(完整版)专题八代数综合题(含答案)-,推荐文档

合集下载

人教版八年级上册数学期末复习:代数几何综合 专项练习题(Word版,含答案)

人教版八年级上册数学期末复习:代数几何综合 专项练习题(Word版,含答案)

人教版八年级上册数学期末复习:代数几何综合专项练习题【课前引入】如图所示,在平面直角坐标系中,在△ABC中,OA=2,OB=4,点C的坐标为(0,3).(1)求A,B两点坐标及S△ABC;(2)若点D是第一象限的点,且满足△CBD是以BC为直角边的等腰直角三角形,请直接写出满足条件的点D的坐标.【典型例题】如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,t),过点B作CB⊥AB,且CB=AB.(1)若∠CBO=60°,求BC的长度;(2)求点C的坐标(用含t的代数式表示).【平行练习1】如图,在平面直角坐标系xOy中,A、B分别是x轴正半轴、y轴正半轴上的一点,以AB为斜边作等腰直角三角形,直角顶点C(a,b)在第二象限.(1)探究a、b之间的数量关系并证明;(2)若BO平分∠ABC,AC与OB交于点D,且A(2,0),B(0,2+2),求点D的坐标.【平行练习2】如图,在平面直角坐标系中,△AOP为等边三角形,A(0,2),点B为y轴上一动点,以BP为边作等边△PBC,延长CA交x轴于点E.(1)求证:OB=AC;(2)∠CAP的度数是;(直接写出答案,不需要说明理由.)(3)当B点运动时,猜想AE与OP的关系,并说明理由;(4)在(3)的条件下,在y轴上存在点Q,使得△AEQ为等腰三角形,请写出点Q的坐标:.(直接写出答案,不需要说明理由.)如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.(1)求证:△AOB≌△COD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.如图,在平面直角坐标系中,△ABC的顶点A在y轴上,顶点C在x轴上,∠BAC=90°,AB =AC,点E为边AC上一点,连接BE交y轴于点F,交x轴于点G,作CD⊥BE交BE延长线于点D,且CD=BF,连接AD,CF.(1)求证:△ABF≌△ACD;(2)若∠ACF=2∠CBF,求证:∠ACO=∠FCO;(3)在(2)的条件下,若点A的坐标为(0,2),求点C的坐标.1、如图,在直角坐标系中,已知两点A(m,0),B(0,n)(n>m>0),点C在第一象限,且AB⊥BC,BC=BA.(1)求点C的坐标(用含m,n的式子表示);(2)若点P在线段OB上,OP=OA,AP的延长线与CB的延长线交点M,AB与CP交于点N,试探索CN与AM之间的关系,并进行证明.2、如图,在平面直角坐标系中,△OAB是等腰三角形,OA=AB,点A在第一象限,过点A作直线垂直x轴于点C,过点B作BD⊥AC于点D,AC=BD,设点A的坐标是(a,b),且a>b.(1)求B点坐标(用含a,b的式子表示);(2)设直角梯形OCDB的面积为S₁,以AB为边的正方形面积为S₂,求S₁,S₂的值(用含a,b 的式子表示);(3)试比较S₁,S₂的大小.3、在如图所示的平面直角坐标系中,点A,点B在x轴上,且关于y轴对称,点C在y轴上,AC=4,∠CAB=30°,OD∥BC交AC与点D,连接BD .(1)求证:△OCD是等边三角形;(2)以BD为一边,作∠BDE=60°,DE交y轴于点E.请你在图中画出完整图形,并求出点E的坐标.4、如图1,等腰直角三角形ABC与△A'B'C'关于y轴对称,AB在x轴上,点A与原点重合,AB=4. 当△ABC沿x轴以每秒1个单位的速度向右运动时,△A'B'C'就相应地向左运动.设运动时间为t秒,两个三角形重合部分的面积为S,当点B到达原点O时,运动停止.(1)如图2,原点O恰好位于AB的中点,求此时S的值;(2)当原点O不位于AB的中点时,请在图3中画出图形,求面积S.(用含t的式子表示)5、平面直角坐标系中,点A坐标为(0,﹣2),B,C分别是x轴、y轴正半轴上一点,过点C作CD∥x轴,CD=3,点D在第一象限,S△ACD=S△AOB,连接AD交x轴于点E,∠BAD=45°,连接BD.(1)请通过计算说明AC=OB;(2)求证:∠ADC=∠ADB;(3)请直接写出BE的长为.6、如图,在平面直角坐标系中,点A(0,4)在y轴上,点B(b,0)是x轴上一动点,且﹣4<b<0,△ABC是以AB为直角边,B为直角顶点的等腰直角三角形.(1)求点C的坐标(用含b的式子表示);(2)以x轴为对称轴,作点C的对称点C′,连接BC′、AC′,请把图形补充完整,并求出△ABC′的面积(用含b的式子表示);(3)点B在运动过程中,∠OAC′的度数是否发生变化,若变化请说明理由;若不变化,请直接写出∠OAC′的度数.参考答案课前引入:解:(1)OA=2,OB=4,且点A在x轴的负半轴上,点B在x轴的正半轴上,∴A(﹣2,0),B(4,0),∵C(0,3),∴OC=3,∵AB=2+4=6,OC⊥AB,∴S△ABC=×6×3=9.(2)如图2,∠BCD=90°,CD=BC,作DE⊥y轴于点E,则∠CED=∠BOC=90°,∴∠DCE=90°﹣∠OCB=∠CBO,在△CED和△BOC中,,∴△CED≌△BOC(AAS),∴ED=OC=3,EC=OB=4,∴OE=3+4=7,∴D(3,7);如图3,∠CBD=90°,DB=BC,作DF⊥x轴于点F,则∠DFB=∠BOC=90°,∴∠DBF=90°﹣∠OBC=∠BCO,在△DFB和△BOC中,,∴△DFB≌△BOC(AAS),∴FD=OB=4,FB=OC=3,∴OF=4+3=7,∴D(7,4),综上所述,点D的坐标为(3,7)或(7,4).典型例题:解:(1)∵∠CBO=60°,CB⊥AB,∴∠ABO=30°,∵∠AOB=90°,OA=2,∴AB=2OA=4,∵BC=AB,∴BC=4,故答案:4;(2)过C作CD⊥OB于D,如图所示:则∠CDB=90°,∵∠BOA=90°,∴∠CDB=∠BOA,∵CB⊥AB,∴∠ABO=90°﹣∠CBD=∠BCD,在△CDB和△BOA中,,∴△CDB≌△BOA(AAS),∴BD=OA=2,CD=OB,由已知可得OB=t,∴CD=t,OD=OB﹣BD=t﹣2,∴C的坐标为:(﹣t,t﹣2).平行练习1:解:(1)a、b之间的数量关系为:a=﹣b.过点C作CE⊥OA,CF⊥OB分别交x轴,y轴于点E、F两点,如图(1)所示:∵∠CBF+∠OBA+∠BAC=90°,∠OBA+∠BAC+∠CAE=90°,∴∠CBF=∠CAE,又∵CE⊥OA,CF⊥OB,∴∠CEA=∠CFB=90°,在△ACE和△BCF中,∴△ACE≌△BCF(ASA),∴CE=CF,又∵点C在第二象限,CE=b,CF=﹣a,∴a=﹣b.(2)作BC的延长线交x轴于点G,设点D的坐标为(0,m),如图(2)所示:∵BO平分∠ABC,∴∠GBO=∠ABO,在△GBO和△ABO中,∴△GBO≌△ABO(ASA),∴AO=GO,又∵AO=2,∴GO=2,∴AG=4,在△ACG和△BCD中,∴△ACG≌△BCD(ASA)∴AG=BD,又∵BD+OD=OB,OB=2+2,∴OD=m=2+2﹣4=2﹣2,∴点D的坐标为(0,2﹣2).平行练习2:(1)证明:∵△BPC和△AOP是等边三角形,∴OP=AP,BP=PC,∠APO=∠CPB=60°,∴∠APO+∠APB=∠BPC+∠APB,即∠OPB=∠APC,在△PBO和△PCA中,∴△PBO≌△PCA(SAS),∴OB=AC;(2)解:当点B在y轴正半轴上时,由(1)知∠PBO=∠PCA,∴∠BAC=∠BPC=60°,又∵∠OAP=60°,∴∠CAP=60°.当点B在y轴负半轴上时,如图,∵△AOP和△BCP是等边三角形,∴AP=OP,PC=PB,∠AOP=∠APO=∠BPC=60°,∴∠APC=∠OPB,∴△APC≌△OPB(SAS),∴∠CAP=∠BOP=180°﹣∠AOP=120°,∵延长CA交x轴于点E,∴此种情况不符合题意,舍去,故答案为60°;(3)解:当B点运动时,AE=2OP,且AE//OP理由是:∵A(0,2),∴OA=2,∵∠EAO=∠BAC=60°,∠AOE=90°,∴∠AEO=30°,∴AE=2AO=2OP,∵∠EAO=∠AOP=60°∴AE//OP即当B点运动时,AE=2OP,且AE//OP(4)由(3)知,AE=4,∠OAE=60°,当点Q在y轴负半轴时,∵OA⊥O E,∴点Q与点A关于x轴对称,∴Q(0,﹣2),当点Q在y轴正半轴时,A Q=AE=4,∴OQ=OA+EQ=6,∴Q(0,6).即:满足条件的点Q的坐标为(0,﹣2)或(0,6),故答案为(0,﹣2)或(0,6).拓展提升:(1)证明:如图1中,∵AB⊥y轴于点B,CD⊥x轴于点D,∴∠ABO=∠CDO=90°,∵A(﹣2,6),C(6,2),∴AB=CD=2,OB=OD=6,∴△AOB≌△COD(SAS).(2)解:如图2中,作CH∥AB交BD于H.∵AB⊥y轴,OD⊥y轴,∴AB∥OD,∵AB∥OD,CH∥AB,∴CH∥OD,∵CD⊥OD,∴CD⊥CH,∵OB=OD,∠BOD=90°,∴∠ODB=45°,∵∠CDO=∠DCH=90°,∴∠CDH=∠CHD=45°,∴CH=CD=AB,∵AB∥CH,∴∠BAP=∠HCP,∵∠APB=∠CPH,∴△ABP≌△CHP(AAS),∴PA=PC,∴点P为AC中点.(3)证明:如图3中,延长EG到M,使得GM=GE,连接AM,OM,延长EF交AO 于J.∵AG=GF,∠AGE=∠FGE,GM=GE,∴△AGM≌△FGE(SAS),∴AM=EF,∠AMG=∠GEF,∴AM∥EJ,∴∠MAO=∠AJE,∵EF=EC,∴AM=EC,∵∠AOC=∠CEJ=90°,∴∠AJE+∠EJO=180°,∠EJO+∠ECO=180°,∴∠AJE=∠ECO,∴∠MAO=∠ECO,∵AO=CO,∴△MAO≌△ECO(SAS),∴OM=OE,∠AOM=∠EOC,∴∠MOE=∠AOC=90°,∴∠MEO=45°,即∠OEG=45°.课堂检测:解(1)证明:∵CD⊥BE,∴∠CDE=∠BAC=90°,∵∠CED=∠AEB,∴∠DCE=∠ABF,在△ABF和△ACD中,,∴△ABF≌△ACD(SAS);(2)∵△ABF≌△ACD,∴AF=AD,∠BAF=∠CAD,∴∠BAC=∠FAD=90°,∴∠ADF=45°,∵∠ACB=∠ADB=45°,∠AED=∠BEC,∴∠DAE=∠CBE,∵∠DAF=∠COF=90°,∴AD∥OC,∴∠DAE=∠ACO,∴∠CBE=∠ACO,∵∠ACF=2∠CBF,∴∠ACF=2∠ACO,∴∠FCO=∠ACO.(3)过点D作DH⊥OC交OC于点H,∵∠AOC=∠COF=90°,∠ACO=∠FCO,∴∠OAC=∠OFC,∴AC=CF,∵CA=CF,CO⊥AF,∴OA=OF=2,∴AD=AF=4,∵AD∥OC,∴AO=DH=2,∵DH⊥OC,∠DCG=45°,∴DH=HC=2,∴OC=OH+HC=6∴C(6,0).课后作业:1、(1)解:过C点作CE⊥y轴于点E,∵CE⊥y轴,∴∠BEC=90°,∴∠BEC=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠ABO +∠BAO =90°, ∴∠CBE =∠BAO , 在△AOB 与△BEC 中,,∴△AOB ≌△BEC (AAS ), ∴CE =OB =n ,BE =OA =m , ∴OE =OB +BE =m+n ,∴点C 的坐标为(n ,m+n );(2)AM =CN ,且AM ⊥CN ,理由是: 证明:∵△AOB ≌△BEC , ∴BE =OA =OP ,CE =BO , ∴PE =OB =CE ,∴∠EPC =45°,∠APC =90°, ∴∠BCN =∠BAM ,AM ⊥CN , 在△ABM 与△CBN 中, ∵,∴△ABM ≌△CBN (ASA ), ∴AM =CN .2、解:(1)∵点A 的坐标是(a ,b ) ∴OC =a ,AC =b ,∵AC ⊥ x 轴, BD ⊥AC , ∴∠ACO=∠ADB =90° ∵OA=AB ,AC=BD ,∴Rt ∆AOC ≌Rt ∆BAD (HL) ························ 2分 ∴OC =AD =a∴B 点横坐标=OC -BD =a-b ,B 点的纵坐标=AC +AD =a +b B (a -b ,a +b ) ···························· 3分 (2)S ₁=2)(21))((21)(21b a b a b a CD BD OC +=++=⋅+=222121b ab a ++ ······ 5分 由(1)知Rt ∆AOC ≌Rt ∆BAD ∴∠OAC =∠ABD ,又∠OAC +∠OAB =∠ABD +∠ADB∴∠OAB =90°∴△OAB 是等腰直角三角形S ₂=2∵= S ₁-2=222121b ab a ++-ab 212⨯=222121b a +∴S ₂=22b a + ···························· 8分(3) S ₁-S ₂=)2121(22b ab a ++—)(22b a +=222121b ab a -+-=2)(21b a --∵a >b ,∴2)(21b a --<0∴S ₁<S ₂ ····························· 11分 3、(1)证明:由题意得,OA =OB ,OC ⊥AB ,y∴AC =BC ,∠AOC =90° ∴∠CAB =CBA =30° ∴∠ACO =60° ∵OD ∥BC∴∠AOD =∠ABC =∠BAC =30° ∴∠CDO =∠COD =∠ACO =60°∴△OCD 是等边三角形 ························ 2分 (2)如图,①当点E 在y 轴负半轴时, ∵△OCD 是等边三角形,OD ∥BC∴∠EDB =∠ODC =∠OCD =∠ECB =60°∴∠BCD =DOE =120°∵∠EDB -∠ODB =∠ODC -∠ODB ∴∠CDB =ODE ∵OD =CD∴△DOE ≌△DCB ∴OE =BC =AC =4 ∴E (0,-4) ·············· 6分 ②当点E 在y 轴正半轴时,过点O 作OG ∥AC ,交BC 于点G ,交BD 于点F , 由(1)可得△OCE 是等边三角形,OG =BG ∵AC=4,∠CAB =30°, ∠AOC =90° ∴OC =OD =OE =BE =2 ∴∠DCE =∠DOF =120°,∠OFD =∠GFB , ∴△OFD ≌△GFB∴OF =GF =1 ∵∠EDC =∠BDO ,DO =DC ,∠DCE =∠DOF =120° ∴△DCE ≌△DOF ∴CE =OF ∴OE =2+1=3 ∴E (0,3)综上,点P 的坐标是E (0,-4),(0,3) 12分4、解:(1)∵当原点O 恰好位于AB 的中点,AB=4∴∵∠CAB=45°,∠DOA=90° ∴∠ADO=∠CAB=45°∴∴12S DO AB =••1242=⨯⨯ 4=(2)①如图2,当02t ≤<时,-------------------5分 ∵等腰直角三角形ABC 与△A 'B 'C '关于y 轴对称∴AO= A 'O =t∴A A '=2t --------------------------------------6分 由(1)可得DO=AO=t ∴'1'2AA D S S DO AA ∆==•• 122t t =••2t =-------------------------------------------7分 ②如图3,当24t ≤≤时,--------------------8分 ∵等腰直角三角形ABC 与△A 'B 'C '关于y 轴对称∴AO= A 'O =t∴BO=AB-AO=4t ----------------------------9分 ∴B ' O =BO=4t -∴A B '= AO- B ' O=(4)24t t t --=---------10分∵∠A B 'F=90°,∠FA B '=∠A FB '=45° ∴F B '=A B '=24t -2'11''(24)22AB F S AB FB t ∆=••=------------11分同理可得2'1(24)2A BE S t ∆=-由①可得2'AA D S t ∆=∴'''AA D AB F A BE S S S S ∆∆∆=--22211(24)(24)22t t t =----231616t t =-+-----------------------------12分5、解:(1)∵点A 坐标为(0,﹣2) ∴OA =2 ∵CD =3 ∴,∵S △ACD =S △AOB ∴∴AC =OB(2)延长DC 至点H ,使得CH =OA ,连接AH∵OB=AC,CD∥x轴∴∠HCA=∠AOB=90°在△ACH和△BOA中,∴△ACH≌△BOA(SAS)∴AH=AB,∠HAC=∠CAD,∠H=∠CAB ∵∠H+∠HAC=90°∴∠CAB+∠HAC=90°∵∠BAD=45°∴∠HAD=∠BAD在△HAD和△BAD中,∴△HAD≌△BAD(SAS)∴∠ADC=∠ADB(3)∵△HAD≌△BAD∴BD=DH=CD+CH=3+2=5∵CD∥OB∴∠ADC=∠DEB∵∠ADC=∠ADB∴∠BDE=∠BED∴BE=BD=56、解:(1)如图,过点C作CE⊥x轴,垂足为E,∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∵∠ABE+∠CBE=90°,∠CBE+∠BCE=90°,∴∠ABE=∠BCE,且AB=BC,∠AOB=∠BEC=90°,∴△ABO≌△BCE(AAS)∴BO=CE,AO=BE,∵点A(0,4),点B(b,0),且﹣4<b<0,∴BE=OA=4,BO=EC=﹣b,∴OE=4+b∴点C坐标(4+b,b)(2)根据题意画出图形,如下图,∵点C与点C'关于x轴对称,∴点C'(4+b,﹣b),C'C⊥x轴,∵S△ABC'=S△ABO+S梯形AOEC'﹣S△BEC'=×(﹣b)×4+×(4﹣b)(4+b)﹣×4×(﹣b),∴S△ABC'=8﹣b2,(3)点B在运动过程中,∠OAC′的度数不发生变化,理由如下:如图,过点A作AF⊥EC',垂足为F,∵AF⊥EC',EC'⊥BE,AO⊥OE,∴四边形AOEF是矩形,∴AO=EF=4,OE=AF=4+b,∵C'F=EF﹣EC'=4﹣(﹣b)=4+b,∴AF=C'F,且∠AFE=90°,∴∠FAC'=45°,且∠OAF=90°,∴∠OAC'=45°。

