正余弦函数的图像与性质
第6讲 正余弦函数图像及其性质(讲义)解析版
第6讲 正余弦函数图像及其性质知识梳理1、用五点法作正弦函数的简图(描点法):正弦函数x y sin =,]2,0[π∈x 的图象中,五个关键点是:)0,0( )1,2(π )0,(π )1,23(-π)0,2(π2、正弦函数R x x y ∈=,sin 的图像:把x y sin =,]2,0[π∈x 的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为π2,就得到R x x y ∈=,sin 的图像,此曲线叫做正弦曲线。
由正弦函数图像可知: (1)定义域:R(2)值域:[]1,1- ; 正弦线的长度小于或等于单位圆的半径的长度,所以1|sin |≤x , 即 1sin 1≤≤-x ,也就是说,正弦函数的值域是1,1[-亦可由正弦图像直接得出。
(3)奇偶性:奇函数由x x sin )sin(-=-可知:x y sin =为奇函数,正弦曲线关于原点O 对称(4)单调递增区间:z k k k ∈⎥⎦⎤⎢⎣⎡+-,22,22ππππ;(5)单调递减区间:z k k k ∈⎥⎦⎤⎢⎣⎡++,232,22ππππ; (6)对称中心:(0,πk );(7)对称轴:2ππ+=k x(8)最值:当且仅当,22ππ+=k x y 取最大值1max =y ;当且仅当,232ππ+=k x y 取最小值1min -=y 。
(9)最小正周期:π2=T一般地,对于函数)(x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f 就叫做周期函数,非零常数T 叫做这个函数的周期由此可知)0(2,,4,2,2,4,≠∈--k z k k 且πππππ 都是这两个函数的周期对于一个周期函数)(x f ,如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做)(x f 的最小正周期根据上述定义,可知:正弦函数、余弦函数都是周期函数,)0(2≠∈k z k k 且π都是它的周期,最小正周期是π2注意:1.周期函数定义域M x ∈,则必有M T x ∈+, 且若0>T ,则定义域无上界;0<T 则定义域无下界;2.“每一个值”只要有一个反例,则)(x f 就不为周期函数;3.T 往往是多值的(如x y sin =中 ,4,2,2,4,ππππ--都是周期)周期T 中最小的正数叫做)(x f 的最小正周期(有些周期函数没有最小正周期)5、余弦函数R x x y ∈=,cos 的图像:(1)定义域:R (2)值域:[]1,1- (3)奇偶性:偶函数(4)单调递增区间:[]πππk k 2,2-,Z k ∈ (5)单调递减区间:[]Z k k k ∈+,2,2πππ(6)对称中心:(0,2ππ+k )(7)对称轴:πk x =(8)最值:当且仅当,2πk x =y 取最大值1max =y ; 当且仅当,2ππ+=k x y 取最小值1min -=y 。
06-正余弦函数图像及其性质
正余弦函数的图像正余弦函数的值域和最值 正余弦函数的其他性质一、正余弦函数的图像(一)知识精讲1、正弦线:设任意角α的终边与单位圆相交于点),(y x P ,过P 作x 轴的垂线,垂足为M ,则有MP ry==αsin ,向线段MP 叫做角α的正弦线. 2、用单位圆中的正弦线作正弦函数x y sin =,]2,0[π∈x 的图象(几何法):y=sin x, x ∈[0, 2π]M 1P 1M 2P 2M 1’P 1’M 2’P 2’1-1π2π xyO 2π32π'O3、用五点法作正弦函数的简图(描点法):正弦函数x y sin =,]2,0[π∈x 的图象中,五个关键点是:)0,0( )1,2(π )0,(π )1,23(-π)0,2(π然后将这五点大致连线,画出正弦函数的图像。
4、正弦函数R x x y ∈=,sin 的图像:把x y sin =,]2,0[π∈x 的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为π2,就得到R x x y ∈=,sin 的图像,此曲线叫做正弦曲线。
正余弦函数的图像和性质例题解析正弦、余弦函数的图像与性质5、余弦函数R x x y ∈=,cos 的图像:(二)典型例题【例1】画出下列函数在[0,2]π上的图象,并且尝试说明函数的单调性、奇偶性、周期性和函数图像的对称轴等相关结论(1)1sin y x =+ (2)cos y x =- (3)1π3sin()24y x =-【例2】用五点作图法作函数1cos y x =-在[0,2]π上的图象【例3】已知函数x x f πsin )(=的图像的一部分如下方左图,则下方右图的图像所对应的解析式为(.A )212(-=x f y .B )12(-=x f y .C )12(-=f y .D )212(-=x f y 【例4】正弦函数的定义域是__________,最大值是____,最小值是____,周期是____,递增区间是_____________________,递减区间是______________________. 对称轴是______________,对称中心是_____________;【例5】定义函数sin , sin cos ()cos , sin cos x x xf x x x x≤⎧=⎨>⎩,根据函数的图像与性质填空:(1) 该函数的值域为_______________;(2) 当且仅当________________时,该函数取得最大值; (3) 该函数是以________为最小正周期的周期函数;(4) 当且仅当______________时,()0f x >.【例6】求函数y =-cos x 的单调区间【例7】求下列函数的定义域与值域(1)x y 2sin 21= (2)x y cos 2-=【巩固训练】1、已知函数π2sin(2)3y x =+,用“五点法”作出它在一个周期内的图像;2、已知函数1π3sin()24y x =-,用五点法作出函数的图像;3、函数cos y x x =-⋅的部分图像是( )4、余弦函数的定义域是______,最大值是______,最小值是____,周期是____,递增区间是_____________________,递减区间是______________________. 对称轴是__________________,对称中心是____________;5、判断函数sin()2y x π=-的奇偶性和单调性,并写出的单调区间.6、设M 和m 分别表示函数1cos 31-=x y 的最大值和最小值,则M m +等于( ) A .32 B .-32C .-34 D .-2二、正余弦函数的值域与最值(一)知识精讲1、正、余弦函数定义域:x y sin = 和cos y x =的定义域都为R 。
正弦函数和余弦函数的图像与性质
3. 求最小正周期: (1) f ( x) 3sin x 4cos x (2) f ( x) sin 2 x (3) f ( x) sin 2 x cos 2 x
y cos x , x R 的值域是 [1,1],最大值是 1,最小值是 1.
