一次分式函数最值问题

合集下载

分式型函数的最值求法及简单应用

分式型函数的最值求法及简单应用

分式型函数的雏形是反 比例 函数 ) , = ( k ≠
0 ) , 通过对函数 图像 的平移 , 可得到形式为“ Y = 口+
时, - 等号成立. 1
所 以函数的最小值为 2 √ + 3 , 此时 = √ + 2 .
由于函数形 式符合了基本 不等式的“ 一正数 ,
二定值 , 三相等” 的要求 , 于是顺理成章 的借助基本 不等式完成了本题 ( 2 )仍然可整理 孥 化为( 1 ) 中的函数形式, 但由 于t 的范围限制, 故基本不等式在本题中不能使用了, 并目 该 函 数不 是初等函数, 故必厮 U 用导数说明 单调性
处不 展开说 明.
( > 2 ) ; ( 3 ≤ ≤5 ) .
6 O・
< 数学之友 )
2 0 1 5年第 2 O期
解 法二 : ‘ . ‘ ∈R, . ‘ . 分子 分 母 I

时, 要 注恿
0的情 况分 开讨论 :
② t ∈ 【 一 丢 , 。 ) u ( 。 , 】 时 , , , + _ = = _


. > 0时, + ≥2 ( 当且仅 当 :1 时, 等号

t= 一
成立) ’ . . . + . = 1 -
l ≥1 , y E( 0 , 1 ] .





・ 菇< 0时 , + ≤一 2 ( 当且仅 当 =一1 时,

所以, 综上, 函数的最小值为 一1 , 此时 = 3;
这类函数与“ ” 型的处理方式有一定相 同之 处, 第一步也是“ 分 离常数” , 然后转化 为 “ ” 型
= , 一 耥 ( 2 一 一 1 ) 2 = 一 ( 2 一 一 1< ) 2 、 o u ’

有关函数最值问题的十二种解法

有关函数最值问题的十二种解法

本稿件适合高三高考复习用有关函数最值问题 的十二种解题方法与策略贵州省龙里中学高级教师 洪其强(551200)一、消元法:在已知条件等式下,求某些二元函数(,)f x y 的最值时,可利用条件式消去一个参量,从而将二元函数(,)f x y 化为在给定区间上求一元函数的最值问题。

例1、已知x 、y R ∈且223260x y x +-=,求222x y +的值域。

解:由223260x y x +-=得222360y x x =-+≥,即02x ≤≤。

2222392262()22x y x x x +=-+=--+∴当32x =时,222xy +取得最大值92;当0x =时,222x y +取得最小值0。

即222x y +的值域为90,2⎡⎤⎢⎥⎣⎦二、判别式法:对于某些特殊形式的函数的最值问题,经过适当变形后,使函数()f x 出现在一个有实根的一元二次方程的系数中,然后利用一元二次方程有实根的充要条件0∆≥来求出()f x 的最值。

例2、求函数22()1xf x x x =++的最值。

解:由22()1xf x x x =++得 []2()()2()0f x x f x x f x +-+=,因为x R ∈,所以0∆≥,即[]22()24()0f x f x --≥,解得22()3f x -≤≤。

因此()f x 的最大值是23,最小值是-2。

三、配方法:对于涉及到二次函数的最值问题,常用配方法求解。

例3、求2()234x x f x +=-在区间[]1,0-内的最值。

解:配方得 2224()2343(2)33x x x f x +=-=--+[]1,0x ∈- ,所以 1212x ≤≤,从而当223x =即22log 3x =时,()f x 取得最大值43;当21x =即0x =时()f x 取得最小值1。

四、辅助角公式:如果函数经过适当变形化为()sin cos f x a x b x =+(a、b均为常数),则可用辅助角公式sin cos arctan )ba xb x x a+=+来求函数()f x 的最值。

分式函数最值及函数值范围问题

分式函数最值及函数值范围问题

分式函数最值及函数值范围问题
在数学中,分式函数是由分子和分母分别是多项式的函数。

分式函数的最值和函数值范围问题是研究该类型函数的关键内容。

本文将介绍分式函数的最值以及如何确定函数值的范围。

1. 分式函数的最值问题
1.1 分式函数的最大值
要确定分式函数的最大值,我们可以通过以下步骤进行分析:
1. 找出函数的定义域,即使得分母不等于零的变量取值范围。

2. 找出函数的极值点,即导数为零或不存在的点,这些点可能是函数的最大值点。

3. 将定义域中的边界点和极值点一起代入函数,比较函数值,找出最大值。

1.2 分式函数的最小值
要确定分式函数的最小值,我们可以通过以下步骤进行分析:
1. 找出函数的定义域,即使得分母不等于零的变量取值范围。

2. 找出函数的极值点,即导数为零或不存在的点,这些点可能是函数的最小值点。

3. 将定义域中的边界点和极值点一起代入函数,比较函数值,找出最小值。

2. 分式函数的函数值范围问题
要确定分式函数的函数值范围,我们可以通过以下步骤进行分析:
1. 找出函数的定义域,即使得分母不等于零的变量取值范围。

2. 分析分子和分母的符号和关系,找出函数的正负性。

3. 综合考虑定义域边界点、极值点以及正负性,确定函数值的范围。

总结
分式函数的最值和函数值范围问题是研究分式函数的关键内容。

通过分析函数的定义域、极值点、边界点以及分子分母的符号和关系,我们可以确定分式函数的最值和函数值范围。

这些分析步骤可
以帮助我们更好地理解和运用分式函数。

高一求求函数值域的7类题型和15种方法讲义

高一求求函数值域的7类题型和15种方法讲义

高一求求函数值域的7类题型和15种方法讲义题型一:一次函数()0y ax b a =+≠的值域(最值)1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ;2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。

若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。

题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值)1))00>< 2(1(2 例1例21、反比例函数)0(≠=k x ky 的定义域为{}0x x ≠,值域为{}0y y ≠ 2、形如:cx dy ax b+=+的值域:(1)若定义域为b x R x a ⎧⎫∈≠-⎨⎬⎩⎭时,其值域为c y R y a ⎧⎫∈≠⎨⎬⎩⎭(2)若[],x m n ∈时,我们把原函数变形为d byx ay c-=-,然后利用[],x m n ∈(即x 的有界性),便可求出函数的值域。

例3:函数23321x x y -=-的值域为[)1,3,3⎛⎤-∞+∞ ⎥⎝⎦;若[]1,2x ∈时,其值域为11,511⎡⎤-⎢⎥⎣⎦。

例4:当(]3,1x ∈--时,函数1321x y x -=+的值域34,2⎡⎫--⎪⎢⎣⎭。

练习:已知()312x f x x -+=-,且[)3,2x ∈-,则()f x 的值域为6,5⎛⎤-∞- ⎥⎝⎦。

题型四:二次分式函数22dx ex cy ax bx c++=++的值域一般情况下,都可以用判别式法求其值域。

但要注意以下三个问题:①检验二次项系数为零时,该值时的例6:y 例7:y 例8:y 例9: 当y =当y ≠时,上述方程要在区间(1,-+∞02112y y ≥⎧⎪-⎨->-⎪⎩解得:综合①②得:原函数的值域为:10,8⎡⎤⎢⎥⎣⎦例10题型六:分段函数的值域:一般分别求出每一分段上函数的值域,然后将各个分段上的值域进行合并即可。

