SAS统计分析及应用_描述性统计分析_
SAS统计分析报告教程方法总结材料
![SAS统计分析报告教程方法总结材料](https://img.taocdn.com/s3/m/ad8fd147f68a6529647d27284b73f242336c3190.png)
SAS统计分析报告教程方法总结材料统计分析是对数据进行理性、全面和深入的分析,以发现其中的规律、趋势和关联性。
SAS(Statistical Analysis System)是一个流行的统计分析软件,广泛应用于数据分析、研究和报告编制领域。
本文将介绍SAS统计分析报告的编制方法,帮助读者了解如何利用SAS软件进行统计分析,并撰写专业的统计分析报告。
一、数据导入与准备在进行统计分析之前,首先需要导入数据并对数据进行清洗和准备。
SAS软件支持多种数据格式的导入,包括CSV、Excel、数据库等。
可以使用PROC IMPORT或DATA STEP语句来将数据导入SAS环境中,并使用DATA STEP或PROC SQL语句对数据进行清洗和准备,包括删除缺失值、解决数据异常值等。
二、描述性统计分析描述性统计分析是对数据集中的变量进行统计概括和描述。
在SAS中,可以使用PROCMEANS、PROCFREQ、PROCUNIVARIATE等过程来计算变量的均值、标准差、中位数、众数、频数分布等描述性统计指标。
通过描述性统计分析可以初步了解数据的分布情况,为后续的统计测试和模型建立奠定基础。
三、统计检验统计检验是用来检验数据之间的关系或差异是否显著的一种方法。
在SAS中,可以使用PROCTTEST、PROCANOVA、PROCCORR等过程进行假设检验,检验两组或多组数据之间的显著性差异或相关性。
在进行统计检验时,需要设置显著性水平和备择假设,以便进行准确的统计分析。
四、图形展示图形展示是将数据通过图表的形式呈现出来,更直观地展示数据的特征和规律。
在SAS中,可以使用PROCGPLOT、PROCSGPLOT、PROCGCHART等过程来绘制各种类型的图表,包括直方图、散点图、折线图、饼图等。
通过图形展示,可以更清晰地了解数据的分布情况和变量之间的关系,为数据分析和报告提供有力支持。
五、报告编制报告编制是统计分析的最后一步,将分析结果整理成报告文档,进行数据解释和结论归纳。
几种描述性统计分分析的SAS过程
![几种描述性统计分分析的SAS过程](https://img.taocdn.com/s3/m/311218fafc0a79563c1ec5da50e2524de418d042.png)
几种描述性统计分分析的SAS过程描述性统计是统计学中的一种方法,用于总结和描述数据集的主要特征。
它有助于了解数据的整体分布、偏差和离散性等。
SAS(统计分析系统)是一种流行的统计软件,具有丰富的分析功能。
以下是几种常用的SAS过程,用于执行描述性统计分析。
1.PROCMEANS:PROCMEANS是一种计算统计指标的SAS过程,包括均值、总和、最小值、最大值、标准差等。
可以使用该过程对数值变量进行描述性统计,并在输出中显示这些统计指标。
可以通过指定多个变量和分组变量来计算针对不同子组的统计指标。
该过程还可以生成频数和百分比。
2.PROCFREQ:PROCFREQ是一种用于计算分类变量频数和百分比的SAS过程。
它可以计算每个类别的频数,并使用该信息生成频数表。
该过程还可以计算两个或更多分类变量之间的交叉频数表,并计算出每个类别的百分比。
3.PROCUNIVARIATE:PROCUNIVARIATE是一种用于执行单变量分析的SAS过程。
它可以计算变量的均值、标准差、峰度、偏度等统计指标。
该过程可以绘制直方图、箱线图、正态检验图和PP图等,以帮助理解数据的分布特征。
还可以执行分位数分析、离散度分析和异常值识别等。
4.PROCCORR:PROCCORR是一种用于计算变量之间相关性的SAS过程。
它可以计算变量间的皮尔逊相关系数,并使用协方差矩阵和相关系数矩阵来描述变量之间的线性关系。
该过程还可以绘制散点图矩阵和相关系数图,以直观地显示变量之间的关系。
5.PROCGLM:PROCGLM是一种用于执行多因素方差分析的SAS过程。
它可以根据自变量的水平和交互作用来分解因变量的方差,并进行显著性检验。
该过程可以计算组间差异的F值和p值,并生成方差分析表。
PROCGLM还支持使用协变量进行调整的方差分析,以控制对方差的影响。
以上是几种常用的SAS过程,用于执行描述性统计分析。
每个过程都有各自的功能和输出,可以根据数据和分析需求选择合适的过程。
SAS统计分析及应用
![SAS统计分析及应用](https://img.taocdn.com/s3/m/dc4f6c0a50e2524de4187e27.png)
运行此程序,只要用鼠标单击工具栏的提交(Submit)
图标 ,或用Run菜单下的Submit命令,或者直接按 下F8键(Windows XP)或者F6(Windows 7),就可运 行程序。如果选中某一段程序,然后进行调用,则 系统只执行被选中的部分。
SAS有一个智能型绘图系统,不仅能绘各种统计图,还能绘出地图。
SAS提供多个统计过程,每个过程均含有极丰富的任选项。
用户还可以通过对数据集的一连串加工,实现更为复杂的统计分析。
SAS还提供了各类概率分析函数、分位数函数、样本统计函数和随机数生成函数,使 用户能方便地实现特殊统计要求。
二、安装SAS
SAS数据集等价于关系数据库系统中的一个表,实际上一个SAS数据集有时也称作一 个表。在数据库术语中一个观测称作一个记录,一个变量称作一个域。
在C0401数据集中:
有 5个观测,分别代表5个学生的情况, 每个学生有5个数据, 分别为姓名、性别、数学成绩、语文成绩、平均分
此数据集有5个变量, 变量名依次为NAME、SEX、MATH、CHINESE和AVG
libname a 'd:\sysdata\'; data a.aaaa; input x @@; cards;
12345 ; proc print; var x; run; quit; • 第1句就是一个环境设置语句,其作用是设定一个逻辑库,逻
辑库名称为a, • 第2~6句构成数据步,其功能是新建一个数据集,数据集名称
NAME 李明 张红艺 王思明 张聪 刘颍
SEX
MATH
CHINES E
AVG
SAS数据分析与统计
![SAS数据分析与统计](https://img.taocdn.com/s3/m/9ea87e25f4335a8102d276a20029bd64783e629b.png)
SAS数据分析与统计SAS是一种常用的数据分析与统计软件,被广泛应用于各个领域的数据分析工作中。
它具有强大的数据处理和统计分析能力,能够帮助用户从庞大的数据中获取有价值的信息。
本文将详细介绍SAS的相关特点和应用。
首先,SAS具有强大的数据处理能力。
用户可以通过SAS对数据进行导入、整理和清洗,将各种格式的数据转换为SAS可识别的格式。
此外,SAS还支持对数据集进行合并、拆分和排序等操作,提供了丰富的数据处理函数和方法,方便用户进行复杂的数据处理工作。
其次,SAS拥有多种统计分析方法。
用户可以利用SAS进行描述性统计、推断统计、回归分析、聚类分析、因子分析等各种统计分析工作。
SAS提供了丰富的统计函数和过程,用户可以根据具体的需求选择合适的方法进行数据分析。
此外,SAS还支持高级统计技术,如时间序列分析、生存分析、多元分析等,满足不同领域的数据分析需求。
此外,SAS还具有数据可视化功能。
用户可以利用SAS进行数据可视化,通过绘制图表、制作报表等方式直观地展示数据分析结果。
SAS提供了丰富的统计图表类型,如柱状图、折线图、散点图等,用户可以根据数据类型和目的选择合适的图表类型进行数据可视化。
另外,SAS还有自动化分析和报告生成功能。
用户可以通过编写SAS语言进行数据分析和处理的自动化,提高数据处理效率和准确性。
SAS还支持批处理模式,用户可以将多个SAS任务整合为一个批处理程序,实现自动化执行和报告生成。
在实际应用中,SAS被广泛应用于各个领域的数据分析与统计工作。
例如,在金融领域,SAS被用于风险管理、信用评估、投资组合分析等工作;在医疗领域,SAS被用于临床试验数据分析、医疗成本分析等工作;在市场调研领域,SAS被用于数据挖掘、市场预测、客户分析等工作;在制造业领域,SAS被用于质量控制、生产优化、供应链管理等工作。
总之,SAS作为一种全面、灵活和高效的数据分析与统计工具,为各个领域的用户提供了强有力的支持。
SAS数据的描述性统计分析答案
![SAS数据的描述性统计分析答案](https://img.taocdn.com/s3/m/5af558cecf84b9d529ea7a76.png)
实验一数据的描述性统计分析一、选择题1、以下( B )语句对变量进行分组,在使用前需按分组变量进行排序?以下( C )语句可对变量进行分类,在使用前不必按分类变量进行排序?用( A )语句可以选择输入数据集的一个行子集来进行分析?(A)WHERE语句(B)BY语句(C)CLASS语句(D)FREQ语句2、排序过程步中必须用什么语句对变量进行排序?( A )(A)BY语句(B)CLASS语句(C)WHERE语句3、如果要对数据集中的数据进行正态性检验,需要使用哪个过程?( B )(A)MEANS (B)UNIV ARIATE (C)FREQ4、用UNIV ARIATE过程进行数据分析,要求此过程输出茎叶图、正态概率图等,应在语句中加上什么选项?(plot )5、用UNIV ARIATE过程进行数据分析,在输出结果中哪个统计量是对样本均值为零的T检验的概率值?( A )(A)T: Mean (B)Prob>|S| (C)Sgn Rank (D)Prob>|T|二、假设某校100名女生的血清总蛋白含量(g/L)服从均值为75,标准差为3的正态分布,试产生样本数据,并利用SAS软件解决下面问题:1、计算样本均值、方差、标准差、极差、四分位极差、变异系数、偏度、峰度;2、画出直方图(垂直条形图);3、画出茎叶图、盒形图和正态概率图;4、试进行正态性检验。
Data N;DO i=1to100;x=75+3*normal(12345);output;end;proc print;run;proc univariate data=N;var x;run;proc gchart data=N;block x;run;proc univariate data=N plot;var x;run;proc univariate data=N normal;var x;run;三、某校测得20名学生的四项指标:性别、年龄、身高(CM)和体重(KG),具体数据如表1所示。
sas统计分析系统
![sas统计分析系统](https://img.taocdn.com/s3/m/c71923cb70fe910ef12d2af90242a8956becaaea.png)
03 sas统计分析系统的进阶 功能
高级统计分析
多元统计分析
包括多元方差分析、协方差分 析、因子分析、对应分析等, 用于处理多个变量之间的关系
。
生存分析
用于研究生存时间、生存率等 指标,常用于医学、生物学等 领域。
贝叶斯统计
基于贝叶斯定理的统计推断方 法,能够处理不完全数据和复 杂模型。
复杂样本设计分析
适用于复杂样本设计的统计分 析,如分层抽样、聚类抽样等
。
宏编程与自动化
SAS宏语言
使用SAS宏语言编写程序,实现复杂的数据 处理和统计分析流程自动化。
定制报告
使用SAS宏语言定制各种统计报告,满足不 同需求。
批量处理
通过宏编程实现多个任务或程序的批量执行, 提高工作效率。
数据转换
使用SAS宏语言实现数据格式转换、数据清 洗等功能。
数据整理
SAS支持对数据进行分组、排序、合 并等操作,以便更好地组织和展示数 据。
描述性统计分析
频数分析
SAS提供了FREQ和TABULATE过程, 用于计算分类变量的频数和百分比。
描述性统计
PROC MEANS过程可以计算数值变 量的均值、中位数、标准差等描述性 统计量。
推论性统计分析
参数估计