当 cos x 1时,x 2k (k Z). 当 cos x 1 时,x (2k 1) (k Z).
(2)周期性
一般地,对于函数 f ( x),如果存在一个常数 T (T 0), 使得当 x 取定义域 D 内的任意值时,都有 f ( x T ) f ( x) 成立,那么函数 f ( x) 叫做周期函数,常数 T 叫做函数 f ( x) 的周期。对于一个周期函数 f ( x) 来说,如果在所有的周期中 存在一个最小正数,那么这个最小正数叫做函数 f ( x) 的 最小正周期。
解: 偶函数; (1)
(2) f ( x) cos 2 x,偶函数;
2 (k Z)
(3)sin x 1 x 2k
x
,但 x 可以取 ,即 f ( x)的定义域不关于原点对称, 2 2
f ( x) 是非奇非偶函数。
(4) f ( x)
1 sin 2 x sin x 1 1 sin 2 x sin x 1
5 3 增:k , k (k Z), 减:k , k (k Z) 8 8 8 8
(4) y log 1 2cos x 3
2
3 解: x cos x 2 k , 2 k 2 6 6
6.1_正弦函数和余弦函数的图像与性质
6.1 正弦函数和余弦函数的图像与性质1.y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx , x ∈[0,2π]的图像中,五个关键点是(0,1) (2π,0) (π,-1) (23π,0) (2π,1)3.定义域:正弦函数、余弦函数的定义域都是实数集R[或(-∞,+∞)],分别记作: y =sin x ,x ∈R y =cos x ,x ∈R4.值域正弦函数、余弦函数的值域都是[-1,1].其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1. ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1. 而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1.②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.5.周期性一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.1︒周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界; 2︒“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0))3︒T 往往是多值的(如y=sinx 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期)正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π.6.奇偶性y =sin x 为奇函数,y =cos x 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称7.单调性 正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.例1 求下列函数的周期:(1)y =3cos x ,x ∈R ;(2)y =sin2x ,x ∈R ;(3)y =2sin(21x -6π),x ∈R .一般地,函数y =A sin(ωx +ϕ),x ∈R 及函数y =A cos(ωx +ϕ),x ∈R (其中A 、ω、ϕ为常数,且A ≠0,ω>0)的周期T =ωπ2.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期,如对于上述例子:(1)T =2π,(2)T =22π=π,(3)T =2π÷21=4π 例2不通过求值,指出下列各式大于0还是小于0.(1)sin(-18π)-sin(-10π); (2)cos(-523π)-cos(-417π).例3 求函数y =2cos 1cos 3++x x 的值域.例4.f (x )=sin x 图象的对称轴是 .例5.(1)函数y =sin(x +4π)在什么区间上是增函数?(2)函数y =3sin(3π-2x )在什么区间是减函数?【当堂训练】1.函数y =cos 2(x -12π)+sin 2(x +12π)-1是( )A.奇函数而不是偶函数B.偶函数而不是奇函数C.奇函数且是偶函数D.非奇非偶函数2.函数y =sin (2x +25π)图象的一条对称轴方程是( )A.x =-2πB.x =-4πC.x =8πD.x =45π3.设条件甲为“y =A sin(ωx +φ)是偶函数”,条件乙为“φ=23π”,则甲是乙的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件4.函数y =sin 4x +cos 4x 的最小正周期为 .5.函数y =sin2x tan x 的值域为 .6.函数y =x -sin x ,x ∈[0,π]的最大值为( ) A.0 B. 2π-1 C.π D. 2243-π7.求函数y =2sin 22x +4sin2x cos2x +3cos 22x 的最小正周期.8.求函数f (x )=sin 6x +cos 6x 的最小正周期,并求f (x )的最大值和最小值.9.已知f (x )=xx x x cos sin 1cos sin 1+-,问x 在[0,π]上取什么值时,f (x )取到最大值和最小值.10.给出下列命题:①y =sin x 在第一象限是增函数; ②α是锐角,则y =sin(α+4π)的值域是[-1,1]; ③y =sin |x |的周期是2π; ④y =sin2x -cos2x 的最小值是-1;其中正确的命题的序号是 .11.求下列函数的单调递增区间:①y =cos(2x +6π); ②y =3sin(3π-2π)12.求函数y =-|sin(x +4π)|的单调区间.13.函数y =sin(2x +25π)的图象的一条对称轴方程是( ) A.x =-2π B.x =-4π C.x =8π D.x =45π【家庭作业】1.在下列区间中函数y =sin(x +4π)的单调增区间是( ) A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 2.若函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,试求a 的值. .]4,3[sin 2)( .3的取值范围上递增,求在是正数,函数已知例ωππωω-=x x f4.求下列函数的定义域、值域:(1); (2) ; (3) .5.