初三数学专题八~综合练习(3)

初三数学专题八~综合练习(3)

第20题图3综合练习(三)1.若抛物线822++-=x x y 与x 轴交于B ,C 两点,点D 是BC 的中点,点A 是抛物线上位于x 轴上方的一个动点,且使BAC ∠为锐角,则AD 的取值范围是______________.2.已知关于x 的一元二次方程012)21(2=---x k x k 有实数根,则k 的取值范围是____________3.在矩形ABCD 中,AB=12,AD=3,E 、F 分别是AB 、AC 上的点,则折线AFEC 长的最小值____________4.定义:a 是不为1的有理数,我们把11a-称为a 的差倒数.... 如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,依此类推,则2009a = .5.按一定的规律排列的一列数依次为:-2,5,-10,17,-26,…按此规律 排下去,这列数中的第9个数是 .6.如图,菱形ABCD 的对角线长分别为b a 、,以菱形ABCD 各边的中点为顶点作矩形A 1B 1C 1D 1,然后再以矩形A 1B 1C 1D 1的中点为顶点作菱形A 2B 2C 2D 2,……,如此下去,得到四边形A 2009B 2009C 2009D 2009的面积用含 b a 、的代数式表示为 .7.如图,AD 是⊙O 的直径. (1) 如图①,垂直于AD 的两条弦B 1C 1,B 2C 2把圆周4等分,则∠B 1的度数是 ,∠B 2的度数是 ;(2) 如图②,垂直于AD 的三条弦B 1C 1,B 2C 2,B 3C 3把圆周6等分,分别求∠B 1,∠B 2,∠B 3的度数;(3) 如图③,垂直于AD 的n 条弦B 1C 1,B 2C 2,B 3 C 3,…,B n C n 把圆周2n 等分,请你用含n的代数式表示∠B n 的度数(只需直接写出答案).图①B C 2图②n B -2 图③811(3π)2sin 602-⎛⎫---︒ ⎪⎝⎭9.解方程:22124x x x -=--.10.先化简,再求值:2314223a a a a +-⎛⎫+÷ ⎪--⎝⎭,其中2410a a -+=11.已知抛物线C :23212--=x x y ,请分别写出下列条件的抛物线的解析式: (1)抛物线C 沿y 轴向上平移3个单位长度所得的抛物线:_______________;(2)抛物线C 沿x 轴向左平移3个单位长度所得的抛物线:_______________; (3)抛物线C 关于y 轴对称的抛物线:_______________; (4)抛物线C 关于x 轴对称的抛物线:_______________; (5)抛物线C 关于原点对称的抛物线:_______________;(6)抛物线C 关于点(1,2-)对称的抛物线:_______________; (7)抛物线C 关于点(2,4)对称的抛物线:_______________; (8)抛物线C 关于直线1=y 对称的抛物线:_______________; (9)抛物线C 关于直线3-=x 对称的抛物线:_______________;12.如图,在菱形ABCD 中,︒=∠120ABC ,F 是DC 的中点,AF 的延长线交BC 的延长线于点E求:直线BF 与DE 所夹的锐角的度数13.已知O 是等边三角形ABC 内一点, 135,110=∠=∠BOC AOB ,试问:(1)以OA 、OB 、OC 为边能否构成一个三角形?若能,求出该三角形各角的度数;若不能,请说明理由; (2)如果AOB ∠的大小保持不变,那么当BOC ∠等于多少度时,以OA 、OB 、OC 为边构成的三角形是直角三角形?14.已知关于x 的一元二次方程022=++x ax(1)求证:当0<a 时,方程022=++x ax 一定有两个不等的实数根;(2)若代数式22++-x x 的值为正整数,且x 为整数时,求x 的值; (3)当1a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点)0,(m M ; 当2a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点)0,(n N ; 若点M 在点N 的左边,试比较1a 与2a 的大小.15.已知以x 为自变量的二次函数y=x 2+2mx +m -7.(1)求证:不论m 为任何实数,二次函数的图象与x 轴都有两个交点;(2)若二次函数的图象与x 轴的两个交点在点(1,0)的两侧,关于x 的一元二次方程m 2x 2+(2m +3)x +1=0有两个实数根,且m 为整数,求m 的值;(3)在(2)的条件下,关于x 的另一方程 x 2+2(a +m )x +2a -m 2+6 m -4=0 有大于0且小于5的实数根,求a 的整数值.16.直线434:1--=x y l 和直线1431:2-=x y l 相交于点Q ,抛物线b ax ax y +-=62经过点Q ,与x 轴交于点A 、B ,且点A 在直线1l 上 (1) 求抛物线的解析式;(2) 直线1l 、2l 分别与抛物线的对称轴交于点M 、N ,若点P 为抛物线对称轴上一点,使∠MAB=∠NPQ ,求点P 的坐标;(3) 若点F 是直线2l 上的动点,且在抛物线对称轴的左侧,点F 到直线1l 的距离为1d ,到抛物线对称轴的距离为2d ,探究1d 和2d 之间的数量关系。

八年级数学下册《代数》专项练习题及答案(浙教版)

八年级数学下册《代数》专项练习题及答案(浙教版)

八年级数学下册《代数》专项练习题及答案(浙教版)一、单选题(每题4分,共40分)1.下列计算正确的是( )A .(3−2√2)(3−2√2)=9−2×3=3B .(2√x +√y )(√x −√y )=2x −yC .(3−√3)2=32−(√3)2=6D .(√x +√x +1)(√x +1−√x )=12.已知实数a 满足条件 |2011−a|+√a −2012=a ,那么 a −20112 的值为 ( )A .2010B .2011C .2012D .20133.设等式 √a(x −a)+√a(y −a)=√x −a −√a −y 在实数范围内成立,其中a 、x 、y 是两两不同的实数,则 3x 2+xy−y 2x 2−xy+y 2的值是( ) A .3B .13C .2D .534.已知x 为实数,化简√−x 3−x √−1x的结果为( )A .(x −1)√−xB .(−1−x )√−xC .(1−x )√−xD .(1+x )√−x5.“分母有理化”是我们常用的一种化简的方法,如:2+√32−√3=(2+√3)(2+√3)(2−√3)(2+√3)=7+4√3 ,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于 √3+√5√3−√5 ,设x= √3+√5√3−√5 ,易知 √3+√5 > √3−√5 ,故x>0,由x 2=(√3+√5−√3−√5)2= 3+√5+3−√5−2√(3+√5)(3−√5) =2,解得x= √2 ,即 √3+√5−√3−√5=√2 。

根据以上方法,化简√3−√2√3+√2+√6−3√3√6+3√3 后的结果为( )A .5+3 √6B .5+ √6C .5- √6D .5-3 √6A .1512B .1256C .164D .1167.设a 、b 为x 2+x ﹣2011=0的两个实根,则a 3+a 2+3a+2014b=( )A .2014B .﹣2014C .2011D .﹣20118.关于 x 的一元二次方程 x 2+2mx +2n =0 有两个整数根且乘积为正,关于 y 的一元二次方程y 2+2ny +2m =0 同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m −1)2+(n −1)2≥2 ;③−1≤2m −2n ≤1 ,其中正确结论的个数是( ) A .0个B .1个C .2个D .3个9.已知关于 x 的方程 x 2−6x +(a −2)|x −3|+9−2a =0 有且仅有两个不相等的实根,则实数a的取值范围为()A.a=−2B.a>0C.a=−2或a>0D.a≤−2或a>010.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①当b=a+c时,则方程ax2+ bx+c=0一定有一根为x=−1;②若ab>0,bc<0,则方程ax2+bx+c=0一定有两个不相等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0;④若b=2a+3c,则方程ax2+bx+c=0有两个不相等的实数根.其中正确的是()A.①②B.①③C.①②④D.②③④二、填空题(每空5分,共30分)11.已知,y=√(x−3)2+4−x,当x分别取1,2,3,…,2021时,所对应的y值的总和是.12.已知a、b是正整数,如果有序数对(a, b)能使得2 (√1a+√1b)的值也是整数,那么称(a,b)是2(√1a+√1b)的一个“理想数对”。

聚焦中考专题8 综合型问题

聚焦中考专题8 综合型问题

象上,则 t 的值是( A )
1+ 5 A. 2 4 C.3 3 B.2 -1+ 5 D. 2
8 2 2 【例 1】 (2013· 沈阳)如图, 在平面直角坐标系中, 抛物线 y= 5 x 3 +bx+c 经过点 A(2,0)和点 B(1,2 2),与 x 轴的另一个交点为 C.
代数型综合题
(1)求抛物线的函数表达式;
轴 , PN⊥y 轴 , ∴ PM = PN , ∠ ANP = ∠ CMP = 90°.∴∠NPM = 90°.∵∠APC = 90°.∴∠APN = 90° - ∠ APM = ∠ CPM. 在 △ ANP 和
△ CMP 中 , ∵ ∠ APN = ∠ CPM , PN = PM , ∠ ANP = ∠ CMP ,
(2)点 D 在对称轴的右侧,x 轴上方的抛物线 上,且∠BDA=∠DAC,求点 D 的坐标. (3)在(2)的条件下,连接 BD,交抛物线对称
轴于 E,连接 AE.判断四边形 OAEB 的形状,并说明理由.
3 8 2 2 解:(1)将 A(2,0),B(1,2 2)代入 y= 5 x +bx+c 得


专题八 综合型问题
要点梳理
综合题,各地中考常常作为压轴题进行考查,这类
题目难度大,考查知识多,解这类习题的关键就是
善于利用几何图形的有关性质和代数的有关知识,
并注意挖掘题目中的一些隐含条件,以达到解题目
的.
要点梳理
近几年中考试题中的综合题大多以代数几何综合题的形式出
现,其解题关键是借助几何直观解题,运用方程、函数的思 想解题,灵活运用数形结合,由形导数,以数促形,综合运 用代数和几何知识解题.值得注意的是,近年中考几何综合 计算的呈现形式多样,如折叠类型、探究型、开放型、运动

八年级数学代数综合测试(一)(北师版)(含答案)

