北师大版七年级数学下册同步练习:41认识三角形.docx
北师大版数学七年级下册4.1《认识三角形》精选练习(含答案)
北师大版数学七年级下册4.1《认识三角形》精选练习一、选择题1.几位同学用三根木棒拼成的图形如图所示,则其中符合三角形定义的是( )2.如图所示的三角形被木板遮住了一部分,这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能3.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.锐角三角形或钝角三角形4.如图,将一块含有30°角的直角三角尺的两个顶点放在长方形直尺的一组对边上,如果∠2=60°,那么∠1的度数为( )A.60°B.50°C.40°D.30°5.如图,直线a∥b,直线l与a,b分别相交于A,B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为( )A.58°B.42°C.32°D.28°6.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A.120°B.90°C.60°D.30°7.在△ABC中,∠A∶∠B∶∠C=3∶4∶5,则∠C等于( )A.45°B.60°C.75°D.90°8.如图,在△ABC中,点D,E,F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°,则∠EFD等于( )A.80°B.75°C.70°D.65°9.如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A.1cm2B.2cm2C.8cm2D.16cm210.三角形中∠B的平分线和外角的平分线的夹角是().A.60°B.90°C.45°D.135°11.已知三角形的三边长为连续整数,且周长为12 cm,则它的最短边长为( )A.2 cmB.3 cmC.4 cmD.5 cm12.下列说法:①等边三角形是等腰三角形;②等腰三角形也可能是直角三角形;③三角形按边分类可分为等腰三角形、等边三角形和三边都不相等的三角形;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有( )A.1个B.2个C.3个D.4个二、填空题13.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD= 。
北师大版初中数学七年级下册《4.1 认识三角形》同步练习卷(9)
北师大新版七年级下学期《4.1 认识三角形》同步练习卷一.选择题(共26小题)1.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.图中三角形的个数是()A.3个B.4个C.5个D.6个3.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个4.给出下列说法:(1)等边三角形是等腰三角形;(2)三角形按边的相等关系分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中,正确的有()个.A.1B.2C.3D.05.如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN6.在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.7.下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.8.如图,四个图形中,线段BE是△ABC的高的图是()A.B.C.D.9.如图,在△ABC中,AD,BE是两条中线,则△EFD和△BF A的面积之比是()A.1:2B.1:4C.1:3D.2:310.如图,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,且△ABC的面积为16,则△BEF的面积是()A.2B.4C.6D.811.下列各组数不可能是一个三角形的边长的是()A.7,8,9B.5,6,7C.3,4,5D.1,2,312.已知线段a=6cm,b=8cm,则下列线段中,能与a、b组成三角形的是()A.2cm B.12cm C.14cm D.16cm13.若三角形的两边长为2和3,则第三边长可以是()A.1B.3C.5D.714.下列长度的三条线段能组成三角形的是()A.4,5,9B.5,5,11C.1,2,3D.5,6,10 15.下列各组数可做为一个三角形三边长的是()A.4,6,8B.4,5,9C.1,2,4D.5,5,11 16.如图,在Rt△ABC中,∠C=90°,∠ABC和∠BAC的平分线交于一点O,∠ABO=30°,则∠AOB的度数是()A.100°B.125°C.135°D.130°17.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A.120°B.60°C.140°D.无法确定18.如图,在△ABC中,BD平分∠ABC,DE∥BC,且交AB于点E,∠A=60°,∠BDC =86°,则∠BDE的度数为()A.26°B.30°C.34°D.52°19.如图,在△ABC中,点D是∠ABC和∠ACB角平分线的交点,若∠BDC=110°,那么∠A=()A.40°B.50°C.60°D.70°20.如图,∠C=50°,∠B=30°,则∠CAD的度数是()A.80°B.90°C.100°D.110°21.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是()A.30°B.40°C.50°D.60°22.一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°23.在△ABC中,∠A,∠C与∠B的外角度数如图所示,则x的值是()A.60B.65C.70D.8024.如图,在Rt△ABC中,∠ACB=90°,点E、F为直角边BC、AC的中点,且AE=3,BF=4,则AB=()A.2B.3C.2D.525.在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是()A.75°B.65°C.55°D.45°26.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足点为D,则下列结论中正确的个数为()①AB与AC互相垂直;②∠ADC=90°;③点C到AB的垂线段是线段AB;④线段AB的长度是点B到AC的距离;⑤线段AB是点B到AC的距离.A.5B.4C.3D.2二.填空题(共4小题)27.如图,△ABC中,点O是重心,过点O的两条线段BE⊥AD.若BD=10,BO=8,则AO的长为.28.如图,△ABC的中线BE、CD交于点G,则值为.29.已知△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,那么CG=.30.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=.北师大新版七年级下学期《4.1 认识三角形》2019年同步练习卷参考答案与试题解析一.选择题(共26小题)1.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【分析】根据三角形的分类可直接得到答案.【解答】解:三角形根据边分类,∴图中小椭圆圈里的A表示等边三角形.故选:D.【点评】此题主要考查了三角形的分类,关键是掌握分类方法.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).2.图中三角形的个数是()A.3个B.4个C.5个D.6个【分析】三条线段首尾顺次相接组成的图形叫做三角形,根据图示得出三角形个数即可.【解答】解:图中三角形由△ABC,△ABE,△BEC,△BDC,△DEC,故选:C.【点评】此题考查三角形,在数三角形的个数时,注意不要忽略一些大的三角形.3.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个【分析】根据三角形的定义,找出图中所有的三角形,数出其个数即可得出结论.【解答】解:图中是三角形的有:△AOC、△BOD、△AOB、△ABC、△ABD.故选:C.【点评】本题考查了三角形,牢记三角形的定义是解题的关键.4.给出下列说法:(1)等边三角形是等腰三角形;(2)三角形按边的相等关系分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中,正确的有()个.A.1B.2C.3D.0【分析】根据三角形的分类、三角形的三边关系进行判断.【解答】解:(1)等边三角形是一特殊的等腰三角形,正确;(2)三角形按边分类可以分为不等边三角形和等腰三角形,错误;(3)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形,正确.综上所述,正确的结论2个.故选:B.【点评】本题考查了三角形.注意:等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.5.如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN【分析】三角形一边的中点与此边所对顶点的连线叫做三角形的中线,逐一判断各选项即可.【解答】解:由图可得,F是BC的中点,根据三角形中线的定义,可知线段AF是△ABC的中线,故选:C.【点评】本题主要考查了三角形中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.6.