式练习题。
四、教学过程:【导入】1.教师通过提问的方式,复习学生对等式的理解,引导学生发现等式与不等式的差异。
2.通过举例子的方法,引导学生理解什么是不等式,并与等式进行区分。
【内容展开】1.不等式的概念与性质a.向学生提出“2>1”这个不等式,引导学生理解不等式的比较关系。
b.介绍不等式的符号表示方法,大于号和小于号的使用规则。
c.讲解不等式的性质,即同一个数加上或减去一个数,不等式的大小关系不变。
d.利用多个例子进行分析,帮助学生掌握不等式的性质。
2.不等式的解法a.介绍一元一次不等式的解法,主要是通过变形、移项和比较的方式解决。
b.讲解一些特殊不等式的解法,如含有绝对值的不等式。
c.通过练习题的实际操作,让学生熟练掌握不等式的解法。
3.不等式的应用a.通过生活实例,引导学生理解不等式的应用场景。
b.提供一些实际问题,让学生利用不等式进行解决。
c.让学生分享解决问题的思路和方法,加深对不等式的应用理解。
【总结与归纳】1.教师总结不等式的概念和解题方法,并与学生一同归纳总结。
2.向学生提问不等式的应用,考察学生的理解情况。
3.巩固学生的学习成果,回顾重点知识。
五、教学延伸:1.给予学生更多的不等式练习题,让学生更加熟练掌握解不等式的方法。
2.鼓励学生独立思考和解决问题,提高学生的综合运用能力。
六、作业布置:1.布置不等式的练习题,要求学生独立完成。
2.鼓励学生尝试应用不等式解决实际生活问题。
通过本节课的学习,相信学生们对不等式有了更深入的理解,并能够灵活运用不等式进行解题。
不等式及不等式的性质(教案)
一、教学内容
本节课选自人教版七年级数学下册第八章第一节“不等式及其性质”。教学内容主要包括以下部分:
1.不等式的定义:了解不等式的概念,能够识别不等号(>、<、≥、≤)。
2.不等式的读法:掌握如何正确读出各种不等式。
3.不等式的性质:
(1)不等式两边同时加上(或减去)同一个数,不等号的方向不变。
3.重点难点解析:在讲授过程中,我会特别强调不等式的性质1、2、3。对于难点部分,比如性质3,我会通过具体数字的示例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与不等式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过比较不同物体的重量,让学生直观地感受到不等式的意义。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《不等式及不等式的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过比较两个数大小的情况?”(如:比较两个人的身高)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索不式的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解不等式的基本概念。不等式是表示两个数之间大小关系的式子。它是数学中非常重要的一个工具,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,小华的身高是1.6米,小丽的身高是1.55米,我们可以用不等式表示这个关系:小华的身高>小丽的身高。
5.培养学生的数据分析素养:在解决实际问题的过程中,培养学生对数据的敏感性,学会利用不等式分析数据,为决策提供依据。
人教版七年级数学下册第九章不等式与不等式组数学活动教学设计
在讲授新知的环节,我会按照以下步骤进行:
1.介绍不等式的定义和符号表示,强调不等式与等式的区别。
2.讲解不等式的性质,如加法、减法、乘法、除法的性质,并通过实例进行解释。
3.示范解一元一次不等式的步骤,包括移项、合并同类项、化简等,让学生跟随我的讲解进行板书。
4.引导学生通过数轴来形象地表示不等式的解集,加深对解集概念的理解。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将利用一个与学生生活密切相关的情境来引起学生的兴趣和好奇心。例如,我可以提出这样一个问题:“同学们,假设我们班要组织一次郊游活动,预算是每人不超过100元。如果我们要购买一些零食和饮料,如何确保我们的总花费不超过预算呢?”通过这个问题,让学生感受到不等式在解决实际问题中的应用。接着,我会引导学生回顾之前学过的等式知识,并对比不等式的特点,从而引出今天的新课——不等式与不等式组。
2.学生在解不等式过程中可能出现的错误,如符号弄反、移项错误等,教师需针对这些常见错误进行有针对性的指导。
3.学生的逻辑思维能力有待提高,需要通过典型例题和练习题,引导学生运用不等式性质进行分析、推导和证明。
4.部分学生对数学学习缺乏兴趣,教师应结合生活实例,激发学生学习兴趣,增强他们对数学实用性的认识。
讨论主题可能包括:
1.两个学生分别从A、B两地出发,相向而行,问他们何时相遇?
2.某商店进行打折促销,如何计算打折后的价格,使得顾客购买的商品总价不超过预算?