八年级数学代数综合测试(一)(北师版)(含答案)

代数综合测试(一)(北师版)一、单选题(共9道,每道11分)1.的计算结果是( )A.0B.-2C. D.答案:A解题思路:试题难度:三颗星知识点:二次根式的混合运算2.计算的结果是( )A. B.4C.-2D.答案:D解题思路:试题难度:三颗星知识点:二次根式的运算法则3.计算的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:二次根式的运算法则4.若,且,则的取值范围是( ),有最( )值.A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:方程与不等式5.已知,且,,则y的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:方程与不等式6.解一元二次不等式的思路是把一元二次不等式转化为一元一次不等式来解决,那么的解集是( )A.或B.无解C.或D.答案:C解题思路:试题难度:三颗星知识点:高次不等式7.(上接第6题)那么的解集是( )A. B.无解C. D.答案:C解题思路:试题难度:三颗星知识点:高次不等式8.如图,直线y=kx+b经过A(-2,-1),B(1,2)两点,则不等式组的解集为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:一次函数与一元一次不等式9.已知实数x满足,,,对任意一个x,m都取,中的较小值,则m的最大值是( )A.1B.2C.14D.-9答案:B解题思路:试题难度:三颗星知识点:一次函数与一元一次不等式。

八年级数学代数式的运算练习题及答案

八年级数学代数式的运算练习题及答案

八年级数学代数式的运算练习题及答案一、简答题1. 请列举并解释三种基本的数学运算。

答:三种基本的数学运算是加法、减法和乘法。

加法是将两个或多个数合并在一起,得到它们的总和;减法是从一个数中减去另一个数,得到它们的差;乘法是将两个或多个数相乘,得到它们的积。

2. 什么是代数式?请举一个例子说明。

答:代数式是由数、字母和运算符号组成的符号表达式,可以用来表示数学关系和进行各种计算。

例如,2x + 3y 是一个代数式,其中的字母 x 和 y 代表未知数,常数 2 和 3 分别与字母相乘,并通过加号进行连接。

二、选择题从以下选项中选择正确答案:1. 下列哪个是完全展开的代数式?A. (x + y)²B. x² + 2xy + y²C. (x + y)³D. x³ + y³答:B. x² + 2xy + y²2. 下列哪个代数式与 3(x + 4) 等价?A. 3x + 4B. 3x - 4C. 3x + 12D. 3x - 12答:C. 3x + 12三、计算题请计算以下代数式的值:1. 如果 x = 3,y = 4,求解 2x² - 3y的值。

答:代入 x = 3 和 y = 4 到代数式中:2(3)² - 3(4)= 2(9) - 12= 18 - 12= 6所以,2x² - 3y 的值为 6。

2. 已知 a = 5,b = 2,求解 a² + 3ab + b²的值。

答:代入 a = 5 和 b = 2 到代数式中:5² + 3(5)(2) + 2²= 25 + 30 + 4= 59所以,a² + 3ab + b²的值为 59。

四、解答题请写出以下代数式的展开式:1. (x + 2)^2 的展开式为?答:(x + 2)^2 = x^2 + 2x + 2x + 4= x^2 + 4x + 42. (2x + 3y)^2 的展开式为?答:(2x + 3y)^2 = (2x)^2 + 2(2x)(3y) + (3y)^2 = 4x^2 + 12xy + 9y^2五、解答题请将下列代数式简化到最简形式:1. 2x + 3x - 5x + 4x答:2x + 3x - 5x + 4x = (2 + 3 - 5 + 4)x= 4x所以,2x + 3x - 5x + 4x 的最简形式为 4x。

专题八综合题(一)

专题八综合题(一)

专题八:综合题(一)1. 如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E,若M 、N 分别是AD 、BC 边的中点,则A ′N= ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(2n ≥,且n 为整数),则A ′N= (用含有n 的式子表示)2.(2010年宁德市)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. ⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM 的最小值为13+时,求正方形的边长.3.(2010盐城)如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB=75º,以CD 为一边的等边△DCE 的另一顶点E 在腰AB 上.(1)求∠AED 的度数; (2)求证:AB=BC ;(3)如图2所示,若F 为线段CD 上一点,∠FBC=30º.求 DFFC 的值.A DB C4.(2010福建泉州)如图,在Rt △ABC 中,∠C=90°,AC=3,AB=5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P.Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒 (t>0). (1)当t=2时,AP= ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,将△APQ 的面积S 用关于t 的代数式来表示:(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 所有可能的值;若不能,请说明理由.5.(2010荆州市)如图,直角梯形OABC 的直角顶点O 是坐标原点,边OA ,OC 分别在x 轴、y 轴的正半轴上,OA ∥BC ,D 是BC 上一点,BD=41OA=2,AB=3,∠OAB=45°,E 、F 分别是线段OA 、AB 上的两动点,且始终保持∠DEF=45°. (1)直接写出....D 点的坐标;(2)设OE=x ,AF=y ,试确定y 与x 之间的函数关系;(3)当△AEF 是等腰三角形时,将△AEF 沿EF 折叠,得到△EF A ',求△EF A '与五边形OEFBC 重叠部分的面积.6.(2010 河南)(1)操作发现如图,矩形ABCD 中,E 是AD 的中点,将△AB E 沿BE 折叠后得到△GBE ,且点G 在举行ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由.(2)问题解决保持(1)中的条件不变,若DC =2DF ,求ABAD的值; (3)类比探求保持(1)中条件不变,若DC =nDF ,求ABAD的值.7.(2010年浙江省东阳市)如图,P 为正方形ABCD 的对称中心,A (0,3),B (1,0),直线OP 交AB 于N ,DC 于M ,点H 从原点O 出发沿x 轴的正半轴方向以1个单位每秒速度运动,同时,点R 从O 出发沿OM 方向以2个单位每秒速度运动,运动时间为t 求:(1)C 的坐标为 ;(2)当t 为何值时,△ANO 与△DMR 相似? (3)△HCR 面积S 与t 的函数关系式;并求以A 、B 、C 、R 为顶点的四边形是梯形 时t 的值8.(2010广东广州)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-12x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.9.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,3OA=,4OB=,D为边OB的中点.(Ⅰ)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(Ⅱ)若E、F为边OA上的两个动点,且2EF=,当四边形CDEF的周长最小时,求点E、F的坐标.10.已知在梯形ABCD中,AB∥DC,且AB=40cm,AD=BC=20cm,∠ABC=120°.点P从点B出发以1cm/s的速度沿着射线BC运动,点Q从点C出发以2cm/s的速度沿着线段CD运动,当点Q运动到点D时,所有运动都停止.设运动时间为t s.(1)如图1,当点P在线段BC上且△CPQ∽△DAQ时,求t的值;(2)在运动过程中,设△APQ与梯形ABCD重叠部分的面积为S,求S关于t的函数关系式,并写出自变量t的取值范围.11.数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC 延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当6CP=时,EM与EN的比值是多少?经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:DF DEFC EP=,因为DE EP=,所以DF FC=.可求出EF和EG的值,进而可求得EM与EN的比值.(1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了DP MN=的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.。

八年级数学下册综合算式专项练习题代数式简化与展开

八年级数学下册综合算式专项练习题代数式简化与展开

八年级数学下册综合算式专项练习题代数式简化与展开在数学的学习过程中,代数式的简化与展开是一个重要的内容。

通过对代数式的简化与展开的练习,我们可以更好地理解和运用代数式,提高解题的能力。

下面是八年级数学下册综合算式专项练习题,旨在帮助同学们熟悉并掌握代数式的简化与展开的方法。

一、代数式的简化在本节中,我们将学习如何简化代数式。

简化代数式的目的是通过合并相同类型的项,将代数式的表达式变得简明、简洁。

下面是相关的练习题,帮助我们掌握代数式的简化方法。

1. 将下列代数式进行简化:(3a+4)(2a−5)解析:首先,我们将括号中的每一项与括号外的每一项进行分配律的运算,然后将结果相加。

根据分配律,我们有:(3a+4)(2a−5) = 3a × 2a + 3a× (−5) + 4 × 2a + 4 × (−5)化简后,我们得到:6a^2−15a+8a−20合并相同类型的项,我们得到简化后的代数式:6a^2−7a−202. 简化代数式3 + 4a + 2a− 5a解析:合并相同类型的项,我们可以得到:3 + 4a + 2a− 5a = 3 + (4a + 2a− 5a)化简后,我们得到简化后的代数式:3 + a通过以上两个练习题,我们可以发现代数式的简化方法本质上就是合并相同类型的项,将代数式的表达式尽量简化。

这是我们熟悉代数式简化的第一步。

二、代数式的展开在本节中,我们将学习如何展开代数式。

展开代数式的目的是根据分配律,将代数式从括号中展开,并求得最终表达式。

下面是相关的练习题,帮助我们掌握代数式的展开方法。

1. 将代数式(a + a)(a− a)进行展开。

解析:根据分配律展开,我们有:(a + a)(a− a) = a ×a + a ×(−a) + a ×a + a ×(−a)简化后,我们得到展开后的代数式:aa− aa + aa− aa2. 展开代数式2(3a + 4a)解析:根据分配律展开,我们有:2(3a + 4a) = 2 × 3a + 2 × 4a简化后,我们得到展开后的代数式:6a + 8a通过以上两个练习题,我们可以发现代数式的展开方法就是根据分配律,将括号中的每一项与括号外的每一项进行运算,然后将结果相加。

初二代数试题及答案

初二代数试题及答案

初二代数试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 2C. x = 3D. x = 42. 如果一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不是3. 一个数的两倍加上5等于15,这个数是:A. 5B. 3C. 2D. 44. 以下哪个选项是不等式3x > 9的解集?A. x > 3B. x < 3C. x > 9D. x < 95. 一个数的一半加上3等于8,这个数是:B. 7C. 6D. 56. 以下哪个选项是方程x^2 - 4x + 4 = 0的解?A. x = 2B. x = -2C. x = 4D. x = -47. 一个数的三倍减去2等于8,这个数是:A. 3B. 2C. 4D. 58. 以下哪个选项是不等式-2x ≤ -4的解集?A. x ≥ 2B. x ≤ 2C. x ≥ -2D. x ≤ -29. 如果一个数的立方是-27,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不是10. 一个数的四倍减去8等于0,这个数是:A. 2C. 4D. 8二、填空题(每题3分,共30分)1. 解方程3x + 5 = 14,得到x = ________。

2. 如果一个数的平方等于36,那么这个数是__________。

3. 一个数的四倍加上6等于24,这个数是__________。

4. 解不等式5x - 15 < 0,得到x < ________。

5. 解方程2x^2 - 8x + 4 = 0,得到x = ________。

6. 如果一个数的立方等于64,那么这个数是__________。

7. 一个数的六倍减去3等于27,这个数是__________。

8. 解不等式-4x + 8 ≥ 0,得到x ≤ ________。

9. 一个数的八倍加上16等于48,这个数是__________。

初中数学专题复习代数综合题(含答案)

初中数学专题复习代数综合题(含答案)

初中数学专题复习代数综合题(含答案)代数综合题是一类综合题,主要包括方程、函数、不等式等内容,需要用到化归思想、分类思想、数形结合思想以及代入法、待定系数法、配方法等数学思想方法。

解决代数综合题需要注意归纳整理教材中的基础知识、基本技能、基本方法,抓住题意,化整为零,层层深入,各个击破。

同时,需要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,从而达到解决问题的目的。

已知关于x的一元二次方程x-(k+1)x-6=0的一个根是2,求方程的另一根和k的值。

解:设方程的另一根为x1,由韦达定理:2 x1 =-6,∴x1 =-3.由韦达定理:-3+2= k+1,∴k=-2.已知关于x的一元二次方程(k+4)x+3x+k-3k-4=0的一个根为2,求k的值。

解:把x=0代入这个方程,得k-3k-4=0,解得k1=1,k2=-4.因为k+4≠0,所以k≠-4,所以k=1.需要注意需满足k+4的系数不能为0,即k≠-4.已对方程2x+3x-l=0,求作一个二次方程,使它的两根分别是已知方程两根的倒数。

解:设2x+3x-l=0的两根为x1、x2,则新方程的两根为1/x1、1/x2.得到1/x1+1/x2=3,所以新方程为y2-3y-2=0.某产品每件成本10元,试销阶段每件产品的日销售价x (元)与产品的日销售量y(件)之间的关系如下表:x(元)xxxxxxxx… y(件)xxxxxxxx…(省略号表示数据继续往下延伸)。

⑴在草稿纸上描点,观察点的分布,建立y与x的恰当函数模型。

⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴经观察发现各点分布在一条直线上,∴设y=kx+b(k≠0)。

⑵由题意可知每件产品的销售价应为20元,此时每日销售利润为200元。

1、根据题意可列出函数关系:y=ax^2+bx+c,代入三组数据得到三个方程组成的线性方程组:begin{cases} 8.6=1990a+1990b+c \\ 10.4=1995a+1995b+c \\ 12.9=2000a+2000b+c \end{cases}$$解得:$a=0.45,b=-1792.5,c=xxxxxxx$,所以二次函数为$y=0.45x^2-1792.5x+xxxxxxx$,代入$x=15$得到2005年该市国内生产总值为14.1亿元人民币。

北京市中考数学专题突破八代数综合(含答案)

北京市中考数学专题突破八代数综合(含答案)