函数的实际运用——最值问题

函数的实际运用——最值问题

测试时间:4月27日班级:姓名:函数的实际运用——最值问题一、分式方程+最值1.为提高学生的阅读量,某学校计划购进一批图书,已知A类图书的单价比B类图书的单价贵6元,用720元购买A类图书和用540元购买B类图书的数量相等.(1)A,B两类图书的单价分别为多少?(2)学校计划购买这两类图书共120本,其中购买A类图书不超过90本,且不少于B类图书数量的1.5倍,如何购买费用最低?最低费用是多少?2、端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售.经了解,每个乙种粽子的进价比每个甲种粽子的进价多2元,用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同。

(1)甲、乙两种粽子每个的进价分别是多少元?(2)该超市计划购进这两种粽子共200个(两种都有),其中甲种粽子的个数不低于乙种粽子个数的2倍,若甲、乙两种粽子的售价分别为12元/个、15元/个,设购进甲种粽子m个,两种粽子全部售完时获得的利润为W 元.超市应如何进货才能获得最大利润,最大利润是多少元?3、红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对:物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?二、二元一次方程组+最值4.2023年中考越来越近,班主任李老师打算在中考结束当天送班上每个同学一束花,李老师打算去斗南购买向日葵和香槟玫瑰组合的鲜花.已知买2支向日葵和1支香槟玫瑰共需花费14元,3支香槟玫瑰的价格比2支向日葵的价格多2元.(1)求买一支向日葵和一支香槟玫瑰各需多少元?(2)李老师准备每束花需向日葵和香槟玫瑰共15支,且向日葵的数量不少于6支,班上总共40个学生,设购买所有的鲜花所需费用为w元,每束花有香槟玫瑰x支、求w与x之间的函数关系式,并设计一种使费用最少的买花方案,并写出最少费用.5.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小最小费用是多少元?6.某商场计划购进A,B两种服装共100件,这两种服装的进价、售价如表所示:(1)若商场预计进货用3500元,则这两种服装各购进多少件?(2)若商场规定A种服装进货不少于50件,应该怎样进货才能使商场销售完这批货时获利最多?此时利润为多少元?价格类型进价(元/件)售价(元/件)A3045B50707.某运动类商店准备购进一批足球和篮球共100个,这两种球的进价和售价如下表所示:(1)若该商店计划销售完这批球后,可获利2600元,则足球和篮球分别需购进多少个?(2)根据市场调研,商店决定购进足球的数量不少于篮球的2倍,求该商店购进足球和篮球各多少个时,才能使这批球全部销售完所获利润最大,最大利润为多少元?8.近年来,云南乘着高质量共建"一带一路"的东风,加快建设中国面向南亚东南亚的辐射中心,与南亚各国交流合作不断拓展.某普洱茶厂将480吨茶叶原材料制作成A、B两款普洱茶共计200吨,计划通过铁路将200吨普洱茶出口到甲地和乙地,已知制作A、B两款普洱茶每吨所需茶叶原材料以及出口A、B两款普洱茶到甲地、乙地的运费如下表:现计划出口100吨普洱茶到甲地,其余出口到乙地,设该厂向甲地出口A款普洱茶x吨,出口A、B两款普洱茶到甲地和乙地的总运费为y千元.根据上述信息,解答下列问题:(1)该厂出口的A、B两款普洱茶分别是多少吨?(2)若向乙地出口的A款普洱茶的重量不超过B款普洱茶的重量,则怎样出口茶叶,才能使总运费y最小,最小值是多少?三、函数解析式+最值9.某农户准备种植甲、乙两种水果.经市场调查,甲种水果的种植费用y(元)与种植面积x(m²)有关,如果种植面积不超过300m²,种植费用为每平方米14元;种植面积超过300m²,超过的面积种植费用为每平方米10元;乙种水果的种植费用为每平方米12元.(1)当甲种水果种植面积超过300m²时,求y与x的函数关系式;(2)甲、乙两种水果种植面积共1200m²,种植总费用为ω元,其中甲种水果的种植面积超过.300m²,不超过乙种水果的种植面积的3倍.请问怎样分配甲、乙两种水果种植面积才能使种植总费用w最少?最少的种植费用是多少?10.某公司经销一种绿茶,每千克成本为60元,市场调查发现,在一段时间内,销售量w(千克)随着销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+280,设这种绿茶在这段时间的销售利润为y(元).(1)求y和x的关系式;(2)当销售单价为多少元时,该公司获取的销售利润最大?最大利润是多少?11.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半,电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.设计划购进电视机x台,销售完毕后的总利润为y元.(1)写出y与x的函数关系式;(2)求商店如何进货,才能获得最大利润,最大利润是多少。

基本不等式的几种应用技巧

基本不等式的几种应用技巧


一不正, a 0, b 0常用a b 2 ab
二不定, 需变形
三不等, 常用单调性
Company Logo
基本不等式的几种应用技巧
练一练
4 1. 已知 x 2, 求函数 y x 的最大值 . x2
2 .若0 x 2, 则函数 y x 8 2 x 2 有最
x 1
x 1
5 5 x 1 5 2 x 1 5 x 1 x 1
2 5 5
当且仅当x 1 5,即x 5 1时等号
2
成立,故原函数的值域 为2 55,
Company Logo


基本不等式的几种应用技巧
题型四:“1”的整体代换
1 1 例4.已知 x, y R , 若2 x y 1,求 的最小值 x y 解 x 0,y 0 错因:解答中两次 : 1 2 x y 2 2 xy
1 xy 即 2 2 号过渡,而这两次取 xy 2 2
1 1 1 2 2 2 2 4 2 x y xy

1
运用基本不等式取“=” “=”号的条件是不同 的,故结果错.
1 1 即 的最小值为4 2. x y
Company Logo
1 1 例4. 已知 x, y R , 若2 x y 1,求 的最小值 x y
基本不等式
当且仅当 a b时等号成立
ab ab ( a 0, b 0) 2

ab a b 2 2
2 2
常用不等式串
2 ab ab
当且仅当
Company Logo
ab
a b 时等号成立
基本不等式的几种应用技巧

一次函数的最值与极值

 一次函数的最值与极值

一次函数的最值与极值一次函数是数学中最简单的函数之一,也是初中数学必学的知识点之一。

研究一次函数的最值和极值有助于我们深入理解函数的变化规律,更好地解决数学问题。

本文将简要介绍一次函数最值和极值的概念,以及如何求解它们。

一、最值和极值的概念1. 最值最值是函数在定义域内的最大值和最小值。

例如设函数 f(x) 在区间 [a, b] 上有定义,如果对于任何 x ∈ [a, b],都有f(x) ≤ f(x0)(或f(x) ≥ f(x0)),则称 f(x0) 是 f(x) 在 [a, b] 上的最小值(或最大值),而 f(x) 在 [a, b] 上的最小值和最大值统称为 f(x) 在 [a, b] 上的最值。