求下列函数的最大值,并求出最大值时 的集合:(1) , ; (2) , ; (3)(4) .6.要使下列各式有意义应满足什么条件?(1); (2) .37.函数,的简图是()8.函数的最大值和最小值分别为()A.2,-2 B.4,0 C.2,0 D.4,-4 9.函数的最小值是()A.B.-2 C. D.10.如果与同时有意义,则的取值范围应为()A. B. C.D.或11.与都是增函数的区间是()A., B.,C., D.,12.函数的定义域________,值域________,时的集合为_________.13.求证:(1)的周期为;(2)的周期为;(3)的周期为.参考答案:例1解:(1)∵y =cos x 的周期是2π∴只有x 增到x +2π时,函数值才重复出现.∴y =3cos x ,x ∈R 的周期是2π.(2)令Z =2x ,那么x ∈R 必须并且只需Z ∈R ,且函数y =sin Z ,Z ∈R 的周期是2π.即Z +2π=2x +2π=2(x +π).只有当x 至少增加到x +π,函数值才能重复出现.∴y =sin2x 的周期是π.(3)令Z =21x -6π,那么x ∈R 必须并且只需Z ∈R ,且函数y =2sin Z ,Z ∈R 的周期是2π,由于Z +2π=(21x -6π)+2π=21 (x +4π)-6π,所以只有自变量x 至少要增加到x +4π,函数值才能重复取得,即T =4π是能使等式2sin [21 (x +T)-6π]=2sin(21x -6π)成立的最小正数.从而y =2sin(21x -6π),x ∈R 的周期是4π. 从上述可看出,这些函数的周期仅与自变量x 的系数有关.例2解:(1)∵-2π<-10π<-18π<2π. 且函数y =sin x ,x ∈[-2π,2π]是增函数. ∴sin(-10π)<sin(-18π) 即sin(-18π)-sin(-10π)>0 (2)cos(-523π)=cos 523π=cos 53π cos(-417π)=cos 417π=cos 4π ∵0<4π<53π<π 且函数y =cos x ,x ∈[0,π]是减函数∴cos53π<cos 4π 即cos 53π-cos 4π<0 ∴cos(-523π)-cos(-417π)<0 例3解:由已知:cos x =⇒--y y 312|y y --312|=|cos x |≤1⇒(yy --312)2≤1⇒3y 2+2y -8≤0 ∴-2≤y ≤34∴y max =34,y min =-2 例4解:由图象可知:对称轴方程是:x =k π+2π(k ∈Z ) 例5解:(1)函数y =sin x 在下列区间上是增函数:2k π-2π<x <2k π+2π (k ∈Z ) ∴函数y =sin(x +4π)为增函数,当且仅当2k π-2π<x +4π<2k π+2π 即2k π-3π<x <2k π+4π(k ∈Z )为所求. (2)∵y =3sin(3π-2x )=-3sin(2x -3π) 由2k π-2π≤2x -3π≤2k π+2π 得k π-12π≤x ≤k π+125π (k ∈Z )为所求. 或:令u =3π-2x ,则u 是x 的减函数 又∵y =sin u在[2k π-2π,2k π+2π](k ∈Z )上为增函数, ∴原函数y =3sin(3π-2x )在区间[2k π-2π,2k π+2π]上递减. 设2k π-2π≤3π-2x ≤2k π+2π 解得k π-12π≤x ≤k π+125π(k ∈Z ) ∴原函数y =3sin(3π-2x )在[k π-12π,k π+125π](k ∈Z )上单调递减. 【当堂训练】 1.A 2.A 3.B 4.2π 5.[0,2) 6.C 7. 2π 8.T=2π 函数最大值为1 函数最小值为41. 9.x =4π时,f (x )取到最小值31; x =43π时,f (x )取到最大值3. 10.分析:①y =sin x 是周期函数,自变量x 的取值可周期性出现,如反例:令x 1=4π,x 2=6π+2π,此时x 1<x 2 而sin 3π>sin(6π+2π)∴①错误;②当α为锐角时,4π<α+4π<2π+4π 由图象可知22<sin(α+4π)≤1 ∴②错误;③∵y =sin |x |(x ∈R )是偶函数.其图象是关于y 轴对称,可看出它不是周期函数.∴③错误;④y =sin 2x -cos 2x =-cos2x ,最小值为-1∴④正确.答案:④11. 解:①设u=2x +6π,则y =cos u当2k π-π≤u≤2k π时y =cos u 随u 的增大而增大 又∵u=2x +6π随x ∈R 增大而增大 ∴y =cos(2x +6π)当2k π-π≤2x +6π≤2k π(k ∈Ζ) 即k π-127π≤x ≤k π-12π时,y 随x 增大而增大 ∴y =cos(2x +6π)的单调递增区间为: [k π-127π,k π-12π](k ∈Z ) ②设u=3π-2π,则y =3sin u 当2k π+2π≤u≤2k π+23π时,y =3sin u随x 增大在减小, 又∵u=3π-2x 随x ∈R 增大在减小 ∴y =3sin(3π-2x )当2k π+2π≤3π-2x ≤2k π+23π 即-4k π-37π≤x ≤-4k π-3π时,y 随x 增大而增大 ∴y =3sin(3π-2x )的单调递增区间为 [4k π-37π,4k π-3π](k ∈Z )12. 解:利用“五点法”可得该函数的图象为:显然,该函数的周期为π在[k π-4π,k π+4π](k ∈Z )上为单调递减函数;在[k π+4π,k π+43π](k ∈Z )上为单调递增函数. 13. 方法一:运用性质1′,y =sin(2x +25π)的所有对称轴方程为x k =2πk -π(k ∈Z ),令k =-1,得x -1=-2π,对于B 、C 、D 都无整数k 对应. 故选A.方法二:运用性质2′,y =sin(2x +25π)=cos2x ,它的对称轴方程为x k =2πk (k ∈Z ),令k =-1,得x -1=-2π,对于B 、C 、D 都无整数k 对应,故选A. 【家庭作业】 1.分析:函数y =sin(x +4π)是一个复合函数即y =sin [ϕ(x )],ϕ (x )=x +4π,欲求y =sin(x +4π)的单调增区间,因ϕ (x )=x +4π在实数集上恒递增,故应求使y 随ϕ (x )递增而递增的区间.方法一:∵ϕ (x )=x +4π在实数集上恒递增,又y =sin x 在[2k π-2π,2k π+2π](k ∈Z )上是递增的,故令2k π-2π≤x +4π≤2k π+2π ∴2k π-43π≤x ≤2k π+4π ∴y =sin(x +4π)的递增区间是[2k π-43π,2k π+4π] 取k =-1、0、1,分别得[-411π,47π]、[-43π,4π]、[45π,49π], 对照选择支,可知应选B像这类题型,上述解法属常规解法,而运用y =A sin(ωx +ϕ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,如本题倘若运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.