基坑支护监测方案(1)
基坑支护监测检测方案
![基坑支护监测检测方案](https://img.taocdn.com/s3/m/83fc42de6394dd88d0d233d4b14e852458fb3934.png)
基坑支护监测检测方案
基坑支护监测检测方案
一、背景
在建筑工程中,对于沉降、地陷等地质灾害,采取基坑支护措施是必要的。
但是,随着基坑的深度增加,存在越来越大的风险和安全隐患。
因此,为了保证施工的安全和减少对周边环境的影响,就需要对基坑支护工程进行监测检测。
二、检测内容
为了全面了解基坑支护的变形情况和稳定性,应进行以下内容的监测检测:
1. 地下水位的监测,包括测量地下水位变化、地下水压力变化等指标。
2. 基坑附近围岩(土体)变形的监测,重点关注基坑周围的土壤沉降、变形、裂缝等情况。
3. 基坑的位移变形、变形速率,关注基坑深度、周边地形地貌的变化情况。
4. 测量支撑结构的应力变化,包括水平横向支护应力、垂直支撑应力、拉杆应力等,以确保支撑系统的稳定性和安全性。
5. 进行振动、噪音检测,避免施工对周边环境和生态带来过大的影响。
三、监测设备和方法
1。
基坑监测方案1
![基坑监测方案1](https://img.taocdn.com/s3/m/d858eee7910ef12d2af9e7f1.png)
大连时代广场工程基坑监测方案编号:DL/ZS-编制:审核:审批:发放号:中国建筑第八工程局2004年12月工程技术文件报审表(R03—09)单位名称:编号:注:需要时审核/审批意见可附页。
基坑监测方案1、基坑监测的目的随着社会的进步,城市建设用地的减少,深基坑越来越多的出现在了城市建设建设中,为建筑向高空发展提供了条件,同时深基坑对周边建筑的影响也很大,也有由于基坑支护等原因发生基坑坍塌,造成人员伤亡及较大的社会影响。
因此,为了保证人民生命财产的安全,保证基坑稳定和安全生产的顺利进行,对基坑的监测就显得尤为重要,它可以防患于未然。
2、基坑监测项目根据基坑施工的各种因素及特点,基坑工程监测项目可按照下表选择:(《建筑基坑支护技术规程》JGJ120—99)基坑监测项目表时代广场基坑工程设计基坑侧壁安全等级为一级,因此从上表可以所有的基坑监测项目均为应测,也就是说在施工过程中必须监测的。
3、基坑监测报警值基坑的每个监测项目都有他的极限值,当监测所采集的数值达到报警值时基坑就会出现危险,因此,在监测工序开始时就应该根据设计给定的报警值确定危险的大小,以便在监测过程中有章可循,在监测数据达到一定数值时采取响应的应急措施,保证在施工过程中基坑的安全。
基坑监测报警值4、沉降观测的方法和频率1、支护结构水平位移的监测1)挖土段监测点布设为了监测基坑周围土体的沉降情况,我们采取了在基坑上口周围3米处设置沉降观测点的方法,观测点设置在同一直线上,每20m设置一个,并在设置完毕后测量初始标高,记录成为原始数据,以后按照基坑监测的频率对监控点进行测量,对测量的数据进行分析,得出沉降的数值,并绘制沉降和位移变化曲线。
沉降观测点用Ф28的钢筋打在基坑周围不易被破坏的地方,埋设深度在30~50cm,周围用混凝土包住,等强度达到75%时便可以进行首次测量,记下原始数值,作为基坑的初始(未变形)的数值。
观测时间及频率见下表注:观测宜在当天的8:00~16:00进行,如观测到位移、沉降量异常,则以后观测加倍,并记录出现异常情况的地段。
基坑监测监控方案
![基坑监测监控方案](https://img.taocdn.com/s3/m/71d1c3447dd184254b35eefdc8d376eeafaa1741.png)
基坑监测监控方案土方开挖施工期间,应对基坑支护结构受力和变形、周边建筑物、重要道路及地下管线等保护对象进行系统的监测。
通过监测,可以及时掌握基坑开挖过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。
一.监测频率1坡顶水平位移监测:基坑开挖前3步深度在5m以内,可每2d观测一次,基坑开挖至5m以下及基坑开挖完成后一周内,每天观测一次。
基坑开挖至基底后一周后无明显位移时,可适当延长观测周期,每5~IOd 观测一次。
2、坡顶垂直位移及建筑物沉降观测:在基坑降水时和在基坑土开挖过程中应每天观测一次。
混凝土底板浇完IOd以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。
此后可每周观测一次至回填土完工。
3、当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔加密观测次数,并及时向施工、监理和设计人员报告监测结果:(1)监测项目的监测值达到报警标准;(2)基坑及周围环境中大量积水、长时间连续降雨、市政管线出现泄漏;(3)基坑附近地面荷载突然加大;(4)临近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂。
4、当有危险事故征兆时,应连续监测。
二、监控报警1基坑及支护结构监控报警值以累计变化量和变化速率两个值控制,累计变化量的报警指标不应超过设计限制。
2、本基坑坡顶水平位移报警值设为25mm,水平位移速率报警值设为连续三日大于2mm∕d o3、周围建筑物报警值以累计变形量、变形速率、差异变形量并结合裂缝观测确定。
4、本基坑周围建筑物沉降报警值设为15mm,倾斜报警值设为IOmm,倾斜速率报警值设为连续三日大于Imm/55、当出现下列情况时,应立即报警:6、周围建筑物砌体部分出现宽度大于15mm的变形裂缝;7、附近地面出现宽度大于IOmm的裂缝;三、紧急预案1基坑开挖和喷锚支护施工过程中,由于破坏了土层中的原有的应力平衡,坡面肯定会发生变形,直到达到新的平衡。
基坑监测方案
![基坑监测方案](https://img.taocdn.com/s3/m/e7e799f99fc3d5bbfd0a79563c1ec5da51e2d670.png)
基坑监测方案一、基准网的建立为了科学地预测基坑支护的稳定和周边环境的变化,及时预报和提供准确可靠的变形数据,因此建立基坑支护施工变形与沉降观测网,定期进行变形沉降观测。