在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【解答】解:过点A作直线BC的垂线段,即画BC边上的高,所以画法正确的是D.故选:D.【点评】考查了三角形的高的概念,能够正确作三角形一边上的高.7.下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BD是△ABC 的高.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.8.如图,四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【解答】解:过点B作AC边上的高,垂足为E,则线段BE是△ABC的高的图是选项C.故选:C.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.9.如图,在△ABC中,AD,BE是两条中线,则△EFD和△BF A的面积之比是()A.1:2B.1:4C.1:3D.2:3【分析】利用三角形的中位线定理可得DE:AB=1:2,再利用相似三角形的性质即可解决问题.【解答】解:∵CE=AE,CD=DB,∴ED∥AB,DE=AB,∴△DEF∽△ABF,∴=()2=,故选:B.【点评】本题考查三角形的面积,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.如图,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,且△ABC的面积为16,则△BEF的面积是()A.2B.4C.6D.8【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,△EBC与△ABC同底,△EBC的高是△ABC高的一半;利用三角形的等积变换可解答.【解答】解:解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,高相等;∴S△BEF=S△BEC,同理得,S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=16,∴S△BEF=4,即阴影部分的面积为4.故选:B.【点评】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.结合图形直观解答.11.下列各组数不可能是一个三角形的边长的是()A.7,8,9B.5,6,7C.3,4,5D.1,2,3【分析】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:A、7+8>9,能构成三角形;B、5+6>7,能构成三角形;C、3+4>5,能构成三角形;D、1+2=3,不能构成三角形.故选:D.【点评】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.12.已知线段a=6cm,b=8cm,则下列线段中,能与a、b组成三角形的是()A.2cm B.12cm C.14cm D.16cm【分析】根据三角形的第三边大于两边之差小于两边之和即可判断.【解答】解:设三角形的第三边为m.由题意:8﹣6<m<6+8,即2<m<14,故选:B.【点评】本题考查三角形的三边关系,解题的关键是熟练掌握基本知识,属于中考常考题型.13.若三角形的两边长为2和3,则第三边长可以是()A.1B.3C.5D.7【分析】根据三角形三边关系定理求出第三边的范围,即可解答.【解答】解:∵三角形的两边长为3和2,∴第三边x的长度范围是3﹣2<x<3+2,即1<x<5,观察选项,只有选项B符合题意.故选:B.【点评】本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.14.下列长度的三条线段能组成三角形的是()A.4,5,9B.5,5,11C.1,2,3D.5,6,10【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,4+5=9,不能组成三角形;B中,5+5=10<11,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,5+6=11>8,能组成三角形.故选:D.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.15.下列各组数可做为一个三角形三边长的是()A.4,6,8B.4,5,9C.1,2,4D.5,5,11【分析】在三角形中任意两边之和大于第三边,任意两边之差小于第三边,据此可得答案.【解答】解:A、4+6>8,能组成三角形;B、4+5=9,不能组成三角形;C、1+2<4,不能组成三角形;D、5+5<11,不能组成三角形.故选:A.【点评】本题考查了三角形三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.16.如图,在Rt△ABC中,∠C=90°,∠ABC和∠BAC的平分线交于一点O,∠ABO=30°,则∠AOB的度数是()A.100°B.125°C.135°D.130°【分析】根据角平分线的定义以及三角形内角和定理,即可得到∠ABO和∠BAO的度数,再根据三角形内角和定理即可得出∠AOB的度数.【解答】解:∵BO平分∠ABC,∠ABO=30°,∴∠ABC=60°,又∵∠C=90°,∴∠BAC=30°,∵AO平分∠BAC,∴∠BAO=∠BAC=15°,∴△AOB中,∠AOB=180°﹣∠BAO﹣∠ABO=135°,故选:C.【点评】本题主要考查了三角形内角和定理以及角平分线的定义,解题时注意:三角形内角和是180°.17.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A.120°B.60°C.140°D.无法确定【分析】以及三角形内角和定理,即可得到∠ABC+∠ACB=180°﹣120°=60°,再根据∠1=∠2=∠3,∠4=∠5=∠6,即可得到∠DBC+∠DCB的度数,最后利用三角形内角和定理可得∠BDC的度数.【解答】解:在△ABC中,∵∠A=120°,∴∠ABC+∠ACB=180°﹣120°=60°,又∵∠1=∠2=∠3,∠4=∠5=∠6,∴∠DBC+∠DCB=×60°=40°,∴∠BDC=180°﹣40°=140°,故选:C.【点评】此题考查三角形的内角和,角平分线的定义,解题时注意:三角形内角和是180°.18.如图,在△ABC中,BD平分∠ABC,DE∥BC,且交AB于点E,∠A=60°,∠BDC =86°,则∠BDE的度数为()A.26°B.30°C.34°D.52°【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和,求出∠ABD的度数,再根据角平分线的定义求出∠DBC的度数,然后根据两直线平行,内错角相等即可得解.【解答】解:∵∠BDC=∠A+∠ABD,∴∠ABD=∠BDC﹣∠A=86°﹣60°=26°,∵BD平分∠ABC,∴∠DBC=∠ABD=26°,又∵DE∥BC,∴∠BDE=∠DBC=26°.故选:A.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,以及两直线平行,内错角相等的性质,准确识图是解题的关键.19.如图,在△ABC中,点D是∠ABC和∠ACB角平分线的交点,若∠BDC=110°,那么∠A=()A.40°B.50°C.60°D.70°【分析】求出∠ABC+∠ACB的度数即可解决问题.【解答】解:∵∠BDC=110°,∴∠DBC+∠DCB=70°,∵点D是∠ABC和∠ACB角平分线的交点,∴∠ABC+∠ACB=2(∠DBC+∠DCB)=140°,∴∠A=180°﹣140°=40°,故选:A.【点评】本题考查三角形的内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.如图,∠C=50°,∠B=30°,则∠CAD的度数是()A.80°B.90°C.100°D.110°【分析】根据三角形的外角的性质即可解决问题.【解答】解:∵∠CAD=∠B+∠C,∠C=50°,∠B=30°,∴∠CAD=80°,故选:A.【点评】本题考查三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是()A.30°B.40°C.50°D.60°【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故选:D.【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.22.一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°【分析】根据图形求出∠1,根据三角形的外角性质计算,得到答案.【解答】解:如图,∠1=90°﹣45°=45°,则∠α=60°+45°=105°,故选:B.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.23.在△ABC中,∠A,∠C与∠B的外角度数如图所示,则x的值是()A.60B.65C.70D.80【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得解.【解答】解:∵与∠ABC相邻的外角=∠A+∠C,∴x+65=x﹣5+x,解得x=70.故选:C.【点评】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.24.如图,在Rt△ABC中,∠ACB=90°,点E、F为直角边BC、AC的中点,且AE=3,BF=4,则AB=()A.2B.3C.2D.5【分析】设BE=EC=x,CF=F A=y,构建方程组求出x2,y2,再根据AB=计算即可.