方法二:函数y =sin(x +4π)的对称轴方程是: x k =k π+2π-4π=k π+4π (k ∈Z ),对照选择支,分别取k =-1、0、1,得一个递增或递减区间分别是[-43π,4π]或[4π,45π],对照选择支思考即知应选B. 注:一般运用正、余弦函数的对称轴方程求其单调区间,可先运用对称轴方程求其一个单调区间,然后在两端分别加上周期的整数倍即得.2. 解:显然a ≠0,如若不然,x =-8π就是函数y =sin2x 的一条对称轴,这是不可能的. 当a ≠0时,y =sin2x +a cos2x =)2cos(1)2sin 112cos 1(12222θ-+=++++x a x a x a aa其中cos θ=2211sin ,1aaa +=+θ即tan θ=a1cos sin =θθ 函数y =21a +cos(2x -θ)的图象的对称轴方程的通式为2x k =k π+θ(k ∈Z )∴x k =22πθk +,令x k =-⇒8π22πθk +=-8π∴θ=-k π-4π∴tan θ=tan(-k π-4π)=-1.即a1=-1,∴a =-1为所求. 3. 解:由题设得)(2222Z k k x k ∈+≤≤-ππωππ.230.42,32.2222,0⎪⎩⎪⎨⎧≤<≥-≤-∴+≤≤-∴>ωπωππωπωπωπωπωπω解得k x k故ω的取值范围为].23,0(4. 解:(1) ,(2)由 ()又∵ ,∴∴定义域为 (),值域为. (3)由 (),又由∴∴定义域为(),值域为 .指出:求值域应注意用到 或 有界性的条件.5.解:(1)当,即()时,取得最大值∴函数的最大值为2,取最大值时的集合为.(2)当时,即()时,取得最大值.∴函数的最大值为1,取最大值时的集合为.(3)若,,此时函数为常数函数.若时,∴时,即()时,函数取最大值,∴时函数的最大值为,取最大值时的集合为.(4)若,则当时,函数取得最大值.若,则,此时函数为常数函数.若,当时,函数取得最大值.∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.思考:此例若改为求最小值,结果如何?6.解:(1)由,∴当时,式子有意义.(2)由,即∴当时,式子有意义.7.B 8.B 9.A 10.C 11.D12.;;13.分析:依据周期函数定义证明.证明:(1)∴的周期为.(2)∴的周期为.(3)∴的周期为.。
正弦函数和余弦函数的图像与性质
y=sinx
y
1 2 3 4
y= cosx
y
1
图 象 定义域 值 域
-2
-
o
-1
x
-2
-
o
-1
2 3
4
x
R [1,1]
x 2k
R [1,1]
x 2k ( k Z )
最 值
ymax=1
x 2k
2
(k Z ) 时
其值从-1增至1 其值从 1减至-1
y=sinx
y
1 2 3 4
y= cosx
y
1
图 象 定义域 值 域
-2
-
o
-1
x
-2
-
o
-1
2 3
4
x
R [1,1]
x 2k
R [1,1]
x 2k ( k Z )
最 值
ymax=1
x 2k
2
(k Z ) 时
对于一个周期函数,如果在它的所有周期中
存在一个最小的正数,那么这个最小正数就叫做 它的最小正周期.
(2) 正弦函数的周期性
由公式 sin (x+k · 2 )=sin x (kZ) 可知:
正弦函数是一个周期函数,2 ,4 ,„ ,-2 ,
-4 ,„ , 2k (kZ 且 k≠0)都是正弦函数的周期. 2 是其最小正周期 .
时
2
ymax=1
(k Z ) 时
x 2k (k Z ) 时
ymin= 1
ymin= 1
x k
y= 0
x k ( k Z )
正弦函数和余弦函数的图像与性质.ppt
, 0), (2 ,1)
2
2
并注意-4 曲线的“凹凸”变化.
课堂练习
1.作函数 y sin x 与 y sin x 1在 [0, 2 ]
上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系.
3.作函数 y cos x, x [ , ]的大致图像.
4.利用3.解不等式:cos x sin x, x [ , ]
-2
五个关键点:(0, 0), ( ,1), ( , 0), (3 , 1), (2 , 0)
2
2
利用五个关-4键点作简图的方法称为“五点法”
10
三、余弦函数的图像
根据诱导公式
cos
8
x
sin(
x) 可知余弦函数
y
cos
6
x的图像可由
y
2 sin
x
的图像向左平移
2
4
个单位得到.
1
2
2
-10
3-5
0
2
1
-2
余弦函数的值域是[1,1] -4
当且仅当 x 2k , k Z 时, -6
余弦函数取得最大值1;-8
5
2
35
x10
2
yP
OM x
当且仅当 x 2k , k-10 Z 时,
余弦函数取得最小值-1-1.2例1.求下列函数的源自大值与最小值,及取到最值6
课堂练习答案
12
1. y sin x, x [0, 2 ] y4
10
x
0
2
3 2
2
2 8
5
-10
正弦函数余弦函数的图像与性质
三角函数在物理学中的应用
振动与波动
正弦和余弦函数是描述简谐振动和波动的基本函 数,广泛应用于声学、光学等领域。
交流电
交流电的电压和电流是时间的正弦或余弦函数, 用于驱动各种电器设备。
磁场与电场
在电磁学中,正弦和余弦函数用于描述磁场和电 场的分布和变工程中的许多振动问题都可以用 正弦和余弦函数来描述,如桥梁 振动、车辆振动等。
周期性
正弦函数具有周期性, 其周期为2π。
奇偶性
正弦函数是奇函数,满 足sin(-x) = -sin(x)。
余弦函数的定义
定义
余弦函数是三角函数的另一种形式,定义为直角三角形中锐角的邻边与斜边的比值,记作 cos(x)。
周期性
余弦函数也具有周期性,其周期为2π。
奇偶性
余弦函数是偶函数,满足cos(-x) = cos(x)。
奇偶性
总结词
正弦函数是奇函数,而余弦函数是偶 函数。
详细描述
奇函数满足$f(-x) = -f(x)$,偶函数满 足$f(-x) = f(x)$。对于正弦函数, $sin(-x) = -sin(x)$;对于余弦函数, $cos(-x) = cos(x)$。
最值与振幅
总结词
正弦函数和余弦函数都具有最大值和最小值,这取决于它们的振幅。
正弦函数余弦函数的图像与性质
目录
• 正弦函数与余弦函数的定义 • 正弦函数与余弦函数的图像 • 正弦函数与余弦函数的性质 • 正弦函数与余弦函数的应用 • 正弦函数与余弦函数的扩展知识