二、基坑支护变形观测(1)基坑支护水平位移观测在基坑边坡顶上布置基线(每基坑边一条),每条基线上设4个变形观测点,同时又作为沉降观测点。
(2)基坑支护沉降观测利用远离场区的城市高程系水准控制点或独立水准点作为沉降观测的起算点,与以上点联测,构成基坑支护沉降观测网。
四面围墙周边附近各布置四个沉降观测点,与基坑周边浅埋基础建(构)筑物、重要管线监测点一起构成监测周边环境的沉降观测网。
三、观测方法(1)水平位移观测分别在基线点四个角上设站,用J2型经纬仪观测四边网的水平角度(四边形内角),并与城市的大地控制网三角点联测水平夹角,检查基线点是否发生位移,在基线点正确无误的情况下,同时在四角测端上分别以对应的相邻角点定向,并观测定向基线上各预埋点的水平位移量初始读数。
(2)沉降观测对基坑边上的各点及周边点建立的沉降观测网的测量方法为:首先自远离基坑的城市水准控制点开始观测,引测至基坑周围后,按编定的各点观测次序依次观测,最后测至另一水准控制点符合,观测仪器采用S3型精密水准仪。
四、基坑周围建(构)筑物等的监测措施工程对基坑周边50米范围内的所有建(构)筑物进行监测,并特别对临近坑边1.5H~2.0H范围内建(构)筑物,包括道路、市政管道、电力电缆、电信管网等加强监测力度。
具体监测措施是:(1)对建(构)筑物,定期进行沉降变形观测。
(2)施工前,了解地下管线的分布情况,对整个场地的地下管线进行摸底,并在地面投影其轴线走向,布置变形观测点进行监测;对某些变形要求较高及紧邻基坑开挖边缘的重要管线,预先做好加固处理措施。
五、质量保证技术措施在施工中不仅要严格执行质量管理程序,保持质量体系的有效运行,同时必须采取切实可行的质量保证技术措施,从原材料的采购到施工全过程进行全方位控制,强化施工质量一次合格率,杜绝不合格和返工。
基坑监测方案
![基坑监测方案](https://img.taocdn.com/s3/m/7e57eb1d2bf90242a8956bec0975f46527d3a7db.png)
基坑监测方案一、监测目的1、为保证基坑安全,及时掌握基坑稳定及土方开挖后基坑边坡的变形情况,基坑支护需进行信息化施工,必须进行支护结构的变形监测。
2、根据监测结果,发现可能发生危险的先兆,判断工程的安全性,防止工程破坏事故和环境事故的发生,采取必要的工程补救措施。
3、以施工监测的结果指导现场施工,进行信息化反馈优化设计。
二、监测项目三、基坑概况结合建设单位分期开挖施工计划,基坑南侧需配合轨道交通地铁配套施工,由于目前地铁配套施工方案尚未确定,故本次暂不考虑基坑南侧的基坑支护设计,优先进行基坑北侧、东侧和西侧的基坑支护设计。
基坑东西长约235m,南北宽约32.0m~109.1m,周长约590m。
基坑开挖深度14.6m~18.6m,基坑采用桩锚支护。
基坑支护结构安全等级为一级。
基坑设计时限18个月。
四、周边条件基坑北侧坡顶距离红线最近处 6.9m,红线范围内均为施工硬化道路,红线外为高层混凝土框架结构,基础形式为桩基础,小区建筑距红线最近距离15.6m。
基坑东侧坡顶距离红线最近处30.8m,基坑坡顶以外2~12m为施工硬化道路,硬化道路以东至红线为实验室、门卫室和消防水箱等临时设施。
红线外为纬十二路。
基坑西侧坡顶距离红线最近处16.3m,基坑坡顶以外1~8m为施工硬化道路,硬化道路以西为项目部,项目部宽6m,项目部以西为用地红线,红线外为纬十一路。
五、控制网的布设与施测监测控制网以假定坐标系统为基准建立。
控制点由基准点和工作基点组成,为了提高监测效率,在基坑周边2倍开挖深度外设置工作基点,选择一个基准点为监测起算点,联测工作基点组成监测控制网闭合线路,工作基点同基准点组成监测控制网,工作基点同监测点组成监测网。
1、水平位移监测控制网的布设与施测(1)水平位移监测控制网的布设工作基准点采用强制对中的水泥观测墩,地下部分埋深 1.2m,地面部分高1.2m。
工作基点埋设时应注意保证与测点间的通视,保证强制对中标志顶面的水平,工作基点埋设完毕后,并作明显警示标记及点号。
基坑支护方案、
![基坑支护方案、](https://img.taocdn.com/s3/m/91006b303d1ec5da50e2524de518964bcf84d221.png)
基坑支护方案、一、工程概况。
咱先说说这个基坑是咋回事儿。
这基坑就在咱们要盖大楼或者搞啥大型地下工程的地方,就像在地上挖个大坑,这个坑的大小、深浅啥的都得搞清楚。
比如说这个基坑长多少米、宽多少米,深度大概是多少,就像了解一个人的身高、胖瘦一样重要。
而且周围的环境也得摸透,附近有没有别的建筑物啊,有没有地下管线啊,就像知道一个人的邻居是谁,有没有啥特殊情况一样。
要是旁边有老房子,那咱搞基坑的时候就得小心点,别把人家房子给震裂了;要是有地下电缆啥的,可不能一铲子下去就给挖断咯。
二、支护的目的。
为啥要搞这个基坑支护呢?这就好比咱们在挖一个大坑的时候,坑周围的土就像一群调皮的小娃娃,总想往坑里跑。
咱们的支护就是要把这些小娃娃给拦住,不让它们乱动,不然这坑可就塌了。
而且这个支护还能保证在坑里面干活的工人师傅们的安全呢。
要是没有支护,那就跟在悬崖边上干活似的,多危险呀。
再一个呢,要是这个基坑周围的土乱动,还可能影响到旁边的建筑物或者道路啥的,就像多米诺骨牌一样,一个倒了,可能牵连一片。
所以支护就是为了让这个基坑稳稳当当的,让整个工程顺利进行。
三、支护方式的选择。
1. 放坡。
这放坡就像是给这个基坑做个小滑梯一样。
如果这个基坑周围的土比较好,比较稳定,那咱们就可以把坑的边儿做成一个斜坡。
这个斜坡的角度可不能太大,太大了土就容易滑下去。
就像滑梯太陡了,小朋友滑的时候就容易摔跟头。
一般来说,这个坡度得根据土的类型来确定,比如说砂土可能就需要缓一点的坡,黏土可能稍微陡一点也没关系。
不过放坡也有个小缺点,就是它会占比较大的地方,如果场地比较小,可能就不太适合了。
2. 土钉墙。
土钉墙就像是在土里面插很多小钉子,把土给固定住。
先在土坡上钻孔,然后把土钉插进去,再在外面喷上混凝土。