【解答】解:设BE=EC=x,CF=F A=y,∵∠C=90°,AE=3,BF=4,则有,解得x2=,y2=,∴AB===2,故选:C.【点评】本题考查解直角三角形,勾股定理等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.25.在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是()A.75°B.65°C.55°D.45°【分析】根据直角三角形两锐角互余,列式进行计算即可得解.【解答】解:∵在一个直角三角形中,有一个锐角等于35°,∴另一个锐角的度数是90°﹣35°=55°.故选:C.【点评】本题主要考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.26.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足点为D,则下列结论中正确的个数为()①AB与AC互相垂直;②∠ADC=90°;③点C到AB的垂线段是线段AB;④线段AB的长度是点B到AC的距离;⑤线段AB是点B到AC的距离.A.5B.4C.3D.2【分析】根据点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离;当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线进行分析.【解答】解:∵∠BAC=90°,∴AB与AC互相垂直;故①正确;∵AD⊥BC,∴∠ADC=90°,故②正确;点C到AB的垂线段是线段AC;故③错误;线段AB的长度是点B到AC的距离;故④正确;线段AB的长度是点B到AC的距离,故⑤错误;故选:C.【点评】本题主要考查了点到直线的距离,关键时注意点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.二.填空题(共4小题)27.如图,△ABC中,点O是重心,过点O的两条线段BE⊥AD.若BD=10,BO=8,则AO的长为12.【分析】先根据勾股定理得到OD的长,再根据重心的性质即可得到AO的长.【解答】解:∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.故答案为:12.【点评】此题主要考查了勾股定理的应用以及重心的性质,根据已知得出各边之间的关系进而求出是解题关键.28.如图,△ABC的中线BE、CD交于点G,则值为.【分析】根据三角形重心的性质即可求解.【解答】解:∵△ABC的中线BE、CD交于点G,∴CG:DG=2:1,∴==.故答案为:.【点评】考查了三角形的重心,重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1.29.已知△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,那么CG=.【分析】根据勾股定理求出AB,根据直角三角形的性质求出CD,根据三角形的重心的性质计算即可.【解答】解:△ABC中,∠ACB=90°,AC=6,BC=8,∴AB==10,∵G为△ABC的重心,∴CD是△ABC的中线,∴CD=AB=5,∵G为△ABC的重心,∴CG =CD =,故答案为:.【点评】本题考查的是三角形的重心的概念和性质,勾股定理,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.30.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=20°.【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵∠C=Rt∠,∠A=70°,∴∠B=90°﹣∠A=90°﹣70°=20°.故答案为:20°.【点评】本题考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.第21页(共21页)。
2020-2021学年北师大版七年级数学下册第四章4.1认识三角形 同步测试
北师大版七年级数学下册第四章4.1认识三角形同步测试(原卷版)一.选择题1.下列关于三角形分类不正确的是(整个大方框表示全体三角形)()A.B.C.D.2.已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是()A.3B.5C.7D.113.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形4.有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定5.若AD是△ABC的中线,则下列结论正确的是()A.AD△BC B.BD=CD C.△BAD=△CAD D.AD=BC 6.现有两根笔直的木棍,它们的长度是20cm和30cm,若不改变木棍的长度,要做一个三角形的木框,则第三根木棍的长度可能为()A.10cm B.20cm C.50cm D.60cm7.如图,已知AD是△ABC的边BC上的中线,CE是△ADC的边AD上的中线,若△ABD的面积为16cm2,则△CDE的面积为()A.32 cm2B.16cm2C.8cm2D.4cm28.如图,在△ABC中,D为BC上一点,△1=△2,△3=△4,△BAC=105°,则△DAC的度数为()A.80°B.82°C.84°D.86°9.如图,△ABC中,△A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时△C′DB=74°,则原三角形的△C的度数为()A.27°B.59°C.69°D.79°10.如图,△ABC的角平分线CD、BE相交于F,△A=90°,EG△BC,且CG△EG于G,下列结论:△△CEG=2△DCB;△△ADC=△GCD;△CA平分△BCG;△△DFB=△CGE.其中正确的结论是()A.△△B.△△△C.△△△D.△△△△二.填空题11.如图,AB△CD,CE与AB交于点A,BE△CE,垂足为E.若△C=37°,则△B= .12.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形个.13.在三角形的三条高中,位于三角形外的可能条数是条.14.如图,△ABC的中线BD、CE相交于点O,OF△BC,且BC=4cm,OF=2cm,则四边形ADOE的面积是.15.一个三角形的周长为偶数,其中两条边长分别为6和2019,则满足上述条件的三角形有个.16.如图,在△ABC中,△A=m°,△ABC和△ACD的平分线交于点A1,得△A1,△A1BC和△A1CD的平分线交于点A2,得△A2,…,△A2017BC和△A2017CD的平分线交于点A2018,则△A2018=度.三.解答题17.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.18.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,△CAB =50°,△C=60°,求△DAE和△BOA的度数.19.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.20.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,求∠ADB的度数.22.(1)如图1,则△A、△B、△C、△D之间的数量关系为△A+△B=△C+△D.(2)如图2,AP、CP分别平分△BAD、△BCD.若△B=36°,△D=14°,求△P 的度数;(3)如图3,CP、AG分别平分△BCE、△F AD,AG反向延长线交CP于点P,请猜想△P、△B、△D之间的数量关系.并说明理由.北师大版七年级数学下册第四章4.1认识三角形同步测试(解析版)一.选择题1.下列关于三角形分类不正确的是(整个大方框表示全体三角形)()A.B.C.D.【分析】给出知识树,分析其中的错误,这就要求平时学习扎实认真,概念掌握的准确.【解答】解:根据选项,可知根据角和边来对三角形分别进行分类.故选:C.【点评】此题考查三角形问题,很基础的一道考查数学概念的题目,在考查知识的同时.也考查了学生对待学习的态度,是一道好题.2.已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是()A.3B.5C.7D.11【分析】设第三边的长为x,再由三角形的三边关系即可得出结论.【解答】解:设第三边的长为x,△三角形两边的长分别是3和5,△5﹣3<x<5+3,即2<x<8.故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形【分析】分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形.【解答】解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图,锐角三角形沿虚线剪开即可得到一个锐角三角形和一个钝角三角形.因为剪开的边上的两个角是邻补角,不可能都是锐角,故这两个三角形不可能都是锐角三角形.综上所述,将一个三角形剪成两三角形,这两个三角形不可能都是锐角三角形.故选:A.【点评】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.4.有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【分析】根据三角形的高的概念,通过具体作高.发现:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部.【解答】解:有两条高在三角形外部的是钝角三角形.故选:C.【点评】本题主要考查了三角形的角平分线、中线和高,注意不同形状的三角形的高的位置.5.