01 正弦函数与余弦函数的定 义
正弦函数的定义
定义
正弦函数是三角函数的 一种,定义为直角三角 形中锐角的对边与斜边 的比值,记作sin(x)。
正弦、余弦函数的图像和性质PPT课件
函数 y sin x , x 0 , 2 图象的几何作法
y
作法: (1) 等分 (2) 作正弦线
/
1P 1
p1
(3) 平移 (4) 连线
3
6
-
-
-
o1
M
-1 A
1
o
6
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2 2
x
-1 -
正弦曲线
y
1-
6
-
2
3 3 2
2
2 2
xx
y sin x , x [ 0 , 2 ]
y cos x , x [ 0 , 2 ]
练习:(1)作函数 y=1+3cosx,x∈[0,2π]的简图
(2)作函数 y=2sinx-1,x∈[0,2π]的简图
(1) y
x
四川省天全中学数学组
-
图象的最高点
( 0 ,1 ) ( 2 ,1)
1-
与x轴的交点
-1
o
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
( , 0 ) ( 32 , 0 ) 2
( , 1 )
-
图象的最低点
-1 -
例1.画出下列函数的简图
(1)y=sinx+1, x∈[0,2π] (2)y=-cosx , x∈[0,2π] 解:(1)列表 (2)
正 弦 函 数、余 弦
正弦函数余弦函数的图像和性质
f ( x) = 3cos x = 3cos( x + 2π ) = f ( x + 2π )
所以T=2π
2、y=sin2x x ∈R 解、令z=2x,那么x∈R必须并且只需z∈R,且函 数y=sinz,z∈R的T=2π,即变量z只要并且至少 要增加到z+2π,函数y=sinz,z∈R的值才能重复 取得,而z+2π=2x+2π=2(x+π) 故变量x只要并且至少要增加到x+π,函数值 x x+π 就能重复取得,所以y=sin2x,x∈R的T=π 即 f ( x) = sin 2 x = sin(2 x + 2π ) = sin 2( x + π ) = f ( x + π ) 所以T=π
例1.画出下列函数的简图 .
(1)y= 2sinx ,x∈[0, 2π], ) ∈ π (2)y=sin2x , x∈[0,2π] ) 解: (1) 列表 ) Y 2 1 0
x y=2sinx
0 0
π
2
π 0
3π 2
2π π 0
2
-2
(2)描点作图 描点作图
y=2sinx y=sinx
π
2π
X
2、五点作图法 、
y = sin( x + ), x ∈ R 3 4
例4利用三角函数的单调性,比较下列各组数的大小:
(1) sin 250 (2) cos
15 π 8
o
与
sin 260o
与 cos 14 π 9
例5 求函数 y = sin( 2 x + 3 ), x ∈ [−2π , 2π ] 的单调递增区间. 解: 令
( 0 , 0 ) (π , 0 ) (2π ,0)
正弦函数、余弦函数的图像和性质
1 2
x
y
0
3
3 2
6
2
2 3
3 2
5 6
1 2
0
7 6
4 3
3 2
5 3
11 6
2
0
1
1 2
3 2
1 23
1 2
0
(2) 描点
y 10
2
-
-
-
-
3 2
2
x
(3) 连线
1 -
正弦函数、余弦函数的图象和性质
正弦曲线
y
1-
6
-
4
-
2
-
o-1
-
-
( 2 ,1)
图象的最高点 与x轴的交点
1-
(0,1) (2 ,1)
-1
o
-1 -
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
3 ( , 0 ) ( x 2 2 2 ,0) 图象的最低点 ( ,1)
-
下面请同学们练习应用“五点法”作 图。 练习:P --课后习题
55
正弦函数、余弦函数的图象和性质
利用三角函数线 1.函数 y sin x, x 0,2 图象的几何作法 作三角函数图象 . . . . x的正弦线,巧妙地 , sin x),连线. 描点法 : 查三角函数表得三角函数值,描点(x 几何法作图的关键是如何利用单位圆中角
如 : x 3 查表 y sin 3 0.8660 移动到直角坐标系内,从而确定对应的点 (x,sinx). ( 描点 ,0.8660) y 3 1
正弦函数 余弦函数的图像和性质ppt
1
1
0 0
0
y
2 1 -
1
0
1
1 -
o
2
3 2
2
x
作函数 y= sinx + 小值
y= sinx+
1 2
1 2
3 2
cosx草图,求y的最大值和最
解:用辅角公式化简函数
3 cosx 2
= sinxcos 3 + cosxsin 3 = sin(x+ 3 )
X+ 3
0 -
3
o
1-
x
6
-
4
-
2
2
-1 -
4
6
-
因为终边相同的角的三角函数值相同,所以y=sinx的图象在……, 4 ,2 , 2 , 0 , 0 , 2 , 2 , 4 , y ……与y=sinx,x∈[0,2π ]的图象相同
2
1 2
1
1
1
0
0 1
1 -
o
2
3 2
2
x
练习 : 作函数 y=-cosx,x∈[0,2π]的草图
作函数 y= sinx + 小值
1 2
3 2
cosx草图,求y的最大值和最
练习:作函数y= -cosx,x∈[0,2π]的草图 解: 列表
X
0
2
1
3 2
2
1
cosx -cosx
描点法: 查三角函数表得三角函数值,描点 ( x, sin x),连线.
如: x 查表 y sin 3 0.8660 3 ) 描点 ( ,0.8660 3
正余弦函数图像和性质PPT课件
(2)余弦函数“五点作图法”:
y 1 y=cosx
3 2
2
o
2
-1
3 2
Y=sinx 2 5 3 x
2
五个关 键点:
( 0 ,1),
( ,0 ), 2
( , 1), ( 3 , 0 ) , ( 2 ,1)
2
(3)正、余弦函数图象的关系
cosx=sin(x+
2
y=cosx
y
) sinx=cos( -x)=cos(x- )
定义域 值域 周期性 对称性 单调性
性质的应. 用
3
一.基础知识复习
(一)正、余弦函数图象
“五点作图法”
(1)正弦函数“五点作图法”:
y
1
4
3
2
-
3 2
-
-
2
o
2
3 2
2
3
4 x
-1
五个关键点:
( 0 , 0 ) ,(
2
, 1 ) , ( , 0 ) ,( 3
2
, 1)(, 2 , 0 )
正 余弦函数的图象与性质(1)
y
1
ysinx,x[0,2
3p
π
2
2π
O
p
x
2
-1
思考4:观察函数y=sin在[0,2π]内的 图象,其形状、位置、凸向等有何变化 规律?