这些土钉就像小爪子一样,紧紧抓住土,不让它跑。
土钉墙比较适合那种地下水位比较低,土的自立性比较好的情况。
就像一个团队,土钉就是一个个小队员,大家齐心协力把土坡给守住。
基坑监测施工方案
![基坑监测施工方案](https://img.taocdn.com/s3/m/09a0d054a66e58fafab069dc5022aaea998f41f3.png)
基坑监测施工方案监测频率要求:开挖期间开挖侧每天观测一次,非开挖期间每3-5天观测一次;当变形超限时应加密观测,当有危险事故征兆时应连续观测。
当基坑变形、地面沉降达到预警值,应立即通知查明原因,及时采取有效的措施。
(一)监测目的1、在基坑施工过程中,只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,以确保工程的顺利进行,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计参数。
2、检验设计所采取的各种假设和参数的正确性,指导基坑开挖和支护结构的施工。
3、确保基坑支护结构和相邻建筑物的安全。
4、积累工程经验,为提高基坑工程的设计和施工的整体水平提供依据。
5、将监测数据与预测值相比较以判断前一步施工工艺和施工参数是否符合要求,以确定和优化下一步的施工参数,做到信息化施工。
6、将现场测量结果用于信息化反馈优化设计,使实际达到优质安全、经济合理、施工快捷的目的。
(二)监测原则深基坑工程是一项技术上复杂,不确定因素较多,风险性很大的系统工程。
根据该基坑支护及周边环境的特点,在确定监测方法及监测内容时,需考虑以下原则:1、保证重点:该工程为深基坑,所以基坑支护结构本身是本工程需监测的重点。
沿基坑四周在基坑原土位置布置测斜管、在桩顶布置测量点进行位移和变形监测,以保证支护结构整体安全。
2、兼顾环境:由于本工程地下场区地下水主要有孔隙水及基岩裂隙水,其中孔隙水为区内地下水的主要赋存形式。
3、为了保证周围建(构)筑物及地下管线的正常安全使用,应布置测点进行变形观测。
4、信息化施工:监测资料的及时整理和快速反馈给设计单位、监理单位、建设单位非常重要。
支护结构本身的变形是否超过报警值,地面沉降是否超过报警值,需要测试结果的及时反馈,以便使施工单位及时调整施工方案和顺序,或采取必要措施保证基坑和周围环境的安全。
5、经济合理:对选定监测内容,以保证安全为前提。
基坑支护工程监测方案
![基坑支护工程监测方案](https://img.taocdn.com/s3/m/18f9c63ca517866fb84ae45c3b3567ec112ddc4f.png)
基坑支护工程监测方案一、基坑支护工程监测方案1.监测目的(1)监测基坑开挖过程中的变形情况,及时发现并处理可能存在的变形加剧或者失稳的情况。
(2)监测基坑支护结构的施工质量,及时发现并处理支护结构的裂缝、位移等问题。
(3)监测基坑开挖和支护过程中的地下水位变化情况,确保地下水位对支护结构的影响在合理范围内。
(4)监测基坑支护工程对周边建筑物、管线等的影响,确保不会对周边环境造成负面影响。
2.监测内容(1)基坑开挖过程的变形监测,包括土体沉降、支护结构位移、裂缝变化等情况。
(2)基坑支护结构施工过程的监测,包括混凝土浇筑质量、支护结构内力变化、裂缝情况等。
(3)地下水位监测,主要是为了了解地下水位的变化情况,及时调整排水和抗渗措施。
(4)周边建筑物、管线等的影响监测,主要是为了了解基坑支护工程对周边环境的影响情况。
3.监测方法(1)基坑开挖过程的变形监测,可以采用测量仪器进行实时监测,如全站仪、测斜仪、倾角仪等。
(2)基坑支护结构施工过程的监测,可以采用超声波检测仪、裂缝位移计等仪器进行实时监测。
(3)地下水位监测,可以采用水位计进行实时监测。
(4)周边建筑物、管线等的影响监测,可以采用激光测距仪、地震波等仪器进行实时监测。
4.监测频率(1)基坑开挖过程的变形监测,每天至少进行一次监测,发现异常情况要及时处理。
(2)基坑支护结构施工过程的监测,根据施工进度和情况进行不定期监测,发现问题及时处理。
(3)地下水位监测,每天至少进行一次监测,根据地下水位变化情况适时调整排水和抗渗措施。
(4)周边建筑物、管线等的影响监测,根据实际情况进行不定期监测,及时发现问题并处理。
二、监测结果处理1.监测结果的处理(1)基坑开挖过程的变形监测结果要及时分析,如发现异常情况要立即停止开挖,并做好防护措施。
(2)基坑支护结构施工过程的监测结果要及时分析,如发现支护结构存在问题要及时调整施工方案,并进行补救措施。
(3)地下水位监测结果要及时分析,根据地下水位变化情况适时调整排水和抗渗措施。
基坑支护监测方案
![基坑支护监测方案](https://img.taocdn.com/s3/m/be0e3ebfbb0d4a7302768e9951e79b8969026878.png)
基坑支护监测方案基坑是指建筑施工过程中需要挖掘的大面积或深度较大的坑洞,在城市建设中广泛应用于地下室、地下停车场、地铁等工程建设中。
基坑的支护是确保施工安全和周围环境稳定的重要措施之一、而监测基坑支护的方案则是在施工过程中对支护工程进行实时监测,及时发现并修复问题,以确保工程的稳定性和安全性。
本文将介绍一个基坑支护监测方案。
一、监测内容1.地表沉降监测:通过安装沉降观测点,测量地表沉降情况,及时发现和掌握地表沉降变化的趋势和速度,以判断基坑支护工程是否存在变形和下沉情况。
2.周边建筑物位移监测:通过设置位移观测点,监测周边建筑物的位移情况,及时发现和掌握周边建筑物变位的情况,以评估基坑施工对周边建筑物的影响程度。
3.土体应力监测:通过在基坑周边和支护结构上设置应变计和应变片,实时监测土体的应力分布情况,了解土体的变形和变位情况。
4.土体测斜监测:通过设置测斜孔和监测测斜仪,监测土体的倾斜情况,及时发现和掌握土体的变形和位移情况,以评估基坑支护结构的稳定性。
5.土体水位监测:通过在基坑周边设置水位观测点,监测地下水位的变化情况,及时发现和掌握地下水位的涨落情况,以评估基坑支护结构对地下水位的影响程度。