若AD是△ABC的中线,则下列结论正确的是()A.AD△BC B.BD=CD C.△BAD=△CAD D.AD=BC【分析】根据三角形的中线的定义即可判断.【解答】解:△AD是△ABC的中线,△BD=DC,故选:B.【点评】本题考查三角形的中线的定义,解题的关键是熟练掌握基本知识,属于中考基础题.6.现有两根笔直的木棍,它们的长度是20cm和30cm,若不改变木棍的长度,要做一个三角形的木框,则第三根木棍的长度可能为()A.10cm B.20cm C.50cm D.60cm【分析】先设第三根木棒的长为lcm,再根据三角形的三边关系求出l的取值范围,找出符合条件的l的值即可.【解答】解:设第三根木棒的长为lcm,△两根笔直的木棍,它们的长度分别是20cm和30cm,△30cm﹣20cm<l<30cm+20cm,即10cm<l<50cm.△四个选项中只有B符合题意.故选:B.【点评】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.7.如图,已知AD是△ABC的边BC上的中线,CE是△ADC的边AD上的中线,若△ABD的面积为16cm2,则△CDE的面积为()A.32 cm2B.16cm2C.8cm2D.4cm2【分析】根据三角形的中线把三角形分成面积相等的两部分,进而解答即可.【解答】解:△AD是△ABC的边BC上的中线,△ABD的面积为16cm2,△△ADC的面积为16cm2,△CE是△ADC的边AD上的中线,△△CDE的面积为8cm2,故选:C.【点评】本题主要考查了三角形面积的求法和三角形的中线,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.8.如图,在△ABC中,D为BC上一点,△1=△2,△3=△4,△BAC=105°,则△DAC的度数为()A.80°B.82°C.84°D.86°【分析】根据三角形的内角和定理和三角形的外角性质即可解决.【解答】解:△△BAC=105°,△△2+△3=75°△,△△1=△2,△3=△4,△△4=△3=△1+△2=2△2△,把△代入△得:3△2=75°,△△2=25°,△△DAC=105°﹣25°=80°.故选:A.【点评】此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理是解题的关键.9.如图,△ABC中,△A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时△C′DB=74°,则原三角形的△C的度数为()A.27°B.59°C.69°D.79°【分析】先根据折叠的性质得△1=△2,△2=△3,△CDB=△C′DB=74°,则△1=△2=△3,即△ABC=3△3,根据三角形内角和定理得△3+△C=106°,在△ABC 中,利用三角形内角和定理得△A+△ABC+△C=180°,则20°+2△3+106°=180°,可计算出△3=27°,即可得出结果.【解答】解如图,△△ABC沿BE将此三角形对折,又沿BA′再一次对折,点C 落在BE上的C′处,△△1=△2,△2=△3,△CDB=△C′DB=74°,△△1=△2=△3,△△ABC=3△3,在△BCD中,△3+△C+△CDB=180°,△△3+△C=180°﹣74°=106°,在△ABC中,△△A+△ABC+△C=180°,△20°+2△3+(△3+△C)=180°,即20°+2△3+106°=180°,△△3=27°,△△ABC=3△3=81°,△C=106°﹣27°=79°,故选:D.【点评】此题主要考查了图形的折叠变换及三角形内角和定理的应用等知识;熟练掌握折叠的性质,得出△ABC和△CBD的倍数关系是解决问题的关键.10.如图,△ABC的角平分线CD、BE相交于F,△A=90°,EG△BC,且CG△EG于G,下列结论:△△CEG=2△DCB;△△ADC=△GCD;△CA平分△BCG;△△DFB=△CGE.其中正确的结论是()A.△△B.△△△C.△△△D.△△△△【分析】△正确.利用平行线的性质证明即可.△正确.首先证明△ECG=△ABC,再利用三角形的外角的性质解决问题即可.△错误.假设结论成立,推出不符合题意即可.△正确.证明△DFB=45°即可解决问题.【解答】解:△EG△BC,△△CEG=△BCA,△CD平分△ACB,△△BCA=2△DCB,△△CEG=2△DCB,故△正确,△CG△EG,△△G=90°,△△GCE+△CEG=90°,△△A=90°,△△BCA+△ABC=90°,△△CEG=△ACB,△△ECG=△ABC,△△ADC=△ABC+△DCB,△GCD=△ECG+△ACD,△ACD=△DCB,△△ADC=△GCD,故△正确,假设AC平分△BCG,则△ECG=△ECB=△CEG,△△ECG=△CEG=45°,显然不符合题意,故△错误,△△DFB=△FCB+△FBC=(△ACB+△ABC)=45°,△CGE=45°,△△DFB=△CGE,故△正确,故选:B.【点评】本题考查三角形内角和定理,三角形外角的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题11.如图,AB∥CD,CE与AB交于点A,BE⊥CE,垂足为E.若∠C=37°,则∠B= .11.答案:53°解析:【解答】△AB△CD,△△C=△BAE=37°,△BE△CE,△△BAE=90°,△△B=90°-△BAE=90°-37°=53°.【点评】先根据平行线的性质得出∠BAE的度数,再由直角三角形的性质即可得出结论.12.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形21个.【分析】根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,即第n个图形中,三角形的个数是1+4(n﹣1)=4n﹣3.所以当n=6时,原式=21.注意规律:后面的图形比前面的多4个.【解答】解:第n个图形中,三角形的个数是1+4(n﹣1)=4n﹣3.所以当n =6时,原式=21,故答案为:21.【点评】注意正确发现规律,根据规律进行计算.13.在三角形的三条高中,位于三角形外的可能条数是0或2条.【分析】当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内;当三角形为直角三角形和锐角三角形时没有高在三角形外.由此即可确定三角形的三条高中,在三角形外部的最多有多少条.【解答】解:△当三角形为直角三角形和锐角三角形时,没有高在三角形外;而当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内.△三角形的三条高中,在三角形外部的最多有2条.故答案为:0或2.【点评】此题主要考查了三角形的高,关键是掌握三角形高的定义和画法.14.如图,△ABC的中线BD、CE相交于点O,OF△BC,且BC=4cm,OF=2cm,则四边形ADOE的面积是4cm2.【分析】根据三角形的面积=底×高÷2,求出△BOC的面积是多少;然后根据三角形的中线将三角形分成面积相等的两部分,可得△BCD、△ACE的面积均是△ABC的面积的一半,据此判断出四边形ADOE的面积等于△BOC的面积,据此解答即可.【解答】解:△BD、CE均是△ABC的中线,△S△BCD=S△ACE=S△ABC,△S四边形ADOE+S△COD=S△BOC+S△COD,△S四边形ADOE=S△BOC=4×2÷2=4cm2.故答案为:4cm2.【点评】此题主要考查了三角形的面积的求法,以及三角形的中线的性质,要熟练掌握,解答此题的关键要明确:(1)三角形的中线将三角形分成面积相等的两部分;(2)三角形的面积=底×高÷2.15.一个三角形的周长为偶数,其中两条边长分别为6和2019,则满足上述条件的三角形有5个.【分析】根据三角形的三边关系求得第三边的取值范围,再根据三角形的周长是偶数,且已知的两边和是奇数,则三角形的第三边应该是奇数,从而求解.【解答】解:根据三角形的三边关系,得三角形的第三边大于2013而小于2025.根据题意,得三角形的第三边应该是奇数,则三角形的第三边可以为:2015,2017,2019,2021,2023共5个.故答案为:5.【点评】此题考查了三角形的三边关系,同时能够根据周长和已知的边判断第三边应满足的条件.16.如图,在△ABC中,△A=m°,△ABC和△ACD的平分线交于点A1,得△A1,△A1BC和△A1CD的平分线交于点A2,得△A2,…,△A2017BC和△A2017CD的平分线交于点A2018,则△A2018=度.【分析】利用角平分线的性质、三角形外角性质,易证△A1=△A,进而可求△A1,由于△A1=△A,△A2=△A1=△A,…,以此类推可知△A2018即可求得.【解答】解:△A1B平分△ABC,A1C平分△ACD,△△A1BC=△ABC,△A1CA=△ACD,△△A1CD=△A1+△A1BC,即△ACD=△A1+△ABC,△△A1=(△ACD﹣△ABC),△△A+△ABC=△ACD,△△A=△ACD﹣△ABC,△△A1=△A,△A2=△A1=△A,…,以此类推可知△A2018=△A=()°,故答案为:.【点评】本题考查了角平分线性质、三角形外角性质,解题的关键是推导出△A1=△A,并能找出规律.三.解答题17.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.【分析】(1)设AE=xcm,根据三角形BDE与四边形ACDE的周长相等列方程,解方程即可;(2)找出图中所有的线段,再根据所有线段长度的和是53cm,求出2BC+DE,得到答案.【解答】解:(1)△三角形BDE与四边形ACDE的周长相等,△BD+DE+BE=AC+AE+CD+DE,△BD=DC,△BE=AE+AC,设AE=x cm,则BE=(10﹣x)cm,由题意得,10﹣x=x+6.