专题突破(八) 代数综合方程与函数是初中代数学习中极为重要的内容,在北京中考试卷中,20XX 年代数综合题出现在第27题,分值为7分.代数综合题主要以方程、函数这两部分为考查重点,用到的数学思想、方法有化归思想、分类思想、数形结合思想以及代入法、待定系数法、配方法等.1.[2015·北京] 在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线与直线y =x -1交于点A ,点A 关于直线x =1的对称点为B ,抛物线C 1:y =x 2+bx +c 经过点A ,B.(1)求点A ,B 的坐标;(2)求抛物线C 1的函数解析式及顶点坐标;(3)若抛物线C 2:y =ax 2(a ≠0)与线段AB 恰有一个公共点,结合函数的图象求a 的取值范围.2.[2014·北京] 在平面直角坐标系xOy 中,抛物线y =2x 2+mx +n 经过点A (0,-2),B (3,4).(1)求抛物线的函数解析式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上的一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.3.[2013·北京] 在平面直角坐标系xOy 中,抛物线y =mx 2-2mx -2(m ≠0)与y 轴交于点A ,其对称轴与x 轴交于点B.(1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的函数解析式;(3)若该抛物线在-2<x <-1这一段位于直线l 的上方,并且在2<x <3这一段位于直线AB 的下方,求该抛物线的函数解析式.4.[2012·北京] 已知二次函数y =(t +1)x 2+2(t +2)x +32在x =0和x =2时的函数值相等.(1)求二次函数的解析式;(2)若一次函数y =kx +6的图象与二次函数的图象都经过点A (-3,m ),求m 和k 的值; (3)设二次函数的图象与x 轴交于点B ,C (点B 在点C 的左侧),将二次函数的图象在点B ,C 间的部分(含点B 和点C )向左平移n (n >0)个单位长度后得到的图象记为G ,同时将(2)中得到的直线y =kx +6向上平移n 个单位长度.请结合图象回答:当平移后的直线与图象G 有公共点时,求n 的取值范围.图Z8-15.[2011·北京] 在平面直角坐标系xOy 中,二次函数y =mx 2+()m -3x -3()m >0的图象与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求点A 的坐标;(2)当∠ABC =45°时,求m 的值;(3)已知一次函数y =kx +b ,点P ()n ,0是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数y =mx 2+()m -3x -3()m >0的图象于点N .若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的解析式.图Z8-21.[2015·海淀一模] 在平面直角坐标系xOy 中,抛物线y =12x 2-x +2与y 轴交于点A ,顶点为B ,点C 与点A 关于抛物线的对称轴对称.(1)求直线BC 的函数解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (t >0)个单位后与直线BC 只有一个公共点,求t 的取值范围.图Z8-32.[2015·朝阳一模] 如图Z8-4,将抛物线M 1:y =ax 2+4x 向右平移3个单位长度,再向上平移3个单位长度,得到抛物线M 2,直线y =x 与M 1的一个交点记为A ,与M 2的一个交点记为B ,点A 的横坐标是-3.(1)求a 的值及M 2的函数解析式.(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF .①当点C 的横坐标为2时,直线y =x +n 恰好经过正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线y =x +n 与正方形CDEF 始终没有公共点,求n 的取值范围(直接写出结果).图Z8-43.[2015·西城一模] 已知二次函数y 1=x 2+bx +c 的图象C 1经过(-1,0),(0,-3)两点.(1)求C 1对应的函数解析式;(2)将C 1先向左平移1个单位长度,再向上平移4个单位长度,得到抛物线C 2,将C 2对应的函数解析式记为y 2=x 2+mx +n ,求C 2对应的函数解析式;(3)设y 3=2x +3,在(2)的条件下,如果在-2≤x ≤a 内存在..某一个x 的值,使得y 2≤y 3成立,利用函数图象直接写出a 的取值范围.图Z8-54.[2015·东城一模] 在平面直角坐标系xOy 中,抛物线y =ax 2+bx +1()a ≠0过点A ()-1,0,B ()1,1,与y 轴交于点C.(1)求抛物线y =ax 2+bx +1()a ≠0的函数解析式.(2)若点D 在抛物线y =ax 2+bx +1()a ≠0的对称轴上,当△ACD 的周长最小时,求点D 的坐标.(3)在抛物线y =ax 2+bx +1()a ≠0的对称轴上是否存在点P ,使△ACP 成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.图Z8-6轴交于A(3,0),B两点.(1)求抛物线的函数解析式及点B的坐标;(2)将-2<x<3时的函数图象记为G,求此时函数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4,2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.6.[2015·通州一模]二次函数y=ax2+bx+c(a≠0)的图象与一次函数y1=x+k的图象交于A(0,1),B两点,C(1,0)为二次函数图象的顶点.(1)求二次函数y=ax2+bx+c(a≠0)的解析式;(2)在平面直角坐标系中画出二次函数y=ax2+bx+c(a≠0)的图象和一次函数y1=x+k 的图象;(3)把(1)中的二次函数y=ax2+bx+c(a≠0)的图象平移后得到新的二次函数y2=ax2+bx +c+m(a≠0,m为常数)的图象,定义新函数f:“当自变量x任取一值时,x对应的函数值分别为y1或y2,如果y1≠y2,函数f的函数值等于y1,y2中的较小值;如果y1=y2,函数f 的函数值等于y1(或y2).”当新函数f的图象与x轴有三个交点时,直接写出m的取值范围.7.[2015·海淀二模]在平面直角坐标系xOy中,抛物线y=mx2-2mx+m+4与y轴交于点A(0,3),与x轴交于点B,C(点B在点C左侧).(1)求该抛物线的函数解析式及点B,C的坐标;(2)抛物线的对称轴与x轴交于点D,若直线y=kx+b经过点D和点E(-1,-2),求直线DE的函数解析式;(3)在(2)的条件下,已知点P(t,0),过点P作垂直于x轴的直线交抛物线于点M,交直线DE于点N,若点M和点N中至少有一个点在x轴下方,直接写出t的取值范围.图Z8-7轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的函数解析式;(3)在(2)的条件下,经过点C的直线l:y=kx+b(k<0)与抛物线的另一个交点为D.该抛物线在直线l上方的部分与线段CD组成一个新函数的图象.请结合图象回答:若新函数的最小值大于-8,求k的取值范围.图Z8-89.[2015·平谷一模]已知抛物线y=ax2+x+c(a≠0)经过A(-1,0),B(2,0)两点,与y轴相交于点C,点D为该抛物线的顶点.(1)求该抛物线的函数解析式及点D的坐标;(2)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为22时,求点E的坐标;(3)在(2)的条件下,在x轴上有一点P,且∠EAO+∠EPO=∠α,当tanα=2时,求点P的坐标.图Z8-910.[2015·怀柔一模]在平面直角坐标系xOy中,二次函数y=(a-1)x2+2x+1的图象与x轴有交点,a为正整数.(1)求a的值;(2)将二次函数y=(a-1)x2+2x+1的图象向右平移m个单位长度,再向下平移(m2+1)个单位长度,当-2≤x≤1时,二次函数有最小值-3,求实数m的值.图Z8-10参考答案1.解:(1)当y =2时,2=x -1,x =3. ∴A (3,2).∵点A ,B 关于直线x =1对称, ∴B (-1,2).(2)把(3,2),(-1,2)代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧2=9+3b +c ,2=1-b +c ,解得⎩⎪⎨⎪⎧b =-2,c =-1. ∴抛物线C 1的解析式为y =x 2-2x -1,顶点坐标为(1,-2). (3)如图,当C 2过点A ,点B 时为临界状态,将A (3,2)代入y =ax 2,则9a =2,a =29,将B (-1,2)代入y =ax 2,则a =2, ∴29≤a <2. 2.解:(1)∵y =2x 2+mx +n 经过点A (0,-2),B (3,4),∴⎩⎪⎨⎪⎧n =-2,18+3m +n =4, 解得⎩⎪⎨⎪⎧m =-4,n =-2.∴抛物线的函数解析式为y =2x 2-4x -2. ∴对称轴为直线x =1.(2)由题意可知C (-3,-4).二次函数y =2x 2-4x -2的最小值为-4.如图,由图象可以看出点D 纵坐标的最小值即为-4,最大值为直线BC 与抛物线对称轴的交点的纵坐标.由B (3,4),C (-3,-4)可知直线BC 的函数解析式为y =43x .当x =1时,y =43.∴-4≤t ≤43.3.解:(1)当x =0时,y =-2, ∴A (0,-2),抛物线的对称轴为直线x =--2m2m=1, ∴B (1,0).(2)易得点A 关于对称轴直线x =1的对称点为A ′(2,-2),点B 关于对称轴对称的点仍为点B ,∴直线l 经过点A ′,B.设直线l 的函数解析式为y =kx +b (k ≠0).则⎩⎪⎨⎪⎧2k +b =-2,k +b =0, 解得⎩⎪⎨⎪⎧k =-2,b =2,故直线l 的函数解析式为y =-2x +2. (3)∵抛物线的对称轴为直线x =1,∴抛物线在2<x <3这一段与在-1<x <0这一段关于对称轴对称.如图,结合图象可以观察到抛物线在-2<x <-1这一段位于直线l 的上方,在-1<x <0这一段位于直线l 的下方,∴抛物线与直线l 的交点的横坐标为-1. 当x =-1时,y =-2×(-1)+2=4, ∴抛物线与直线l 的一个交点为(-1,4). 当x =-1时,m +2m -2=4, 解得m =2,∴抛物线的函数解析式为y =2x 2-4x -2.4.解:(1)∵二次函数y =(t +1)x 2+2(t +2)x +32在x =0和x =2时的函数值相等,∴0+0+32=4(t +1)+4(t +2)+32,解得t =-32,∴二次函数的解析式是y =-12x 2+x +32.(2)把A (-3,m )代入y =-12x 2+x +32得m =-12×(-3)2-3+32=-6,即A (-3,-6).将A (-3,-6)代入y =kx +6,得-6=-3k +6, 解得k =4,故m =-6,k =4.(3)由题意可知,点B ,C 间的部分图象的函数解析式是y =-12(x -3)(x +1)(-1≤x ≤3),则抛物线平移后得到图象G 的函数解析式是y =-12(x -3+n )(x +1+n )(-n -1≤x ≤3-n ),此时直线平移后的解析式是y =4x +6+n .如果平移后的直线与平移后的二次函数图象相切,则方程4x +6+n =-12(x -3+n )(x +1+n )有两个相等的实数解,即-12x 2-(n +3)x -12n 2-92=0有两个相等的实数解,Δ=[-(n +3)]2-4×(-12)×(-12n 2-92)=6n =0,解得n =0.∵与已知n >0相矛盾,∴平移后的直线与平移后的抛物线不相切,∴结合图象可知,如果平移后的直线与抛物线有公共点, 则两个临界的交点为(-n -1,0),(3-n ,0), ∴0=4(-n -1)+6+n , 解得n =23.0=4(3-n )+6+n , 解得n =6.故n 的取值范围是23≤n ≤6.5.解:(1)∵点A ,B 是二次函数y =mx 2+(m -3)x -3(m >0)的图象与x 轴的交点, ∴令y =0,即mx 2+(m -3)x -3=0, 解得x 1=-1,x 2=3m.又∵点A 在点B 左侧且m >0, ∴点A 的坐标为(-1,0). (2)由(1)可知点B 的坐标为(3m ,0).∵二次函数的图象与y 轴交于点C , ∴点C 的坐标为(0,-3).∵∠ABC =45°,∴3m=3,解得m =1.(3)由(2)得,二次函数的解析式为y =x 2-2x -3.依题意并结合图象(如图)可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,由此可得交点坐标为(-2,5)和(2,-3).将交点坐标分别代入一次函数解析式y =kx +b 中,得⎩⎪⎨⎪⎧-2k +b =5,2k +b =-3,解得⎩⎪⎨⎪⎧k =-2,b =1. ∴一次函数的解析式为y =-2x +1.1.解:(1)∵抛物线y =12x 2-x +2与y 轴交于点A ,∴点A 的坐标为(0,2). ∵y =12x 2-x +2=12(x -1)2+32,∴抛物线的对称轴为直线x =1,顶点B 的坐标为(1,32).又∵点C 与点A 关于抛物线的对称轴对称, ∴点C 的坐标为(2,2),且点C 在抛物线上. 设直线BC 的函数解析式为y =kx +b . ∵直线BC 经过点B (1,32)和点C (2,2),∴⎩⎪⎨⎪⎧k +b =32,2k +b =2.解得⎩⎪⎨⎪⎧k =12,b =1.∴直线BC 的函数解析式为y =12x +1.(2)如图所示,∵抛物线y =12x 2-x +2中,当x =4时,y =6,∴点D 的坐标为(4,6).∵直线y =12x +1中,当x =0时,y =1,当x =4时,y =3,∴点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点A ′,点D 平移后的对应点为点D ′.当图象G 向下平移至点A ′与点E 重合时,点D ′在直线BC 上方,此时t =1; 当图象G 向下平移至点D ′与点F 重合时,点A ′在直线BC 下方,此时t =3. 结合图象可知,符合题意的t 的取值范围是1<t ≤3.2.解:(1)∵点A 在直线y =x 上,且点A 的横坐标是-3, ∴A (-3,-3).把A (-3,-3)代入y =ax 2+4x , 解得a =1.∴M 1:y =x 2+4x ,顶点坐标为(-2,-4), ∴抛物线M 2的顶点坐标为(1,-1). ∴抛物线M 2的函数解析式为y =x 2-2x .(2)①如图,由题意,知C (2,2),∴F (4,2). ∵直线y =x +n 经过点F ,∴2=4+n . 解得n =-2.②n >3或n <-6.3.解:(1)∵二次函数y 1=x 2+bx +c 的图象C 1经过(-1,0),(0,-3)两点,∴⎩⎪⎨⎪⎧1-b +c =0,c =-3. 解得⎩⎪⎨⎪⎧b =-2,c =-3.∴抛物线C 1的函数解析式为y 1=x 2-2x -3. (2)∵y 1=x 2-2x -3=(x -1)2-4, ∴抛物线C 1的顶点坐标为(1,-4). ∴平移后抛物线C 2的顶点坐标为(0,0),∴C 2对应的函数解析式为y 2=x 2. (3)a ≥-1(如图).4.解:(1)∵抛物线y =ax 2+bx +1()a ≠0过点A ()-1,0,B ()1,1,∴⎩⎪⎨⎪⎧a -b +1=0,a +b +1=1. ∴⎩⎨⎧a =-12,b =12.∴抛物线的函数解析式为y =-12x 2+12x +1.(2)∵x =-b 2a =12,∴抛物线y =-12x 2+12x +1的对称轴为直线x =12.设点E 为点A 关于直线x =12的对称点,则点E 的坐标为()2,0.连接EC 交直线x =12于点D ,此时△ACD 的周长最小.设直线EC 的函数解析式为y =kx +m ,代入点E ,C 的坐标,则⎩⎪⎨⎪⎧2k +m =0,m =1.解得⎩⎪⎨⎪⎧k =-12,m =1.∴直线EC 的函数解析式为y =-12x +1.当x =12时,y =34.∴点D 的坐标为⎝⎛⎭⎫12,34.(3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点P 1.∵AO ⊥OC ,AC ⊥AP 1, ∴∠AOM =∠CAM =90°. ∵C ()0,1,A ()-1,0, ∴OA =OC =1. ∴∠CAO =45°,∴∠OAM =∠OMA =45°, ∴OA =OM =1.∴点M 的坐标为()0,-1.设直线AM 对应的一次函数的解析式为y =k 1x +b 1,代入点A ,M 的坐标,则⎩⎪⎨⎪⎧-k 1+b 1=0,b 1=-1. 解得⎩⎪⎨⎪⎧k 1=-1,b 1=-1.∴直线AM 的函数解析式为y =-x -1. 令x =12,则y =-32.∴点P 1的坐标为⎝⎛⎭⎫12,-32. ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点P 2,交x 轴于点N .与①同理可得Rt △CON 是等腰直角三角形,∴OC =ON =1,∴点N 的坐标为()1,0. ∵CP 2⊥AC ,AP 1⊥AC , ∴CP 2∥AP 1,∴直线CP 2的函数解析式为y =-x +1. 令x =12,则y =12.∴点P 2的坐标为⎝⎛⎭⎫12,12.综上所述,在对称轴上存在点P 1⎝⎛⎭⎫12,-32,P 2⎝⎛⎭⎫12,12,使△ACP 成为以AC 为直角边的直角三角形.5.解:(1)将A ()3,0代入y =mx 2-2mx -3,解得m =1.∴抛物线的函数解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,解得x 1=3,x 2=-1, ∴点B 的坐标为()-1,0. (2)y =x 2-2x -3=()x -12-4.∵当-2<x <1时,y 随x 增大而减小; 当1≤x <3时,y 随x 增大而增大, ∴当x =1,y min =-4; 当x =-2,y ma x =5.∴y 的取值范围是-4≤y <5.(3)如图,当直线y =kx +b 经过点B ()-1,0,C ()4,2时,其函数解析式为y =25x +25.当直线y =kx +b 经过点()-2,-5,C ()4,2时,其函数解析式为y =76x -83.结合图象可得b 的取值范围是-83<b <25.6.解:(1)设抛物线的函数解析式为y =a (x -1)2.由抛物线过点A (0,1),可得y =x 2-2x +1. (2)如图①:(3)如图②③,由图可知-4<m <0.7.解:(1)∵抛物线y =mx 2-2mx +m +4与y 轴交于点A (0,3), ∴m +4=3, 解得m =-1,∴抛物线的函数解析式为y =-x 2+2x +3.∵抛物线y =-x 2+2x +3与x 轴交于点B ,C , ∴令y =0,即-x 2+2x +3=0. 解得x 1=-1,x 2=3. 又∵点B 在点C 左侧,∴点B 的坐标为(-1,0),点C 的坐标为(3,0). (2)∵y =-x 2+2x +3=-(x -1)2+4, ∴抛物线的对称轴为直线x =1.∵抛物线的对称轴与x 轴交于点D , ∴点D 的坐标为(1,0).∵直线y =kx +b 经过点D (1,0)和点E (-1,-2),∴⎩⎪⎨⎪⎧k +b =0,-k +b =-2. 解得⎩⎪⎨⎪⎧k =1,b =-1.∴直线DE 的函数解析式为y =x -1. (3)t <1或t >3.8.解:(1)∵抛物线y =x 2-(m -1)x -m (m >0)与x 轴交于A ,B 两点, ∴令y =0,即x 2-(m -1)x -m =0. 解得x 1=-1,x 2=m .又∵点A 在点B 左侧,且m >0, ∴点A 的坐标为(-1,0).(2)由(1)可知点B 的坐标为(m ,0). ∵抛物线与y 轴交于点C , ∴点C 的坐标为(0,-m ). ∵m >0,∴AB =m +1,OC =m . ∵S △ABC =15, ∴12(m +1)m =15. 解得m =-6或m =5. ∵m >0, ∴m =5,∴抛物线的函数解析式为y =x 2-4x -5. (3)由(2)可知点C 的坐标为(0,-5). ∵直线l :y =kx +b (k <0)经过点C , ∴b =-5,∴直线l 的解析式为y =kx -5(k <0). ∵y =x 2-4x -5=(x -2)2-9,∴当点D 在抛物线顶点处或对称轴左侧时,新函数的最小值均为-9,不符合题意. 当点D 在抛物线对称轴右侧时,新函数的最小值有可能大于-8(如图). 令y =-8,即x 2-4x -5=-8.解得x 1=1(不合题意,舍去),x 2=3. ∴抛物线经过点(3,-8).当直线y =kx -5(k <0)经过点(3,-8)时,可求得k =-1. 由图象可知,当-1<k <0时新函数的最小值大于-8.9.解:(1)∵抛物线y =ax 2+x +c (a ≠0)经过A (-1,0),B (2,0)两点,∴⎩⎪⎨⎪⎧a -1+c =0,4a +2+c =0,解得⎩⎪⎨⎪⎧a =-1,c =2. ∴抛物线的函数解析式为y =-x 2+x +2, ∴点D 的坐标为(12,94).(2)如图①,作EN ∥BC ,交y 轴于点N ,过点C 作 CM ⊥EN 于点M .令x =0,得y =2, ∴OC =OB =2, ∴∠OCB =45°. ∵EN ∥BC ,∴∠CNM =∠OCB =45°. ∵CM ⊥EN 于点M ,∴∠CNM =∠MCN =45°, ∴MN =CM =22, ∴CN =1.∴直线NE 的函数解析式为y =-x +3.由⎩⎪⎨⎪⎧y =-x +3,y =-x 2+x +2,解得⎩⎪⎨⎪⎧x =1,y =2. ∴点E 的坐标为(1,2).(3)如图②,过点E 作EF ⊥AB 于点F .由(2)知tan ∠EOF =2, 又∵tan α=2, ∴∠EOF =∠α.∵∠EOF =∠EAO +∠AEO =∠α,∠EAO +∠EPO =∠α, ∴∠EPO =∠AEO . ∵∠EAO =∠P AE , ∴△AEP ∽△AOE , ∴AP AE =AE AO. ∵AE =22+22=2 2,AO =1, ∴AP =8, ∴OP =7, ∴P ()7,0,由对称性可得P ′()-5,0.∴点P 的坐标为()7,0或()-5,0.10.解:(1)∵二次函数y =(a -1)x 2+2x +1的图象与x 轴有交点, 令y =0,则(a -1)x 2+2x +1=0, ∴4-4(a -1)≥0,解得a ≤2. ∵a 为正整数,∴a 为1或2.又∵y =(a -1)x 2+2x +1是二次函数, ∴a -1≠0,∴a ≠1, ∴a 的值为2.(2)∵a =2,∴二次函数的解析式为y =x 2+2x +1. 将二次函数y =x 2+2x +1化成顶点式为y =(x +1)2,二次函数图象向右平移m 个单位长度,再向下平移(m 2+1)个单位长度后的函数解析式为y =(x +1-m )2-(m 2+1).此时函数图象的顶点坐标为(m -1,-m 2-1).当m -1<-2,即m <-1时,在x =-2处二次函数有最小值-3, ∴-3=(-1-m )2-(m 2+1), 解得m =-32,符合题目要求.当-2≤m -1≤1,即-1≤m ≤2时,在x =m -1处二次函数有最小值-3,即-m 2-1=-3,解得m =±2.∵m =-2不符合-1≤m ≤2的条件,舍去. ∴m = 2.当m -1>1,即m >2时,在x =1处二次函数有最小值-3, ∴-3=(2-m )2-(m 2+1),解得m =32,不符合m >2的条件,舍去.综上所述,m 的值为-32或 2.。