良好的可视化效果
SAS提供了丰富的图表和图形, 可以将数据分析结果以直观的方 式呈现出来,方便用户理解和解 释。
sas统计分析系统的应用领域
商业分析
SAS在商业领域应用广泛,可用 于市场调查、客户分析、销售预 测等方面,帮助企业做出科学决 策。
科研领域
SAS在科研领域主要用于数据管 理和统计分析,如生物医学、社 会科学、经济学等学科的研究。
SAS数据分析常用操作指南
![SAS数据分析常用操作指南](https://img.taocdn.com/s3/m/9ea35243974bcf84b9d528ea81c758f5f71f291b.png)
SAS数据分析常用操作指南在当今数据驱动的时代,数据分析成为了企业决策、科学研究等领域的重要手段。
SAS 作为一款功能强大的数据分析软件,被广泛应用于各个行业。
本文将为您介绍 SAS 数据分析中的一些常用操作,帮助您更好地处理和分析数据。
一、数据导入与导出数据是分析的基础,首先要将数据导入到 SAS 中。
SAS 支持多种数据格式的导入,如 CSV、Excel、TXT 等。
以下是常见的导入方法:1、通过`PROC IMPORT` 过程导入 CSV 文件```sasPROC IMPORT DATAFILE='your_filecsv'OUT=your_datasetDBMS=CSV REPLACE;RUN;```在上述代码中,将`'your_filecsv'`替换为实际的 CSV 文件路径,`your_dataset` 替换为要创建的数据集名称。
2、从 Excel 文件导入```sasPROC IMPORT DATAFILE='your_filexlsx'OUT=your_datasetDBMS=XLSX REPLACE;RUN;```导出数据同样重要,以便将分析结果分享给他人。
可以使用`PROC EXPORT` 过程将数据集导出为不同格式,例如:```sasPROC EXPORT DATA=your_datasetOUTFILE='your_filecsv'DBMS=CSV REPLACE;RUN;```二、数据清洗与预处理导入的数据往往存在缺失值、异常值等问题,需要进行清洗和预处理。
1、处理缺失值可以使用`PROC MEANS` 过程查看数据集中变量的缺失情况,然后根据具体情况选择合适的处理方法,如删除包含缺失值的观测、用均值或中位数填充等。
2、异常值检测通过绘制箱线图或计算统计量(如均值、标准差)来检测异常值。
对于异常值,可以选择删除或进行修正。
3、数据标准化/归一化为了消除不同变量量纲的影响,常常需要对数据进行标准化或归一化处理。
SAS的基本统计分析
![SAS的基本统计分析](https://img.taocdn.com/s3/m/bbf56a2d1fb91a37f111f18583d049649b660ea9.png)
SAS的基本统计分析SAS(统计分析系统)是一种广泛使用的统计分析软件,被广泛应用于数据分析和建模。
它提供了各种强大的统计分析功能,包括描述性统计、推断统计、回归分析、多元分析等。
在本文中,我们将介绍SAS的一些基本统计分析功能。
1.描述性统计分析:描述性统计是对数据集的基本特征进行分析和总结。
SAS提供了各种描述性统计分析功能,包括计算均值、中位数、百分位数、方差、标准差等。
例如,我们可以使用SAS的`MEANS`过程计算数据集中的变量的均值和标准差。
2.推断统计分析:推断统计分析是根据样本数据推断总体的参数估计和假设检验。
SAS提供了一系列的推断统计分析功能,包括参数估计、置信区间估计、假设检验等。
例如,我们可以使用SAS的`TTEST`过程进行两个样本的t检验,或者使用`ANOV`过程进行方差分析。
3.回归分析:回归分析用于研究自变量与因变量之间的关系,并建立预测模型。
在SAS中,我们可以使用`REG`过程进行回归分析。
该过程提供了许多回归模型,如一元线性回归、多元线性回归、逻辑回归等。
我们可以通过回归分析来了解变量之间的关系,发现影响因变量的重要因素,并进行预测。
4.多元分析:多元分析是一种分析多个自变量对因变量的影响的方法。
SAS提供了多种多元分析的方法,如多元方差分析(MANOVA)、主成分分析(PCA)、因子分析等。
我们可以使用SAS的`GLM`过程进行多元方差分析,或者使用`FACTOR`过程进行因子分析。
5.时间序列分析:时间序列分析是一种对时间相关数据进行建模和预测的方法。
SAS提供了一些时间序列分析的功能,如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。
我们可以使用SAS的`ARIMA`过程进行时间序列分析,拟合ARIMA模型并进行预测。
6.非参数统计分析:非参数统计分析是一种不需要对总体进行任何假设的统计分析方法。
SAS提供了一些非参数统计分析的功能,如Wilcoxon秩和检验、Kruskal-Wallis检验等。
SAS统计分析介绍
![SAS统计分析介绍](https://img.taocdn.com/s3/m/4005054317fc700abb68a98271fe910ef12daed0.png)
SAS统计分析介绍SAS(Statistical Analysis System)是一种流行的统计分析软件,被广泛应用于数据分析、数据管理和预测建模等领域。
它提供了一套全面的工具和功能,可以帮助用户有效地收集、分析和解释数据,以支持数据驱动的决策。
SAS具有丰富的功能和应用领域。
首先,它可以用于数据准备和数据管理。
用户可以使用SAS对数据进行清洗、整合、转换和重组,以确保数据的质量和一致性。
此外,SAS还提供了强大的数据查询和处理功能,可以高效地处理大规模和复杂的数据集。
其次,SAS可以用于描述性统计分析。
用户可以使用SAS计算各种统计指标,例如平均值、中位数、标准差、相关系数等,以了解数据的分布和变化。
此外,SAS还支持绘制各种图表和图形,例如直方图、散点图和箱线图,以可视化地展示数据的特征和模式。
SAS还提供了广泛的统计分析功能。
用户可以使用SAS进行假设检验、方差分析、回归分析等常见的统计分析任务。
此外,SAS还支持更高级的统计方法,例如生存分析、因子分析、聚类分析、时间序列分析等。
这些方法可以帮助用户发现数据中的关联和模式,从而支持更深入的数据解释和预测建模。
SAS的预测建模功能也非常强大。
用户可以使用SAS构建各种预测模型,例如线性回归模型、逻辑回归模型、决策树模型、神经网络模型等。
此外,SAS还支持模型评估和模型比较,以帮助用户选择最佳的预测模型。
这些预测模型可以应用于各种领域,例如市场营销、金融风险管理、医疗保健等。
除了数据分析和预测建模,SAS还提供了数据可视化和报告生成的功能。
用户可以使用SAS创建漂亮而有效的报告和图表,以呈现分析结果。
此外,SAS还支持自动化和批处理,可以帮助用户高效地处理和分析大规模的数据集。
总的来说,SAS是一种功能强大的统计分析软件,可以帮助用户从数据中提取有价值的信息和洞察。
它提供了丰富的功能和工具,适用于各种统计分析任务,从简单的数据描述到复杂的预测建模。
SAS软件和统计应用教程(1)PPT课件
![SAS软件和统计应用教程(1)PPT课件](https://img.taocdn.com/s3/m/7bb9d942c381e53a580216fc700abb68a882ad19.png)
-
2
SAS软件与统计应用教程
2.1.1 统计学的基本概念
STAT
1. 总体与样本
总体(population):总体是指所研究对象的全体组成 的集合。
样 本 (sample) : 样 本 是 指 从 总 体 中 抽 取 的 部 分 对 象 (个体)组成的集合。样本中包含个体的个数称为样本 容量。容量为n的样本常用n个随机变量X1,X2,…,Xn 表示,其观测值(样本数据)则表示为x1,...,xn,为 简单起见,有时不加区别。
SAS软件与统计应用教程
STAT
第二章 SAS的描述统计功能
2.1 描述性统计的基本概念 2.2 在SAS中计算统计量 2.3 统计图形
-
1
SAS软件与统计应用教程
STAT
2.1 描述性统计的基本概念
2.1.1 统计学的基本概念 2.1.2 表示数据位置的统计量 2.1.3 表示数据分散程度的统计量 2.1.4 表示数据分布形状的统计量 2.1.5 其它统计量
SAS软件与统计应用教程
2.1.3 表示数据分散程度的统计量
STAT
1. 极差(Range)与半极差(Interquartile range)
极差就是数据中的最大值和最小值之间的差:
极差 = max{xi} – min{xi} 上、下四分位数之差Q3 – Q1称为四分位极差或半极 差,它描述了中间半数观测值的散布情况。
SAS软件与统计应用教程
STAT
2. 峰度(kurtosis)
峰度描述数据向分布尾端散布的趋势。峰度的计算公
式为: K
n (n 1 )
n(x i x )43 (n 1 )2
(n 1 )n ( 2 )n ( 3 )i 1 s (n 2 )n ( 3 )
sas描述性统计分析
![sas描述性统计分析](https://img.taocdn.com/s3/m/33d3dcae0029bd64783e2c08.png)
28
27
26
散点图
25
24
23
22
21 女 20 1900 1920 1940 1960 1980 2000 男
定性变量的图表示:饼图 定性变量(或属性变量,分类变量 )不能点出直方图、散点图或茎 叶图,但可以描绘出它们各类的 比例。
饼图
定性变量的图表示:条形图
从每一条可以看出讲各种语言的 实际人数,而且分别给出了每 个语种中母语和日常使用的人 数(在图中并排放置)。条形 图显示比例不如饼图直观。
数据的“尺度”
另一个常用的尺度统计量为(样本)标 准差 (standard deviation) 。度量样 本中各数值到均值距离的一种平均。 标准差实际上是方差 (variance) 的平方 根。如果记样本中的观测值为 x1,…,xn,则样本方差为
数据的“尺度”
两个均值一样,但右边的要 “胖”些,方差为左边的一 倍
描述性统计分析
East China JiaoTong University
如 同 给 人 画 像 一 样
数 据 的 描 述
在对数据进行深入加工之前,总 应该对数据有所印象。 可以借助于图形和简单的运算, 来了解数据的一些特征。 由于数据是从总体中产生的,其 特征也反映了总体的特征。对 数据的描述也是对其总体的一 个近似的描述。
其中茎叶图中茎的单位为10cm,而叶子单位为1cm。比如,由于 第一行茎为150cm,因此叶子中的九个数字001223344代表九个数 目150、150、151、152、152、153、153、154、154cm等。每 行左边有一个频数(比如第一行有9个数目,第二行有17个等等); 可以看出最长的一行为从165cm到169cm的一段(有35个数)。
数据分析(SAS描述性统计分析过程)
![数据分析(SAS描述性统计分析过程)](https://img.taocdn.com/s3/m/aa7c5b727275a417866fb84ae45c3b3567ecddfb.png)
var
变量列表 ;
by
变量列表 ;
freq
变量 ;
weight 变量 ;
id
变量列表 ;
output <out=输出数据集名> <统计量关键字=变量名列表> <pctlpts= 百分位数 pctlpre=变量前缀名 pctlname=变量后缀名>;
run;
proc uiate过程旳主要控制语句如下:
proc means(5)
SAS程序 data examp1; input x @@; cards; 70.4 72.0 76.5 74.3 76.5 77.6 67.3 72.0 75.0 74.3 73.5 79.5 73.5 74.7 65.0 76.5 81.6 75.4 72.7 72.7 67.2 76.5 72.7 70.4 77.2 68.8 67.3 67.3 67.3 72.7 75.8 73.5 75.0 72.7 73.5 73.5 72.7 81.6 70.3 74.3 73.5 79.5 70.4 76.5 72.7 77.2 84.3 75.0 76.5 70.4 ; proc means data=examp1 n mean cv skewness kurtosis range median ; var x; run;