解得,x=2,△AE=2cm;(2)图中共有8条线段,它们的和为:AE+EB+AB+AC+DE+BD+CD+BC=2AB+AC+2BC+DE,由题意得,2AB+AC+2BC+DE=53,△2BC+DE=53﹣(2AB+AC)=53﹣(2×10+6)=27,△BC+DE=(cm).【点评】本题考查的是三角形的周长、四边形的周长,正确作出图中所有线段是解题的关键.18.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,△CAB =50°,△C=60°,求△DAE和△BOA的度数.【分析】先利用三角形内角和定理可求△ABC,在直角三角形ACD中,易求△DAC;再根据角平分线定义可求△CBF、△EAF,可得△DAE的度数;然后利用三角形外角性质,可先求△AFB,再次利用三角形外角性质,容易求出△BOA.【解答】解:△△CAB=50°,△C=60°△△ABC=180°﹣50°﹣60°=70°,又△AD是高,△△ADC=90°,△△DAC=180°﹣90°﹣△C=30°,△AE、BF是角平分线,△△CBF=△ABF=35°,△EAF=25°,△△DAE=△DAC﹣△EAF=5°,△AFB=△C+△CBF=60°+35°=95°,△△BOA=△EAF+△AFB=25°+95°=120°,△△DAC=30°,△BOA=120°.故△DAE=5°,△BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出△EAF、△CBF,再运用三角形外角性质求出△AFB.19.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.【分析】利用三角形三边关系定理,先确定第三边的范围,进而解答即可.【解答】解:△在△ABC中,AB=3,AC=7,△第三边BC的取值范围是:4<BC<10,△符合条件的偶数是6或8,△当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.△△ABC的周长为16或18.【点评】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.20.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|20.答案:见解答过程.解析:【解答】根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.△|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b +c+a-b=3c+a-b.【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算.21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,求∠ADB的度数.21.答案:100°.【解答】△AD是△ABC的角平分线,△BAC=60°,△△DAC=△BAD=30°.△CE 解析:是△ABC的高,△BCE=40°,△△B=50°,△△ADB=180°-△B-△BAD=180°-30°-50°=100°.【分析】根据AD是△ABC的角平分线,△BAC=60°,得出△BAD=30°.再利用CE是△ABC 的高,△BCE=40°,得出△B的度数,进而得出△ADB的度数.22.(1)如图1,则△A、△B、△C、△D之间的数量关系为△A+△B=△C+△D.(2)如图2,AP、CP分别平分△BAD、△BCD.若△B=36°,△D=14°,求△P 的度数;(3)如图3,CP、AG分别平分△BCE、△F AD,AG反向延长线交CP于点P,请猜想△P、△B、△D之间的数量关系.并说明理由.【分析】(1)根据三角形的内角和定理,结合对顶角的性质可求解;(2)根据角平分线的定义可得△BAP=△DAP,△BCP=△DCP,结合(1)的结论可得2△P=△B+△D,再代入计算可求解;(3)根据角平分线的定义可得△ECP=△PCB,△F AG=△GAD,结合三角形的内角和定理可得△P+△GAD=△B+△PCB,△P+(180°﹣△GAD)=△D+(180°﹣△ECP),进而可求解.【解答】解:(1)△△AOB+△A+△B=△COD+△C+△D=180°,△AOB=△COD,△△A+△B=△C+△D,故答案为△A+△B=△C+△D;(2)△AP、CP分别平分△BAD、△BCD,△△BAP=△DAP,△BCP=△DCP,由(1)可得:△BAP+△B=△BCP+△P,△DAP+△P=△DCP+△D,△△B﹣△P=△P﹣△D,即2△P=△B+△D,△△B=36°,△D=14°,△△P=25°;(3)2△P=△B+△D.理由:△CP、AG分别平分△BCE、△F AD,△△ECP=△PCB,△F AG=△GAD,△△P AB=△F AG,△△GAD=△P AB,△△P+△P AB=△B+△PCB,△△P+△GAD=△B+△PCB,△△P+△P AD=△D+△PCD,△△P+(180°﹣△GAD)=△D+(180°﹣△ECP),△2△P=△B+△D.【点评】本题主要考查三角形的内角和定理,角平分线的定义,及角的计算,灵活运用等式的性质进行角的计算是解题的关键.。
数学七年级下北师大版4.1.1认识三角形同步练习
4.1认识三角形第一课时一、选择题1.如图,共有三角形的个数是()A.3 B.4 C.5 D.62.如图所示,在ΔABC中,∠ACB是钝角,让点C在射线BD上向右移动,则( )A.ΔACB将变为锐角三角形,而不会再是钝角三角形B.ΔACB将先变为直角三角形,然后再变为锐角三角形,而不会再是钝角三角形C.ΔACB将先变为直角三角形,然后变为锐角三角形,接着又由锐角三角形变为钝角三角形D.ΔACB先由钝角三角形变为直角三角形,再变为锐角三角形,接着又变为直角三角形,然后再次变为钝角三角形3.如图5—18所示,在ΔABC中,AD平分∠BAC,且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是 ( )A.70° B.80° C.100° D.1l0°4.一位同学用三根木棒拼成如下图形,则其中符合三角形概念的是()A.① B.② C.③ D.④5.如图,以BC为边的三角形有()个.A.3个 B.4个 C.5个 D.6个二、填空题6.如图,△ABC中,AB与BC的夹角是,∠A的对边是,∠A、∠C的公共边是.7.在△ABC中,AD是角平分线,若∠B=50º,∠C=70 º,则∠ADC=_________.8.如果△ABC中,∠A:∠B:∠C=2:3:5,则此三角形按角分类应为_________.9.如图,三角形共有________个.10.如图,在△ABC中,∠A=75°,直线DE分别与边AB,AC交于D,E两点,则∠1+∠2= .11.如图,在△ABC中,∠ABC=90°,∠C=50°,以A为圆心、AB为半径的弧与AC相交于点D,那么∠CBD= °.12.如果将一副三角板按如图方式叠放,那么∠1=_______。
参考答案一、选择题(共5小题)1.D;2.D ;3.B;4.D;5.B;二、填空题(共7小题)6.∠B;CB;AC;7.80º;8.直角三角形;9.13;10.255°;11.20;12.105°;。
北师大版七年级数学下册第四章(4.1认识三角形)同步测试试题(含答案)
北师大版七年级数学下册第四章(4.1认识三角形)同步测试题(时间:100分钟满分:100分)一、选择题(每小题3分,共30分)1.两根长度分别为5 cm,9 cm的钢条,下面为第三根的长,则可组成一个三角形框架的是(C)A.3 cmB.4 cmC.9 cmD.14 cm2.如图,△ABC中AB边上的高线是(D)A.线段AGB.线段BDC.线段BED.线段CF3.如图,在△ABC中,AD,AE,AF分别是三角形的高线,角平分线及中线,那么下列结论错误的是(C)A.AD⊥BCB.BF=CFC.BE=ECD.∠BAE=∠CAE4.不一定在三角形内部的线段是(C)A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的高和中线5.已知在△ABC中,∠A=20°,∠B=∠C,那么△ABC是(A)A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能6.一副三角板,如图所示叠放在一起,则图中∠α的度数是(A)A.75°B.60°C.65°D.55°7.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有(B)A.2对B.3对C.4对D.6对8.已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为(D)A.2a+2b-2cB.2a+2bC.2cD.09.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于(A)A.40°B.20°C.55°D.30°10.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的平分线交于点D1,∠ABD1与∠ACD1的平分线交于点D2,依此类推,∠ABD4与∠ACD4的平分线交于点D5,则∠BD5C的度数是(B)A.24°B.25°C.30°D.36°二、填空题(每小题4分,共20分)11.一个三角形有3条高,3条中线,3条角平分线.12.如图,当BD=DC时,AD是△ABC的中线;当∠BAD=∠CAD时,AD是△ABC的角平分线.13.如图,∠BAC=90°,AD⊥BC,∠BAD=30°,则∠C=30°.14.已知等腰三角形的周长为29,一边长为7,则此等腰三角形的腰长为11.15.如图,△ABC三边的中线AD,BE,CF的交点是点G.若S△ABC=12,则图中阴影部分面积是4.