初二数学代数式运算练习题及答案

初二数学代数式运算练习题及答案

初二数学代数式运算练习题及答案一、单项选择题(每题1分,共10分)1.将以下整数由小到大排列:-3,-1,0,2,-2。

A. -3,-2,-1,0,2B. -3,-1,-2,0,2C. 2,0,-1,-2,-3D. 2,0,-3,-2,-12.计算:(3x - 2y)(x + 4y)。

A. 3x^2 + 14xy - 2y^2B. 3x^2 - xy - 2y^2C. 3x^2 + xy - 2y^2D. 3x^2 + 14xy + 2y^23.已知a = -2,b = 3,将ab - a^2 + b^3计算结果写成最简形式。

A. -3B. 6C. -6D. 34.计算:(x - 2)(x + 5) - (x + 4)(x - 1)。

A. 6x - 15B. -6x + 15C. 6x + 15D. -6x - 155.已知x = 4,求x^2 - 3x + 2的值。

A. 8B. 14C. 16D. 106.计算:2(3a - b) - (a + 2b)。

A. 4a - 5bB. 4a + 3bC. 5a - 3bD. 5a + 3b7.计算:(2x + 4)(x - 3) - (4x - 6)(x + 2)。

A. -8B. 8C. 16D. -168.已知x = -2,将2x^3 - 3x^2 + 4x - 1的值写成最简形式。

A. -5B. -15C. -21D. -119.计算:(4a - b)(a + 2b) - (3a - 2b)^2。

A. -5a^2 + 20ab - 8b^2B. 5a^2 - 20ab + 8b^2C. 5a^2 - 10ab - 8b^2D. -5a^2 + 10ab + 8b^210.已知x = -1/2,求2x^2 - 3x - 1的值。

A. 0B. 1/2C. -1/2D. -1二、填空题(每题2分,共20分)11.计算:(2a - b)^2。

答案:4a^2 - 4ab + b^212.已知x = 3/4,求2x^3 - 3x^2 + 1的值。

简单代数试题及答案初二

简单代数试题及答案初二

简单代数试题及答案初二一、选择题(每题2分,共10分)1. 下列哪个选项是-3的相反数?A. 3B. -3C. 0D. 62. 如果x + 5 = 10,那么x的值是多少?A. 5B. 15C. -5D. 03. 一个数的平方根是4,这个数是?A. 16B. -16C. 8D. 44. 已知a = 2,b = -1,求2a - b的值。

A. 3B. 4C. 5D. 65. 以下哪个表达式等价于3x - 2y?A. 2x + 3yB. 3x + 2yC. 2x - 3yD. -3x + 2y答案:1. A2. A3. A4. C5. C二、填空题(每题2分,共10分)6. 如果一个数的立方是-27,这个数是______。

7. 一个数的一半加上3等于这个数本身,这个数是______。

8. 如果2x + 3 = 7,那么x的值是______。

9. 一个数的平方加上这个数等于0,这个数是______。

10. 如果3a + 5b = 20,且a + b = 5,那么a的值是______。

答案:6. -37. 68. 29. 0 或 -110. 0三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3x - 2y) + (4x + 3y),当x = 2,y = 1。

12. 解方程:2x - 5 = 3x + 1。

13. 化简表达式:5a - 3b + 2b - a。

答案:11. 原式 = 7x + y = 7 * 2 + 1 = 14 + 1 = 1512. 2x - 5 = 3x + 1 → -x = 6 → x = -613. 原式 = 4a - b四、解答题(每题10分,共20分)14. 已知一个数的平方是25,求这个数。

15. 一个两位数,十位数比个位数大3,这个数是多少?答案:14. 这个数是±5,因为5² = 25 或 (-5)² = 25。

15. 设个位数为x,则十位数为x + 3,这个数可以表示为10(x + 3) + x = 11x + 30。

代数几何综合题(含答案)

代数几何综合题(含答案)

代数几何综合题1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

2.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若AO +CD =11,求AB 的长.3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m -3=O 的两根,且x 1<0<x 2. (1)求m 的取值范围;(2)设点C 在y 轴的正半轴上,∠ACB=90°,∠CAB=30°,求m 的值;(3)在上述条件下,若点D 在第二象限,△DAB ≌△CBA ,求出直线AD 的函数解析式.4.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

①求直线AC 的解析式;②若M 为AC 与BO 的交点,点M 在抛物线285y x kx=-+上,求k 的值;③将纸片沿CE 对折,点B 落在x 轴上的点D 处,试判断点D 是否在②的抛物线上,并说明理由。

1、已知抛物线)0(22>--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。

(1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示);(2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。