二、监测方法1.建立监测体系:根据实际情况,确定监测点的位置和数量,合理布设监测设备,建立监测点的坐标系和标注体系,确保监测的准确性和可靠性。
2.监测设备选择:选择适合的监测设备和仪器,包括位移仪器、应变仪器、测斜仪器、水位仪器等,保证监测数据的精确性和稳定性。
3.数据采集与处理:设立数据采集终端和服务器,实现实时数据采集、传输和存储,建立数据处理平台,对监测数据进行分析和评估,及时发现异常情况并采取相应的应对措施。
4.预警机制与措施:根据监测数据的变化趋势和阈值,设置相应的预警机制,建立监测数据与预警信号的关联模型,一旦出现预警信号,及时启动应急预案,采取相应的支护修补措施,以确保施工安全。
三、监测频率与报告1.监测频率:根据具体工程的要求和施工进度,制定监测频率,一般为每周或每月进行一次,实时监测的数据可随时查看。
基坑支护监测方案
![基坑支护监测方案](https://img.taocdn.com/s3/m/2f75b1927fd5360cbb1adbb2.png)
内衣基地产业配套宿舍项目基坑支护工程基坑支护监测方案中建二局内衣基地产业配套宿舍项目基坑支护工程项目部2019年10月内衣基地产业配套宿舍项目基坑支护工程基坑支护监测方案编制:审核:审批:日期:中建二局内衣基地产业配套宿舍项目基坑支护工程项目部目录1、工程概况 (4)2、基坑设计概况 (4)3、场地工程地质及水文地质概况 (5)3.1 场地地形与地貌 (5)3.2 地质构造 (5)3.3 水文地质条件 (6)4、监测目的 (6)5、执行规范 (6)6、监测目的及意义 (7)7、监测项目 (7)8、基准点、监测点的布设 (8)8、监测频率 (8)9、变形观测的技术要求及控制指标 (9)10、检测人员及设备 (9)1、工程概况本项目位于光明区马田街道办事处,西环大道西侧,科达一路与科达三路交汇处。
项目用地面积约19000㎡,采用灌注桩+三轴搅拌桩+锚索支护,拟设三层地下室。
基坑开挖面积约18000㎡,周长约530m,开挖深度约9.6。
项目东侧、北侧皆为建设单位后期开发用地,考虑建设单位开发进度,利用东侧场地作为现场临时材料及临设布置点。
2、基坑设计概况本基坑深度约9.6m,根据《深圳市基坑支护技术规范》(SJG 05-2011)的规定和场地周边环境条件,确定基坑南侧和西侧基坑支护安全等级为一级,其余两侧基坑支护安全等级为二级。
本基坑按开挖至坑底后,安全和正常使用期为一年。
超期使用前必须进行安全评价。
基坑采用灌注桩+预应力锚索支护,单排三轴深层搅拌桩、灌注桩总数为291根,预应力锚索总计13095m,土方开挖约173600m³。
灌注桩为旋挖的方式成孔,遇到厚砂层易塌孔时采用全套筒护壁跟进成孔,遇到障碍无法成孔时采用冲孔桩机成孔。
桩径1.0m,间距1.8m。
灌注桩砼强度均为水下C30,灌注桩主筋保护层厚度50mm,主筋采用焊接连接,焊接应满足相关规范要求,桩内钢筋伸入冠梁长度为冠梁高度,桩顶设C30冠梁1000×600mm,灌注桩桩间(与灌注桩同轴)设单排三轴深层搅拌桩帷幕截水,搅拌桩桩径650mm,桩间距450mm,初定桩长20m,实桩长18m,空桩长2m,施工时按搅拌桩帷幕必须穿透砾砂层,进入相对隔水层1.5m以上来控制桩长。
地下室开挖基坑支护监测方案
![地下室开挖基坑支护监测方案](https://img.taocdn.com/s3/m/f59efc3700f69e3143323968011ca300a6c3f68e.png)
地下室开挖基坑支护监测方案一、项目背景与目标二、监测内容与方法1.监测内容(1)地下水位监测:在开挖基坑前后,通过井点和水位计等设备对基坑周边地下水位进行连续监测,以及记录相应的变化情况。
(2)周边建筑物变位监测:在基坑开挖过程中,对周边建筑物进行水平位移和竖向位移的监测,以及记录相应的变化情况。
(3)基坑支撑结构变形监测:对基坑支撑结构进行水平位移、竖向位移、沉降等变形的监测,以及记录相应的变化情况。
2.监测方法(1)地下水位监测:选择适当数量的井点,在基坑周边布设水位计,连续监测地下水位的变化情况。
同时,记录天气、降雨等外部因素的变化情况,以便分析地下水位变化的原因。
(2)周边建筑物变位监测:通过激光测距仪、测斜仪、水准仪等设备,对周边建筑物进行水平位移和竖向位移的监测。
监测频率应根据实际情况确定,一般为每天一次或每周一次。
(3)基坑支撑结构变形监测:通过激光测距仪、全站仪、沉降标测等设备,对基坑支撑结构进行水平位移、竖向位移、沉降等变形的监测。
监测频率应根据实际情况确定,一般为每天一次或每周一次。
三、监测数据处理与分析1.监测数据处理(1) 地下水位数据处理:监测得到的地下水位数据应及时导入电脑,进行处理和分析。
具体的处理方法可以采用Excel或专业的数据处理软件进行。
(2) 周边建筑物变位数据处理:监测得到的周边建筑物变位数据应及时导入电脑,进行处理和分析。
具体的处理方法可以采用Excel或专业的数据处理软件进行。
(3) 基坑支撑结构变形数据处理:监测得到的基坑支撑结构变形数据应及时导入电脑,进行处理和分析。
具体的处理方法可以采用Excel或专业的数据处理软件进行。
2.监测数据分析(1)地下水位数据分析:通过对地下水位数据进行分析,判断基坑周边水文地质情况是否有变化,并结合实际情况评估地下水位对基坑支撑结构的影响。
(2)建筑物变位数据分析:通过对建筑物变位数据进行分析,判断基坑开挖对周边建筑物的变形情况,并及时采取相应的措施进行调整和修复。
基坑支护工程检测方案
![基坑支护工程检测方案](https://img.taocdn.com/s3/m/c02c504abb1aa8114431b90d6c85ec3a86c28b11.png)
基坑支护工程检测方案一、基坑支护工程检测的目的和意义:1.确保基坑支护结构的稳定性,防止地面沉降和侧倾等安全问题;2.检测基坑支护工程的施工质量,确保符合设计要求;3.及时发现基坑支护工程中的质量问题,以便采取相应的措施进行修补或改善;4.提供可靠的数据支持,为基坑支护工程的后期维护和改造提供依据。