提示:设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得:S1=S2,S3=S4,S5=S6,S1=S3,S3=S6,所以S1=S2=S3=S4=S5=S6=2.故阴影部分的面积为4.三、解答题(共50分)16.(8分)如图,在△ABC中,∠ABC是钝角,请画出:(1)∠ABC的平分线;(2)AC边上的中线;(3)BC边上的高.解:如图所示,BD即为∠ABC的平分线,BE即为AC边上的中线,AF即为BC边上的高.17.(8分)在新农村建设中,张爷爷想把一块三角形的花卉园(如图)分成面积相等的四部分,然后分别种上不同的花卉,便于培植与管理.请你帮张爷爷设计三种不同的方案.解:如图所示.18.(10分)如图,AD ,CE 是△ABC 的两条高.已知AD =10,CE =9,AB =12. (1)求△ABC 的面积; (2)求BC 的长.解:(1)S △ABC =12AB·CE=12×12×9=54.(2)因为S △ABC =12BC·AD,所以12×10×BC=54.所以BC =545.19.(12分)等腰三角形的两边长满足|a -4|+|b -9|=0,求这个等腰三角形的周长. 解:因为|a -4|+|b -9|=0,所以a -4=0,b -9=0,解得a =4,b =9. 若a 为腰长,则另一腰长为4,因为4+4=8<9,所以不符合三角形的三边关系; 若b 为腰长,则这个等腰三角形的周长为9+9+4=22. 综上所述,这个等腰三角形的周长为22.20.(12分)如图,在△ABC 中,∠B<∠C,AD ,AE 分别是△ABC 的高和角平分线. (1)若∠B=30°,∠C=50°,试确定∠DAE 的度数; (2)试写出∠DAE,∠B,∠C 的数量关系,并说明理由.解:(1)因为∠B=30°,∠C=50°, 所以∠BAC=180°-∠B-∠C=100°. 又因为AE 是△ABC 的角平分线, 所以∠BAE=12∠BAC=50°.因为AD 是△ABC 的高,所以∠BAD=90°-∠B=90°-30°=60°. 所以∠DAE=∠BAD-∠BAE=60°-50°=10°. (2)∠DAE=12(∠C-∠B),理由如下:因为AD 是△ABC 的高, 所以∠DAC=90°-∠C. 因为AE 是△ABC 的角平分线, 所以∠EAC=12∠BAC.因为∠B AC =180°-∠B-∠C, 所以∠DAE=∠EAC-∠DAC =12∠BAC-(90°-∠C)=12(180°-∠B-∠C)-90°+∠C=12(∠C-∠B).。
北师大版数学七年级下4.1.3认识三角形同步练习.docx
初中数学试卷桑水出品4.1认识三角形第三课时一、选择题1.关于三角形的角平分线和中线,下列说法正确的是()A.都是直线 B.都是射线C.都是线段 D.可以是射线也可以是线段2.如图,AE是△ABC的中线,D是BE上一点,若EC=6,DE=2,则BD的长为()A.1 B.2 C.3 D.43.三角形的三条中线的交点的位置为()A.一定在三角形内B.一定在三角形外C.可能在三角形内,也可能在三角形外D.可能在三角形的一条边上4.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是()A.1cm B.2cm C.3cm D.5cm二、填空题5.画三角形内角的平分线交对边于一点,顶点与交点之间的线段叫做三角形的.6.如图,在△ABC中,AD是BC边上的中线,已知AB=7cm,AC=5cm,则△ABD和△ACD的周长差为cm.7.如图①AD是△ABC的角平分线,则∠=∠=∠,②AE是△ABC的中线,则= =,③AF是△ABC的高线,则∠=∠=90°.8.如图,AD是△ABC的中线,AE是△ABD的中线,若DE=3cm,则EC= cm.9.在△ABC中,AC=5cm,AD是△ABC中线,把△ABC周长分为两部分,若其差为3cm,则BA= .10.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD周长为19cm,AB= .三.解答题(共3小题)11.△ABC中,AB:AC=3:2,BC=AC+1,若△ABC的中线BD把△ABC的周长分成两部分的比是8:7,求边AB,AC的长.12. 如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:(1)∠BAE的度数;(2)∠DAE的度数;参考答案一、选择题(共4小题)1.C;2.D;3.A;4.B;二、填空题(共7小题)5.平分线;6.2;7.BAD;DAC;BAC;BE;EC;BC;AFB;AFC;8.9;9.8cm或2cm;10.角8cm;三.解答题(共3小题)11.答:①边AB长为6,AC的长为4;②边AB长为,AC的长为12. 解:(1)∵∠B+∠C+∠BAC=180°,∴∠BAC=180°-∠B-∠C=180°-70°-30°=80°,∵AE平分∠BAC,∴∠BAE=1/2∠BAC=40°;(2)∵AD⊥BC,∴∠ADE=90°,而∠ADE=∠B+∠BAD,∴∠BAD=90°-∠B=90°-70°=20°,∴∠DAE=∠BAE-∠BAD=40°-20°=20°;。
北师大版七年级数学下册《4.1 认识三角形》 同步练习 包含答案
4.1 认识三角形一.选择题(共10小题)1.如图,△ABC中的边BC上的高是()A.AF B.DB C.CF D.BE2.如图所示,AC⊥BC于C,CD⊥AB于D,图中可以作为三角形“高”的线段有()A.1条B.2条C.3条D.5条3.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积是32,则图中阴影部分面积等于()A.16B.8C.4D.24.如图,点O为△ABC的重心,连接BO并廷长AC交于点D,连接CO并延长交AB于E,则S△OCD:S四边形AEOD=()A.2:1B.1:2C.1:3D.4:45.已知三角形的两边长分别为3和4,则第三边长x的范围是()A.3<x<4B.1<x<7C.1<x<5D.无法确定6.下列各组值代表线段的长度,其中能组成三角形的是()A.1,2,3.5B.20,15,8C.5,15,8D.4,5,97.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于()A.63°B.113°C.55°D.62°8.如图,已知△ABC中,∠B=α,∠C=β,(α>β)AD是BC边上的高,AE是∠BAC的平分线,则∠DAE的度数为()A.α﹣βB.2(α﹣β)C.α﹣2βD.(α﹣β)9.将一副三角板按图中的方式叠放,则∠1的度数为()A.105°B.100°C.95°D.110°10.小明同学把自己的一副三角板(两个直角三角形)按如图所示的位置将相等的边叠放在一起,则α的度数()A.135°B.120°C.105°D.75°二.填空题(共10小题)11.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=18°,则∠C的度数为.12.直角三角形两个锐角的平分线相交所构成的锐角是度.13.如图,在△ABC中,最长的边是.14.如果一个三角形的三条高的交点在三角形的内部,那么该三角形是三角形(填“锐角”“直角”或“钝角”)15.如图,在三角形ABC中,∠B=90°,AB=6cm,BC=8cm,点D是AB的中点,点P 从C点出发,先以每秒2cm的速度运动到B,然后以每秒1cm的速度从B运动到A.当点P运动时间t=秒时,三角形PCD的面积为6cm2.16.如图,M是△ABC的重心,过点M分别作DF∥AC,EG∥BC,DF分别交AB,BC于点D,F,EG分别交AB,AC于点E,C.若△ABC的面积是18,则四边形DEFG的面积为.17.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值范围.18.如图所示,∠ACD是△BC的外角,∠A=45°,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.∠E=.19.如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,若∠1=150°,∠2=110°,则∠3=.20.如图,△ABC中,∠A=50°,∠ABC和∠ACB的外角平分线相交于点D,则∠BDC =.三.解答题(共10小题)21.观察以下图形,回答问题:(1)图②有个三角形;图③有个三角形;图④有个三角形;…猜测第七个图形中共有个三角形.(2)按上面的方法继续下去,第n个图形中有个三角形(用n的代数式表示结论).22.如图所示,BD是△ABC的中线,AD=2,AB+BC=5,求△ABC的周长.23.如果a、b、c是△ABC的三边,满足(b﹣3)2+|c﹣4|=0,a为奇数,求△ABC的周长.24.(1)如图(a),BD平分∠ABC,CD平分∠ACB.①当∠A=60°时,求∠D的度数.②猜想∠A与∠D有什么数量关系?并证明你的结论.(2)如图(b),BD平分外角∠CBP,CD平分外角∠BCQ,(1)中②的猜想还正确吗?如果不正确,请你直接写出正确的结论(不用写出证明过程).25.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F.(1)∠ABC=40°,∠A=60°,求∠BFD的度数;(2)直接写出∠A与∠BFD的数量关系.26.如图,在△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠DCE=10°,∠B=60°,求∠A的度数.27.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC =;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并证明.28.