(四)课堂练习
在课堂练习环节,我会设计一些具有代表性的题目,让学生独立完成。题目难度分为基础、提高和拓展三个层次,以满足不同学生的学习需求。
练习题目可能包括:
3.培养学生的合作意识和团队精神,通过小组讨论、互助互学,提高学生的交流表达能力。
人教版数学七年级下册9.1《不等式》教学设计
人教版数学七年级下册9.1《不等式》教学设计一. 教材分析人教版数学七年级下册9.1《不等式》是学生学习初中数学的重要内容,它为学生提供了初步了解不等式、解决实际问题以及进一步学习函数、方程等数学知识的基础。
本节内容主要包括不等式的概念、不等式的性质以及不等式的解法等。
教材通过丰富的实例,引导学生认识不等式,并通过自主探究活动,让学生体验不等式的性质,从而培养学生的抽象思维能力和解决实际问题的能力。
二. 学情分析学生在七年级上册已经学习了有理数、实数等基础知识,对数轴、绝对值等概念有了一定的了解。
但是,对于不等式的概念和性质,学生可能还比较陌生。
因此,在教学过程中,需要结合学生的已有知识,通过实例和活动,让学生逐步理解和掌握不等式的相关知识。
三. 教学目标1.了解不等式的概念,能正确理解不等号(>、≥、<、≤)的含义。
2.掌握不等式的性质,并能运用性质解决实际问题。
3.培养学生的抽象思维能力和解决实际问题的能力。
四. 教学重难点1.不等式的概念和性质。
2.不等式的解法。
五. 教学方法1.情境教学法:通过生活实例引入不等式,让学生感受不等式的实际意义。
2.自主探究法:引导学生通过小组合作、讨论,发现不等式的性质。
3.案例教学法:通过具体案例,让学生学会解决实际问题。
六. 教学准备1.教学课件:制作课件,展示不等式的概念、性质和实例。
2.学习材料:为学生准备相关的不等式实例和练习题。
3.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例,如温度、身高等,引导学生认识不等式。
向学生介绍不等号(>、≥、<、≤)的含义。
2.呈现(10分钟)向学生呈现一组不等式,让学生观察并总结不等式的特点。
通过小组讨论,引导学生发现不等式的性质。
3.操练(10分钟)让学生分组进行练习,运用不等式的性质解决问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成一些不等式题目,检验学生对不等式的理解和掌握程度。
七年级数学下册不等式教案人教版【教案】
不等式〖教学目标〗在本学段,学生将经历从实际问题中建立不等关系,进而抽象出不等式的过程,体会不等式和方程一样,都是刻画现实世界中同类量之间关系的重要数学模型,同时进一步发展学生的符号感. (-)知识目标1.能够根据具体问题中的大小关系了解不等式的意义.2.理解什么是不等式成立,掌握不等式是否成立的判定方法.3.能依题意准确迅速地列出相应的不等式.体会现实生活中存在着大量的不等关系,学习不等式的有关知识是生活和工作的需要.(二)能力目标1.培养学生运用类比方法研究相关内容的能力.2.训练学生运用所学知识解决实际问题的能力.(三)情感目标1.通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识.2.通过不等式的学习,渗透具有不等量关系的数学美.〖教学重点〗能依题意准确迅速地列出相应的不等式.〖教学难点〗理解符号“≥”“≤”的含义,理解什么是不等式成立.〖教学过程〗一、课前布置1.浏览课本P2~21,了解本章结构。
自学:阅读课本P2~P4,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).2.查找“不等号的由来”备注:不等号的由来①现实世界中存在着大量的不等关系,如何用符号表示呢?为了寻求一套表示“大于”或“小于”的符号,数学家们绞尽脑汁.1631年,英国数学家哈里奥特首先创用符号“>”表示“大于”,“<”表示“小于”,这就是现在通用的大于号和小于号.与哈里奥特同时代的数学家们也创造了一些表示大小关系的符号,但都因书写起来十分繁琐而被淘汰. ②后来,人们在表达不等关系时,常把等式作为不等式的特殊情况来处理.在许多情况下,要用到一个数(或量)大于或等于另一个数(或量),此时就把“>”和“=”有机地结合起来得到符号“≥”,读做“大于或等于”,有时也称为“不小于”.同样,把符号“≤”读做“小于或等于”,有时也称为“不大于”.那么如何理解符号“≥”“≤”的含义呢?用“≥”表示“>”或“=”,即两者必居其一,不要求同时满足.例如12x ≥0,其中只有“>”成立,“=”就不成立.同样“≤”也有类似的情况.③因此有人把a >b ,b <a 这样的不等式叫做严格不等式,把形如a ≥b ,b ≤a 的不等式叫做不严格不等式.现代数学中又用符号“≮”表示“不小于”,用“≯”表示“不大于”.有了这些符号,在表示不等关系时,就非常得心应手了.二、师生互动和学生一起进行知识梳理(一)由师生一起交流“不等号的由来”①,引出学习目标——认识不等式1.引起动机:教师配合课本“观察与思考”“一起探究”等内容提问:用数学式子要如何表示小卡车赶超大卡车?2.学生进行讨论并回答。
人教版七年级下不等式概念教案
不等式的概念教学内容:不等式概念的引入教学目标:1、知识技能:了解不等式的概念,与等式概念相区分,经历“把实际问题抽象为不等式”的过程。
提高学生的分析、判断能力。
2、过程方法:通过自主学习与集体互动的形式,了解不等式的概念,利用新旧知识的迁移,区分等式与不等式概念。
3、情感态度:让学生体会不等式是刻画现实世界中不等关系的一种数学模式。
4、语言训练:等式、不等式、解、解集教学重点:了解不等式概念,会区分等式与不等式。
教学难点:利用所学知识解决不等式中的简单问题教学过程:一、情景引入:师:数量之间有哪几种关系呀?生:大小,相等师:那有没有不等的关系啊?生:有总结:数量有大小之分,它们之间有相等关系,也有不等关系。
操作:我们把全班同学的体重收集起来,你说通过这些数据我们能分析出些什么呢?二、新课:1、等式与不等式:方法:1、列出等式:523=+ 52=-x 7642-=+x 7=-y x 分析:问:这些式子有什么共同的特点?(都是等式) 问:什么是等式?(用等号连接的式子)引:在实际生活中有相等关系,也会有不等关系。
所以有等式就有不等式。
2、学生靠已有知识,自己列出不等关系的式子。
(学生自由发挥)3、分析:1、等式中有具体的划分:算式和方程问:什么是算式,什么是方程?两者有什么不同?(方程都是等式。
方程是含有未知数的等式。
)2、思考:等式有这样的分类,不等式是否也有这样的分类呢?(学生独立思考)3、不等式与一元一次不等式 (学生自由发挥)4、小结:等式与不等式的关系5、不等式的概念:用“<”“>”“≠”号表示大小关系的式子,叫做不等式。