(完整版)专题八代数综合题(含答案)-,推荐文档

(完整版)专题八代数综合题(含答案)-,推荐文档

第8讲 代数综合题概述:代数综合题是中考题中较难的题目,要想得高分必须做好这类题, 这类题主要以方程或函数为基础进行综合.解题时一般用分析综合法解,认真读题找准突破口,仔细分析各个已知条件,进行转化,发挥条件整体作用进行解题.解题时, 计算不能出差错,思维要宽,考虑问题要全面.典型例题精析例.已知抛物线y=ax 2+bx+c 与y 轴交于点C ,与x 轴交于点A (x 1,O ),B (x 2,0)(x 1<x 2), 顶点M 的纵坐标为-4,若x 1,x 2是方程x 2-2(m-1)x+m 2-7=0的两个根,且x 12+x 22=10.(1)求A 、B 两点的坐标;(2)求抛物线的解析式及点C 的坐标;(3)在抛物线上是否存在点P ,使△PAB 的面积等于四边形ACMB 的面积的2倍?若存在,求出所符合条件的点的坐标;若不存在,请说明理由.分析:(1)求A 、Bx 1,x 2,两个未知数需两个方程: 方程多出一个m 还应再找一个x 12+x 22=10 ③,用配方法处122122(7x x m x x m +=-⎧⎨=-⎩理先算m .由③:(x 1+x 2)2-2x 1x 2=10 ④将①②代入④,得4(m 2-2m+1)-2m 2+14=10,2m 2-8m+8=0,m 2-4m+4=0,m=2.且当m=2时,△=4-4×(-3)>0合题意.将m=2代入①②,得x 12-2x 1=312122,3,x x x x +=⎧⎨=-⎩⇒123,1,x x =⎧⎨=-⎩ 或121,3.x x =-⎧⎨=⎩∵x 1<x 2(看清条件,一个不漏,全方位思考)∴x 1=-1,x 2=3,∴A(-1,0),B (3,0).(2)求y=a x 2+bx+c 三个未知数,布列三个方程:将A (-1,0),B (3,0)代入解析式, 再由顶点纵坐标为-4,可得:设y=a (x-3)(x+1)(两点式)且顶点为M (1,-4),代入上式得-4=a (1-3)(1+1)a=1.∴y=(x-3)(x+1)=x 2-2x-3.令x=0得y=-3,∴C(0,-3).(3)四边形ACMB 是非规则图形,所以面积需用分割法.S 四边形ACMB =S △AOC +S 梯形OCMN +S △NBM =AO·OC+(OC+MN )·ON+NB·MN 121212=×1×3+(3+4)×1+×2×4=9.121212 用分析法:假设存在P (x 0,y 0)使得S △PAB =2S 四边形ACMB =18,即AB│y 0│=18,×4│y 0│=18,y 0=±9.1212将y 0=9代入y=x 2-2x-3,得x 1=,x 2,将y 0=-9代入y=x 2-2x-3得△<0无实数根,∴P 1(,9),P 2(,9),∴存在符合条件的点P 1,P 2.中考样题训练1.(2003,重庆)已知抛物线y=x 2+(m-4)x+2m+4与x 轴交于点A (x 1,0)、B (x 2,0)两点,与y 轴交于点C ,且x 1<x 2,x 1+2x 2=0,若点A 关于y 轴的对称点是D .(1)求过点C 、B 、D 的抛物线的解析式;(2)若P 是(1)所求抛物线的顶点,H 是这条抛物线上异于点C 的另一点,且△HBD 和△CBD 的积相等,求直线PH 的解析式.2.(2005,绵阳市)如图,在平行四边形ABCD 中,AD=4cm ,∠A=60°,BD⊥AD.一动点P 从A 出发,以每秒1cm 的速度沿A→B→C 的路线匀速运动,过点P 作直线PM ,使PM⊥AD.(1)当点P 运动2秒时,设直线PM 与AD 相交于点E ,求△APE 的面积;(2)当点P 运动2秒时,另一动点Q 也从A 出发沿A→B→C 的路线运动,且在AB 上以每秒1cm 的速度匀速运动,在BC 上以每秒2cm 的速度匀速运动.过Q 作直线QN ,使QN∥PM. 设点Q 运动的时间t 秒(0≤t≤10),直线PM 与QN 截平行四边形ABCD 所得图形的面积为Scm 2.①求S 关于t 的函数关系式;②(附加题)求S 的最大值.C M A BED P3.(2005,山西课改区)矩形OABC 在直角坐标系中位置如图所示,A 、C 两点的坐标分别为A (6,0),C (0,3),直线y=x 与BC 边相交于点D .34(1)求点D 的坐标;(2)若抛物线y=ax 2+bx 经过D 、A 两点,试确定此抛物线的表达式;(3)P 为x 轴上方,(2)中抛物线上一点,求△POA 面积的最大值;(4)设(2)中抛物线的对称轴与直线OD 交于点M ,点Q 为对称轴上一动点,以Q 、O 、M 为顶点的三角形与△OCD 相似,求符合条件的Q 点的坐标.4.(2005,沪州市)如图所示,抛物线y=a x 2+bx+c (a≠0)与x 轴、y 轴分别相交于A ( -1,0)、B (3,0)、C (0,3)三点,其顶点为D .注:抛物线y=ax 2+bx+c (a≠0)的顶点坐标为(,).2b a-244ac b a - (1)求:经过A 、B 、C 三点的抛物线的解析式;(2)求四边形ABDC 的面积;(3)试判断△BCD 与△COA 是否相似?若相似写出证明过程;若不相似,请说明理由.考前热身训练1.已知一抛物线经过O (0,0),B (1,1)两点,如图,且二次项系数为-(a>0).1a(1)求该抛物线的解析式(系数用含a 的代数式表示);(2)已知点A (0,1),若抛物线与射线AB 相交于点M ,与x 轴相交于点N (异于原点), 求M ,N 的坐标(用含a 的代数式表示);(3)在(2)的条件下,当a 在什么范围内取值时,ON+BN 的值为常数?当a 在什么范围内取值时,ON-OM 的值也为常数?2.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A 、B 两种不同规格的货车厢共40节,使用A 型车厢每节费用为6000元,使用B 型车厢每节费用为8000元.(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢x 节,试写出y 与x 的函数关系式;(2)如果每节A 型车厢最多可装甲种货物35吨或乙种货物15吨,每节B 型车厢最多可装甲种货物25吨或乙种货物35吨,装货时按此要求安排A 、B 两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最省?最少运费多少元?3.已知抛物线y=x 2-x+k 与x 轴有两个不同的交点.12(1)求k 的取值范围;(2)设抛物线与x 轴交于A 、B 两点,且点A 在原点的左侧,抛物线与y 轴交于点C ,若OB=2.OC ,求抛物线的解析式和顶点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P (点D 除外),使得以A 、B 、P 三点为顶点的三角形与△ABD 相似?如果存在,求出P 点坐标;如果不存在,请说明理由.4.在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典型肺炎的抗生素.据临床观察:如果成人按规定的剂量注射这种抗生素,注射药物后每毫升血液中的含药量y(微克)与时间t(小时)之间的关系近似地满足如图所示的折线.(1)写出注射药液后每毫升血液中含药量y与时间t 之间的函数关系式及自变量取值范围;(2)据临床观察:每毫克血液中含药量不少于4微克时,控制“非典”病情是有效的/如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间有多长?(3)假若某病人一天中第一次注射药液是早上6点钟,问怎样安排此人从6:00 ~20:00注射药液的时间,才能使病人的治疗效果最好?答案:中考样题看台1.(1)由 △=(m-4)2+4(2m+4)=m 2+32>012121220424x x x x m x x m +=⎧⎪+=-⎨⎪=--⎩A 得m 1=2,m 2=7(舍去),x 1=-4,x 2=2得A 、B 、C 坐标为:A (-4,0),B (2,0),C (0,8),所求抛物线的解析式为:y=x 2-6x+8(2)∵y=x 2-6x+8=(x-3)2-1,∴顶点P (3,-1),设点H 的坐标为(x 0,y 0),∵△BCD 与△HBD 的面积相等,∴│y 0│=8,∵点H 只能在x 轴上方,故y 0=8,求得H (6,8),直线PH 解析式为y=3x-10.2.(1)当点P 运动2秒时,AB=2cm ,由∠=60°,知AE=1,∴S △APE(cm )2. (2)①当0≤t≤6时,点P 与点Q 都在AB 上运动,设PM 与AD 交于点G ,ON 与AD 交于点F ,则AQ=t ,AF=,,AP=t+22tAG=1+,t .2t∴此时两平行线截平行四边形ABCD 的面积为.当6≤t≤8时,点P 在BC 上运动,点Q 仍在AB 上运动,设PM 与DC 交于点G ,QN 与AD 交于点F ,则AQ=t ,AF=,DF=4-.2t 2t t ,BP=t-6,CP=10-t, PG=(10-t .而ABCD 的面积为t 2-当8≤t≤10时,点P 和点Q 都在BC 上运动,设PM 与DC 交于点G . QN 与DC 交于点F ,则CQ=20-2t ,QF=(20-2t ,CP=10-t ,PG=(10-t.∴此时两平行线截平行四边形ABCD 的面积为故S 关于t 的函数关系式为S=226),8),10).t t t ≤≤+-≤≤-+≤≤②(附加题)当0≤t≤6,S;当6≤t≤8时,S 的最大值为;当8≤t ≤10时,S 的最大值为;所以当t=8时,S 有最大值为.3.(1)由题知,直线y=x 与BC 交于点D (x ,3),34把y=3代入y=x 中得,x=4,∴D(4,3).34(2)∵抛物线y=a x 2+bx 经过D (4,3),A (6,0)两点. 把x=4,y=3;x=6,y=0,分别代入y=ax 2+bx 中得, 解之得1643,3660.a b a b +=⎧⎨+=⎩3,89,4a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为:y=-x 2+x .3894(3)因△POA 底边OA=6,∴S △POA 有最大值时,点P 须位于抛物线的最高点.∵a=-<0,∴抛物线顶点恰为最高点.38∵==.244ac b a -2394()0()8434()8⨯--⨯-A 278∴S 的最大值=×6×=.12278818 (4)抛物线的对称轴与x 轴的交点Q 1,符合条件, ∵CB∥OA,∠Q 1OM=∠CDO∴Rt△Q 1OM∽Rt△CDO,x=-=3,该点坐标为Q 1(3,0).2b a过点O 作OD 的垂线交抛物线的对称轴于点Q 2,∵对称轴平行于y 轴∴∠Q 2MO=∠DOC,∴Rt△Q 2O M∽Rt△CDO.在Rt△Q 2Q 1O 与Rt△DCO 中,Q 1O =CO=3,∠Q 2=∠ODC,∴RtQ 2Q 1O ≌Rt △DCO ,∴CD=Q 1Q 2=4.∵点Q 2位于第四象限,∴Q 2(3,-4).因此,符合条件的点有两个,分别是Q 1(3,0),Q 2(3,-4)4.(1)由题意,得 解之, 得09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩123a b c =-⎧⎪=⎨⎪=⎩∴y=-x 2+2x+3(2)由(1)可知y=-(x )2+4∴顶点坐标为D (1,4)设其对称轴与x 轴的交点为E∵S △AOC =│AO│·│OC│=×1×3=121232S 梯形OEDC =(│DC│+│DE│)×│OE│=(3+4)×1=121272 S △DEB =│EB│·│DE│=×2×4=41212S 四边形ABDC =S △AOC +S 梯形OEDC +S △DEB =++4=93272 (3)△DCB 与△AOC 相似.证明:过点D 作y 轴的垂线,垂足为F∵D(1,4),∴Rt△DFC 中,,且∠DCF=450167在Rt△BOC 中,∠OCB=45°, ∴∠AOC=∠DCB=90°,DC BC AO CO = ∴△DCB∽△AOC考前热身训练1.(1)y=-x 2+(1+)x (2)M (a ,1),N (a+1,0)1a 1a (3)∵ON=a+1,BM=│a-1│∴ON+BM=a+1+│a-1│=2(01)2(1)a a a <≤⎧⎨>⎩ ∴当0<a≤1时,ON+BM 为常数又∵ON-BM=a+1-│1-a│=2(01)2(1)a a a <<⎧⎨≥⎩ ∴当a≥1时,ON-BM 为常数2.(1)设用A 型车厢x 节,则B 型车厢(40-x )节,总运费为y 万元,则y=0.6x+0.8(40-x )=-0.2x+32.(2)由题知3525(40)1240,1535(40)880,x x x x +-≥⎧⎨+-≥⎩ 解之得24≤x≤26.∵x 取整数,∴x=24,25,26应有三种装车方案:①A 型24节,B 型16节;②A 型25节,B 型15节;③A 型26节,B 型14节.(3)由y=-0.2x+32知,x 越大,y 越小,故当x=26时,运费最省,这时,y=-0.2 ×26+32=26.8(万元).3.解:(1)△=(-1)2-4·k>012 1-2k>0,k<12(2)令y=0有0=x 2-x+k ,12x 2-2x+2k=0,∵点A 在原点的左侧,∴B(,0)又令x=0有y=k ,∴C(0,k ).由OB=2OC 得=│2k│,由x 1x 2<0得k<0∴1-2k=(1+2k )2, ∴k=-,y=x 2-x-. ∴D(1,-2).321232 (3)令y=0有x 2-x-=0,1232 x 2-2x-3=0,(x-3)(x+1)=0,∴x 1=3,x 2=-1. ∴A(-1,0),B (3,0).由抛物线对称性知△ABD 为等腰三角形.∵P 点在抛物线上(D 点除外),由抛物线的特殊性不可能存在这样的P 点.4.(1)当0≤t≤1时,设y=k 1t ,则k 1=6,∴y=6t.当0<t≤10时,设y=k 2t+b ,∴ 解得 ∴y=-t+.226,010,k b k b =+⎧⎨=+⎩22,320,3k b ⎧=-⎪⎪⎨⎪=⎪⎩23203 ∴y=6,(01)220.(110)33t t t t ≤≤⎧⎪⎨-+<≤⎪⎩ (2)当0≤t≤1时,令y=4,即6t=4. ∴t=(或6t≥4,t≥).2323当0<t≤10时,令y=4,即-t+=4,23203∴t=4(或-t+≥4,∴t≤4).23203∴注射药液小时后开始有效,有效时间为4-=(小时).2323103(3)设第二次注射药液的时间是在第一次注射药液t 1小时后,则-t 1+=4, t 1=4(小时).23203∴第二次注射药液为10:00.设第三次注射药液的时间在第一次注射药液t 2小时后,则-t+-(t 2-4)+=4.2320323203解得t 2=9(小时).∴第三次注射药液的时间为15:00.设第四次注射药液在第一次注射药液t 3小时后,则-(t 3-4)+-(t 3-9)+=42320323203解得t 3=13(小时)12 ∴第四次注射药液时间是19:30.。

初中数学 代数练习题(含答案)

初中数学  代数练习题(含答案)

1.幂的基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= 底数不变,指数相加 ⑵幂的乘方:()nmmn a a = 底数不变,指数相乘⑶积的乘方:()nn n ab a b =把积的每一个因式分别乘方,再把所得的幂相乘2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项之后相加.计算公式: ⑴平方差公式:()()22a b a b a b -+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+3.整式的除法:⑴同底数幂的除法:m n m na a a-÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式的每个项除以单项式后相加.初二代数部分の重点梳理一、基础知识梳理4.整式乘除与因式分解整式乘除()()()()2222222222a b a b a b a b a ab b a b a ab b +-=-+=++-=-+因式分解5.因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:二项式可以尝试运用平方差公式法分解因式;三项式可以尝试运用完全平方公式法、十字相乘法分解因式; (3)分解因式必须分解到每一个因式都不能再分解为止。

6.十字相乘法【196大招之94-因式分解-十字相乘法】()()()2x a b x ab x a x b +++=++()()()2abx ad bc x cd ax c bx d +++=++7.因式分解方法:(1)提公因式法:找出最大公因式.(2)公式法:xxdc①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++(3)十字相乘法:()()()2x p q x pq x p x q +++=++8.与分式AB有关的条件: ①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)9.分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

北京市各区2019-2020学年上学期八年级期末数学试卷精选汇编:代数综合专题(含答案)

 北京市各区2019-2020学年上学期八年级期末数学试卷精选汇编:代数综合专题(含答案)