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=35°,∠E=25°,求∠BAC的度数;(2)请你写出∠BAC、∠B、∠E三个角之间存在的等量关系,并写出证明过程.29.如图,AB∥CD,△EFG的顶点分别落在直线AB、CD上,GH平分∠EGF交EF于点H.若∠EFG=90°,∠EFC=40°,求∠EHG的度数.30.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.参考答案与试题解析一.选择题(共10小题)1.A.2.D.3.B.4.B.5.B.6.B.7.D.8.D.9.A.10.C.二.填空题(共10小题)11.36°.12.45.13.AB.14.锐角.15.2或5.5或8.5.16.8.17.4<c<6.18.22.5°19.70°.20.65°.三.解答题(共10小题)21.解:(1)图②有3个三角形;图③有5个三角形;图④有7个三角形;…猜测第七个图形中共有13个三角形.(2)∵图②有3个三角形,3=2×2﹣1;图③有5个三角形,5=2×3﹣1;图④有7个三角形,7=2×4﹣1;∴第n个图形中有(2n﹣1)个三角形.故答案为3,5,7,13,(2n﹣1).22.解:因为BD是△ABC的中线,所以点D是AC的中点,所以AC=2AD=4,所以△ABC的周长为AB+BC+AC=5+4=9.23.解:∵(b﹣3)2≥0,|c﹣4|≥0 且(b﹣3)2+|c﹣4|=0,∴(b﹣3)2=0|c﹣4|=0,∴b=3,c=4.∵4﹣3<a<4+3且a为奇数,∴a=3 或5.当a=3时,△ABC的周长是3+4+3=10;当a=5时,△ABC的周长是3+4+5=12.24.解:(1)①∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=×120°=60°,∴∠D=180°﹣60°=120°.②结论:∠D=90°+∠A.理由:∵∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=×(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A∴∠D=180°﹣(90°﹣∠A)=90°+∠A.(2)不正确.结论:∠D=90°﹣∠A.理由:∵∵∠DBC=∠PBC,∠DCB=∠ACB,∴∠DBC+∠DCB=×(∠PBC+∠QCB)=(∠A+∠ACB+∠A+∠ABC)=(180°+∠A)=90°+∠A,∴∠D=180°﹣(90°﹣+∠A)=90°﹣∠A.25.解:(1)∵∠ABC=40°,∠A=60°,∴∠ACB=180°﹣40°﹣60°=80°,∵∠B、∠C的平分线BE,CD相交于点F,∴∠BFD=∠FBC+∠FCB=∠ABC+∠ACB=20°+40°=60°.(2)∵∠B、∠C的平分线BE,CD相交于点F,∴∠BFD=∠FBC+∠FCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A.26.解:∵CE是AB边上的高,∴∠A+∠ACE=90°,∠B+∠BCE=90°.∵CD是∠ACB的角平分线,∴∠ACD=∠BCD=∠ACB,又∵∠DCE=10°,∠B=60°,∴∠BCE=90°﹣∠B=30°,∠BCD=∠BCE+∠DCE=40°,∴∠ACE=∠ACD+∠DCE=∠BCD+∠DCE=50°,∴∠A=90°﹣∠ACE=40°.27.解:(1)∵BP、CP分别平分∠ABC和∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(∠ABC+∠ACB),=180°﹣(∠ABC+∠ACB),=180°﹣(180°﹣∠A),=180°﹣90°+∠A,=90°+32=122°,故答案为:122°;(2)∵CE和BE分别是∠ACB和∠ABD的角平分线,∴∠1=∠ACB,∠2=∠ABD,又∵∠ABD是△ABC的一外角,∴∠ABD=∠A+∠ACB,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BEC的一外角,∴∠BEC=∠2﹣∠1=∠A+∠1﹣∠1=∠A=;(3)∠QBC=(∠A+∠ACB),∠QCB=(∠A+∠ABC),∠BQC=180°﹣∠QBC﹣∠QCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BQC=90°﹣∠A.28.解:(1)∵∠ECD=∠B+∠E,∠B=35°,∠E=25°,∴∠ECD=60°,∵EC平分∠ACD,∴∠ACE=∠ECD=60°,∴∠BAC=∠ACE+∠E=60°+25°=85°.(2)结论:∠BAC=∠B+2∠E.理由:∵∠BAC=∠ACE+∠E,∠ECD=∠ACE=∠B+∠E,∴∠BAC=∠B+∠E+∠E=∠B+2∠E.29.解:∵∠EFG=90°,∠EFC=40°,∴∠CFG=130°,∴∠GFD=50°,∵AB∥CD,∴∠EGF=∠GFD=50°,∠GEF=∠EFC=40°,∵GH平分∠EGF交EF于点H,∴∠HGF=EGF=25°,∴∠EHG=∠EFG+∠HGF=90°+25°=115°.30.证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CF A=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.。
北师大版初中数学七年级下册《4.1 认识三角形》同步练习卷(1)
北师大新版七年级下学期《4.1 认识三角形》同步练习卷一.选择题(共24小题)1.下面是一位同学用三根木棒拼成的图形,其中符合三角形概念的是()A.B.C.D.2.下列说法正确的是()A.所有的等腰三角形都是锐角三角形B.等边三角形属于等腰三角形C.不存在既是钝角三角形又是等腰三角形的三角形D.一个三角形里有两个锐角,则一定是锐角三角形3.已知三角形ABC三边a、b、c满足(a﹣b)2+|b﹣c|=0,则△ABC的形状是()A.钝角三角形B.直角三角形C.等边三角形D.以上都不对4.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为()A.2cm B.3cm C.4cm D.5cm5.下列说法中正确的是()A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角6.在△ABC中,AD=4,BC=10,则第三边AC的长可能是()A.5B.7C.14D.167.下列各组数可做为一个三角形三边长的是()A.4,6,8B.4,5,9C.1,2,4D.5,5,118.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.49.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.10.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F为AB上一点,CF⊥AD于H,下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A.1个B.2个C.3个D.4个11.三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形12.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACBC.AE=BE D.CD⊥BE13.下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1B.2C.3D.414.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3D.BC是△ABE的高15.下面说法错误的是()A.三角形的三条角平分线交于一点B.两条平行直线被第三条直线所截,同位角相等C.三角形的三条高交于一点D.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交16.已知AD,BE分别是△ABC的两条中线,若△ABD的面积为10,则△BCE的面积为()A.5B.10C.15D.2017.如图,O是△ABC的重心,则图中与△ABD面积相等的三角形个数为()A.3B.4C.5D.618.如图,在△ABC中,点D是∠ABC和∠ACB角平分线的交点,若∠BDC=110°,那么∠A=()A.40°B.50°C.60°D.70°19.如图在△ABC中,D是AB上一点,E是AC上一点,BE,CD相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE的度数为()A.68°B.58°C.52°D.48°20.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°21.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足点为D,则下列结论中正确的个数为()①AB与AC互相垂直;②∠ADC=90°;③点C到AB的垂线段是线段AB;④线段AB的长度是点B到AC的距离;⑤线段AB是点B到AC的距离.A.5B.4C.3D.222.直角三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是()A.22.5°B.45°C.67.5°D.135°23.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=3∠C24.如图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A.40°B.50°C.60°D.70°二.填空题(共5小题)25.一副学生用的三角板如图放置,则∠AOD的度数为.26.