2. 极值极值是函数在某个点处取得的最值。

设函数f(x) 的定义域为I,x0 ∈ I,如果存在ε > 0,对于任何 x ∈ I∩(x0 - ε, x0) 或 x ∈ I∩(x0, x0 + ε),都有f(x) ≤ f(x0),则称 f(x0) 是 f(x) 的一个极大值点;如果存在ε > 0,对于任何 x ∈ I∩(x0 - ε, x0) 或 x ∈ I∩(x0, x0 + ε),都有f(x) ≥ f(x0),则称 f(x0) 是 f(x) 的一个极小值点。

二、如何求解一次函数的最值和极值我们知道,一次函数是指形如 y = kx + b 的函数,其中 k 和 b是常数。

因此,一次函数最值和极值的求解相对较为简单。

我们可以根据以下步骤来求解。

1. 最值首先,我们需要分析一次函数的单调性,并确定函数的最小值和最大值。

根据定义可知,当 k > 0 时,函数单调增加,最小值在定义域最小处取得;当 k < 0 时,函数单调减少,最大值在定义域最小处取得。

2. 极值对于一次函数来说,由于其呈直线形状,每个点的斜率都是一致的,因此其不存在极值。

三、例题解析1. 求函数 y = 2x + 1 在区间 [-1, 2] 上的最大值和最小值。

求函数值域(最值)的方法

求函数值域(最值)的方法

求函数值域(最值)方法汇总一.单调性法例1.求函数x 53x y ---=的值域 例2.求函数11--+=x x y 的值域例3.求函数x x y -+-=53的值域解一:例4.已知函数.2]2,0[34)(2的值,求实数上有最大值在区间a x ax x f -+= 解:(1)当0=a 时,max ()(2)4232,f x f ==⨯-≠舍去; (2)当↑⇒〈-=〉上在时,对称轴方程为]2,0[)(020x f ax a 舍去,043254)2(〈-=⇒=+=⇒a a f ;(3)当时,0〈a 02〉-=ax 对称轴方程为, ①]1,(]0,1[1]2,0[2--∞∈⇒-∈⇒∈-a a a 1542384)2(-〉-=⇒=--=-⇒a a a a f ,舍去②122-〉⇒〉-a a ↑⇒上在]2,0[)(x f 43-=⇒a纵上,43-=a例5.已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。

解:0)0()0()0()00(=⇒+=+f f f f为奇函数则令)()()()()()(,x f x f x f x f x f x x f x y ⇒-=-⇒-+=--= )()()()()(0)(0,121112121221x f x f x f x f x x f x x f x x x x 〉⇒〉+-⇒〉-⇒〉-〈则令422)1()1()11()2(-=--=-+-=--=-f f f f ,2)1()1(=--=f f()[-2,1][-4,2]f x ⇒在上的值域为:二.判别式(∆)法:用于自然定义域下的二次分式形式的函数,变形为关于x 的方程,讨论2x 的系数,当系数为0时,判断方程左边是否等于0;当系数不为0时,得0≥∆。

综上,求出y 的范围。

如:,,222211221121c x b x a b x a y b x a c x b x a y +++=+++=22221121c x b x a c x b x a y ++++=等。

分式函数中的最值问题的求解策略

分式函数中的最值问题的求解策略

还 需要 确保 q(x)次 数大 于 一次 函数 。在 高 中数学 中,分 式 函数 的 于 X等 于 1在定 义 域之 中,因此 y等 于 2在值 域 之中。因而 函 数
考核 形式 是 多样 化 的 ,可是 多数 分 式 函数 的考 核都 是 规定 学生 求
的值域就是c詈. 。作为高中学生,在解决以上函数值域问
作 为高 中学生 ,在学 习有关 分 式 函数 最 值 问题 的过 程 中 ,需
2高 中数 学分式 函数 最值 问置 求解 方法之 剐 方式
要 把知 识分析 以及 思考 的关 键放 置在 最值 求解 的 问题 内 ,持续 整
在 高 中数 学 学 习的 过 程 中,分 式 函 数 最 值 问 题 一 般 设 定 理与 归纳 出问题 解答 的经 验 。与此 同时,还需要 注意 到这 样几点 :
举例言之,请计算出函数 y=尝 的值域。分析:因为
用几何 意 义 解 答 问题 。比如 ,直 线斜 率知 识 就 是 人们所 常见 的一 y: 5三 :盟 :1+三 (x不等于 一3)。因此y不等于 1,与此同
种工具 性知 识 的使 用 。可是 在使 用这 样 的方 法 解决 问题 的 时候 需 时 y也 不 等于 2/5,相 反地 ,对任 意一 个不等于 1和 2/5的实 数 y,
高 中学生 在进 行高 中数 学学 习的 时候 ,通 常会 遇 到有 关分 式 知 y= 2X=+X+5,因此 ,将 其化 简 ̄(2-y)X +(1-2y)x+(5-y)=0。X是
函数 最 值 问题 ,这 不仅 仅是 学 生解 题 的难 点 ,同样还 是学 生考 试 实 数 ,根据(2一Y)x‘+(1—2y)x+(5一 ):0可以得 出,如 果 y不等于 2,那 么