mode sumwgt max min range median t prt clm lclm uclm
众数,出现频数最高旳数 权数和 最大值 最小值 极差,max—min 中间值 总体均值等于0旳t统计量 t分布旳双尾p值 置信度上限和下限
置信度下限
置信度上限
kurtosis
对尾部陡平旳度量——峰度
------Quantile-----Percent Observed Estimated
如何用SAS进行统计分析
![如何用SAS进行统计分析](https://img.taocdn.com/s3/m/27537b694a73f242336c1eb91a37f111f1850d3e.png)
如何用SAS进行统计分析SAS(统计分析系统)是一种用于数据分析和统计建模的软件工具。
它提供了一系列功能和程序,用于数据处理、统计分析、预测建模、图形展示和报告生成等。
本文将介绍如何使用SAS进行统计分析,涵盖数据导入、数据清洗、描述性统计分析、假设检验、回归分析和聚类分析等内容。
1. 数据导入和数据清洗在使用SAS进行统计分析之前,你需要将待分析的数据导入到SAS软件中。
SAS支持多种数据格式,包括CSV、Excel、Access等。
你可以使用SAS提供的PROC IMPORT过程将数据导入到SAS的数据集中。
导入数据后,你需要对数据进行清洗。
数据清洗的目的是去除数据中的错误、缺失或异常值,以确保数据的质量。
你可以使用SAS的数据步骤(DATA STEP)来处理数据,例如删除缺失值、填补缺失值、去除异常值等。
2. 描述性统计分析描述性统计分析是对数据进行总结和描述的过程。
它包括计算数据的中心趋势(均值、中位数、众数)、数据的离散程度(标准差、方差、极差)、数据的分布形态(偏度、峰度)等。
在SAS中,你可以使用PROC MEANS过程进行描述性统计分析。
该过程可以计算多个变量的均值、标准差、最小值、最大值、中位数等统计指标。
此外,你还可以使用PROC UNIVARIATE过程计算数据的偏度、峰度等统计值,并绘制直方图和箱线图来展示数据的分布情况。
3. 假设检验假设检验是对样本数据进行推断性统计分析的一种方法。
它用于判断观察到的样本差异是否显著,从而对总体参数进行推断。
在SAS中,你可以使用PROC TTEST过程进行双样本t检验、单样本t检验和相关样本t检验等。
此外,PROC ANOVA过程可以用于方差分析,PROC FREQ过程可以用于卡方检验。
4. 回归分析回归分析是研究因变量与自变量之间关系的一种统计分析方法。
它用于预测和解释因变量的变化,并评估自变量对因变量的影响程度。
在SAS中,你可以使用PROC REG过程进行简单线性回归分析和多元线性回归分析。
实验报告3—— SAS描述统计分析
![实验报告3—— SAS描述统计分析](https://img.taocdn.com/s3/m/65b11e0fbed5b9f3f90f1cbf.png)
实验报告实验项目名称SAS描述统计分析所属课程名称现代统计软件实验类型验证性实验实验日期2014-10-28班级学号姓名成绩实验报告说明1.实验项目名称:要用最简练的语言反映实验的内容。
要求与实验指导书中相一致。
2.实验类型:一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。
3.实验目的与要求:目的要明确,要抓住重点,符合实验指导书中的要求。
4.实验原理:简要说明本实验项目所涉及的理论知识。
5.实验环境:实验用的软硬件环境(配置)。
6.实验方案设计(思路、步骤和方法等):这是实验报告极其重要的内容。
概括整个实验过程。
对于操作型实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。
对于设计型和综合型实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。
对于创新型实验,还应注明其创新点、特色。
7.实验过程(实验中涉及的记录、数据、分析):写明上述实验方案的具体实施,包括实验过程中的记录、数据和相应的分析(原程序、程序运行结果、结果分析解释)。
8.结论(结果):即根据实验过程中所见到的现象和测得的数据,做出结论。
9.小结:对本次实验的心得体会、思考和建议。
10.指导教师评语及成绩:指导教师依据学生的实际报告内容,用简练语言给出本次实验报告的评价和价值。
注意:∙每次实验开始时,交上一次的实验报告。
∙实验报告文档命名规则:“实验序号”+“_”+ “班级”+“_”+“学号”+“姓名”+“_”+ “.doc”例如:管信11班的张军同学学号为:2011312299 本次实验为第2次实验即:实验二、SAS编程基础;则实验报告文件名应为:实验二_管信11 _2011312299_张军.doc 。
计算机应用技术:SAS数据管理、单变量描述性统计分析、t检验
![计算机应用技术:SAS数据管理、单变量描述性统计分析、t检验](https://img.taocdn.com/s3/m/da2f420dfe00bed5b9f3f90f76c66137ef064f5a.png)
1第2章SAS 数据管理2.1 录入数据与创建SAS 数据集EXCEL , WORD 等都有数据录入功能,而SAS 系统下建立数据文件或直接产生数据集,可以免去不同系统间的转换。
21)用PGM 窗口录入数据、创建SAS 数据集设一个资料包含m 个变量、n 个观测,将每一个观测的m个数据录在PGM 窗口的同一行上,同一行上各数据间留一个或一个以上的空格。
于是排成一个n 行m 列的数据方阵,用save 或save as 将数据以一个文件名的方式存在指定的硬盘或软盘上,就建立了一个数据文件(.sas 扩展名)。
如录入:(5个变量、2个观测)alice f 1356.584 becka f 1365.398;3 注意:数据文件需要通过编写和发送一段SAS 引导程序才能将其转变成SAS 数据集,只有SAS 数据集,才能方便地被SAS 中的非编程模块所调用。
因此,加引导程序,变成如下:4单击[submit],创建数据集work.pgm ,然后可以被非编程模块调用,进行各种统计分析。
当数据量少时,直接将数据与程序语句写在一起,发送后,就可直接获得计算结果。
562)用viewtable 创建SAS 数据集进入tools, 进入table editor,直接录入数据,然后save 或save as :7 这样就建立了数据集,可被非编程模块调用。
83)用SAS/ASSIST 创建SAS 数据集 solutions →assist →data management →create data →interactively →enter datain tabular form9在Table 后,选SAS 数据集名10Lable 标签,format 输入输出格式,可不输入11录入完后,单击close ,显示窗口:1213录入数据(Insert),一行输入完后,回车,录入下一个记录:14录入结束,单击close ,将录入信息存盘,创建数据集,并退出数据输入状态。
使用SAS进行统计分析和数据建模的方法
![使用SAS进行统计分析和数据建模的方法](https://img.taocdn.com/s3/m/2a215e57f68a6529647d27284b73f242326c3167.png)
使用SAS进行统计分析和数据建模的方法1. 引言介绍SAS(统计分析系统), 这是一个广泛使用的统计软件,它提供了丰富的统计分析和数据建模功能。
2. 数据准备描述如何准备数据,包括数据清洗、数据预处理和数据转换等步骤。
3. 描述性统计分析使用SAS进行描述性统计分析,包括计算数据的均值、中位数、方差、标准差等基本统计指标,以及绘制频率分布图、直方图等。
4. 假设检验介绍如何使用SAS进行假设检验,包括t检验、方差分析、卡方检验等常用的统计检验方法。
讲解如何设置假设并根据样本数据判断是否拒绝假设。
5. 回归分析详细说明如何进行回归分析,包括简单线性回归和多元线性回归,介绍如何选择适当的回归模型,并解释模型的结果。
6. 非参数统计介绍如何使用非参数统计方法对数据进行分析,例如Wilcoxon秩和检验、Mann–Whitney U检验和Kruskal-Wallis单因素方差分析等。
7. 因子分析详细讲解如何使用SAS进行因子分析,包括主成分分析和因子旋转等步骤,解释如何提取因子并解释因子的含义。
8. 聚类分析介绍如何使用SAS进行聚类分析,包括层次聚类和K均值聚类方法,讲解如何选择合适的聚类数目并解释聚类结果。
9. 时间序列分析详细描述如何使用SAS进行时间序列分析,包括平稳性检验、ARIMA模型拟合、预测和模型诊断等。
10. 数据挖掘与机器学习介绍如何使用数据挖掘和机器学习方法进行预测和分类,包括决策树、随机森林、逻辑回归和支持向量机等。
11. 模型评估和验证讲解如何评估和验证统计模型的性能,包括拟合优度检验、交叉验证和ROC曲线等。
12. 结论总结使用SAS进行统计分析和数据建模的主要方法和步骤,并强调使用合适的方法来解决实际问题的重要性。
以上是使用SAS进行统计分析和数据建模的一些方法和步骤,虽然每个章节只是简要介绍了相关内容,但在实际应用中,每个章节都有更加详细和深入的讨论和分析。
了解并掌握这些方法和步骤,可以使我们更好地利用SAS进行统计分析和数据建模,为决策提供有力的支持。
SAS中的描述性统计过程
![SAS中的描述性统计过程](https://img.taocdn.com/s3/m/95b7c81e814d2b160b4e767f5acfa1c7aa0082b0.png)
SAS中的描述性统计过程SAS是一种强大的统计分析软件,提供了丰富的描述性统计分析过程。
这些过程可以帮助统计分析师对数据进行总体的描述和了解。
下面将详细介绍SAS中的描述性统计过程及其应用。
一、数据准备在进行描述性统计之前,需要准备数据。
SAS可以导入各种格式的数据集,如SAS数据集、CSV文件、Excel文件等。
导入数据后,可以使用SAS的数据步骤对数据进行预处理,包括数据清洗、缺失值处理、变量转换等。
这样可以确保数据的质量和完整性。
二、数据探索1.频数统计SAS提供了PROCFREQ过程来计算变量的频数、百分比和交叉表。
可以使用该过程来了解变量的分布情况、缺失值情况和数据异常情况。
通过频数统计,可以发现数据集中的异常值或需要进一步处理的特殊情况。
2.描述性统计SAS中的PROCMEANS和PROCSUMMARY过程可计算变量的均值、标准差、最大值、最小值、中位数等描述性统计量。
这些统计量可以帮助我们了解数据的中心趋势、离散程度和分布情况。
此外,我们还可以使用PROCUNIVARIATE过程来绘制直方图、箱线图和正态概率图,以更直观地了解数据的分布情况。
3.相关分析SAS提供了PROCCORR过程来计算变量之间的相关系数。
通过相关分析,可以了解变量之间的线性关系强度和方向。
PROCCORR还可以生成相关矩阵和散点图,帮助我们观察变量之间的关系。
4.排序和排名SAS提供了PROCRANK过程来对变量进行排序和排名。
排序可以帮助我们找出变量中的异常值或极端值。
排名可以用于对变量进行等级分类,如将考试成绩按照从高到低进行排名。
5.缺失值处理SAS提供了多种方法来处理缺失值,如删除带有缺失值的观测、使用均值或中位数代替缺失值、使用插补方法进行缺失值估计等。
可以使用PROCMEANS、PROCUNIVARIATE和PROCMI过程对缺失值进行处理。
三、数据汇总和报告1.数据表汇总SAS中的PROCTABULATE和PROCREPORT过程可以生成数据表和报告。