《正弦函数、余弦函数的图象和性质》的知识框架
正弦线 正弦函数的图象 平移变换 余弦函数的图象
正弦函数的性质 “五点法”作 图
余弦函数的性质
⑤奇偶性:
奇偶性的y1定义y=:sif f n( ( x x x ) ) ( x ff R( ( x x )) ) ff( ( x x ) ) 为 为 偶 奇 函 函 数 数
(完整版)正弦和余弦函数的图像及性质
y=
cosx
=
cos(-x)
=
sin[
2
-(-x)]
=
sin(x+
2
)
y 从 向图 左像平中移我 们个看单到位co后sx得由到sinx
2
1
-
-
4
2
o
-
2
-
4
-
x
-
-
-1
因为终边相同的角的三角函数值相同,所以y=cosx的图象在……,
4 ,2 , 2 ,0, 0,2 , 2 ,4 , ……与y=cosx,x∈[0,2π]的图象
y=
1
2 sinx+
3 2
cosx
=
sinxcos
3
+
cosxsin
3
= sin(x+ 3 )
X+ 3
x
y
0
2
-
3
6
0
1
换元法
3 2
2
2
7
5
3
6
3
0 -1 0
y=sin(x+
3
)图像如下所示
y
最大值为 1,最小值为-1
-
2 1 o- -
12
-
-
2
-
-
2
-
-
x
3
3
-
想一想?
正弦曲线、余弦曲线,它们图象有何特征?
-1 -
y
简图作法 (五点作图法)
图象的最低点(
3 2,
1)
(y1) 列表(列出对图象形状起关键作用的五点坐标)
(2) 描点( ) 正弦y 函数.余弦函数的图象和性质 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正余弦函数的图像与性质案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
班中工作程序服务流程行为规范问询需求按需求提供饮品客户离开后清理桌面阶段工作及服务流程服务准迎客:保得知需客户班中工作程序工作要求注意事项1)在饮品制作完毕后,如果有其他客户仍在等到则又销售大厅服务岗呈送;2)所有承装饮品的器皿必须干净整洁;下班程序5)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;6)填写物资领用申请表并整理客户意见;7)参加班后总结会;8)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.4展示区服务岗岗位职责1.3.4.1车场服务岗1.3.4.1.1车场服务岗岗位职责1)维护停车区的正常停车秩序;2)引导客户车辆停放,同时车辆停放有序;3)当车辆挺稳时,上前开车门并问好;同时提醒客户锁好车门;4)视情况主动为客户提供服务;5)待车辆停放完好后,仔细检查车身情况请客户签字确认;1.3.4.1.2阶段工作及服务流程班前阶段1)自检仪容仪表2)检查周边及案场区设备、消防器材是否良好,如出现异常现象立即报告或报修3)检查停车场车位是否充足,如有异常及时上报上级领导班中工作程序服务流程行为规范1.敬礼2.指引停车3.迎客问好4.目送阶段工作及服务流程班中工作程序工作要求注意事项1)岗位应表现良好的职业形象时刻注意自身的表现,用BI规范严格要求自己2)安全员向客户敬礼,开车门,检查车辆情况并登记,用对讲系统告知销售大厅迎宾,待客人准备离开目送客人离开;迎送引导敬为问指引销售检查车为引敬下班程序1)检查使用的工具情况,异常情况及时记录并报告上级领导;2)参加班后总结会;3)统计访客量;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.4.2展示区礼宾岗1.3.4.2.1展示区礼宾岗岗位职责1)对过往的客户行标准的军礼,目视;2)与下一交接岗保持信息联系,及时将信息告知下一岗位,让其做好接待工作;3)热情礼貌的回答客户的提问,并做正确的指引;4)注视岗位周边情况,发现异常及时上报上级领导;1.3.4.2.2展示区礼宾岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表2)检查周边及案场区设备、消防器材是否良好,如出现异常现象立即报告或报修班中工作程序服务流程敬礼问指引样板敬礼目送行为规范1.迎接客户2.指引客户3.为客户提供帮助4.目送客户工作要求注意事项1)礼宾岗必须掌握样板房户型、面积、朝向、在售金额、物业服务管理费用等客户比较关注的话题;2)礼宾岗上班后必须检查样板房的整体情况,如果发现问题必须及时上报并协助销售进行处理;3)视线范围内见有客户参观时,远处目视,待客户行进1.5米的距离时,敬军礼并主动向客户微笑问好,“欢迎您来参观样板房,这边请,手势指引样板房方向”;阶段工作及服务流程班中工作程序工作要求注意事项4)参观期间,礼宾岗需注意背包或穿大衣等可以重点人员进行关注,避免样板房的物品丢失,当巡检时发现有物品丢失及时上报上级领导,对参观的可疑人员进行询问,根据销售部的意见决定是否报警;5)样板房开放时间,在未经销售、项目部允许而进行拍照、摄像等行为劝阻,禁止任何人员挪动展示物品;6)样板房开放时礼宾岗要关注老人、小孩、孕妇及行动不便的人群,对在参观过程中出现的意外及物品损坏必须及时上报上级领导,根据销售部的意见进行处理并做好登记;7)样板房开放期间礼宾岗要礼貌准确的回答客户的问题,对不能回答的问题需引导给销售人员由其进行解答,严禁用含糊不清或拒绝来回答;8)留意客户是否离开样板房,通知电瓶车司机来接客户;9)当客户参观完毕离开样板房,待客户1.5米距离时微笑敬礼目送客户,手势指向出门的方向,若电瓶车未到,向客户致歉并说明电瓶