分式最值的一类解法

分式最值的一类解法

分式最值的一类解法
分式最值(fractionaloptimization)是指函数具有不同参数,或者有限参数列表中的一些参数,可以求解出某个最优分式表达式。

解决分式最值问题的关键是要找到给定最优分式表达式的一个可行
函数,使得求解的对象有望获得最优分式的最小值。

分式最值通常有多种解法。

其中一种常用的方法是采用模型定义和数学算法结合的方法,可以利用数学模型将参数空间变换为分式最值问题。

针对不同参数分布,可以使用不同的算法来求解分式最值问题,比如最小二乘拟合法,混合整数规划法,梯度优化法等。

具体来说,分式最值的一类解法如下。

1.小二乘拟合法
最小二乘拟合法是一种常用的解决分式最值问题的算法。

它的基本思想是使用最小二乘方法拟合参数给定的最优分式表达式,求解出最优参数,从而改善分式最值问题的求解结果。

2.合整数规划法
混合整数规划(MIXIP)是一种能够解决分式最值问题的程序设计方法。

它可以将参数空间转换成一组整数约束,以确定最优分式表达式的最小值。

3.度优化法
梯度优化法是一种数值优化技术,它可以求解分式最值问题,并寻找最优分式表达式的最小值。

它的思想是将梯度的大小作为搜索的方向,不断迭代,最终找到最优分式表达式的最小值。

本文介绍了一类解决分式最值问题的算法,这些算法可以求解出最优的分式表达式,有助于提高分式最值问题的求解精度。

不同类型的参数分布,对应不同的求解方法,可以根据实际情况选择最合适的求解方案。

但无论在哪种情况下,都应该强调有效管理参数空间,以提高求解效率。

分式函数三种值域求法

分式函数三种值域求法

分式函数三种值域求法分式函数是指由多项式函数构成的有理函数。

它包含了一个或多个分子和一个分母,其中分子和分母可以是多项式。

分式函数在数学和实际问题中的应用广泛,了解如何求解分式函数的值域对于我们理解和解决问题至关重要。

在这篇文章中,我将介绍三种常见的方法来求解分式函数的值域,它们分别是图像法、限制法和分解法。

这些方法各有特点,可以帮助我们更加全面地了解和解决分式函数的问题。

让我们来学习图像法。

图像法是通过绘制分式函数的图像来确定其值域的一种方法。

我们可以根据分式函数的定义域和其在定义域内的行为来判断其值域。

具体来说,我们可以观察分式函数的图像是否有水平渐近线、垂直渐近线或者有界。

水平渐近线表示分式函数在无穷远处趋于某个值,垂直渐近线表示分式函数在某个点处的值趋于无穷大或无穷小,而有界表示分式函数在某个区间内的值处于有限范围内。

通过观察这些特征,我们可以确定分式函数的值域。

让我们来学习限制法。

限制法是通过限制分式函数的变量取值范围来确定其值域的一种方法。

对于分式函数,我们通常会限制其变量的取值范围,避免分母为零或分式函数没有定义的情况。

通过解决限制条件,我们可以确定分式函数的值域。

让我们来学习分解法。

分解法是通过将分式函数拆分成更简单的形式来确定其值域的一种方法。

我们可以将分式函数进行因式分解,得到其最简形式。

在分解过程中,我们可能会发现一些因子可以抵消,使得分式函数的值域更加清晰和简单。

通过分解分式函数,我们可以更好地理解其值域。

通过以上三种方法,我们可以综合考虑分式函数的图像、限制条件和分解形式,来确定其值域。

对于每个具体的问题,我们可以根据实际情况选择最适合的方法来求解。

对于分式函数三种值域求解法的个人看法,我认为每种方法都有其独特的优势和适用场景。

图像法可以将抽象的数学概念通过图像的形式呈现出来,直观易懂,适合直观思维的人。

限制法可以通过限制变量的取值范围,直接对分式函数的值域进行约束,适合求解特定范围内的问题。

代数最值问题(含答案)

代数最值问题(含答案)

代数最值问题(答案)一 简单分式函数的最值问题1 判别式法例 当x 变化时,分式22365112x x x x ++++的最小值是_________________. 提示:可设22365112x x x x ++++=t ,化方程为关于x 的一元二次方程利用判别式求解,也可以将22365112x x x x ++++化简为226(1)1x -++,结果为当x=-1时,最小值为4.2 配方法例 设x 为正实数,则函数21y x x x=-+的最小值是__________.提示:2221(1)1y x x x x =-+=-++,当x=1时,最小值为1。

3基本不等式a b +≥例 函数()9180y x x x=--+>的最大值是( ) A.24 B.18 C.12D.2 答案:C二 简单的绝对值函数最值例 设x 是实数,11y x x =-++.下列四个结论:①y 没有最小值;②只有一个x 使y 取到最小值;③有有限多个x (不止一个)使y 取到最小值;④有无穷多个x 使y 取到最小值.其中正确的是( )A .① B.② C.③ D.④提示:亦可以画出图象求解较为直观,选D.关于含一次式绝对值函数的最值有如下重要结论:设12n a a a <<< ,那么,函数12n y x a x a x a =-+-++- ,(1) 若n 为偶数,则当x 取122n na x a +≤≤时,有min 2112222n n n n y a a a a a a ++⎛⎫⎛⎫=+++-+++ ⎪ ⎪⎝⎭⎝⎭.(2) 若n 为奇数,则当x 取12nx a +=时,有min 35121222n n n n y a a a a a a +++⎛⎫⎛⎫=+++-+++ ⎪ ⎪⎝⎭⎝⎭补充:图像法例 若x 是实数,{}min 21,2,6y x x x =++-+,求y 的最大值.提示:X=-2时,有最小值的最大值为4三 多元函数最值问题常用策略1 消元法例 已知,,x y z 为实数,且26,23x y z x y z +-=-+=.那么222x y z ++的最小值是________.答:142 因数分解法例 设,,a b c 是互不相等的自然数,且231350ab c =.则a b c ++的最大值是__________. 答:1543 配方法例 求实数,x y 的值,使得()()()2221326y x y x y -++-++-达到最小值.答案:164 利用最值范围例 设,,a b c 均为不小于3的实数.1的最小值是_________.答:25 基本不等式法例 若1xy =,那么,代数式44114x y +的最小值是__________.答案:16 夹值法例 已知三个非负数,,a b c 满足325,231a b c a b c ++=+-=,若37m a b c =+-,则m 的最小值为____________,则m 的最大值为____________.答案:最小值57-,最大值111-7 参数法例 设,x y 是实数,且223x xy y ++=.求22x xy y -+的最值.答:最大值为9,最小值为1。

一类分式函数最小值问题讨论

一类分式函数最小值问题讨论

龙源期刊网
一类分式函数最小值问题讨论
作者:郭晓泉
来源:《中学数学杂志(高中版)》2009年第02期
分析此题解法似乎无懈可击,但稍加分析就可发现,这里没有考虑第一次使用均值不等
时等号成立的条件,其实,第一次不等式中等号成立的条件是3x=41-x,解得x=37,这和第二次使用均值不等式时等号成立的条件x=12不相符,因此,这种解法存在一定的漏洞. 那么,怎样才能避免这样的错误,什么情况下这种方法能够使用,现在我们来讨论.
“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”。