sas各过程笔记描述性统计线性回归logistic回归生存分析判别分析聚类分析主成分分析因子分析
![sas各过程笔记描述性统计线性回归logistic回归生存分析判别分析聚类分析主成分分析因子分析](https://img.taocdn.com/s3/m/2161b70a6f1aff00bfd51e41.png)
第一部分:基本统计方法注:主要讲述过程:means(描述性统计);freq(算频数表);univariate(检验);anova(方差分析);ttest(检验);glm(广义线性回归);npar1way(非参,wilcox)一:计量资料的统计分析方法1.01均值+频数表+百分位数+正态检验、茎叶图、箱形图、正态概率图data ex2_1;input x@@;low=2.3;dis=0.3;z=x-mod(x-low,dis);cards;3.964.23 4.42 3.595.12 4.02 4.32 3.72 4.76 4.164.61 4.263.774.20 4.36 3.07 4.89 3.97 4.28 3.64 4.66 4.044.55 4.254.63 3.91 4.41 3.525.03 4.01 4.30 4.19 4.75 4.144.57 4.264.56 3.79 3.89 4.21 4.95 3.98 4.29 3.67 4.69 4.124.56 4.264.66 4.28 3.83 4.205.24 4.02 4.33 3.76 4.81 4.173.96 3.274.61 4.26 3.96 4.23 3.76 4.01 4.29 3.67 3.39 4.124.27 3.614.98 4.24 3.83 4.20 3.71 4.03 4.34 4.69 3.62 4.184.26 4.365.28 4.21 4.42 4.36 3.66 4.02 4.31 4.83 3.59 3.973.964.495.11 4.20 4.36 4.54 3.72 3.97 4.28 4.76 3.21 4.044.56 4.254.92 4.23 4.47 3.605.23 4.02 4.32 4.68 4.76 3.694.61 4.263.894.21 4.36 3.425.01 4.01 4.29 3.68 4.71 4.134.57 4.264.035.46 4.16 3.64 4.16 3.76;/*freq语句,算频数表*/proc freq;tables z;run;proc means data=ex2_1n mean std stderr clm;var x;run;data ex2_1;input x f@@;cards;3.07 23.27 33.47 93.67 143.87 224.07 304.27 214.47 154.67 104.87 65.07 45.27 2;run;proc means;freq f;var x;run;/*把freq f改成weight f就是把f当权重或频数来算,f则在0,1之间*//*计算x的95%的置信区间*/proc univariate data=ex2_1;var x;output out=pctpctlpre=ppctlpts=2.5 97.5;run;proc print data=pct;run;/*正态检验、茎叶图、箱形图、正态概率图*/proc univariate data=ex2_1normalplot;var x;run;/*Extreme Observation显示的值是最小的5个极值和最大的5个极值*/1.02几何均值data ex2_5;input x f@@;y=log10(x);cards;10 420 340 1080 10160 11320 15640 141280 2;proc means noprint;/*调用means过程,不显示结果*/var y;freq f;output out=b/*结果输出到数据集b中*/mean=logmean;/*把数据集b中均数的变量名mean改为logmean*/run;data c;/*新建数据集c*/set b;/*调用数据集b*/g=10**logmean;/*计算变量logmean的反对数,该值就是x的几何均数,将该值赋值给变量g*/ proc print data=c;var g;run;/*这个是计算平通平均数的值*/proc means data=ex2_5;var x;freq f;run;1.03已知均值和方差求置信区间-单样本+单样本与总体/*单样本*/data ex3_2;n=10;mean=166.95;std=3.64;t=tinv(0.975,n-1);pts=t*std/sqrt(n);lclm=mean-pts;uclm=mean+pts;proc print;var lclm uclm;run;/*单样本与总体均值*/data ex3_5;n=36;/*样本量*/s_m=130.83;/*样本均值*/std=25.74;/*样本标准差*/p_m=140;/*总体均值*/df=n-1;/*自由度*/t=(s_m-p_m)/(std/sqrt(n));p=(1-probt(abs(t),df))*2;/*根据t值计算p值*/run;proc print;var t p;run;1.06双样本均值相等检验+两组分开+两组一起算+两组样本量不同/*双样本分开算*/data ex3_4;n1=29;n2=32;m1=20.10;m2=16.89;s1=7.02;s2=8.46;ss1=s1**2*(n1-1);ss2=s2**2*(n2-1);sc2=(ss1+ss2)/(n1+n2-2);se=sqrt(sc2*(1/n1+1/n2));t=tinv(0.975,n1+n2-2);lclm=(m1-m2)-t*se;uclm=(m1-m2)+t*se;proc print;var t se lclm uclm;run;/*双样本相减后再算*//*用MEANS作配对资料两个样本均数比较的t检验*/data ex3_6;input x1 x2 @@;d=x1-x2;cards;0.840 0.5800.591 0.5090.674 0.5000.632 0.3160.687 0.3370.978 0.5170.750 0.4540.730 0.5121.200 0.9970.870 0.506;proc means t prt;var d;run;/*用UNIVARIATE过程作配对资料两样本均数比较的t检验*/ proc univariate data=ex3_6;var d;run;/*双样本两组样本量不同*/data ex3_7;input x@@;if _n_<21 then c=1;/*当观测数小于21时,变量c的值为1,表示试验组*/else c=2;/*其余变量c的值为2,表示对照组*/cards;-0.70 -5.60 2.00 2.80 0.70 3.50 4.00 5.80 7.10 -0.502.50 -1.60 1.703.00 0.404.50 4.60 2.50 6.00 -1.403.70 6.50 5.00 5.20 0.80 0.20 0.60 3.40 6.60 -1.106.00 3.80 2.00 1.60 2.00 2.20 1.20 3.10 1.70 -2.00;proc ttest;/*调用ttest过程*/var x;/*定义分析变量为x*/class c;/*定义分组变量为c*/run;1.08-1.13anova方差分析过程+一维分组+二维分组+三维分组/*只有一组分组因素*/data ex4_2;input x c @@;cards;3.53 1 2.42 2 2.86 3 0.89 44.59 1 3.36 2 2.28 3 1.06 44.34 1 4.32 2 2.39 3 1.08 42.66 1 2.34 2 2.28 3 1.27 43.59 1 2.68 2 2.48 3 1.63 43.13 1 2.95 2 2.28 3 1.89 43.30 1 2.36 2 3.48 3 1.31 44.04 1 2.56 2 2.42 3 2.51 43.53 1 2.52 2 2.41 3 1.88 43.56 1 2.27 2 2.66 3 1.41 43.85 1 2.98 2 3.29 3 3.19 44.07 1 3.72 2 2.70 3 1.92 41.37 12.65 2 2.66 3 0.94 43.93 1 2.22 2 3.68 3 2.11 42.33 1 2.90 2 2.65 3 2.81 42.98 1 1.98 2 2.66 3 1.98 44.00 1 2.63 2 2.32 3 1.74 43.55 1 2.86 2 2.61 3 2.16 42.64 1 2.93 23.64 3 3.37 42.56 1 2.17 2 2.58 3 2.97 43.50 1 2.72 2 3.65 3 1.69 43.25 1 1.56 2 3.21 3 1.19 42.96 13.11 2 2.23 3 2.17 44.30 1 1.81 2 2.32 3 2.28 43.52 1 1.77 2 2.68 3 1.72 43.93 1 2.80 2 3.04 3 2.47 44.19 1 3.57 2 2.81 3 1.02 42.96 1 2.97 23.02 3 2.52 44.16 1 4.02 2 1.97 3 2.10 42.59 1 2.31 2 1.68 33.71 4;proc anova;/*调用anova过程*/class c;/*定义分组变量为c*/model x=c;/*定义模型,分析g对x的影响*/means c/dunnett;/*用LSD法对多组均数过行两两比较*/means c/hovtest;/*作方差齐性检验,默认levene法,p值大于0.05,则认为是g组方差相等*/run;quit;/*有两组分组因素*/data ex4_4;input x a b@@;cards;0.82 1 10.65 2 10.51 3 10.73 1 20.54 2 20.23 3 20.43 1 30.34 2 30.28 3 30.41 1 40.21 2 40.31 3 40.68 1 50.43 2 50.24 3 5;proc anova;class a b;/*定义分组变量a和b*/model x=a b;/*定义模型,分析a和b对x影响*/means a/snk;/*用SNK法对变量a的多组均数进行两两比较*/run;quit;1.15嵌套设计资料的方差分析glm过程一级因素+二组因素/*嵌套设计资料的方差分析*/data ex11_6;input x a b @@;cards;82 1 184 1 191 1 288 1 285 1 383 1 365 2 461 2 462 2 559 2 556 2 660 2 671 3 767 3 775 3 878 3 885 3 989 3 9;proc glm;/*调用glm过程*/class a b;/*定义分组变量为a和b*/model x=a a(b);/*定义模型,以a为一组因素,b为二级因素*/run;quit;1.17重复测量资料的方差分析data ex12_2;input t1 t2 g@@;/*确定变量名称,t1和t2分别为两个时间点的分析变量,g为处理因素变量,b为区组变量*/cards;130 114 1124 110 1136 126 1128 116 1122 102 1118 100 1116 98 1138 122 1126 108 1124 106 1118 124 2132 122 2134 132 2114 96 2118 124 2128 118 2118 116 2132 122 2120 124 2134 128 2;proc glm;/*调用glm过程*/class g;/*定义分组变量g*/model t1 