车马上就到;10)每天下班要对样板房物品进行检查并做好登记,如出现丢失或损坏须向上级领导呈报,根据销售部意见进行处理并做好记录;11)礼宾岗下班后要关闭样板房的水源、电源及监控系统并与晚班人员做好交接;12)对于特殊天气,样板房礼宾岗要检查周边环境,以防不则;下班程序1)检查使用的工具情况,异常情况及时记录并报告上级领导;2)参加班后总结会;3)统计访客量;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.4.3电瓶车服务岗1.3.4.3.1电瓶车服务岗岗位职责1)严格按照规定的路线及线路行驶,将客人送到指定地点;2)正确执行驾驶操作流程,确保车行安全;3)了解开发建设项目的基本情况并使用统一说辞,在允许的情况下礼貌回答客户问题;4)车辆停放时及时对车辆进行清洁,确保车辆干净;5)负责车辆的检查;6)对车辆实施责任化管理,未经允许任何人不得驾驶;7)不允许非客户人员乘坐电瓶车;8)做好电瓶车的交接工作1.3.4.3.2电瓶车服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表2)检查电瓶车运行状态,如发现问题立即上报上级领导进行维修并做好记录班中工作程序服务流程行为规范1)迎接客户上车2)转弯、减速、避让提示客户3)下车提示客户小心工作要求注意事项1)电瓶车驾驶员载客至样板房过程中禁止鸣笛、超速、遇车避让;2)客户上车时应主动问好,欢迎您来到XX项目,车辆行驶时应提示客户坐稳扶好,到达目的地时,驾驶员提示客户样板房已经到达请小心下车,客户离开电瓶车时应说:欢迎下次乘坐,谢谢再见,问指引车辆起车辆行驶下请慢走;3)带客户下车时应检查车上是否有遗留物品,并提示客户随身带好物品;4)电瓶车必须严格按照规定路线行驶;5)做好行车记录;下班程序1)待客户全部离开后将电瓶车开至指定位置,并将车辆进行清洁及充电;2)整理客户意见,参加班后会;3)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.5样板房服务岗1.3.5.1样板房讲解岗岗位标准1.3.5.1.1样板房讲解岗岗位职责1)负责来访样板房客户的全程接待与讲解;2)协助、配合置业顾问介绍;3)客户离开后,样板房零星保洁的处理;4)收集客户意见、建议及现场问题点的填写(样板房日常庶务)反馈单,下班后递交案场负责人;1.3.5.1.2样板房讲解刚工作及服务流程阶段工作及服务流程班前阶1)自检仪容仪表,以饱满的工作状态进入工段作;2)检查样板房设备设施运行情况,如有异常及时上报并做好登记;3)检查样板房保洁情况及空调开启情况;设备设施班中工作程序服务流程行为规范1)站立微笑自然2)递送鞋套3)热情大方、细致讲解4)温馨道别保持整洁工作要求注意事项1)每日对接样板房设备清单,检查空调开启及保洁状态;2)站在样板房或电梯口,笑意盈盈接待客户;3)顾客出现时,身体成30度角鞠躬“欢迎光顾XX样板房”4)引领入座并双手递上鞋套,双手递上时不宜过高,与客人坐下时的膝盖同高;5)与客户交谈时声音要足,吐字清晰避迎客,引导客协助置向客户免重复;6)专注你接待的客户,勿去应其他客户,以示尊重,对其他客户微笑点头以示回应;7)若无销售人员带领的客户,要主动介绍房子的户型及基本信息,谈到房子的价位时请客户直接与销售人员联系不要直接做回答;8)参加样板房时,未经销售或其他人员允许谢绝拍照及录像,谢绝动用样板房物品及附属设施,对客遗失物品做好登记并上报上级领导;9)时刻注意进入样板房的客户群体,特别是小孩,要处处表达殷勤的关心,以示待客之道;10)时刻留意客户的谈话,记下客户对样板房的关注点和相关信息;11)送别,引领客户入座示意脱下鞋套双手承接,客户起身离去时,鞠躬说感谢您参观样板房,并目送客户离开;下班程序1)检查样板房设备设施是否处于良好的运营状态,如出现异常及时维修;2)需对接样板房物品清单;3)整理客户意见,参加班后会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.5.2样板房服务岗岗位标准(参见销售大厅服务岗岗位标准)1.3.6案场服务岗管理要求培训及例会岗前培训BI规范及楼盘基本情况在岗培训每月至少一次1)公司企业文化2)客户服务技巧3)客户心理培训4)突发事件处理5)营销知识培训6)职业安全7)7S现场管理例会日会:每日参加案场管理岗组织的总结会并及时接收案场信息周会:每周参加管理岗组织的服务类业务点评会客户信息收集反馈每日汇总客户信息反馈到案场管理岗样板房客户车场岗客户监督考核1)考核频次:至少每月一次;2)考核人:案场管理岗;3)每月汇总客户信息反馈表,依据上级检查及客户满意度调查情况进行绩效加减;4)由案场负责人直接考核;5)连续两个月考核不合格者直接辞退1.4案场基础作业岗1.4.1案场基础作业岗任职资格岗位类型岗位名称任职资格基础作业岗安全岗基本要求:1)男性:身高1.80米以上;2)年龄:(18-30)岁;3)普通话标准;4)学历:高中以上;技能要求:1)熟悉项目的基本情况2)具备过硬的军事素质素质要求:1)性格:开朗、主动服务意识强有亲和力;2)从业经历:具有同岗位经验半年以上案场保洁岗及绿化养护岗基本要求:1)男女不限;2)年龄30岁以下3)学历:初中以上技能要求“案场保洁岗:熟知药剂使用及工具使用案场绿化养护岗:熟知树木习性及绿化养护知识素质要求:具有亲和力,对保洁及绿化工作有认同感案场技术保障岗基本要求:男性五官端正学历:中专(机电一体化)技能要求:1)具有水或电及空调证书;2)熟悉各岗位操作工具的使用;3)同岗工作一年以上素质要求:踏实肯干,具有亲和力及主动服务意识1.4.2案场基础作业岗通用行为规范通用规范 