北京市各区2019-2020学年上学期八年级期末数学试卷精选汇编:代数综合专题(含答案)海淀区25.对于代数式,不同的表达形式能表现出它的不同性质.例如代数式245A x x =-+,若将其写成()221A x =-+的形式,就能看出不论字母x 取何值,它都表示正数;若将它写成()2=12(1)2A x x ---+的形式,就能与代数式B=222x x -+建立联系.下面我们改变x 的值,研究一下A ,B 两个代数式取值的规律:(1)完成上表; (2)观察表格可以发现:若x =m 时,222=B x x n =-+,则x =m +1时,245A x x n =-+=.我们把这种现象称为代数式A 参照代数式B 取值延后,此时延后值为1.①若代数式D 参照代数式B 取值延后,相应的延后值为2,求代数式D ;②已知代数式210ax x b -+参照代数式234x x c -+取值延后,请直接写出b -c 的值:_____________.25.解(1)2;2,1,2. ………………………2分(2)①∵代数式D 参照代数式B 取值延后,相应的延后值为2,∴22(2)2(2)2610D x x x x =---+=-+. …………………4分 ② 7 ………………………6分东城区26. 列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270 000平方米增加到330 000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积.(1) 在解应用题时,我们常借助表格、线段图等分析题目中的数量关系. 设首届进博会企业平均展览面积为x 平方米,把下表补充完整:(2)270 000330000+300=(1+12.8%)x x.……………………6分 丰台区24.已知a ,b ,m 都是实数,若a +b =2,则称a 与b 是关于1的“平衡数”.(1)4与 是关于1的“平衡数”,3与 是关于1的“平衡数”;(2)若=2(-m +,判断m +与2-是否是关于1的“平衡数”,并说明理由.24. 解:(1);. 2分(2)不是.∵, ∴.∴. ∴.∴==3. 4分∴与不是关于 1的“平衡数”. 6分密云区26.数学课堂上,老师提出问题:可以通过通分将两个分式的和表示成一个分式的形式,是否也可以将一个分式31(1)(1)x x x ++-表示成两个分式和的形式?其中这两个分式的分母分别为x+1和x -1.小明通过观察、思考,发现可以用待定系数法解决上面问题.具体过程如下: 设31(1)(1)x x x ++-11A Bx x =++- 则有31(1)(1)x x x ++-(1)(1)()(1)(1)(1)(1)(1)(1)A xB x A B x B Ax x x x x x -+++-=+=+-+-+-故此31A B B A +=⎧⎨-=⎩ 解得12A B =⎧⎨=⎩所以31(1)(1)x x x ++-=1211x x ++- 问题解决: (1)设1(1)1x A Bx x x x -=+++,求A 、B.(2)直接写出方程111(1)(1)(2)2x x x x x x x --+=++++ 的解.26. (1)∵(1)=1(1)(1)A B A x Bx x x x x x x ++++++ ………………1分()1(1)(1)A B x A xx x x x ++-==++………………2分 ∴1,1A B A +=-= ………………3分 ∴2B =-………………4分(2)23x =………………6分门头沟区26.信息1:我们已经学完了解分式方程,它的一般步骤为:确定最简公分母、化为整式方程、求出整式方程的解、进行检验(第一,代入最简公分母验证是否为零,第二代入分式方程的左右两边检验是否相等)、确定分式方程的解。

八年级数学下册综合算式专项练习题代数式的运算

八年级数学下册综合算式专项练习题代数式的运算

八年级数学下册综合算式专项练习题代数式的运算在数学学习中,代数式的运算是一个重要的部分。

通过对代数式的运算练习,可以加深对数学概念的理解,提升解题能力。

本文将为大家提供一些八年级数学下册综合算式专项练习题,通过解答这些题目,加强对代数式的运算技巧。

1. 第一题已知a = 3,b = 5,计算 a + b 的值。

解答:由题目可知,a = 3,b = 5,那么a + b = 3 + 5 = 8。

2. 第二题计算 (2x + 3y) - (x - 2y) 的值,其中x = 4,y = 2。

解答:将给定的值代入代数式中,得到:(2x + 3y) - (x - 2y) = (2*4 + 3*2) - (4 - 2*2) = 8 + 6 - (4 - 4) = 14。

3. 第三题计算 2(x + y) + 3(x - y) 的值,其中x = 1,y = 2。

解答:将给定的值代入代数式中,得到:2(x + y) + 3(x - y) = 2(1 + 2) + 3(1 - 2) = 2*3 + 3*(-1) = 6 - 3 = 3。

4. 第四题计算 4x^2 - 3x^2 + 6x - x 的值,其中x = 2。

解答:将给定的值代入代数式中,得到:4x^2 - 3x^2 + 6x - x = 4*2^2 - 3*2^2 + 6*2 - 2 = 4*4 - 3*4 + 12 - 2 = 16 - 12 + 12 - 2 = 14。