t2=g;/*定义模型,分析g对变量t1和t2的影响*/repeated time 2/*命名重复因子为time,有2个水平*/contrast(1)/*表示以第一时间点为对照点*//summary;/*考察不同时间点与对照时间点比较的结果*/run;quit;data ex12_3;input t0-t4 g@@;cards;120 108 112 120 117 1118 109 115 126 123 1119 112 119 124 118 1121 112 119 126 120 1127 121 127 133 126 1121 120 118 131 137 2122 121 119 129 133 2128 129 126 135 142 2117 115 111 123 131 2118 114 116 123 133 2131 119 118 135 129 3129 128 121 148 132 3123 123 120 143 136 3123 121 116 145 126 3125 124 118 142 130 3;proc glm;class g;model t0-t4=g;repeated time 5/*命名重复因子为time,有2个水平*/contrast(1);run;quit;二:计数资料的统计分析方法2.1四格表资料的卡方检验data ex7_1;input r c f@@;/*确定变量名称,r为行变量,c为列变量,f为频数变量*/ cards;1 1 991 2 52 1 752 2 21;proc freq;/*调用freq过程*/weight f;/*定义f为频数变量*/tables r*c/*作r*c的列联表*//chisq/*对列联表作卡方检验*/expected;/*输出每个格的理论频数*/run;2.5阳性事件发生的概率(二项分布)data ex6_1;do x=6 to 8;/*建立循环,变量x从6到8*/p1=probbnml(0.7,10,x);/*计算二项分布随机变量不大于x的概率*/p2=probbnml(0.7,10,x-1);/*计算二项分布随机变量不大于x-1的概率*/p=p1-p2;*/计算出现x的概率*/output;/*结果输出*/end;proc print;var x p;run;2.6正态分布法计算总体率的可信区间data ex6_3;n=100;x=55;p=x/n;sp=sqrt(p*(1-p)/n);u=probit(0.975);usp=u*sp;lclm=p-usp;uclm=p+usp;proc print;var n p sp lclm uclm;run;2.7样本率与总体率的比较(直接法——单侧检验)data ex6_4;d=probbnml(0.55,10,8);p=1-d;proc print;var p;run;2.8样本率与总体率的比较(直接法——双侧检验)data ex6_5;p01=probbnml(0.6,10,9);p02=probbnml(0.6,10,8);p0=p01-p02;/*计算出现9的概率*/do i=0to10;/*建立循环,变量i从0到10*/p11=probbnml(0.6,10,i);p12=probbnml(0.6,10,i-1);p1=p11-p12;/*计算出现i的概率*/if i=0then p1=p11; /*定义出现0的概率*/if p1<=p0 then output; /*如果出现i的概率小于出现9的概率,则保留在数据集中*/ end;proc means sum;var p1;run;2.9两个样本率比较的z检验data ex6_7;n1=120;n2=110;x1=36;x2=22;p1=x1/n1;p2=x2/n2;pc=(x1+x2)/(n1+n2);/*计算合并发生率*/sp=sqrt(pc*(1-pc)*(1/n1+1/n2));/*计算两个率相差的标准误差*/u=(p1-p2)/sp;/*计算u值*/p=(1-probnorm(abs(u)))*2;/*计算p值*/format u p 5.4;/*输出格式为小数点后保留4位*/proc print;var pc sp u p;run;2.10.Poisson分布的样本均数与总体均数比较(直接法)data ex6_12;n=120;/*确定样本例数*/pai=0.008; /*确定总体率*/lam=n*pai; /*计算总体均数lamda*/x=4; /*确定实际发生数*/p=1-poisson(lam,x-1);/*计算实际发生数所对应的概率*/proc print;var lam p;run;2.11 Poisson分布的样本均数与总体均数比较(正态近似法)data ex6_12;n=25000;/*样本量*/x=123; /*样本均数*/pi=0.003; /*确定总体率*/lam=n*pi; /*计算总体均数*/u=(x-lam)/sqrt(lam*(1-pi)); /*计算u值*/p=1-probnorm(abs(u)); /*计算u值所对应的p值*/proc print;var lam u p;run;2.14负二项分布的参数估计data ex6_16;input x f@@;cards;0 301 142 83 44 25 06 2;proc univariate;var x;freq f;output out=mv2var=v;run;data k;set mv2;k=mu**2/(v-mu);proc print;var mu k;run;三、非参数统计方法3.2单个样本中位数和总体中位数比较data ex8_2;input x1@@;median=45.30;/*假设中位数为45.30*/d=x1-median; /*计算x1和假设中位数的差值*/cards;44.21 45.30 46.39 49.47 51.05 53.1653.26 54.37 57.16 67.37 71.05 87.37;proc univariate; /*调用univariate过程度*/var d;run;proc means median; /*调用means过程计算x1实际的中位数*/var x1;run;3.3两个独立样本比较的Wilcoxon秩和检验(R对应函数wilcox.test())data ex8_3;input x c @@;/*确定变量名称,x、c分别为分析变量和分组变量(类别多于两类一样的写法)*/2.78 13.23 14.20 14.87 15.12 16.21 17.18 18.05 18.56 19.60 13.23 23.50 24.04 24.15 24.28 24.34 24.47 24.64 24.75 24.82 24.95 25.10 2;proc npar1way wilcoxon;/*调用npar1way过程,进行wilcoxon分析*/var x;/*定义分析变量为x*/class c;/*定义分组变量为c*/run;3.4等级资料的两样本比较data ex8_4;input c g f@@;/*确定变量名称,f为频数,c为分类,g为要分析的变量(分类多种类似)*/ cards;1 1 11 2 81 3 161 4 101 5 42 1 22 2 232 3 112 5 0;proc npar1way wilcoxon;/*调用npar1way过程,进行wilcoxon分析*/freq f;/*确定频数变量为f*/var g;/*定义分析变量g*/class c;/*定义分组变量c*/run;第二部分:多元统计分析方法注:主要讲述过程:reg(回归),corr(相关分析),nlin(对数曲线回归),logistic(逻辑回归),phreg(条件logistic回归分析+cox回归),life test(生存分析),discrim(判别分析),stepdisc(逐步回归),cluster(聚类),varclus(指标聚类),princomp(主成分分析),factor(因子分析),cancorr(典型相关分析)一:回归和相关分析1.1两个变量的直线回归分析data ex9_1;input x y;/*确定变量名称*/cards;13 3.5411 3.019 3.096 2.488 2.5610 3.3612 3.187 2.65;proc reg;/*调用reg过程*/model y=x;/*定义模型,以y为应变量,以x为自变量*//*在model语句后面加上选项,得到一些有用的统计量,常用的有:stb(输出标准化偏回归系数)、p(输出每个观测的实际值、预测值和残差)、cli(输出每个观测预测值均数的双侧95%置信区间)、clm(输出每个观测预测值的双侧95%置信范围)*//*例如:model y=x /stb p cli */plot y*x;/*画出散点图*/run;1.2两个变量的直线相关分析data ex9_5;input x y;cards;43 217.2274 316.1851 231.1158 220.9650 254.7065 293.8454 263.2857 271.7367 263.4669 276.5380 341.1548 261.0038 213.2085 315.1254 252.08;proc corr;/*若要求作spearman相关分析,则可以写成proc corr spearman */ var x y;run;/*得到一个相关系数矩阵*/1.4加权直线加回data ex9_9;input x y;w=1/(x*x); /*设置权重变量w*/cards;0.11 4.000.12 5.100.21 9.500.30 9.000.34 17.200.44 14.000.56 18.900.60 29.400.69 22.100.80 41.50;proc reg;weight w;/*定义权重变量w*/model y=x;/*定义模型,以y为因变量,以x为自变量*/run;1.5两个直线回归系数的比较data ex9_12;input x y c@@;cards;13 3.54 111 3.01 19 3.09 16 2.48 18 2.56 110 3.36 112 3.18 17 2.65 110 3.01 29 2.83 211 2.92 212 3.09 215 3.98 216 3.89 28 2.21 27 2.39 210 2.74 215 3.36 2;proc glm;class c;model y=x c x*c;/*定义模型,分析x、c以及x和c的交互作用对y的影响,即判断两总体直线回归系数是否相同*/run;proc glm;class c;model y=x c;/*上一步已排除协变量的影响,然后再分析两分析变量是否来自同一总体*/run;1.6两个变量的对数曲线回归data ex9_13;input x y;cards;0.005 34.110.050 57.990.500 94.495.000 128.5025.000 169.98;proc nlin;/*调用nlin过程*/parms a=0 b=0; /*定义初始值*/model y=a+b*log10(x); /*定义对数模型,以y为因变以量,x为自变量*/ run;1.7两个变量的指数曲线回归分析data ex9_14;input x y;cards;2 545 507 4510 3714 3519 2526 2031 1634 1838 1345 852 1153 860 465 6;proc nlin;parms a=4 b=0.03;/*定义初始值*/model y=exp(a+b*x);/*定义指数模型,以y为因变量,x为自变量*/run;1.8多元回归data ex15_1;input x1-x4 y@@;/*确定变量名称,x1,x2,x3,x4分别为自变量,y为应变量*/ cards;5.68 1.90 4.53 8.20 11.203.79 1.64 7.32 6.90 8.806.02 3.56 6.95 10.80 12.304.85 1.075.88 