分式函数最值求解方略

分式函数最值求解方略

分式函数最值求解方略
分式函数是一种数学中普遍存在的函数,它把一般函数分解为几部分的组合。

对分式函数的最值求解一直是数学学习者的重要内容。

求解分式函数最值的方法有各种各样,用哪种方法要看分式表达式的特点,根据题目的要求按照不同的情况来进行求解。

首先,要求解分式函数最值,需要了解分式函数的特点。

分式函数就是把一般函数分解为若干不同部分,从因数分解到偏导数、极值点,都属于分式函数的求解范畴。

其次,要求解分式函数最值,还要依赖数学分析方法。

比如,我们要求解分式函数的极值点,先根据分式函数的特点、性质求出其偏导数形式,然后再构造相应的偏导数函数,为求极值点求解。

接下来,要求解分式函数最值,需要利用平均值定理和牛顿迭代法。

比如,如果我们要求解分式函数极值点,我们可以使用平均值定理计算其偏导数,并利用牛顿迭代法求出其极值点。

最后,要求解分式函数最值,也可以借助于数值计算的方法。

比如,如果要求分式函数的极值点,我们可以建立一组网格,运用插值法、三点一次拟合精确求出目标的函数值,最后可以求出该函数的极值点。

总而言之,求解分式函数最值的方法很多,根据具体的分式函数特点及问题要求,采用不同的数学分析方法和数值计算方法,都可以求出分式函数的最值,从而解决复杂问题。

解“最值问题”的几种方法

解“最值问题”的几种方法

综合理论课程教育研究286 学法教法研究最值问题是我们所熟悉的问题,如今,经历了中学乃至大学的知识学习,我们接触到了各种各类的最值问题,同时我们也相应学习了求解各类最值问题的方法,而这些方法也有助于我们解决生活中各式各样的最值问题,下面我就为大家归纳下求解最值问题的几种方法.一、配方法对于可以转换成“一元二次函数型”的函数,我们都可以利用配方法对其最值进行求解.例1 求在区间内的最值.分析 本题看上去较为复杂,包括不同类型指数的运算,但稍加观察的话,你就会发现,此中的函数是可以转化为“一元二次型的函数”又,有取得最大值为;当时,.二、判别式法对于一元二次方程,我们可以利用来判断其是否存在实根,那么对于一个一元二次函数,若其值域不为空集的话,那么我们就可以认为方程的判别式,由此求得原一元二次函数的值域,进而就可以求得该一元二次函数在某定义域内的最值情况.例2 求函数的最值.分析 本题可以利用配方法进行求解,但过程较为繁琐.观察原题,可以发现函数的值域不会为空集,因此可以考虑到利用判别式法进行求解.解法如下:原等式可化为:()可以得到若,则有若,则有于是,则;若,则.会成立,还需要进行一项后续工作,将等号的值代入原方程,观察原方程是否有实数解,即是否有相应的值与对应.若存在,我们就可以直接确定最值了.三、换元法对于一些特殊的函数,我们可以利用换元法对其进行最值求解,基本思想是将某一部分当做一个整体或者用一个新的变量来代替某一整体,达到化繁为简,化陌生为熟悉,从而帮助我们更加便利的解决问题.换元法通常有三角代换和三角代换两种.例3 求函数.分析 对于这类含根号的函数,为了化繁为简,换元法是比较大众的方法.求解如下:,则所隐含的定义域为,于是,我则即时,取得最小值为不等式法求解最值问题主要是利用以下几个重要的不等式及其变形来处理最值问题的.不等式(),其中注意:当且仅当时等号成立.在用不等式求函数的最值时,经常需要配合某些变形技巧,结合已知条件进而进行求解.例4 设,,记中最大数为,则的最小值为多少?分析 本题的计算涉及到对数,准确应用对数的运算性质,认真观察,发现其中的技巧.由已知条件可得所求为中最大的数,不妨设中最大的数为A,则.由于,所以,当且仅当时等号成立,此时为最小,那么A 能否取到最小值2呢?容易知道,当时,,即A 可以取得最小值2,从而的最小值为.五、单调性法求解函数在指定区间的最值的时候,我们应该考查该函数在该指定区间内的单调性情况.如果函数在该区间内是单调的,则该函数的最值在区间的端点上取得.若函数在该区间上并不是单调的,则我们就可以考虑把该区间分割成若干个小的区间,目的是使得该函数在分割的每一个小区间上是单调的,再求出各个小区间上的最值情况,通过比较,得到整个区间上的最值.例5 设函数是奇函数,对于任意均有关系,若时,且.求在上的最大值和最小值.解“最值问题”的几种方法陈 龙(福建省晋江市内坑中学 福建 晋江 362200)【中图分类号】G634.6【文献标识码】A【文章编号】2095-3089(2018) 11-0286-02综合理论课程教育研究学法教法研究 287分析 本题若能确定在上的单调性,其最值也就可以相继求得.下面来考察在上的单调性:设任意且,则.由题设可知,为奇函数,且,,则,则在上单调递减,即在两端点处取得最值.因为,则,进而.又故在上的最大值为,最小值为六、导数法对于基本初等函数以及某些复合函数,我们可以利用导数这一工具有效的对其进行最值求解.设在上是连续,在上是可导,则在上的最大值和最小值就是在内的每个极值与中的最大值与最小值.利用导数的方法进行最值的求解适用性广,在解题例.分析 令由于方差恒大于或者等于0的特征,我们也可以利用方差解决某些的最值问题.例7 确定最大的实数Z,使得实数满足: ,.分析 按照常规的思路,本题不容易攻克,可以巧妙的,构造的方差得,Z .八、三角函数最值的常见求法1.巧用定义域求解三角函数的最值问题,在大多数的题目中,我们必.例8,求值和最小值.分析 此类三角函数可以视作为或的形式,求解其最值值为.2.大多数的数学题型中,题干中所给出的条件都有其特殊的作用和功能,所以,在解题的过程中,我们不能忽视任意一个条件.例求的最小值.分析 个,我们要做的是如何正确的去用好这个已知条件.当然,我们也不能盲目地瞎猜,根据题目要我们求的东西去巧妙地利用好这个已知条件.现最小值.又,即对于一些较为复杂的三角函数,为了求解的方便,我们可以去寻找题干的特点,化繁为简,换元法一般是首选.例10 已知,求的最大值和最小值.分析 对于三角函数,我们应该清楚,其存在着这么一种转化关系:此中就启发我们可以运用换元法快捷简便地解决相应三角函数的最值问题.4.巧引辅助角三角函数是一个特殊的函数,自然也有其独门的“法宝”——辅助角公式,能否巧妙地运用辅助角公式也是能否成功解题的关键.例11 求函数的最值.分析 直观地来看,这是一个分式代数式,分子、分母中均含有三角函数,这无疑给解题增添不少难度,但如果我们对其做一个稍微的变形,情况可能就不一样了:原函数可变为:,观察这个等式的。

求函数最值问题常用的10种方法

求函数最值问题常用的10种方法
【例 5】设 a>1,函数 f(x)=logax 在区间[a,2a]上的
1 最大值与最小值之差为2,则 a=________.
分析 先判断函数在指定区间上的单调性,再求出函 数的最值,然后利用条件求得参数a的值.
解析 ∵a>1,∴函数f(x)=logax在区间[a,2a]上是增 函数,∴函数在区间[a,2a]上的最大值与最小值分别为
又两边平方,得y2=4+2 1-x· x+3
=4+2 (1-x)(x+3).
所以当x=-1时,y取得最大值M =2 2;当x=-3或
1时,y取得最小值m
m =2,∴
M

22.故选C.
分析 对于形如y= a-cx+ cx+b的无理函数的最 值问题,可以利用平方法将问题化为函数y2=(a+b) +2 (a-cx)(cx+b)的最值问题,这只需利用二次函 数的最值即可求得.
七、判别式法
把函数转化为 x 的二次方程 F (x,y)=0,通过方程
有实根,判别式 Δ≥0,从而求得函数的最值.判
ax2+bx+c
别式法多用于求形如 y=
(a,d 不同时为 0)
dx2+ex+f
的分式函数的最值.
x2-3x+4
【例 7】求函数 y=
的最大值和最小值.
x2+3x+4
分析 本题是分式函数的最值问题,因为分式函数的分
解析 y=(ex-a)2+(e-x-a)2 =(ex+e-x)2-2a(ex+e-x)+2a2-2. 令t=ex+e-x,f(t)=t2-2at+2a2-2. ∵t≥2,∴f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定 义域为[2,+∞). ∵抛物线y=f(t)的对称轴为t=a, ∴当a≤2且a≠0时,ymin=f(2)=2(a-1)2; 当a>2时,ymin=f(a)=a2-2. 点评 利用二次函数的性质求最值,要特别注意自变量 的取值范围,同时还要注意对称轴与区间的相对位置 关系.如本题化为含参数的二次函数后,求解最值时 要细心区分:对称轴与区间的位置关系,然后再根据 不同情况分类解决.