一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
练习:(1)m 是非负数(2)a 与1的差是负数(3)x 的2倍与1的和不小于4(4)X 的一半与4的差小于4方法:学生独立填写,分析2、不等式的解与解集方法:1、不等式的解:方法:解方程:52=+x学生口答 3=x解不等式: 52 +x学生互动 3 x反之:52 +x 呢?2、解与解集:方法:区分方程的解与不等式的解的不同(方程的解只有1个,而不等式的解确很多)分析:我们把x 的取值范围,称作不等式解的集合,简称解集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式(组 )
考点一、不等式的概念(3分)
1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法
考点二、不等式基本性质(3~5分)
1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;
考点三、一元一次不等式求解(6--8分)
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1
考点四、一元一次不等式在实际问题中的应用
实际问题从关键语句中找条件
符号表达 1. 根据设置恰当的未知数
2.用代数式表示各过程量
3.寻找问题中的不等关系列出不等式
解不等式 注意不等式基本性质的运用
考点五、一元一次不等式组 (8分)
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法
(1)分别求出不等式组中各个不等式的解集
(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
7、不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
常见题型
一、选择题
一、选择题
1. 如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <1
2. a 、b 是有理数,下列各式中成立的是( ).
(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b
(C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b
3. |a |+a 的值一定是( ).
(A)大于零 (B)小于零 (C)不大于零 (D)不小于零
4. 若由x <y 可得到ax >ay ,应满足的条件是( ).
(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0
5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).
(A)a <0 (B)a >-1 (C)a <-1 (D)a <1
6. 九年级(1)班的几个同学,毕业前合影留念,每人交元.一张彩色底片元,扩印一张相片元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有
( ).
(A)2人 (B)3人 (C)4人 (D)5人
7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ).
(A)11 (B)8 (C)7 (D)5
8. 若不等式组⎩
⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2
(B)k ≥2 (C)k <1 (D)1≤k <2 9. 不等式组⎩⎨⎧+>+<+1
,159m x x x 的解集是x >2,则m 的取值范围是( ).
(A)m ≤2
(B)m ≥2 (C)m ≤1 (D)m ≥1 10. 对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知34
11<<d b ,则b +d 的值为_________.
11. 如果a 2x >a 2y (a ≠0).那么x ______y .
12. 若x 是非负数,则5231x -≤
-的解集是______. 13.
已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 14. 6月1日起,某超市开始有偿..
提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..
应付给超市______元. 15. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.
16. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页设以后几天里每天要读x 页,列出的不等式为______.
17.
k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1. 二、解下列不等式
18.
2(2x -3)<5(x -1). 10-3(x +6)≤1.
19. ⋅-->+
22531x x ⋅-≥--+612131y y y
20. 3[x -2(x -7)]≤4x .
.17)10(2383+-≤--y y y
21.
.151)13(21+<--y y y .15
)2(22537313-+≤--+x x x
22. ).1(32)]1(21[21-<---x x x x ⋅->+-+2
503.0.02.003.05.09.04.0x x x
三、变式练习
23. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .
24. . 适当选择a 的取值范围,使<x <a 的整数解:
(1) x 只有一个整数解;
(2) x 一个整数解也没有.
25. 当310)3(2k k -<
-时,求关于x 的不等式k x x k ->-4)5(的解集.
26.
(类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于
2且小于10
五、解答题
27. 某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车
28. 某种商品进价为150元,出售时标价为225元,由于销售情况不好,商
品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品
29.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件。