二、基坑支护工程的检测内容:1.地下水位的检测:地下水位是基坑工程中一个重要的参数,需要通过地下水位监测井进行定期检测,以了解地下水位的变化情况;2.基坑支护结构的变形检测:包括监测基坑支护结构的沉降、倾斜、变形等情况,并根据监测数据判断其稳定性;3.地下管线的安全检测:地下管线是城市基础设施的重要组成部分,需要通过相关技术手段检测,以确保施工过程中不会损害到地下管线的安全;4.基坑地下室的检测:对于有地下室的基坑工程,需要对其进行检测,包括地下室结构的变形情况、地下室地面的沉降等;5.基坑周边土体的检测:通过监测基坑周边土体的应力变化、变形等情况,判断基坑支护工程对周边土体的影响程度,同时也可以评估基坑支护工程的稳定性。
三、基坑支护工程检测方法:1.地下水位检测方法:可以使用水位计进行测量,根据勘察资料确定测量点,定期测量并记录数据;2.基坑支护结构变形检测方法:可以采用全站仪进行监测,定期对支护结构进行测量,判断其变形情况;3.地下管线安全检测方法:可以通过地下雷达和金属探测仪等仪器,对地下管线进行检测,及时发现管线的位置和深度,避免损坏;4.基坑地下室检测方法:可以使用沉降仪和倾斜仪进行监测,定期测量并记录地下室结构的变形情况;5.基坑周边土体检测方法:可以使用应变计和振动计等仪器,对周边土体的应力和变形进行监测,评估基坑支护工程对周边土体的影响。
四、基坑支护工程检测的频率和要求:1.基坑支护结构的高度和复杂程度;2.基坑支护工程所处的地质条件;3.基坑支护工程的施工周期;4.基坑支护工程的设计要求和工程规模。
基坑监测方案
![基坑监测方案](https://img.taocdn.com/s3/m/96b7cffcb84ae45c3a358c36.png)
建筑基坑工程监测方案编制:审核:批准:有限公司目录第一章、工程概况 (3)1.项目概况 (3)2.周边环境 (3)3.场地工程地质条件 (4)第二章、监测思路 (6)1.监测目的 (6)2.监测依据 (7)3.本项目重点、难点分析及解决措施 (8)第三章、监测分项方案 (10)1.监测项目 (10)2.监测点的布设 (10)3.监测分项方案 (11)4.监测仪器 (20)5.监测频率及预警办法 (21)5.1监测频率 (21)5.2监测预警办法 (21)5.3监测进度安排及异常情况下的检测措施 (24)6.监测数据处理与信息反馈 (26)6.1监测成果 (26)6.2监测报告及其编制 (27)6.3信息化施工 (27)第四章、监测工作的组织与项目管理 (27)1.检测机构的设置 (27)2.拟建立的组织机构框图 (28)3.质量保证体系框图 (28)第五章、工作计划及工作制度 (30)1.工作计划 (30)2.工作制度 (30)第六章、附件 (32)监测点布置图 (32)第一章、工程概况1.项目概况本工程基坑开挖深度自然地面下4.50m、6.10m及13.10m,B10基坑周长约440m。
B11基坑周长约300m。
按照《建筑基坑支护技术规程》(JGJ120-2012)规定,两基坑侧壁支护结构的安全等级为一级,支护结构重要性系数取值1.1。
该项目工程包括B-10及B-11两地块,B-10地块包括上部2幢塔楼及地下通体3F地下室,B-1包括上部1幢塔楼及地下通体3F地下室,1F地下室开挖相对标高为-6.1m(绝对高程80.9m),3F地下室开挖相对标高为-14.10m(绝对高程72.90)。
2.周边环境B10地块西侧及南侧为已建道路,北侧及东侧空旷,B11地块四周为已建道路,所有道路尚未通车,下部有电力、自来水、电信、雨水及排污管道,详见周边环境图。
地下管廊情况:B-10 地块西侧和南侧邻近郑东新区综合交通枢纽区地下道路工程桩号 CA 0+405~CA 0+606 之间的次隧道A、匝道主体土建工程,隧道埋深13.084~13.452m,高程约为71.534~71.942m。
基坑支护监测方案监理审核意见 -(1)
![基坑支护监测方案监理审核意见 -(1)](https://img.taocdn.com/s3/m/a0bf8e09cc17552707220849.png)
土建工程
审查内容
“YDK4+050-+350区段围护结构深基坑支护监测方案”
施工单位
中交隧道局
监理审核意见:
1、应根据【建筑基坑工程监测技术规范】(GB50497-2009)的规定,确定基坑支护安全等级。
2、编制依据中应修订或增加以下依据:
(1)建设单位和建设单位委托的第三方监测中心的管理办法和具体要求;
(2)施工组织设计和专项施工方案。
3、监测项目
对于强风化安山岩地层应补充基坑隆起监测要求。
4、监测频率
方案中监控频率与设计文件不符,应参考设计文件和相关规范修订。
5、测点埋设
基坑边坡埋设点采用的钢筋建议为:直径为18mm,长度为800mm的螺纹钢。
6、应附观测点平面布置图。
7、监控量测点埋设,应说明详细埋设位置,且应附点位埋设大样,并说明具体做法或工艺。
中铁济南监理有限公司宁高城际轨道交通NG-TAJL-01项目监理
施工方案审查记录表
监理合同段:宁高城际轨道交通二期(剩余段)项目NG-TAJL-01标段
施工合同段:宁高城际轨道交通二期(剩余段)项目施工一标编号:007
工程名称
宁高城际轨道交通二期(剩余段)项目施工一标
工程里程
DK4+350-DK6+450盾构法隧道正洞
总监理工程师/副总监理工程师(签字):
日期:2013年12月7日
基坑监测方案及技术措施
![基坑监测方案及技术措施](https://img.taocdn.com/s3/m/1660496d814d2b160b4e767f5acfa1c7aa00822a.png)
(一)基坑监测方案及技术措施1、监测目的1.使参建各方能够彻底客观真实地把握工程质量,掌握工程各部份的关键性指标,确保工程安全;2.在施工过程中通过实测数据检验工程设计所采取的各种假设和参数的正确性,及时改进施工技术或者调整设计参数以取得良好的工程效果;3.对可能发生危机基坑工程本体和周边环境安全的隐患进行及时、准确的预报,确保基坑结构和相邻环境的安全;4 .积累工程经验,为提高基坑工程的设计和施工整体水平提供基础数据支持。