分式最大值

分式最大值

分式最大值
摘要:
1.分式的基本概念
2.分式的最大值问题
3.求分式最大值的方法
4.分式最大值问题的应用
正文:
一、分式的基本概念
分式是数学中一种表达式,它由分子和分母组成,通常用斜杠“/”表示。

分式可以用来表示两个量的比值,比如速度、密度等。

在代数学、微积分等数学领域中,分式有着广泛的应用。

二、分式的最大值问题
在分式的运用过程中,我们常常会遇到求分式最大值的问题。

求分式最大值的方法有很多,但需要注意的是,在求解过程中要保证分式有意义,即分母不能为零。

三、求分式最大值的方法
1.求导法:对于一元分式函数,我们可以通过求导数的方法来求解最大值。

首先对分式函数进行求导,然后令导数等于零,求解出使导数为零的自变量值,最后将这些值代入原函数,得到最大值。

2.配方法:对于一些特殊的分式函数,我们可以通过配方法来求解最大值。

具体来说,就是将分式函数化为一个完全平方的形式,从而求得最大值。

3.利用基本不等式:在一些特殊情况下,我们可以利用基本不等式(均值不等式)来求解分式的最大值。

四、分式最大值问题的应用
求分式最大值的问题在实际应用中有很多,比如在经济学中的最大利润问题、物理学中的最优化问题等。

掌握求分式最大值的方法,有助于解决实际问题,提高数学运用能力。

常见分式函数值域的求法

常见分式函数值域的求法

题型!形如 ?& :'h!:) B,$:B?":+A"!*% 且 ,*% 的函数%

)
求函数
?& :'
h$ :) j):j(
":+#
j(
"9
$
的值域%
解!令 %& :'h:) j):j( h& :j$') j3":+# j("9$ "则 %& :' h
#
j3"$)$ "所以函数
?& :' 的值域是&
时为 %"$"?不同时为 %%

1
求函数
?& :'
h):) B:j$ :) j:B$
":+#
)
"(
$
的值域%
解!原函数等价转化为
Bh)
B(:j( :) j:B$
":+#)"(
$
"令
4h:j$"