8.30 11.604.60 2.32 4.05 7.50 13.406.05 0.64 1.42 13.60 18.304.90 8.50 12.60 8.50 11.107.08 3.00 6.75 11.50 12.103.85 2.11 16.28 7.90 9.604.65 0.63 6.59 7.10 8.404.59 1.97 3.61 8.70 9.304.29 1.97 6.61 7.80 10.607.97 1.93 7.57 9.90 8.406.19 1.18 1.42 6.90 9.606.13 2.06 10.35 10.50 10.905.71 1.78 8.53 8.00 10.106.40 2.40 4.53 10.30 14.806.06 3.67 12.797.10 9.105.09 1.03 2.53 8.90 10.806.13 1.71 5.28 9.90 10.205.78 3.36 2.96 8.00 13.605.43 1.13 4.31 11.30 14.906.50 6.21 3.47 12.30 16.007.98 7.92 3.37 9.80 13.2011.54 10.89 1.20 10.50 20.005.84 0.92 8.616.40 13.303.84 1.20 6.45 9.60 10.40;proc reg;model y=x1-x4;/*也可以写成model y=x1 x2 x3 x4;*/run;1.9逐步回归data ex12_2;input x1-x4 y@@;cards;5.68 1.90 4.53 8.20 11.203.79 1.64 7.32 6.90 8.806.02 3.56 6.95 10.80 12.304.85 1.075.88 8.30 11.604.60 2.32 4.05 7.50 13.406.05 0.64 1.42 13.60 18.304.90 8.50 12.60 8.50 11.107.08 3.00 6.75 11.50 12.103.85 2.11 16.28 7.90 9.604.65 0.63 6.59 7.10 8.404.59 1.97 3.61 8.70 9.304.29 1.97 6.61 7.80 10.607.97 1.93 7.57 9.90 8.406.19 1.18 1.42 6.90 9.606.13 2.06 10.35 10.50 10.905.71 1.78 8.53 8.00 10.106.40 2.40 4.53 10.30 14.806.06 3.67 12.797.10 9.105.09 1.03 2.53 8.90 10.806.13 1.71 5.28 9.90 10.205.78 3.36 2.96 8.00 13.605.43 1.13 4.31 11.30 14.906.50 6.21 3.47 12.30 16.007.98 7.92 3.37 9.80 13.2011.54 10.89 1.20 10.50 20.005.84 0.92 8.616.40 13.303.84 1.20 6.45 9.60 10.40;proc reg;model y=x1-x4/selection=stepwise/*定义模型,以y因变量,x1-x4为变量进行多元回归分析*/ sle=0.10/*定义入先变量的界值*/sls=0.10;/*定义剔除变量的界值*/run;三:logistic回归3.1 两个变量logistic回归分析data ex16_1;input y x1 x2 f@@;/*确定变量名称,y为发病情况,x1为吸烟情况,x2为饮酒情况,f为发生频数*/cards;1 0 0 631 0 1 631 1 0 441 1 1 2650 0 0 1360 0 1 1070 1 0 570 1 1 151;proc logistic;/*调用logistic过程*/freq f;/*定义频数变量f*/model y=x1 x2;/*定义模型,以y为因变量,x1和x2为自变量*/run;3.2 1:M配对资料的条件logistic回归分析data ex16_3;input i y x1-x6 @@;/*确定变量名称,i为区组变量,y为病人情况,1为病例,0为对照,x1-x6为危险因素*/t=2-y;/*定义时间变量*/cards;1 1 3 5 1 1 1 01 0 1 1 1 3 3 01 0 1 1 1 3 3 02 1 13 1 1 3 02 0 1 1 13 2 02 0 1 2 13 2 03 1 14 1 3 2 03 0 1 5 1 3 2 03 0 14 1 3 2 04 1 1 4 1 2 1 14 0 2 1 1 3 2 05 1 2 4 2 3 2 0 5 0 1 2 1 3 3 05 0 2 3 1 3 2 06 1 1 3 1 3 2 1 6 0 1 2 1 3 2 06 0 1 3 2 3 3 07 1 2 1 1 3 2 1 7 0 1 1 1 3 3 07 0 1 1 1 3 3 08 1 1 2 3 2 2 0 8 0 1 5 1 3 2 08 0 1 2 1 3 1 09 1 3 4 3 3 2 0 9 0 1 1 1 3 3 09 0 1 4 1 3 1 010 1 1 4 1 3 3 1 10 0 1 4 1 3 3 010 0 1 2 1 3 1 011 1 3 4 1 3 2 0 11 0 3 4 1 3 1 011 0 1 5 1 3 1 012 1 1 4 3 3 3 0 12 0 1 5 1 3 2 012 0 1 5 1 3 3 013 1 1 4 1 3 2 0 13 0 1 1 1 3 1 013 0 1 1 1 3 2 014 1 1 3 1 3 2 1 14 0 1 1 1 3 1 014 0 1 2 1 3 3 015 1 1 4 1 3 2 0 15 0 1 5 1 3 3 015 0 1 5 1 3 3 016 1 1 4 2 3 1 0 16 0 2 1 1 3 3 016 0 1 1 3 3 2 017 1 2 3 1 3 2 0 17 0 1 1 2 3 2 017 0 1 2 1 3 2 018 1 1 4 1 3 2 0 18 0 1 1 1 2 1 0 18 0 1 2 1 3 2 019 0 1 1 1 2 1 019 0 2 2 2 3 1 020 1 1 4 2 3 2 120 0 1 5 1 3 3 020 0 1 4 1 3 2 021 1 1 5 1 2 1 021 0 1 4 1 3 2 021 0 1 2 1 3 2 122 1 1 2 2 3 1 022 0 1 2 1 3 2 022 0 1 1 1 3 3 023 1 1 3 1 2 2 023 0 1 1 1 3 1 123 0 1 1 2 3 2 124 1 1 2 2 3 2 124 0 1 1 1 3 2 024 0 1 1 2 3 2 025 1 1 4 1 1 1 125 0 1 1 1 3 2 025 0 1 1 1 3 3 0;proc phreg;/*调用phreg过程*/model t*y(0)=x1-x6/*定义模型,以t为时间变量,y为截尾变量,x1-x6为自变量*//selection=stepwise/*选择逐步回归方法筛选变量*/sle=0.1sls=0.1/*入选和剔除的界值均为0.1*/ties=discrete;/*用离散logistic模型替代比例危险模型*/strata i;/*定义区组变量*/run;2.3 应变量为多分类资料的logistic回归data ex16_5;input x1 x2 y f;/*x1是两个社区,x2是性别,Y是获取健康知识途径(传统大众媒介=1,网络=2,社区宣传=3,f为频数)*/cards;0 0 1 200 0 2 350 0 3 260 1 1 100 1 2 270 1 3 571 0 1 421 02 171 1 1 161 12 121 1 3 26;proc logistic;freq f;/*定义频数变量为f*/model y(ref='3')/*定义模型,以y为因变量,ref语句指时参照的类别为“社区宣传”,最后得到结果均为与“社区宣传”相对应*/=x1 x2/*定义x1和x2为自变量*//link=glogit;/*指定多分类应变量回归模型*/run;四:生存分析4.1乘积极限法估计生存率,例17-2甲、乙两种手术方法的生存率估计data ex17_2;input t d@@;/*确定变量名称,t为时间变量,d为截尾变量*/cards;1 13 15 15 15 16 16 16 17 18 110 110 114 017 119 020 022 026 034 134 044 159 1;proc lifetest;/*调用lifetest过程*/time t*d(0);/*定义模型,以t为时间变量,d为截尾变量,变量值为0表示截尾数据*/ run;4.2寿命表法估计生存率data ex17_3;input t d f@@;cards;0 0 00 1 4561 0 391 1 2262 0 222 1 1523 0 233 1 1714 0 244 1 1355 0 1075 1 1256 0 1336 1 837 0 1027 1 748 0 688 1 519 0 649 1 4210 0 4510 1 4311 0 5311 1 3412 0 3312 1 1813 0 2714 0 3314 1 615 0 2015 1 0;proc lifetest method=life/*调用lifetest过程,指定用寿命表法估计生存率*/ width=1;/*表示每间隔1估计生存率*/freq f;/*表示以f为频数变量*/time t*d(0);/*定义模型,以t为时间变量,d为截尾变量,变量值为0表示截尾数据*/ run;4.3生存曲线比较的log-rank检验及制作生存曲线data ex17_4;input t d g @@;cards;1 1 13 1 15 1 15 1 15 1 16 1 16 1 16 1 17 1 18 1 110 1 110 1 114 0 117 1 119 0 120 0 122 0 126 0 131 0 134 1 134 0 144 1 159 1 11 1 21 1 22 1 23 1 23 1 24 1 24 1 24 1 26 1 26 1 28 1 29 1 29 1 210 1 211 1 212 1 213 1 215 1 217 1 218 1 2;proc lifetest plot=(s);/*调用lifetest过程并做生存曲线图*/ time t*d(0);strata g;/*定义变量g为分组变量*/run;4.4.cox回归分析data ex17_5;input x1-x6 t y @@;cards;54 0 0 1 1 0 52 057 0 1 0 0 0 51 058 0 0 0 1 1 35 143 1 1 1 1 0 103 048 0 1 0 0 0 7 140 0 1 0 0 0 60 044 0 1 0 0 0 58 036 0 0 0 1 1 29 139 1 1 1 0 1 70 042 0 1 0 0 1 67 042 0 1 0 0 0 66 042 1 0 1 1 0 87 051 1 1 1 0 0 85 049 1 1 1 0 1 76 0 52 1 1 1 0 1 74 0 48 1 1 1 0 0 63 0 54 1 0 1 1 1 101 0 38 0 1 0 0 0 100 0 40 1 1 1 0 1 66 1 38 0 0 0 1 0 93 0 19 0 0 0 1 0 24 1 67 1 0 1 1 0 93 0 37 0 0 1 1 0 90 0 43 1 0 0 1 0 15 149 0 0 0 1 0 3 150 1 1 1 1 1 87 0 53 1 1 1 0 0 120 0 32 1 1 1 0 0 