2、监测原则(1)基坑工程监测基本原则1.监测数据必须是可靠真正的,数据的可靠性由测试元件安装或者埋设的可靠性、监测仪器的精度以及监测人员的素质来保证。
监测数据真实性要求所有数据必须以原始记录为依据,任何人不得篡改、删除原始记录;2.监测数据必须是及时的,监测数据需在现场及时计算处理,发生有问题可及时复测,做到当天测、当天反馈;3.对所有检测项目,应按照工程具体情况预先设定预警值和报警制度,预警体系包括变形或者内力积累值及其变化速率;4.监测应整理完整监测记录表、数据报表、形象的图表和曲线,监测结束后整理出监测报告。
3、监测基点的布设及仪器配备(1)变形监测基准点、工作基点布设要求1.至少有3 个稳定、可靠的基准点。
2 .工作基准点选在相对稳定和方便使用的位置。
在通视条件良好、距离较近、观测项目较少的情况下,可直接将基准点作为工作基点。
3 .监测期间,应定期检查工作基点和基准点的稳定性。
(2)监测仪器与使用根据《中华人民共和国国家标准•工程测量规范GB50026-2022》(以下简称《规范GB50026-2022》)中的有关规定,结合《中华人民共和国行业标准•建造变形测量规范JGJ/T 8-2022》(以下简称《规程JGJ/T 8-2022》)中的有关内容,选择安全监测仪器及施测方法。
1 .基坑侧壁的水平位移采用测斜仪监测;2.建造物及地面(路面)的沉降监测采用DS05 级水准仪、测微器,配合铟钢尺,按测微法施测;3.地下水水位应经过检定的长度量具施测,执行《建造基坑支护技术规程》(JGJ120-2022) 8.3.9 条有关规定;观测精度不宜低于10mm。
基坑支护监测方案
![基坑支护监测方案](https://img.taocdn.com/s3/m/de2cc966a4e9856a561252d380eb6294dd882204.png)
基坑支护监测方案一、概述基坑支护监测方案是指建筑工程中对基坑支护结构进行定期监测,旨在确保基坑支护结构的安全可靠性,并及时发现并处理任何潜在的问题,避免发生意外事故。
本方案将从监测内容、监测方法、监测频率以及监测报告等方面详细介绍基坑支护监测方案。
二、监测内容1.基坑周边地表沉降情况的监测,包括竖向沉降和水平沉降的监测。
2.基坑支护结构的变形监测,包括支撑杆和支护桩的变形监测以及支护墙的水平位移监测。
3.地下水位的监测,包括基坑周边地下水位和基坑内水位的监测。
4.基坑周边地下管线的变形和沉降监测。
三、监测方法1.测量仪器:使用测距仪、水准仪、全站仪等测量仪器进行基坑支护结构的变形、位移和沉降监测。
2.定点测量:选择关键位置进行定点测量,包括支撑杆和支护桩的变形测量、支护墙的水平位移测量以及地下管线的变形和沉降测量。
3.数据采集:使用数据采集系统对监测数据进行实时采集,并进行数据分析和处理。
四、监测频率1.施工前的基础测量:在施工前进行基础测量,记录基坑周边地表高程和地下水位的基准数据。
2.施工期间的定期测量:在施工期间定期进行基坑支护结构的变形和位移测量,一般为每周测量一次。
3.土方开挖期间的实时监测:在土方开挖期间进行实时监测,提供实时数据和预警功能。
4.施工结束后的后期监测:在施工结束后进行基坑周边地表沉降情况的后期监测,确定工程的影响范围和效果。
五、监测报告1.监测数据的汇总和分析:对监测数据进行统计和分析,得出监测结果,并与设计要求进行对比。
2.监测数据的图表展示:将监测数据制成图表,直观地展示基坑支护结构的变形、位移和沉降情况。
3.问题分析和处理建议:根据监测结果,分析存在的问题,并提出相应的处理建议,确保基坑支护结构的安全可靠性。
4.监测报告的归档和共享:将监测报告进行归档,并与相关人员进行共享,以备后期工程评估和参考。
六、总结基坑支护监测方案是建筑工程中必不可少的一项工作,通过对基坑支护结构的定期监测,可以确保其安全可靠性。
基坑监测专项方案
![基坑监测专项方案](https://img.taocdn.com/s3/m/5779a8538f9951e79b89680203d8ce2f0066657e.png)
基坑监测专项方案(一)基坑围护的施工监测内容l、监测内容及项目根据围护设计图纸要求,结合本工程实际情况,在基坑开挖过程中开展以下几方面监测内容:(1)具体项目主要用于观测围护结构、邻近建筑物及道路的水平位移及沉降。
1)基坑周边的沉降、裂缝观测。
2)沿基坑周边道路沉降观测点,沉降观测点布置4个。
3)在泵车停放处及大门出入口挖土及底板结构施工期间增设沉降观测点,每天观测。
2、巡视检查基坑工程整个施工期内,每天均应进行巡视检查。
基坑工程巡视检查宜包括以下内容:(1)支护结构土体有无裂缝出现;(2) 周边环境1)周边建筑有无新增裂缝出现;2)周边道路(地面)有无裂缝、沉陷;(二)监测点的设置1、为坑外土体沉降观测点,布置于坡顶。
2、施工期间应加强已有道路、建(构)筑物监测工作。
3、监测点、后视点、水准基点应设置在基坑施工影响范围外。
坑外土体水平位移、沉降,地下水位变化;周边道路的沉降,周边建筑物沉降等。
4、地表开裂,宜采用标记法进行观察和比较,有裂缝时,先测量其宽度并做好记录,然后用水泥浆灌实抹平,必要时可拍照留存。
(三)监测次数及方法1、工程开工前进行一次全面监测记录。
2、在基坑开挖期间,每天监测次数一次为宜,特殊情况下每天二到三次,雨天和雨后或当位移出现发展趋势或接近预警值时,应加大监测的频率。
3、地下室底板完工后可减少监测次数,地下室侧墙完工后停止监测。
4、雨天和雨后应加强监测,并对各种可能危及土体安全的水害来源进行仔细观察。
(四)监测设备1、全站仪1套2、DS2水准仪1台(五)基坑的监测时间、监测频率1、原始数据采集;基坑开挖前对各观测点进行2回次的有效观测,取2次有效观测数据的平均值为初始读数。
2、表层挖土时,每天观测一次;3、挖土深度接近坑底设计标高时,或监测过程中发现某监测点变形数据接近警戒值时,增加监测频率;4、当监测点变形值超警戒值每天监测次数不少于三次;5、垫层浇筑完毕,若各监测点变形情况基本稳定,监测频率可降至二天一次;6、监测周期直至地下室全部完成。