5. 第五题计算 (a + b)^2 的值,其中a = 2,b = 3。

解答:将给定的值代入代数式中,得到:(a + b)^2 = (2 + 3)^2 = 5^2 = 25。

通过以上练习题,我们加深了对代数式的运算技巧的理解,同时也加强了解题能力。

希望大家能够通过不断的练习和巩固,掌握代数式的运算方法,为日后更复杂的数学问题做好准备。

总结:八年级数学下册综合算式专项练习题中的代数式的运算是数学学习中的重要内容。

2019.01八上代数综合题

2019.01八上代数综合题

2019八上代数综合题2019昌平八上 28. 阅读下面材料:丽丽这学期学习了轴对称的知识,知道了像角、等腰三角形、正方形、圆等图形都是轴对称图形.类比这一特性,丽丽发现像m +n ,mnp等代数式,如果任意交换两个字母的位置,式子的值都不变.太神奇了!于是她把这样的式子命名为神奇对称式.她还发现像,(m -1)(n -1)等神奇对称式都可以用表示.例如:.于是丽丽把称为基本神奇对称式 .请根据以上材料解决下列问题: (1)代数式①1mn , ②22m n - , ③n m, ④ xy + yz + zx 中,属于神奇对称式的是__________(填序号);(2)已知2()()x m x n x px q --=-+.① q =__________(用含m ,n 的代数式表示);② 若32p q ,==-,则神奇对称式11m n+=__________; ③0q = ,求神奇对称式33+1+1m n m n+的最小值.22m n +mn m n ,+222()2(1)(1)()1m n m n mn m n mn m n +=+---=-++,mn m n 和+28.对于平面直角坐标系xOy 中的线段AB 及点P ,给出如下定义:若点P 满足PA=PB ,则称P 为线段AB 的“轴点”,其中,当0°<∠APB <60°时,称P 为线段AB 的“远轴点”;当60°≤∠APB ≤180°时,称P 为线段AB 的“近轴点”.(1)如图1,点A ,B 的坐标分别为(-2,0),(2,0),则在)3,1(1-P ,)2,0(2P ,)1,0(3-P ,)4,0(4P 中,线段AB 的“近轴点”是 .(2)如图2,点A 的坐标为(3,0),点B 在y 轴正半轴上,且∠OAB =30°.①若P 为线段AB 的“远轴点”,直接写出点P 的横坐标t 的取值范围 ;②点C 为y 轴上的动点(不与点B 重合且BC ≠AB ),若Q 为线段AB 的“轴点”,当线段QB 与QC 的和最小时,求点Q 的坐标.图2图127. 在同一平面内的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的"闭距离",记作d(M ,N) .如图,等腰直角三角形ABC 的一条直角边AB 垂直数轴于点D ,斜边AC 与数轴交于点E ,数轴上点O 表示的有理数是0,若AB=BC=8,AD=6,OD=2. 点O 到边BC 的距离与线段DB 的长相等. (1)求d (点O ,点E ); (2)求d (点O ,△ABC ).2019房山八上29.阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则或.又因为,所以关于x 的方程有两个解,分别为,.应用上面的结论解答下列问题: (1)方程q xpx =+的两个解分别为11-=x 、42=x ,则=P , =q ; (2)方程43=+xx 的两个解中较大的一个为 ; (3)关于x 的方程n x n n x 212222=+-++的两个解分别为1x 、2x (21x x <),求12223x x -的值.()()x a x b x--x a =x b =2()()()()x a x b x a b x ab abx a b x x x---++==+-+ab x a b x +=+1x a =2x b=2019东城八上26. (本小题4分)阅读下列材料,然后回答问题:观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:..(一)还可以用以下方法化简:.(二)(1)请用不同的方法化简.①参照(一)式得=______________________________________________;②参照(二)式得=_________________________________________;(2)从计算结果中找出规律,并利用这一规律选择..下面两个问题中的一个..加以解决:1.求.......1)++的值;2.化简:.121212)12)(12()12(1121-=--=-+-⨯=+232323)23)(23()23(1231-=--=-+-⨯=+352+352+352+12121...571351131-+++++++++nn2019海淀八上25. 已知△ABC 24)-,记△ABC 的周长为ABC C ∆.(1)当2x =时,△ABC 的最长边的长度是________(请直接写出答案); (2)请求出ABC C ∆(用含x 的代数式表示,结果要求化简);(3)我国南宋时期数学家秦九韶曾提出利用三角形的三边长求面积的秦九韶公式:S .其中三角形边长分别为a ,b ,c ,三角形的面积为S .若x 为整数,当ABC C ∆取得最大值时,请用秦九韶公式求出△ABC 的面积.2019海淀八上26. 如图1, E 是等边三角形ABC 的边AB 所在直线上一点,D 是边BC 所在直线上一点,且D 与C 不重合,若EC =ED .则称D 为点C 关于等边三角形ABC 的反称点,点E 称为反称中心.图1图2备用图1在平面直角坐标系xOy 中,(1)已知等边三角形AOC 的顶点C 的坐标为(2,0),点A 在第一象限内,反称中心E 在直线AO 上,反称点D 在直线OC 上.①如图2,若E 为边AO 的中点,在图中作出点C 关于等边三角形AOC 的反称点D ,并直接写出点D 的坐标:________;②若AE =2,求点C 关于等边三角形AOC 的反称点D 的坐标;(2)若等边三角形ABC 的顶点为B (n ,0),C (n +1,0),反称中心E 在直线AB 上,反称点D 在直线BC 上,且2≤AE <3.请直接写出点C 关于等边三角形ABC 的反称点D 的横坐标t 的取值范围: (用含n 的代数式表示).备用图22019怀柔八上26.在一个分式中,如果它的分子、分母都是整式,并且分子的次数低于分母的次数,我们则称这样的分式为真分式.例如,分式24+x ,xx x 4332-是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式11-+x x ,12+x x 是假分式.一个假分式可以化成一个整式与一个真分式的和.例如,12112)1(11-+=-+-=-+x x x x x . (1)将假分式112+-x x 化成一个整式与一个真分式的和的形式;(2)应用:如果分式1322-+-x x x 的值为整数,求x 的整数值.2019门头沟八上 27.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”. 即:如果a b a b -=÷,那么a 与b 就叫做“差商等数对”,记为(a ,b ). 例如:4242-=÷;993322-=÷; ()()111122⎛⎫⎛⎫---=-÷- ⎪ ⎪⎝⎭⎝⎭; 则称数对(4,2),(92,3),(12-,1-)是“差商等数对”. 根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是 (填序号);①(8.1-,9-),②(12,12)③(2) (2)如果(x ,4)是“差商等数对”,请求出x 的值;(3)如果(m ,n )是“差商等数对”,那么m =______________(用含n 的代数式表示).2019密云八上28. 已知平面内一点P ,若点P 到两条相交直线l 1和l 2的距离都相等,且距离均为h (h >0),则称点P 叫做直线l 1和l 2的“h 距离点”. 例如图1所示,直线l 1和l 2互相垂直,交于O 点,平面内一点P 到两直线的距离都是2,则称点P 叫做直线l 1和l 2的“2距离点”.(1)若直线l 1和l 2互相垂直,且交于O 点,平面内一点P 是直线l 1和l 2的“7距离点”,直接写出OP 的长度为 ;(2)如图2所示,直线l 1和l 2相交于点O ,夹角为60°,已知平面内一点P 是直线l 1和l 2的“3距离点”,求出OP 的长度;(3)已知三条直线两两相交后形成一个等边三角形,如图3所示,在等边△ABC 中,点P是三角形内部一点,且点P 分别是等边△ABC三边所在直线的“”,请你 直接写出△ABC 的面积是 .l 2图260°Ol 2l 1CBA图32019平谷八上26.我们规定正数的正分数指数幂的意义mna=a>0,m,n是正整数,且n.>1)如2384==.于是,在条件a>0,m,n是正整数,且n.>1下,根式都可以写成分数指数幂的形式.正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定1mnmnaa-=(0,,1)a m n n>>是整数,且,规定了分数指数幂的意义以后,指数的概念就从整数指数推广到了有理数指数.整数指数幂的运算性质对于有理数指数幂也同样适用.根据上述定义,解答下面的问题:(1)求值:324=_______ ,;(2)计算:113298-=______________ ;(3)用分数指数幂的形式表:20)a a>(4)11225a a-+=,求1(0)a a a-+>2019石景山八上25.小红根据学习“数与式”积累的经验,想通过“由特殊到一般”的方法探究下面二次根式的运算规律.下面是小红的探究过程,请补充完整:(1)具体运算,发现规律.特例1===特例2===特例3=特例4:(填写一个符合上述运算特征的例子).(2)观察、归纳,得出猜想.如果n为正整数,用含n的式子表示上述的运算规律为:.(3)证明你的猜想.(4)应用运算规律.=;=a,b均为正整数),则a b+的值为.2019延庆八上26.阅读材料,然后作答:在化简二次根式时,有时会碰到形如31,132+这一类式子,通常进行这样的化简:33333131=⨯⨯= ; 13)13)(13(132132-=-+-=+)(,这种把分母中的根号化去叫做分母有理化. 还有一种方法也可以将132+进行分母有理化: 例如:131313)(13(131)3(13222-=+-+=+-=+) 请仿照上述方法解决下面问题:(1)化简352+ (2)化简b a b a +-2019燕山八上28.一般情况下,131b a b ab+=+不成立,但有些数可以使得它成立,例如:a =1,b =2. 我们称使得131b a b ab+=+成立的一对数a ,b 为“相伴数对”,记为(a ,b ). (1) 判断数对(-2,1),(3,3)是否是“相伴数对”;(2) 若(k ,-1)是“相伴数对”,求k 的值;(3) 若(4,m )是“相伴数对”,求代数式2432(41)3(4)m m m m m ⎡⎤---⎣⎦-的值.2019丰台八上27.在学习平方根的过程中,同学们总结出:在N a x =中,已知底数a 和指数x ,求幂N 的运算是乘方运算;已知幂N 和指数x ,求底数a 的运算是开方运算. 小茗提出一个问题:“如果已知底数a 和幂N ,求指数x 是否也对应着一种运算呢?”老师首先肯定了小茗善于思考,继而告诉大家这是同学们进入高中将继续学习的对数,感兴趣的同学可以课下自主探究.小茗课后借助网络查到了对数的定义:小茗根据对数的定义,尝试进行了下列探究:(1)∵221=, ∴12log 2=;∵422=, ∴24log 2=;∵823=, ∴38log 2=;∵1624=, ∴=16log 2 ;计算: =32log 2 ;(2)计算后小茗观察(1)中各个对数的真数和对数的值,发现一些对数之间有关系,例如:=+8log 4log 22 ;(用对数表示结果)(3)于是他猜想:=+N M a a log log (0>a 且1≠a ,0>M ,0>N ).请你将小茗的探究过程补充完整,并再举一个例子验证(3)中他的猜想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8讲 代数综合题概述:代数综合题是中考题中较难的题目,要想得高分必须做好这类题, 这类题主要以方程或函数为基础进行综合.解题时一般用分析综合法解,认真读题找准突破口,仔细分析各个已知条件,进行转化,发挥条件整体作用进行解题.解题时, 计算不能出差错,思维要宽,考虑问题要全面.典型例题精析例.已知抛物线y=ax 2+bx+c 与y 轴交于点C ,与x 轴交于点A (x 1,O ),B (x 2,0)(x 1<x 2), 顶点M 的纵坐标为-4,若x 1,x 2是方程x 2-2(m-1)x+m 2-7=0的两个根,且x 12+x 22=10.(1)求A 、B 两点的坐标;(2)求抛物线的解析式及点C 的坐标;(3)在抛物线上是否存在点P ,使△PAB 的面积等于四边形ACMB 的面积的2倍?若存在,求出所符合条件的点的坐标;若不存在,请说明理由.分析:(1)求A 、Bx 1,x 2,两个未知数需两个方程: 方程多出一个m 还应再找一个x 12+x 22=10 ③,用配方法处122122(7x x m x x m +=-⎧⎨=-⎩理先算m .由③:(x 1+x 2)2-2x 1x 2=10 ④将①②代入④,得4(m 2-2m+1)-2m 2+14=10,2m 2-8m+8=0,m 2-4m+4=0,m=2.且当m=2时,△=4-4×(-3)>0合题意.将m=2代入①②,得x 12-2x 1=312122,3,x x x x +=⎧⎨=-⎩⇒123,1,x x =⎧⎨=-⎩ 或121,3.x x =-⎧⎨=⎩∵x 1<x 2(看清条件,一个不漏,全方位思考)∴x 1=-1,x 2=3,∴A(-1,0),B (3,0).(2)求y=a x 2+bx+c 三个未知数,布列三个方程:将A (-1,0),B (3,0)代入解析式, 再由顶点纵坐标为-4,可得:设y=a (x-3)(x+1)(两点式)且顶点为M (1,-4),代入上式得-4=a (1-3)(1+1)a=1.∴y=(x-3)(x+1)=x 2-2x-3.令x=0得y=-3,∴C(0,-3).(3)四边形ACMB 是非规则图形,所以面积需用分割法.S 四边形ACMB =S △AOC +S 梯形OCMN +S △NBM =AO·OC+(OC+MN )·ON+NB·MN 121212=×1×3+(3+4)×1+×2×4=9.121212 用分析法:假设存在P (x 0,y 0)使得S △PAB =2S 四边形ACMB =18,即AB│y 0│=18,×4│y 0│=18,y 0=±9.1212将y 0=9代入y=x 2-2x-3,得x 1=,x 2,将y 0=-9代入y=x 2-2x-3得△<0无实数根,∴P 1(,9),P 2(,9),∴存在符合条件的点P 1,P 2.中考样题训练1.(2003,重庆)已知抛物线y=x 2+(m-4)x+2m+4与x 轴交于点A (x 1,0)、B (x 2,0)两点,与y 轴交于点C ,且x 1<x 2,x 1+2x 2=0,若点A 关于y 轴的对称点是D .(1)求过点C 、B 、D 的抛物线的解析式;(2)若P 是(1)所求抛物线的顶点,H 是这条抛物线上异于点C 的另一点,且△HBD 和△CBD 的积相等,求直线PH 的解析式.2.(2005,绵阳市)如图,在平行四边形ABCD 中,AD=4cm ,∠A=60°,BD⊥AD.一动点P 从A 出发,以每秒1cm 的速度沿A→B→C 的路线匀速运动,过点P 作直线PM ,使PM⊥AD.(1)当点P 运动2秒时,设直线PM 与AD 相交于点E ,求△APE 的面积;(2)当点P 运动2秒时,另一动点Q 也从A 出发沿A→B→C 的路线运动,且在AB 上以每秒1cm 的速度匀速运动,在BC 上以每秒2cm 的速度匀速运动.过Q 作直线QN ,使QN∥PM. 设点Q 运动的时间t 秒(0≤t≤10),直线PM 与QN 截平行四边形ABCD 所得图形的面积为Scm 2.①求S 关于t 的函数关系式;②(附加题)求S 的最大值.C M A BED P3.(2005,山西课改区)矩形OABC 在直角坐标系中位置如图所示,A 、C 两点的坐标分别为A (6,0),C (0,3),直线y=x 与BC 边相交于点D .34(1)求点D 的坐标;(2)若抛物线y=ax 2+bx 经过D 、A 两点,试确定此抛物线的表达式;(3)P 为x 轴上方,(2)中抛物线上一点,求△POA 面积的最大值;(4)设(2)中抛物线的对称轴与直线OD 交于点M ,点Q 为对称轴上一动点,以Q 、O 、M 为顶点的三角形与△OCD 相似,求符合条件的Q 点的坐标.4.(2005,沪州市)如图所示,抛物线y=a x 2+bx+c (a≠0)与x 轴、y 轴分别相交于A ( -1,0)、B (3,0)、C (0,3)三点,其顶点为D .注:抛物线y=ax 2+bx+c (a≠0)的顶点坐标为(,).2b a-244ac b a - (1)求:经过A 、B 、C 三点的抛物线的解析式;(2)求四边形ABDC 的面积;(3)试判断△BCD 与△COA 是否相似?若相似写出证明过程;若不相似,请说明理由.考前热身训练1.已知一抛物线经过O (0,0),B (1,1)两点,如图,且二次项系数为-(a>0).1a(1)求该抛物线的解析式(系数用含a 的代数式表示);(2)已知点A (0,1),若抛物线与射线AB 相交于点M ,与x 轴相交于点N (异于原点), 求M ,N 的坐标(用含a 的代数式表示);(3)在(2)的条件下,当a 在什么范围内取值时,ON+BN 的值为常数?当a 在什么范围内取值时,ON-OM 的值也为常数?2.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A 、B 两种不同规格的货车厢共40节,使用A 型车厢每节费用为6000元,使用B 型车厢每节费用为8000元.(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢x 节,试写出y 与x 的函数关系式;(2)如果每节A 型车厢最多可装甲种货物35吨或乙种货物15吨,每节B 型车厢最多可装甲种货物25吨或乙种货物35吨,装货时按此要求安排A 、B 两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最省?最少运费多少元?3.已知抛物线y=x 2-x+k 与x 轴有两个不同的交点.12(1)求k 的取值范围;(2)设抛物线与x 轴交于A 、B 两点,且点A 在原点的左侧,抛物线与y 轴交于点C ,若OB=2.OC ,求抛物线的解析式和顶点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P (点D 除外),使得以A 、B 、P 三点为顶点的三角形与△ABD 相似?如果存在,求出P 点坐标;如果不存在,请说明理由.4.在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典型肺炎的抗生素.据临床观察:如果成人按规定的剂量注射这种抗生素,注射药物后每毫升血液中的含药量y(微克)与时间t(小时)之间的关系近似地满足如图所示的折线.(1)写出注射药液后每毫升血液中含药量y与时间t 之间的函数关系式及自变量取值范围;(2)据临床观察:每毫克血液中含药量不少于4微克时,控制“非典”病情是有效的/如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间有多长?(3)假若某病人一天中第一次注射药液是早上6点钟,问怎样安排此人从6:00 ~20:00注射药液的时间,才能使病人的治疗效果最好?答案:中考样题看台1.(1)由 △=(m-4)2+4(2m+4)=m 2+32>012121220424x x x x m x x m +=⎧⎪+=-⎨⎪=--⎩A 得m 1=2,m 2=7(舍去),x 1=-4,x 2=2得A 、B 、C 坐标为:A (-4,0),B (2,0),C (0,8),所求抛物线的解析式为:y=x 2-6x+8(2)∵y=x 2-6x+8=(x-3)2-1,∴顶点P (3,-1),设点H 的坐标为(x 0,y 0),∵△BCD 与△HBD 的面积相等,∴│y 0│=8,∵点H 只能在x 轴上方,故y 0=8,求得H (6,8),直线PH 解析式为y=3x-10.2.(1)当点P 运动2秒时,AB=2cm ,由∠=60°,知AE=1,∴S △APE(cm )2. (2)①当0≤t≤6时,点P 与点Q 都在AB 上运动,设PM 与AD 交于点G ,ON 与AD 交于点F ,则AQ=t ,AF=,,AP=t+22tAG=1+,t .2t∴此时两平行线截平行四边形ABCD 的面积为.当6≤t≤8时,点P 在BC 上运动,点Q 仍在AB 上运动,设PM 与DC 交于点G ,QN 与AD 交于点F ,则AQ=t ,AF=,DF=4-.2t 2t t ,BP=t-6,CP=10-t, PG=(10-t .而ABCD 的面积为t 2-当8≤t≤10时,点P 和点Q 都在BC 上运动,设PM 与DC 交于点G . QN 与DC 交于点F ,则CQ=20-2t ,QF=(20-2t ,CP=10-t ,PG=(10-t.∴此时两平行线截平行四边形ABCD 的面积为故S 关于t 的函数关系式为S=226),8),10).t t t ≤≤+-≤≤-+≤≤②(附加题)当0≤t≤6,S;当6≤t≤8时,S 的最大值为;当8≤t ≤10时,S 的最大值为;所以当t=8时,S 有最大值为.3.(1)由题知,直线y=x 与BC 交于点D (x ,3),34把y=3代入y=x 中得,x=4,∴D(4,3).34(2)∵抛物线y=a x 2+bx 经过D (4,3),A (6,0)两点. 把x=4,y=3;x=6,y=0,分别代入y=ax 2+bx 中得, 解之得1643,3660.a b a b +=⎧⎨+=⎩3,89,4a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为:y=-x 2+x .3894(3)因△POA 底边OA=6,∴S △POA 有最大值时,点P 须位于抛物线的最高点.∵a=-<0,∴抛物线顶点恰为最高点.38∵==.244ac b a -2394()0()8434()8⨯--⨯-A 278∴S 的最大值=×6×=.12278818 (4)抛物线的对称轴与x 轴的交点Q 1,符合条件, ∵CB∥OA,∠Q 1OM=∠CDO∴Rt△Q 1OM∽Rt△CDO,x=-=3,该点坐标为Q 1(3,0).2b a过点O 作OD 的垂线交抛物线的对称轴于点Q 2,∵对称轴平行于y 轴∴∠Q 2MO=∠DOC,∴Rt△Q 2O M∽Rt△CDO.在Rt△Q 2Q 1O 与Rt△DCO 中,Q 1O =CO=3,∠Q 2=∠ODC,∴RtQ 2Q 1O ≌Rt △DCO ,∴CD=Q 1Q 2=4.∵点Q 2位于第四象限,∴Q 2(3,-4).因此,符合条件的点有两个,分别是Q 1(3,0),Q 2(3,-4)4.(1)由题意,得 解之, 得09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩123a b c =-⎧⎪=⎨⎪=⎩∴y=-x 2+2x+3(2)由(1)可知y=-(x )2+4∴顶点坐标为D (1,4)设其对称轴与x 轴的交点为E∵S △AOC =│AO│·│OC│=×1×3=121232S 梯形OEDC =(│DC│+│DE│)×│OE│=(3+4)×1=121272 S △DEB =│EB│·│DE│=×2×4=41212S 四边形ABDC =S △AOC +S 梯形OEDC +S △DEB =++4=93272 (3)△DCB 与△AOC 相似.证明:过点D 作y 轴的垂线,垂足为F∵D(1,4),∴Rt△DFC 中,,且∠DCF=450167在Rt△BOC 中,∠OCB=45°, ∴∠AOC=∠DCB=90°,DC BC AO CO = ∴△DCB∽△AOC考前热身训练1.(1)y=-x 2+(1+)x (2)M (a ,1),N (a+1,0)1a 1a (3)∵ON=a+1,BM=│a-1│∴ON+BM=a+1+│a-1│=2(01)2(1)a a a <≤⎧⎨>⎩ ∴当0<a≤1时,ON+BM 为常数又∵ON-BM=a+1-│1-a│=2(01)2(1)a a a <<⎧⎨≥⎩ ∴当a≥1时,ON-BM 为常数2.(1)设用A 型车厢x 节,则B 型车厢(40-x )节,总运费为y 万元,则y=0.6x+0.8(40-x )=-0.2x+32.(2)由题知3525(40)1240,1535(40)880,x x x x +-≥⎧⎨+-≥⎩ 解之得24≤x≤26.∵x 取整数,∴x=24,25,26应有三种装车方案:①A 型24节,B 型16节;②A 型25节,B 型15节;③A 型26节,B 型14节.(3)由y=-0.2x+32知,x 越大,y 越小,故当x=26时,运费最省,这时,y=-0.2 ×26+32=26.8(万元).3.解:(1)△=(-1)2-4·k>012 1-2k>0,k<12(2)令y=0有0=x 2-x+k ,12x 2-2x+2k=0,∵点A 在原点的左侧,∴B(,0)又令x=0有y=k ,∴C(0,k ).由OB=2OC 得=│2k│,由x 1x 2<0得k<0∴1-2k=(1+2k )2, ∴k=-,y=x 2-x-. ∴D(1,-2).321232 (3)令y=0有x 2-x-=0,1232 x 2-2x-3=0,(x-3)(x+1)=0,∴x 1=3,x 2=-1. ∴A(-1,0),B (3,0).由抛物线对称性知△ABD 为等腰三角形.∵P 点在抛物线上(D 点除外),由抛物线的特殊性不可能存在这样的P 点.4.(1)当0≤t≤1时,设y=k 1t ,则k 1=6,∴y=6t.当0<t≤10时,设y=k 2t+b ,∴ 解得 ∴y=-t+.226,010,k b k b =+⎧⎨=+⎩22,320,3k b ⎧=-⎪⎪⎨⎪=⎪⎩23203 ∴y=6,(01)220.(110)33t t t t ≤≤⎧⎪⎨-+<≤⎪⎩ (2)当0≤t≤1时,令y=4,即6t=4. ∴t=(或6t≥4,t≥).2323当0<t≤10时,令y=4,即-t+=4,23203∴t=4(或-t+≥4,∴t≤4).23203∴注射药液小时后开始有效,有效时间为4-=(小时).2323103(3)设第二次注射药液的时间是在第一次注射药液t 1小时后,则-t 1+=4, t 1=4(小时).23203∴第二次注射药液为10:00.设第三次注射药液的时间在第一次注射药液t 2小时后,则-t+-(t 2-4)+=4.2320323203解得t 2=9(小时).∴第三次注射药液的时间为15:00.设第四次注射药液在第一次注射药液t 3小时后,则-(t 3-4)+-(t 3-9)+=42320323203解得t 3=13(小时)12 ∴第四次注射药液时间是19:30.。

相关文档
最新文档