120 0 46 0 1 0 0 1 120 043 1 0 1 1 0 120 044 1 0 1 1 0 120 0 62 0 0 0 1 0 120 0 40 1 1 1 0 1 40 1 50 1 0 0 1 0 26 1 33 1 1 0 0 0 120 0 57 1 1 1 0 0 120 0 48 1 0 0 1 0 120 0 28 0 0 0 1 0 3 1 54 1 0 1 1 0 120 1 35 0 1 0 1 1 7 1 47 0 0 0 1 0 18 1 49 1 0 1 1 0 120 0 43 0 1 0 0 0 120 0 48 1 1 0 0 0 15 1 44 0 0 0 1 0 4 1 60 1 1 1 0 0 120 0 40 0 0 0 1 0 16 1 32 0 1 0 0 1 24 1 44 0 0 0 1 1 19 1 48 1 0 0 1 0 120 0 72 0 1 0 1 0 24 1 42 0 0 0 1 0 2 1 63 1 0 1 1 0 120 0 55 0 1 1 0 0 12 1 39 0 0 0 1 0 5 1 44 0 0 0 1 0 120 074 0 0 0 1 1 7 161 0 1 0 1 0 40 145 1 0 1 1 0 108 038 0 1 0 0 0 24 162 0 0 0 1 0 16 1;proc phreg;model t*y(1)=x1-x6/*定义模型,以t为时间变量,y为截尾变量,变量值1表示截尾数据,x1-x6为危险因素*//selection=stepwisesle=0.05sls=0.05;run;五:判别和聚类分析5.1判别分析data ex18_4;input x1-x4 g; /*确定变量名称,x1-x4为用于进行判别分析的指标,g为分组变量*/ cards;6.0 -11.5 19 90 1-11.0 -18.5 25 -36 390.2 -17.0 17 3 2-4.0 -15.0 13 54 10.0 -14.0 20 35 20.5 -11.5 19 37 3-10.0 -19.0 21 -42 30.0 -23.0 5 -35 120.0 -22.0 8 -20 3-100.0 -21.4 7 -15 1-100.0 -21.5 15 -40 213.0 -17.2 18 2 2-5.0 -18.5 15 18 110.0 -18.0 14 50 1-8.0 -14.0 16 56 10.6 -13.0 26 21 3-40.0 -20.0 22 -50 3;proc discrim;class g;/*定义分组变量为g*/var x1-x4;/*定义用于分析的指标变量为x1-x4*/run;(结果横向是真实值,竖向的预测值)5.2逐步判别分析data ex18_5;input x1-x4 g;cards;6.0 -11.5 19 90 1-11.0 -18.5 25 -36 390.2 -17.0 17 3 2-4.0 -15.0 13 54 10.0 -14.0 20 35 20.5 -11.5 19 37 3-10.0 -19.0 21 -42 30.0 -23.0 5 -35 120.0 -22.0 8 -20 3-100.0 -21.4 7 -15 1-100.0 -21.5 15 -40 213.0 -17.2 18 2 2-5.0 -18.5 15 18 110.0 -18.0 14 50 1-8.0 -14.0 16 56 10.6 -13.0 26 21 3-40.0 -20.0 22 -50 3;proc stepdisc /*调用stepdisc过程*/slentry=0.2/*确定入选标准为0.2*/slstay=0.3;/*确定剔除标准为0.3*/class g;/*定义分组变量为g*/var x1-x4;/*定义用于分析的指标变量为x1-x4*/run;(筛选出变量后,调用discrim过程对筛选出的变量作判别分析,即先做5.2再做5.1)5.3作样品聚类和指标聚类data ex19_3;input x1-x9;cards;46 25 5 2138 1.68 0.35 8.11 4 4 35 12 20 3510 2.76 1.43 6.84 3 3 52 25 20 2784 2.19 0.54 4.11 3 3 32 7 20 2451 1.93 0.47 11.45 9 6 38 22 0 3247 2.56 0.80 11.68 5 5 51 31 30 3710 2.92 0.37 11.60 2 2 40 9 10 3194 2.51 0.40 11.40 5 5 34 17 20 4658 3.67 0.46 11.35 3 3 50 29 0 5019 3.95 0.47 13.45 10 8 42 20 20 7482 5.89 0.12 13.11 0 0 57 30 15 3800 2.99 0.19 10.76 2 236 15 20 2478 1.95 0.25 10.00 0 037 12 0 3827 3.01 0.82 10.50 4 4 52 32 0 2984 2.35 0.16 11.15 3 3 52 32 10 3749 2.95 0.72 11.45 11 10 42 27 30 4941 3.89 0.73 13.80 7 6 44 27 20 3948 3.11 0.33 13.65 16 14 40 21 5 3360 2.64 0.37 11.40 0 0 38 21 5 2936 2.31 0.69 11.40 1 1 44 27 20 6851 5.39 0.99 12.28 7 6 43 27 0 3926 3.09 0.47 11.95 0 0 26 10 3 4381 3.45 0.52 11.80 7 5 37 18 20 7142 5.62 0.85 11.81 5 5 28 9 20 2612 2.06 0.37 11.65 1 1 25 9 30 2638 2.08 0.78 12.25 1 1 34 14 20 4322 3.40 0.41 15.00 5 5 50 32 20 2862 2.25 0.69 8.80 2 2;proc cluster/*调用cluster过程*/method=average;/*采用类平均法进行聚类*/var x1-x9;/*定义用于分析的指标变量x1-x9*/run;proc treegraphics haxis=axis1 horizontal;/*调用tree过程输出聚类图,并将图横向输出*/ run;/*对各个指标聚类,即对9个变量聚类*/proc varclus;/*调用varclus过程*/var x1-x9;/*定义用于分析的指标变量x1-x9*/run;六、主成分分析和因子分析6.1主成分分析data ex20_1;input x1-x6;cards;92 77 80 95 99 12697 75 77 80 95 12595 80 70 78 89 12075 75 73 88 98 11092 68 72 79 88 11390 85 80 70 78 10372 93 75 77 80 10088 70 76 72 81 10264 70 69 85 93 10570 73 70 87 84 10078 69 75 73 89 9778 72 71 68 75 9675 64 63 76 73 9284 66 77 55 65 7670 64 51 60 67 8858 72 75 62 52 7582 73 40 50 48 6145 65 42 47 43 60;proc princomp;/*调用princomp过程,对6个变量做主成分分析,结果包括主成分累积贡献率,特征向量矩阵*/run;6.2因子分析data ex20_2;input x1-x9;cards;4.34 389 99.06 1.23 25.46 93.15 3.56 97.51 61.663.45 271 88.28 0.85 23.55 94.31 2.44 97.94 73.334.38 385 103.97 1.21 26.54 92.53 4.02 98.484.18 377 99.48 1.19 26.89 93.86 2.92 99.41 63.164.32 378 102.01 1.19 27.63 93.18 1.99 99.71 80.004.13 349 97.55 1.10 27.34 90.63 4.38 99.03 63.164.57 361 91.66 1.14 24.89 90.60 2.73 99.69 73.534.31 209 62.18 0.52 31.74 91.67 3.65 99.48 61.114.06 425 83.27 0.93 26.56 93.81 3.09 99.48 70.734.43 458 92.39 0.95 24.26 91.12 4.21 99.76 79.074.13 496 95.43 1.03 28.75 93.43 3.50 99.10 80.494.10 514 92.99 1.07 26.31 93.24 4.22 100.00 78.954.11 490 80.90 0.97 26.90 93.68 4.97 99.77 80.533.53 344 79.66 0.68 31.87 94.77 3.59 100.00 81.974.16 508 90.98 1.01 29.43 95.75 2.77 98.72 62.864.17 545 92.98 1.08 26.92 94.89 3.14 99.41 82.354.16 507 95.10 1.01 25.82 94.41 2.80 99.35 60.614.86 540 93.17 1.07 27.59 93.47 2.77 99.80 70.215.06 552 84.38 1.10 27.56 95.15 3.10 98.63 69.234.03 453 72.69 0.90 26.03 91.94 4.50 99.05 60.424.15 529 86.53 1.05 22.40 91.52 3.84 98.58 68.423.94 515 91.01 1.02 25.44 94.88 2.56 99.36 73.914.12 552 89.14 1.10 25.70 92.65 3.87 95.52 66.674.42 597 90.18 1.18 26.94 93.03 3.76 99.28 73.813.05 437 78.81 0.87 23.05 94.46 4.03 96.223.94 477 87.34 0.95 26.78 91.784.57 94.28 87.344.14 638 88.57 1.27 26.53 95.16 1.67 94.50 91.673.87 583 89.82 1.16 22.66 93.43 3.55 94.49 89.074.08 552 90.19 1.10 22.53 90.36 3.47 97.88 87.144.14 551 90.81 1.09 23.06 91.65 2.47 97.72 87.134.04 574 81.36 1.14 26.65 93.74 1.61 98.20 93.023.93 515 76.87 1.02 23.88 93.82 3.09 95.46 88.373.90 555 80.58 1.10 23.08 94.38 2.06 96.82 91.793.62 554 87.21 1.10 22.50 92.43 3.22 97.16 87.773.75 586 90.31 1.12 23.73 92.47 2.07 97.74 93.893.77 627 86.47 1.24 23.22 91.17 3.40 98.98 89.80;proc factor/*调用factor过程*/n=4;/*确定因子数为4,如果不写就默认为3*/run;proc