参照标准君正物业员工BI 规范手册1.4.3安全岗岗位标准1.4.3.1安全岗岗位职责1)负责销售案场管理服务区域的安全巡视工作,维持正常秩序;2)监督工作区域内各岗位工作状态及现场情况及时反馈信息;3)发现和制止各种违规和违章行为,对可疑人员要礼貌的盘问和跟踪察看;4)谢绝和制止未经许可的各类拍照、摆放广告行为;1.4.3.2安全岗作业要求1)按照巡视路线巡视签到检查重点部位;2)遇见客户要站立、微笑、敬礼,礼貌的回答客户的提问并正确引导;3)人过地净,协助案场保洁人员做好案场的环境维护;4)在每一巡视期内检查设备设施运行状态并做好记录;5)协助做好参观人员的车辆引导、指引和执勤工作;6)积极协助其他岗位工作,依据指令进行协助;1.4.4保洁岗岗位标准1.4.4.1保洁岗岗位职责1)负责案场办公区域、样板房及饰品的清洁工作;2)负责案场外围的清洁工作;3)负责案场垃圾的处理;4)对案场杂志等资料及时归位;1.4.4.2保洁岗作业要求1)每天提前半小时上岗,对案场玻璃、地面等进行全方位清洁;2)卫生间每十分钟进行一次巡视性清洁;3)阴雨天提前关闭门窗;4)掌握清洁器具的使用;5)熟知清洁药剂的配比及使用;1.4.5绿化岗岗位标准1.4.5.1绿化岗岗位职责1)负责管理区域内一切绿化的养护;2)确保绿化的正常存活率;3)对绿植进行修剪及消杀;1.4.6案场技术岗岗位标准1.4.6.1案场技术岗岗位职责1)全面负责案场区域内设备设施的维护、维修及保养;2)协助管理岗完成重大接待工作案场的布置;3)现场安全的整体把控;1.4.6.2案场技术岗岗位要求1)每日案场开放前对辖区设备设施进行检查,保障现场零事故;2)每日班后对设备设施进行检查保障正常运行并做好相关记录;3)报修后5分钟赶到现场;4)接到异常天气信息,对案场设备进行安全隐患排除;1.4.7案场基础作业岗岗位要求培训及例会岗前培训BI规范及楼盘基本情况在岗培训每月至少一次1)公司企业文化2)客户服务技巧3)客户心理培训4)突发事件处理5)营销知识培训6)职业安全7)7S现场管理例会日会:每日参加案场管理岗组织的总结会并及时接收案场信息周会:每周参加管理岗组织的服务类业务点评会客户信息收集反馈每日汇总客户信息反馈到案场管理岗监督考核1)考核频次:至少每月一次;2)考核人:案场管理岗;3)每月汇总客户信息反馈表,依据上级检查及样板房客户车场岗客户客户满意度调查情况进行绩效加减;4)由案场负责人直接考核;5)连续两个月考核不合格者直接辞退2服务创新案例项目推荐亮点服务为客户爱车提供遮阳服务服务员面向客户时刻关注客户上午11点给客户送上点心,关怀到心2服务创新案例项目推荐亮点服务夏日毛巾送清凉,冬日毛巾暖人心洗手间提供百宝箱样板房门口提供卷尺待客户使用摆件销售大销售大标准摆布置整齐规范布置整齐规范水中花、烟缸、百宝箱、项目推介书茶几物品、花、烟缸水中花时尚周围用木桩装垃圾桶装饰(石子边缘放置一枚花卉)垃圾桶上方加印LOGO整齐的伞架样板房没有样板房门口销售大厅设梯所设的温馨字画套分门别类摆放娱乐实施(桌球等)正余弦函数的图像与性质例题1.值域最值:三角函数最值问题的解题技巧三角函数的最值问题,是三角函数基础知识的综合应用,它与二次函数、三角函数的单调性、三角函数的图像等知识联系在一起,该问题综合性强,解题方法也多样化.解这类问题是运算能力、分析问题和解决问题能力的综合体现,有一定的难度,要注意灵活选用方法.下面介绍解三角函数最值问题的常见方法.1、形如sin y a x b =+型的函数的最值例题:1)求函数2sin3y x =-的最值及取得最值时自变量x 的集合2)函数32sin(2),,334y x x πππ⎡⎤=-∈⎢⎥⎣⎦的值域是____ 练习:1)求函数1)32sin(2++=πx y 的最值,并求出相应自变量x 的取值范围2)已知函数)32sin(2)(π-=x x f ,若]2,4[ππ∈x ,求函数)(x f y =的最值以及相应自变量x 的值. 2、形如x b x a y cos sin +=型的函数的最值.例题: 1)求函数x x x x f sin )cos (sin )(⋅-=的最值2)已知(1,2sin )a x =r ,2,cos )b x x =-r,设函数()f x =·.若[],0x ∈-π,求)(x f y =的最大值、最小值并求出对应的x 值3) 当-≤≤=+ππ223x y x x 时,函数的()sin cos A.最大值为1,最小值为-1B.最大值为1,最小值为-12 C.最大值为2,最小值为-2 D.最大值为2,最小值为-1 4)已知函数x x x f 2cos 3)4(sin 2)(2-+=π,若不等式2)(≥-m x f 在]2,4[ππ∈x 上恒成立.求m 的取值范围.)2|)((|≤-m x f2、形如c x b x a y ++=sin sin 2)0(≠a 型的函数的最值.这类问题最后化为二次函数的三角最值问题,利用三角函数的有界性1)(cos sin 1≤≤-x x ,并结合二次函数的性质求得结论.闭区间上的二次函数一定存在最大值、最小值,并且最大值、最小值又一定在极值点或区间端点处获得.例题:求函数1sin sin 2++=x x y ,6sin 4cos 42+--=x x y 的最值. 练习:1)函数22sin 2cos 3y x x =+-的最值2)求函数x x y sin cos 2+=在区间[,]44ππ-上的最小值. 3)求函数6sin 42cos 4+--=x x y 的最值.4)已知函数(x)f 22cos 2sin 4cos x x x =+-。