Bh)
B (4 4) B4B$
h)B ( 4B$
"4+#$")$ "由此可得函数 B$
?& :' 的值
4
域是# )% "($ % 1

9
求函数
?& :'
h :) :) j3:B$
":+#
$ (
"$$ 的值域%
解!?& :'h $ h
$ :)
j3:B$

求分式函数值域的几种方法

求分式函数值域的几种方法

求分式函数值域的几种方法摘要:在高中数学教学、乃至高中毕业会考题和高考中,经常遇到求分式函数值域的问题.关于分式函数的值域的求法,是高中数学教学中的一个难点.通过对分式函数的研究总结了求其值域的常见几种方法:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.关键词:分式函数 值域 方法.1 引言求分式函数值域是函数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决函数最值问题的一个重要工具.关于求函数值域与最值的方法也是多种多样的,归纳起来,常用的方法有:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.本文就中学阶段出现的各种类型的分式函数值域问题运用以上初等方法进行分析.2 求分式函数值域的常见方法 2.1 用配方法求分式函数的值域如果分式函数变形后可以转化为2122ay b a x b x c =+++的形式则我们可以将它的分母配方,用直接法求得函数的值域.例1 求21231y x x =-+的值域. 解:2131248y x =⎛⎫--⎪⎝⎭,因为231248x ⎛⎫-- ⎪⎝⎭≥18-,所以函数的值域为:(],8-∞-∪()0,+∞.例2 求函数221x xy x x -=-+的值域.解:2111y x x -=+-+, 因为22112x x x ⎛⎫-+=- ⎪⎝⎭34+≥34,所以34-≤2101x x -<-+, 故函数的值域为1,13⎡⎫-⎪⎢⎣⎭.先配方后再用直接法求值域的时候,要注意自变量的取值范围.取“=”的条件.2.2 利用判别式法求分式函数的值域我们知道若()200,,ax bx c a a b R ++=≠∈有实根,则24b ac ∆=-≥0常常利用这一结论来求分式函数的值域.例1 求223434x x y x x -+=++的值域.解:将函数变形为()()()2133440y x y x y -+++-=①,当1y ≠时①式是一个关于x 的一元二次方程. 因为x 可以是任意实数, 所以∆≥0,即()()()334144y y y +---7507y y =-+-≥0, 解得,17≤y ≤1或1y <≤7,又当1y =时,0x =,故函数的值域为1,77⎡⎤⎢⎥⎣⎦.例2 函数2221x bx cy x ++=+的值域为[]1,3,求b ,c 的值.解:化为()20y x bx y c --+-=,⑴当2y ≠时()()42x R b y y c ∈⇒∆=---≥0,⇒()224428y c y c b -++-≥0,由已知()2244280y c y c b -++-=的两根为1,3, 由韦达定理得,2c =,2b =±. ⑵当2y =时20cx b-==有解 综上⑴和⑵,2b =±,2c =.由这两个例题我们知道在利用判别式法求分式函数的值域时要注意下列问题: 1、函数定义域为R (即分母恒不为0)时用判别式求出的值域是完备的.2、当x 不能取某些实数时(分母为零),若要用判别式法求它的值域则需要对使()22222111y a x b x c a x b x c ++=++的判别式0∆=的y 值进行检验.3、转换后的一元二次方程若二次项系数中含有字母则需要讨论其是否为0只有在其不为0的情况下才可以使用判别式法.2.3 利用函数单调性求分式函数的值对于求函数的值域问题,我们通常使用能够揭示此类函数本质特征的通性通法即利用函数的单调性来求其值域.例1求函数21(,1)1x y x R x x -=∈≠-+的值域. 解:211x y x -=+=2(1)31x x +-+321x =-+, 当1x >-时,31x +是x 减函数进而y 是x 的增函数,于是(),2y ∈-∞-; 当1x <-时,同样y 是x 的增函数,于是y ∈()2,+∞; 所以211x y x -=+(1)x ≠-的值域为(),2-∞-∪()2,+∞. 在求分式函数时我们常运用函数ay x x=+的单调性的结论: ⑴当0a >时在(-∞和)+∞上增函数,在)⎡⎣和(上是减函数.⑵当0a <时在(),0-∞和()0,+∞上是增函数.例2 求函数24xy x x =-+(1≤x ≤3)的值域. 解:0x ≠所以41xy x x=+-.令4t x x=+在[]1,2上是减函数,在[]2,3是上增函数,所以2x =时,min 4t =;1x =时,max 5t =; 所以[]4,5t ∈,[]13,t t -∈,故值域为11,43⎡⎤⎢⎥⎣⎦.2.4 利用反函数法求分式函数的值域设()y f x =有反函数,则函数()y f x =的定义域是它反函数的值域,函数()y f x =的值域是其反函数的定义域.那么如果一个分式函数的反函数存在,我们就可以通过求反函数的定义域来求其值域.例1求函数251xy x =+的值域. 解:由于函数251x y x =+1()5x ≠-的映射是一一映射因此反函数存在,其反函数为25x y x =- 明显知道该函数的定义域为2|5x x ⎧⎫≠⎨⎬⎩⎭, 故函数的值域为2,5⎛⎫-∞ ⎪⎝⎭∪2,5⎛⎫+∞ ⎪⎝⎭.说明:由于本方法中所具有的某些局限性,一般说来,用此方法求值域只用ax by cx d+=+(c≠0)的函数,并且用此方法求函数的值域,也不是比较理想的方法.我们用这种方法目的是找关于y 的不等式所以反函数求值域的实质是反函数的思想树立这种思想是我们的宗旨.下面这种方法就是利用了反函数的思想比较通用的方法.2.5 利用方程法求分式函数的值域在1999年第2期《数学教学》第38页给出了下面的结论和证明.对函数()y f x =()x D ∈将其视为方程若能通过同解变形得到单值函数()x g y =*()y A ∈即()y f x =()x D ∈⇔()x g y =*()y A ∈则*A 即为()y f x =的值域利用这一结论函数问题转化为方程问题.又在2006年第2期《数学教学》“用方程法求函数值域”一文中给出了这样的引理及其证明.引理:设函数()y f x =的定义域为A 值域为B ,又设关于x 的方程()y f x =在A 中有解的y 的取值集合为C ,则C B =.例1 (2005年全国高考理科卷Ⅲ第22题)已知函数247()2x f x x -=-[]0,1x ∈求函数()f x 的值域解:247()2x f x x-=-,[]0,1x ∈,所以2247y xy x -=-,[]0,1x ∈, 即24(72)0x yx y +-+=,[]0,1x ∈.这样函数的值域即为关于x 的方程24(72)0x yx y +-+=在[]0,1x ∈内有解的y 的取值集.令()g x =24(72)x yx y +-+,[]0,1x ∈,则关于x 的方程24(72)0x yx y +-+=在[]0,1x ∈内有解⇔(0)(1)g g ⋅≤0或(0)0(1)00122444(72)0g g b ya b ac y y >⎧⎪>⎪⎪⎨<-=-<⎪⨯⎪-==⨯--≥⎪⎩⇔72-≤y ≤3-或4-≤y ≤72-⇔4-≤y ≤3, 即所求函数的值域为[]4,3--.2.6 利用换元法求分式函数的值域当题目的条件与结论看不出直接的联系(甚至相去甚远)时,为了沟通已知与未知的联系,我们常常引进一个(或几个)新的量来代替原来的量,实行这种“变量代换”往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题方向.换元法是一种重要的数学解题方法,掌握它的关键在于通过观察、联想,发现与构造出变换式(或新元换旧式、或新式换旧元、或新式换旧式).在中学数学问题中,常见的基本换元形式有式代换、三角代换、点代换、参数代换等.例1求函数]0,1[,5444)(22-∈++++=x x x x x x f 的值域. 解:令2+=x t ,则]1,21[1,1111222∈+=+=t t t t y .因为]2,45[112∈+t , 所以函数)x (f 的值域是]54,21[.例2 求函数423(1)x y x =+的值域.解:令tan x θ=,(,)22ππθ∈-, 则44233tan tan (1tan )sec y θθθθ==+=42sin cos θθ =2221sin sin 2cos 2θθθ≤32221sin sin 2cos 23θθθ⎛⎫++ ⎪⎝⎭427=. 当且仅当2tan 2θ=时“=”成立.所以函数423(1)x y x =+的值域为40,27⎡⎤⎢⎥⎣⎦. 在这道例题中不仅用了换元法还用了均值不等式.利用三角函数来代换是我们在用换元法解题最常用的在换元后根据三角函数的有界性求能求出函数的值域 .在用换元法的时候重要的就是要注意换元后的自变量发生了改变,那么它的定义域也就变了.注意到这点才能准确地求出值域.2.6 利用不等式法求分式函数的值域“不等式法”就是通过利用不等式的一些性质和均值不等式来求某些具有一定特性的分式函数的值域.若原函数通过变形后的分子分母符和下列条件①各变数为正;②各变数的和或积为常数.则可以考虑用均值不等式求它的值域.要注意在得到结论之后要说明其中等号能够取到.例1 求函数224(1)(3)x y x +=+(1)x >-的值域.解:224(1)(1)4(1)4x y x x +=++++244(1)41x x =++++. 因为10x +>,所以411x x +++≥4,则41481x x +++≥+,所以0y <≤2438=(当1x =时取等号),故函数的值域为(]0,3. 例2 设123n S n =++++,n N ∈求1()(32)nn S f n n S +=+的最大值.(2000年全国高中数学联赛)解:1()(32)n n S f n n S +=+(1)2(1)(2)(32)2n n n n n +=+++⋅2(32)(2)3464n n n n n n ==++++, 即化为了求分式函数最值的问题1()6434f n n n =++.又因为6434n n++≥34+50=, 当64n n =即8n =时“=”成立,所以对任何n N ∈有()f n ≤150, 故()f n 的最大值为150.例2表面上看是数列的问题而实际是我们可以将其转化为求函数值域的问题在这里我们利用均值不等式的性质来求其值域就使得整个解题过程利用数更简单.2.8 斜率法求分式函数的值域数形结合是中学数学中的一种重要的数学思想方法.数是形的抽象概括,形是数的直观表现.华罗庚先生指出:数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休.这种方法不仅仅体现在数学的其它领域中,在求函数的值域与最值时也有良好的反映.联想到过11(,)A x y ,22(,)B x y 的直线AB L 的斜率为2121AB y y k x x -=-,我们可以考虑把分式函数化为斜率式并利用数形结合法来求函数的值域.例1 求函数232()()2(32)3t f t t t =>-的最小值. 解:函数()f t 可变形为()f t 23064t t -=-2()3t >,设2(6,3)A t t ,(4,0)B 则()f t 看作是直线AB 的斜率, 令6x t =,23y t =则212(4)x y x =>.在直角坐标系中A 点的轨迹为抛物线的一部分直线与抛物线相切是斜率最小. 过点(4,0)B 直线方程为:(4)y k x =-将它代入212x y =, 有212480x kx k -+=,则0∆=推算出43k =此时8x =, 即8t =时,min 4()3f t =. 例2 求211x x y x +-=+1(2-≤x ≤1)的值域.解:2()1(1)x x y x +-=--,令(1,1)A -,2(,)B x x x +,则AB y k =,点B 的轨迹方程为2y x x =+1(2-≤x ≤1), 111(,)24B --,2(1,2)B ,152AB k =-,212AB k =,所以51,22AB y k ⎡⎤=∈-⎢⎥⎣⎦,即函数的值域为51,22⎡⎤-⎢⎥⎣⎦.斜率法同样可以运用在形如ax by cx d+=+的分式函数中,函数的值域就转化为求直线斜率的范围给出了这样的结论:对于函数ax by cx d+=+22(0,0,0)c a b bc ad ≠+≠-≠,x ∈[],m n ,若记{}1min (),()m f m f n =,{}2max (),()m f m f n =,则当dx c=-(),m n ∈时值域为(]1,m -∞∪[)2,m ∞.当dx c=-∉(),m n 时,值域为[]12,m m .3 结论整篇文章介绍了求分式函数八种比较常用的方法,可以根据题目不同的特点灵活选取不同的方法,而实际上在我们通常遇到的题目中并不是只用一种方法就能解决问题,而是要综合几种方法.当然有一些特殊的分式函数,在求值域的时就会用到特殊的方法.但是最重要的是每种方法都要注意其函数的定义域.参考文献:[1]贾士代.用方程法求函数值域[J] . 数学教学,2006(2):21[2]王习建. 21112222a x b x c y a x b x c ++=++型函数值域的求法[J] .数理化解题研究 ,2003(6):25[3]张莲生.sin sin a x by c x d+=+ 的值域的求法[J] .数理天地(高中版),2001(10):19-20[4]王建海. 活用均值不等是巧解数学题[J] .数学教学通讯,2003(12):17 [5]钟国雄 .一个函数最小值问题的多种解法[J] . 中学生数学,2002(5):23 [6]江思容、望孝明 .求最值问题的若干途径[J] . 中学数学研究,2003(8):35 [7]傅洪海、陈宏. 关于反函数求值域的思考[J] . 数学教学, 1999(2):29-30 [8]陈士明.从求()bf x x x a=++的单调区间谈起[J] . 数学教学,1999(2):27-28。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次分式函数最值问题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】
拆分函数解析式结构,巧解问题
--------------函数()ax b f x cx d
+=+值域(最值)问题的解法 在高中,初学函数之时,我们接触的具体函数并不多。