factorn=4rotate=quartimax;/*因子旋转的方法为四次方最大正交旋转*/run;七、典型相关分析data ex21_1;input x1-x4 y1-y4;cards;1210 120.1 23.8 61.0 10.2 66.3 2.01 2.731210 120.7 23.4 59.8 11.3 67.6 1.92 2.711040 121.2 22.9 59.0 10.1 66.5 1.92 2.601620 121.5 24.6 59.5 9.5 67.8 1.95 2.641690 122.5 24.4 60.7 11.0 69.2 2.08 2.641150 122.7 27.2 64.5 10.5 69.1 2.19 2.841460 123.3 24.9 58.4 10.5 69.0 2.01 2.72 1190 123.4 21.8 59.0 10.6 67.4 1.90 2.71 1840 123.9 23.5 60.2 9.6 67.1 2.00 2.84 1250 124.5 25.2 63.0 11.2 67.8 2.05 2.78 1480 124.8 22.3 58.1 10.7 67.9 2.05 2.73 1310 124.9 22.0 58.0 10.5 67.8 1.98 2.68 1660 125.3 24.7 60.0 10.8 69.3 1.95 2.80 1580 125.6 22.8 59.0 9.4 69.1 2.00 2.65 1460 125.8 25.7 61.0 10.2 69.6 1.95 2.70 1240 126.0 30.2 68.0 9.2 67.1 2.14 2.88 1100 126.2 25.2 60.5 9.8 68.4 1.98 2.72 1250 126.8 23.6 58.5 10.2 67.5 1.94 2.74 1270 127.1 23.0 57.7 10.8 69.8 1.90 2.78 1300 127.6 24.3 59.0 10.3 67.9 1.93 2.84 1350 127.7 24.1 60.0 11.0 69.7 2.03 2.77 1250 128.3 21.6 55.5 10.4 68.5 1.83 2.70 1720 128.5 27.1 62.0 11.4 71.2 2.03 2.75 1480 128.5 22.6 57.4 10.0 67.3 2.04 2.83 1380 129.4 24.9 60.5 11.5 69.8 2.04 2.76 1170 129.0 26.7 63.7 9.6 67.4 2.13 2.98 1640 129.8 26.1 62.0 9.8 71.0 2.00 2.84 1640 131.6 28.7 62.8 9.7 70.7 1.89 2.89 1150 130.2 25.0 58.6 10.5 71.8 1.96 2.78 1430 130.5 26.1 60.7 10.8 68.6 2.05 2.77 1150 130.6 23.4 54.4 11.8 69.2 1.96 2.78 1150 131.4 25.5 63.2 10.2 70.4 2.05 2.84 1320 131.6 25.6 58.9 10.9 70.2 2.06 2.86 1360 131.7 27.4 62.0 10.9 73.5 1.99 2.70 1460 132.0 26.3 61.5 11.1 71.2 2.17 2.13 1380 132.2 25.7 61.4 10.1 70.1 1.96 2.83 1300 132.5 24.5 57.0 10.8 71.8 2.02 2.84 1220 132.7 27.0 61.3 10.1 72.2 2.08 2.80 1320 132.9 25.2 60.5 11.2 73.1 2.01 2.73 1910 133.1 30.1 67.0 9.0 87.1 2.15 2.97 1800 133.5 26.5 62.5 9.8 71.7 2.07 2.82 1560 133.6 24.8 58.5 10.3 72.2 1.93 2.79 1840 134.0 26.0 60.5 10.4 73.0 1.98 2.74 1470 134.3 28.2 62.0 11.3 87.2 2.66 4.03 1590 134.4 25.5 60.7 9.6 69.9 1.99 2.81 1430 134.1 26.6 63.0 11.2 72.2 2.06 2.90 1760 134.6 32.5 66.0 9.9 87.4 2.61 2.98 1470 135.3 27.9 61.8 10.1 73.3 2.20 2.78 1580 135.6 28.1 65.8 9.8 73.1 2.05 2.891840 137.1 27.6 62.8 9.5 72.4 2.11 2.91 1810 137.4 28.3 62.5 9.4 74.2 2.06 3.00 1850 138.1 29.5 62.4 9.7 72.3 2.12 4.02 2120 140.0 34.9 68.8 9.5 87.9 2.74 4.15 1760 140.7 32.0 64.4 10.2 74.0 2.17 4.05 1800 141.0 32.5 63.8 9.5 88.2 2.65 4.08 1260 141.7 29.1 65.0 9.7 88.2 2.68 2.90 1860 142.4 19.3 70.0 10.1 89.6 2.71 4.06 1800 144.7 27.0 58.3 10.8 74.8 2.10 2.82 1470 136.8 26.3 61.4 10.0 72.2 2.07 2.93 1260 121.1 22.9 59.0 10.6 66.3 2.05 2.76 1570 132.7 25.3 58.6 11.5 73.6 2.16 2.78 1290 125.0 25.7 60.5 10.1 68.8 2.00 2.69 1580 133.2 27.3 60.7 9.6 71.7 2.11 2.85 1690 132.8 28.6 64.7 9.6 72.9 2.19 4.08 1670 131.6 25.4 59.7 10.6 69.8 2.14 2.76 1300 133.1 25.9 58.0 10.1 69.7 2.12 2.83 1610 134.0 25.8 59.6 9.4 70.8 2.10 2.88 1580 134.3 26.3 61.2 10.2 72.2 2.14 2.84 1570 129.1 27.7 62.2 11.1 72.9 2.09 2.93 1660 140.1 32.1 67.0 9.3 87.1 2.15 4.03 1040 132.6 27.9 62.0 10.3 72.5 2.08 2.81 1290 128.3 23.6 58.5 9.3 69.0 1.97 2.76 1980 145.8 34.5 68.0 9.8 89.7 2.68 4.25 1210 133.3 25.6 61.5 9.9 71.0 2.11 2.82 1300 134.3 25.6 61.0 10.5 73.2 2.02 2.83 1310 138.1 27.8 61.2 9.9 73.5 2.09 2.78 1590 135.6 25.9 59.6 9.6 72.8 2.10 2.91 1270 128.3 24.1 58.5 10.3 69.2 1.92 2.77 1310 129.7 24.7 61.7 10.1 69.4 2.03 2.80 2280 143.6 37.6 70.0 9.7 88.8 2.17 4.18 1580 136.6 32.3 67.2 10.3 87.1 2.66 4.04 2370 147.4 38.8 73.0 10.8 90.7 2.82 4.38 ;proc cancorr;/*调用cancorr过程*/var x1-x4;/*定义一组变组变量*/with y1-y3;/*定义另一组变量*/run;。
数据分析方法 sas
![数据分析方法 sas](https://img.taocdn.com/s3/m/f526e861814d2b160b4e767f5acfa1c7aa00821c.png)
数据分析方法sas
SAS(Statistical Analysis System)是一种常用的数据分析方法,它是一套软件系统,利用统计分析和数据管理等技术,对大规模复杂数据进行处理、分析和挖掘。
以下是SAS的一些常见数据分析方法:
1. 描述性统计分析:通过计算各种统计指标(如均值、中位数、标准差等)来描述数据的特征和分布。
2. 数据预处理:对原始数据进行清洗、处理和转换,包括处理缺失值、异常值和重复值,变量的标准化或归一化等。
3. 假设检验:通过对比实际数据和理论假设,判断某个因素对数据的显著影响,例如t检验、方差分析、卡方检验等。
4. 方差分析(ANOVA):用于分析多个因素对数据之间差异的影响,并判断因素之间是否存在显著差异。
5. 回归分析:通过建立回归模型,探究自变量与因变量之间的关系,并预测因变量的值。
6. 聚类分析:将数据按照相似性进行分组,发现其中的内在结构和模式。
7. 因子分析:将大量的变量简化为少数几个综合指标(因子),以揭示变量背后的潜在变量结构。
8. 决策树:通过构建分类或回归树,对数据进行分组或预测。
9. 关联规则分析:通过挖掘大量事务数据中的频繁项集,找出项集之间的关联关系,用于市场篮子分析、交叉销售等。
以上只是SAS的一部分数据分析方法,SAS还包括更多的统计方法和机器学习算法,可以根据具体问题和需求选择合适的方法进行数据分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章描述性统计分析
3.1 3.2
3.4相关概念
集中趋势的数据描述表示分布形状的统计量
3.3离散趋势的数据描述
3.1 描述性统计的相关概念
统计学是通过样本数据研究总体数据的一门学科。
•总体(population)是指所研究对象的全体组成的集合。
•样本(sample)是指从总体中抽取部分对象(个体)组
成的集合。
–要通过对样本的研究达到了解总体的目的,必须要求样本具有代表性。
–保证样本具有代表性的一种常用方法是简单随机抽样。
指总体的每个个体有同样的可能被抽到成为样本的一个观测值。
总体
样本
总体和样本
统计量和参数
•统计量(statistics):用来描述样本特征的概括性值,如样本均值(x)等。
•参数(parameter):用来描述总体特征的概括性值,如总体均值(μ)等。
均值方差标准差
总体参数μσ2σ
样本统计量x s2s
总体均值又称为期望(Expectation);总体参数通常是未知的。
统计量可由样本数据计算得到。
样本统计量能否概括总体的特征?——推断性统计
什么是描述性统计
目的
获得对数据的总体感觉以及评估数据质量。
定义
对数据进行频数统计、计算特征统计量和将数据图形化的过程称为描述统计。
实现方式
1.用表格工具或图形化方法来反映样本数据总体分布情况。
2.用数据特征统计量来反映数据的集中趋势、离散趋势、分布形状。
•偏度、峰度
表示数据分布形状的统计量03
•极差、半极差、方差、标准差、变异系数
表示数据离散程度的统计量
02•均值、中位数、众数、百分位数
表示数据集中趋势的统计量
01样本统计量
第三章描述性统计分析
3.1 3.2
3.4相关概念
集中趋势的数据描述表示分布形状的统计量
3.3离散趋势的数据描述
3.3.1 表示离散趋势的统计量
表示数据离散程度的统计量
极差(range )和四分位差(Qrange )
四分位差Q=Q 3-Q 1
Q 越大意味着数据间的离散程度越大
●四分位差就是上、下四分位数之差,又称为四分位数间距。
描述的是中间半数观测值的分布情况。
•极差=max{x i }-min{x i }
●极差就是数据中最大值和最小值之差。