基坑支护监测方案监理审核意见 -(1)
![基坑支护监测方案监理审核意见 -(1)](https://img.taocdn.com/s3/m/a0bf8e09cc17552707220849.png)
日期:2013年12月7日
(2)施工组织设计和专项施工方案。
3、监测项目
对于强风化安山岩地层应补充基Biblioteka 隆起监测要求。4、监测频率
方案中监控频率与设计文件不符,应参考设计文件和相关规范修订。
5、测点埋设
基坑边坡埋设点采用的钢筋建议为:直径为18mm,长度为800mm的螺纹钢。
6、应附观测点平面布置图。
7、监控量测点埋设,应说明详细埋设位置,且应附点位埋设大样,并说明具体做法或工艺。
中铁济南监理有限公司宁高城际轨道交通NG-TAJL-01项目监理
施工方案审查记录表
监理合同段:宁高城际轨道交通二期(剩余段)项目NG-TAJL-01标段
施工合同段:宁高城际轨道交通二期(剩余段)项目施工一标编号:007
工程名称
宁高城际轨道交通二期(剩余段)项目施工一标
工程里程
DK4+350-DK6+450盾构法隧道正洞
专业
土建工程
审查内容
“YDK4+050-+350区段围护结构深基坑支护监测方案”
施工单位
中交隧道局
监理审核意见:
1、应根据【建筑基坑工程监测技术规范】(GB50497-2009)的规定,确定基坑支护安全等级。
2、编制依据中应修订或增加以下依据:
(1)建设单位和建设单位委托的第三方监测中心的管理办法和具体要求;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXX三期基坑支护监测方案XXX有限公司二O一四年十月十二日XXX基坑支护监测方案1.工程概述工程概况本工程合肥市XXX•XXX项目三期基坑支护指定分包工程由合肥新站XXX开发有限公司投资新建,工程地点位于合肥市万佛湖路与潜山路交口西北侧ZWQTC-036地块。
合肥市XXX•XXX项目三期基坑支护指定分包工程由江苏东南建筑工程结构设计事务所有限公司设计,基坑支护详见设计图纸。
本支护工程为临时性工程,基坑安全等级为二级,结构重要性系数为,基坑使用期为12个月。
、本工程支护范围内土层分布自上而下依次为素填土、粘土、强风化泥质砂岩、中风化泥质砂岩,基坑底落于粘土中,场地地下水类型为主要为上承滞水。
、基坑开挖深度约为—,基坑靠近星光东路有较多管线,北侧会所周边有天然气管道。
经放线,管道在基坑上口线外侧3m,对基坑施工无影响。
、本次设计图纸分为4个剖面,分别为1-1剖面、1a-1a剖面,2-2剖面、3-3剖面。
1-1剖面设计为Φ800旋挖桩,间距,桩长10米,距桩顶2m处设置一道锚索,基坑内侧喷锚护面。
1a-1a剖面设计为Φ1000旋挖桩,间距,桩长15米,基坑内侧喷锚护面。
2-2剖面、3-3剖面设计为土钉墙。
潜山路一侧设计为自然放坡,放坡比例为1:。
地下底板面标高为,基坑开挖深度为约,场地岩土工程条件拟建场地地基土构成层序自上而下为:①层杂填土(Q ml)——层厚~,层底标高为~。
褐、褐灰,褐黄、黄褐色等,湿,松散状态,状态不均匀。
该层主要成分为粘性土,表部主要含碎砖石、砼块等建筑垃圾,含有植物根茎,局部地段夹生活垃圾和淤泥质土等。
②层粉质粘土(Q4al+pl)——此层仅局部分布,层厚~,层底标高为~。
褐灰、灰黄色等,可塑状态,湿,有光泽,无摇振反应,干强度中等,韧性中等;含少量氧化铁、铁锰结核及高岭土等。
③1层粘土(Q3al+pl)——层厚一般为~,层底标高为~。
灰褐、褐灰、灰黄、褐黄色等,一般为硬塑状态,稍湿,有光泽,无摇振反应,干强度中等,韧性中等;含氧化铁、铁锰结核等。
③2层粘土(粉质粘土)(Q3al+pl)——层厚一般为~,层底标高为~。
褐黄、棕红色等,硬塑~坚硬状态,稍湿,有光泽,无摇振反应,干强度高,韧性高;间夹薄层粉质粘土、粉土,含氧化铁、铁锰结核、高岭土及钙质结核等。
④层粉质粘土(Q3al+pl)——层厚一般为~,层底标高为~。
灰白、灰黑色等,主要为泥质砂岩风化残积土,夹粉土和粉细砂,硬塑(或密实)状态,稍湿,稍有光泽,摇振反应中等,干强度中等,韧性中等;含氧化铁、铁锰结核等,混少量风化岩块。
⑤层强风化泥质砂岩(K)——层厚~,层底标高为~。
棕红色。
稍湿,密实状态,表部已风化成壤及砂,无水可钻进,且不规则夹有中风化块体,局部夹砂岩,含长石、钙质结核等,裂隙发育,岩体完整程度为极破碎,其岩体基本质量等级为Ⅴ类,属极软岩。
⑥层中风化泥质砂岩(K)——该层尚未揭穿。
棕红色,岩质致密坚硬,裂隙不甚发育,钻进较为困难,含长石、云母、黑色矿物等,间夹泥岩。
表部结构破坏,沿节理面有次生矿物,基本呈块状构造,往下岩体趋向完整,无软弱夹层及破碎带,呈厚~中厚层状,胶结较差,岩石质量指标RQD 一般为较差~较好(50<RQD<90),岩体完整程度为较完整,属极软岩,其岩体基本质量等级为Ⅴ类。
该层需用风镐开挖。
2.监测方案的编制依据由江苏东南建筑工程结构设计事务所有限公司设计的《基坑支护平面布置图》等;相关国家、行业及地方规范:《建筑基坑支护技术规范》(JGJ120-99);《锚杆喷射混凝土支护技术规范》(GB50086-2001);《建筑基坑工程监测技术规范》(GB50497-2009);《混凝土结构设计规范》(GB50010-2002);《建筑地基基础设计规范》(GB50007-2002);《建筑地基基础工程施工质量验收规范》(GB50202-2002);《建筑地基基础技术规范》(DBJ13-07-2006);《建筑基坑工程技术规范》(YB9258-97);《建筑桩基技术规范》(JGJ94-2008)。
3. 监测方案的编制原则根据本工程特点和对监测的技术要求并结合施工现场实际情况,监测工作应按以下要求进行:(1)基坑本身及其周围基坑开挖深度3倍范围内的建筑物、地下管线作为本工程监测对象;(2)对道路下重要管线进行重点监测;(3)设置的监测内容和监测项目必须符合有关规范及设计要求,并能结合现场实际全面反映工程施工过程中基坑本身和工程环境的变化情况;(4)采用的监测方法、仪器、材料和监测频率应符合设计和规范要求;(5)监测数据的测试、采集应做到全面、及时、准确;监测数据的整理和提交应满足信息化施工的要求。