前面我们已经给出了一元二次函数值域(最值)的求法步骤。

除此,还有一类()(0)ax b f x c cx d
+=≠+函数也很常见,它也是今后解决其他复杂函数值域(最值)问题的基础。

此类函数看似生疏,而实际这类函数的图像,就是我们初中学过的反比例函数图像。

此类问题有三种类型,一种是函数式子决定定义域,不额外附加函数定义域;另一种是附加定义域。

还有一种是可转化为()(0)ax b f x c cx d +=
≠+型的函数,此类随着学习的深入,再行和大家见面。

下面我们以具体实例,说明如何依据函数解析式的结构特征,选择适当的方法步骤解决问题。

【例题1】:求函数21()3
x f x x +=-的值域; 【思路切入】:从函数结构可以得出,函数定义域由分式决定,为
{|3}x x R x ∈≠且,此时,将函数解析式的结构进行拆分变换,不难得出反比例函数结构,如此,得到解法程序:
1、将函数分解为反比例的结构;
2、根据反比例结构特性,或者利用图像,或者利用数式属性得到函数值域。

【解析】:原函数可化为212677()2333
x x f x x x x +-+===+---, 7303
x x ≠≠-且
,2y ∴≠,函数()f x 值域为{|2}y y R y ∈≠且; 【例题2】:求函数21(),(2,4]1x f x x x -=∈-的值域;
【思路切入】:由例1的结构拆分法,我们不难得到函数的反比例结构。

但由于函数有附加定义域(2,4],所以在例1方法的基础上,结合一元二次函数值域的解法步骤,我们改进此类问题解法程序步骤为:
(一)数形结合法:
1、将函数分解为反比例的结构;
2、根据反比例结构特性,画出函数图像示意;
3、观察定义域内的曲线形状,找到最高点和最低点,得到函数值域。

(二)代数法:
1、利用变换,将x 用y 表示;
2、利用给定的函数定义域(x 的取值范围)建立关于y 的不等式;
3、解关于y 的不等式,得到函数值域。

【解析】:解法一:函数拆分变化为
212211()2,(2,4]111
x x f x x x x x --+===+∈---,画出函数示意图:
观察(2,4]内的曲线形状得
当2x =时,(2)3f =,当4x =时,
min 7()(4)3
f x f ==; 所以,函数()f x 的值域是7[,3)3。

解法二:函数21(),(2,4]1
x f x x x -=∈-变形为1,(2)2y x y y -=≠-, 由函数定义域(2,4]可得1242y y -<
≤-, 解之得733
y ≤<,
所以,函数()f x 的值域是7[,3)3。

进一步思考,通过解题归纳规律,我们不难得到,函数()(0)ax b f x c cx d +=
≠+类值域(最值)问题的变化在于:
1、给定函数定义域区间的开闭变化,有四种:双开、双闭、左开右闭、左闭右开;
2、给定定义域含不含函数图像对称中心的变化,有三种:在对称中心左侧、在对称中心右侧、含对称中心;
3、反比例函数结构的变化,有两种:,0a y a x
=>图像在一、三象限,,0a y a x
=<图像在二、四象限。

如此,此类函数的值域(最值)问题就全在你的掌控之中了。

任题目千变万化,但解题方法步骤不变,我们完全可以“以不变应万变”。

【文化提升】:某个事物所具备的结构特征,决定了这个事物的转变方向。

有时,我们可以把复杂事物,通过结构拆分,转化为我们所熟知的基本事物,然后,透过有条理的线索,逐步解决问题。

单就数学来说,解决任何数学问题,透过数学结构,其解决方法的适当选取是培养数学思维素质的好途径。

【落实提高】:
1、求函数21(),(0,4)1
x f x x x -=
∈-的值域; 答案:7(,1)(,)3
-∞+∞ 2、求函数21(),[4,2)1x f x x x -=∈--+的值域; 答案:[3,5)
3、求函数3(),(0)21
x f x x x -=≥+的值域; 答案:1(,3]2
-
4、函数21()(),(0,4)()11()
f x
g x x f x x f x -=∈=-+且,求函数()g x 的值域; 答案:7(,)8
-+∞。

相关文档
最新文档