4.监测目的(1)对基坑施工期间基坑变形和其影响范围内的环境变形、被保护对象的变形以及其它与施工有关的项目或量值进行测量,及时和全面地反映它们的变化情况,实现信息化施工,并将监测数据作为判断基坑安全和环境安全的重要依据;根据现场监测所得数据与设计值(或预警值)进行比较,如果超过某个限值则立即采取措施,防止支护结构发生较大变形与破坏、防止周边道路、建筑物发生较大变形与明显损伤;(2)为修正设计和施工参数、预估发展趋势、确保工程质量及周边管线的安全运营提供实测数据,是设计和施工的重要补充手段,根据监测提供的数据指导现场施工,优化施工组织(3)为理论验证提供对比数据,为优化施工方案提供依据;(4)积累区域性设计、施工、监测的经验。
5.监测内容根据基坑开挖的深度、支护结构的特点、所处的周边环境条件及设计要求,基坑开挖监测项目设置以下几项:基坑坡顶水平位移监测;基坑坡顶垂直沉降监测;基坑周边道路、周边建(构)筑物垂直沉降监测;地下水位监测;6.监测的方法和监测点布置基坑坡顶和支护桩顶部水平位移监测(1)监测方法利用前视固定点形成的测量基线,用经纬仪测量围护体顶部各测点与基线间距离的变化;如果视线受限制,则建立平面控制网,采用全站仪测水平角、水平距进行计算,从而了解围护体因相应位置土体的挖除对其顶部水平位移的影响程度,分析围护体的稳定情况。
(2)测点布置水平位移监测点布置在边坡及支护桩顶部,间距不应超过20m,预计共布置有所成24个点,编号S1~S24。
在边坡坡顶喷射混凝土面上埋设测量钉,应确保测量钉略高出混凝土面,测钉与混凝土体间不应有松动。
在稳定地方至少设置2个基准点,以进行相互校核。
(3)测试仪器R-202N全站仪、觇牌、钢卷尺等仪器(4)仪器精度≤2"(5)预警指标暂缺(6)监测频率土方开挖暂定1个月,每1~3天观测一次,底板浇筑暂定1个月,每1~10天观测一次,底板浇筑后至土方回填暂定4个月,每7~14天观测一次,底板浇筑施工结束至土方回填,每7~14天观测一次;遇到异常情况(台风、暴雨)应加密监测。
基坑坡顶垂直沉降监测(1)监测方法建立高程控制网,利用精密水准仪观测测点高程变化情况,从而了解围护结构因相应位置土体的挖除对其竖直方向上的影响程度,分析围护体的稳定情况。
(2)测点布置测点布置与埋设同“基坑坡顶水平位移”, 每一个水平位移监测点作为一个沉降监测点,共计242个,编号为J1~J24。
(3)测试仪器中纬ZDL700精密水准仪(4)仪器精度≤Km(5)预警指标暂缺(6)监测频率土方开挖暂定1个月,每1~3天观测一次,底板浇筑暂定1个月,每1~10天观测一次,底板浇筑后至土方回填暂定4个月,每7~14天观测一次,底板浇筑施工结束至土方回填,每7~14天观测一次;遇到异常情况(台风、暴雨)应加密监测。
基坑周边道路、周边建(构)筑物垂直沉降监测(1)监测方法利用中纬ZDL700精密水准仪建立高程控制网,监测基坑周边道路测点及周边建(构)筑物测点高程变化情况,从而了解基坑施工对周边道路、周边建(构)筑物竖直方向上的影响程度,分析周边道路(地下管线)、周边建(构)筑物的稳定情况。
(2)测点布置道路监测点布置在道路周边,间距不应超过30m,预计共布置个点,编号DCJ1~DCJ5。
周边建(构)筑物垂直沉降监测点应布置在基坑施工影响范围内的建(构)筑物上,测点主要布设于房屋角,长边超过25米和结构较差、距基坑较近的房屋在中部适当加密布点。
根据现场实际情况暂布设12测点,编号为WCJ1~WCJ12稳定地方至少设置2个高程基准点,以进行相互校核。
(3)测试仪器中纬ZDL700精密水准仪(4)仪器精度≤Km(5)预警指基坑围护桩体测斜误差≤平面位移监测误差≤1mm沉降位移监测误差≤ mm应力监测测量误差≤%(6)监测频率土方开挖暂定1个月,每1~3天观测一次,底板浇筑暂定1个月,每1~10天观测一次,底板浇筑后至土方回填暂定4个月,每7~14天观测一次,底板浇筑施工结束至土方回填,每7~14天观测一次;遇到异常情况(台风、暴雨)应加密监测。
7.监测工序及测点监测工序各监测内容所需的监测仪器、监测点的安装、埋设以及测读的时间应随基坑工程施工工序而展开:(1)根据各道工序施工需要,先期布设地表、建筑物、及地下管线的沉降点。
(2)地下围护结构施工时,同步安装围护墙体内测斜管。
(3)地下围护结构及土体加固施工完成后,进行水位管的埋设。
(4)围护墙顶的圈梁浇筑时,同步埋设墙顶位移、沉降测点,同时做好测斜管口的保护工作。
(5)基坑开挖之前,应建立测量控制网,将所有已埋设测点测读初始值,并应测读三次。
(6)在相应施工区段及其影响范围内的测点在施工期间按要求进行测读并进行数据整理和及时完成、提交日报表。
(7)在相应锚索安装施工时,同步安装应力计,并在锚索施加预应力前后进行读数。
(8)某施工段工程全部完成之后,按照有关要求相应测点停止测读,以此类推直至工程全部完成。
(9)编写施工监测报告。
测点保护仪器(传感器)、测点安装、埋设好后应作好醒目标记,设置保护设施,平时加强测点保护工作,确保测点成活率,保证监测数据的连续性。
8.数据处理分析和信息反馈每次实测数据之后,应及时出具简报并由监测人员签字后报送甲方或甲方指定的人员签收。
若发现数据异常应立即再次现场监测,以核实监测结果。
若水平位移或沉降超过预警值第一时间口头通知甲方后并在规定时间将报表报送甲方或甲方指定的人员签收。
监测简报中主要包含以下内容:①基坑坡顶垂直沉降与水平位移监测:本次变形值与累计变形值;②基坑周边道路、建(构)筑物垂直沉降监测:本次变形值与累计变形值;③深层水平位移监测监测:本次变形值与累计变形值;④地下水位监测:⑤注明各监测项目预警值评价是否超过预警指标;⑥各监测点平面布置示意图。
基坑土方回填结束,即可终止安全监测。
对所测资料进行全面地综合计算分析,一个月内提交最终分析成果报告,形成具体总结报告一式五份交付甲方,总结报告主要包含以下内容:①工程概况②监测方案③监测结果④总结⑤附各监测项目各监测点历次监测结果汇总表⑥附监测点平面布置示意图。