如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为.27.如图,在△ABC中,∠B=60°,AD平分∠BAC,点E在AD延长线上,且EC⊥AC.若∠E=50°,则∠ADC的度数是.28.如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=153°,则∠B的度数为.29.如图,在△ABC中,AD、AE分别是边BC上的中线与高,AE=4,△ABC的面积为12,则CD的长为.三.解答题(共3小题)30.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.31.如图,在△ABC中,CF、BE分别是AB、AC边上的中线,若AE=2,AF=3,且△ABC 的周长为15,求BC的长.32.如图,在△ABC中∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,求∠DAE的度数.北师大新版七年级下学期《4.1 认识三角形》2019年同步练习卷参考答案与试题解析一.选择题(共24小题)1.下面是一位同学用三根木棒拼成的图形,其中符合三角形概念的是()A.B.C.D.【分析】根据三角形的定义为:由不在同一条直线上的三条线段首尾顺次相接所成的图形解答,【解答】解:因为三角形是由不在同一条直线上的三条线段首尾顺次相接所成的图形.故选:D.【点评】此题考查了三角形的定义.解题的关键是熟练记住定义.2.下列说法正确的是()A.所有的等腰三角形都是锐角三角形B.等边三角形属于等腰三角形C.不存在既是钝角三角形又是等腰三角形的三角形D.一个三角形里有两个锐角,则一定是锐角三角形【分析】根据锐角三角形、钝角三角形、等腰三角形的定义一一判断即可.【解答】解:A、错误.内角为30°,30°,120°的等腰三角形是钝角三角形.B、正确.等边三角形属于等腰三角形.C、错误.内角为30°,30°,120°的三角形既是钝角三角形又是等腰三角形的三角形.D、错误.内角为30°,30°,120°的三角形有两个锐角,是钝角三角形.故选:B.【点评】本题考查三角形的一个概念,解题的关键是搞清楚锐角三角形、钝角三角形、等腰三角形的定义,属于基础题,中考常考题型.3.已知三角形ABC三边a、b、c满足(a﹣b)2+|b﹣c|=0,则△ABC的形状是()A.钝角三角形B.直角三角形C.等边三角形D.以上都不对【分析】根据非负数的性质列式求解得到a=b=c,然后选择答案即可.【解答】解:根据非负数的性质,a﹣b=0,b﹣c=0,解得a=b,b=c,所以,a=b=c,所以,△ABC是等边三角形.故选:C.【点评】本题考查了三角形的形状判定,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.4.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为()A.2cm B.3cm C.4cm D.5cm【分析】设大小处于中间的边长是xcm,则最大的边是(x+1)cm,最小的边长是(x﹣1)cm,根据三角形的周长即可求得x,进而求解.【解答】解:设大小处于中间的边长是xcm,则最大的边是(x+1)cm,最小的边长是(x ﹣1)cm.则(x+1)+x+(x﹣1)=12,解得:x=4,则最短的边长是:4﹣1=3cm.故选:B.【点评】本题考查了三角形的周长,理解三边长的设法是关键.5.下列说法中正确的是()A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角【分析】利用三角形的特征分析.【解答】解:根据三角形的内角和是180度可知:A、三角形的内角中至少有两个锐角,正确;B、三角形的内角中最多有1个钝角,故不对;C、三角形的内角中最多有一个直角,故不对;D、三角形的内角中最多有1个钝角.故不对;故选:A.【点评】主要考查了三角形的定义和分类.6.在△ABC中,AD=4,BC=10,则第三边AC的长可能是()A.5B.7C.14D.16【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【解答】解:根据三角形的三边关系,10﹣4<AC<10+4,即6<AC<14,符合条件的只有7,故选:B.【点评】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.7.下列各组数可做为一个三角形三边长的是()A.4,6,8B.4,5,9C.1,2,4D.5,5,11【分析】在三角形中任意两边之和大于第三边,任意两边之差小于第三边,据此可得答案.【解答】解:A、4+6>8,能组成三角形;B、4+5=9,不能组成三角形;C、1+2<4,不能组成三角形;D、5+5<11,不能组成三角形.故选:A.【点评】本题考查了三角形三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.4【分析】先根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出x的取值范围,然后根据若x为正整数,即可选择答案.【解答】解:∵10﹣2=8,10+2=12,∴8<x<12,∵若x为正整数,∴x的可能取值是9,10,11,故这样的三角形共有3个.故选:C.【点评】本题考查了三角形的三边关系,熟练掌握“三角形任意两边之和大于第三边,任意两边之差小于第三边”求出x的取值范围是解题的关键.9.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【解答】解:线段BE是△ABC的高的图是选项C.故选:C.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.10.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F为AB上一点,CF⊥AD于H,下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A.1个B.2个C.3个D.4个【分析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【解答】解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故选:B.【点评】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.11.三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形【分析】根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.【解答】解:三角形一边上的中线把原三角形分成两个面积相等的三角形.故选:B.【点评】考查了三角形的中线的概念.构造面积相等的两个三角形时,注意考虑三角形的中线.12.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACBC.AE=BE D.CD⊥BE【分析】从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.【解答】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥BE,∠ACE=∠ACB,AB=2BF,无法确定AE=BE.故选:C.【点评】考查了三角形的角平分线、中线和高,根据是熟悉它们的定义和性质.13.下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1B.2C.3D.4【分析】根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上.【解答】解:①三角形的中线、角平分线、高都是线段,故正确;②钝角三角形的高有两条在三角形外部,故错误;③直角三角形有两条直角边和直角到对边的垂线段共三条高,故错误;④三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.所以正确的有1个.故选:A.【点评】本题考查对三角形的中线、角平分线、高的正确理解.14.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3D.BC是△ABE的高【分析】根据三角形的高、中线、角平分线的定义对各选项分析判断后利用排除法求解.【解答】解:A、∵AE=DE,∴BE是△ABD的中线,正确;B、∵BD平分∠EBC,∴BD是△EBC的角平分线,正确;C、∵BD是△EBC的角平分线,∴∠EBD=∠CBD,∵BE是中线,∴∠EBD≠∠ABE,∴∠1=∠2=∠3不正确,符合题意;D、∵∠C=90°,∴BC是△ABE的高,正确.故选:C.【点评】本题考查了三角形的角平分线,高线,中线的定义,熟记概念并准确识图是解题的关键.15.下面说法错误的是()A.三角形的三条角平分线交于一点B.两条平行直线被第三条直线所截,同位角相等C.三角形的三条高交于一点D.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交【分析】根据三角形角平分线、高的性质及平行线的其性质求解可得.【解答】解:A、三角形的三条角平分线交于一点,此选项正确;B、两条平行直线被第三条直线所截,同位角相等,此选项正确;C、三角形的三条高所在直线交于一点,此选项错误;D、平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,此选项正确;故选:C.【点评】本题主要考查三角形的高和平行线的性质,解题的关键是熟练掌握三角形的高的定义和平行线的性质.16.已知AD,BE分别是△ABC的两条中线,若△ABD的面积为10,则△BCE的面积为()A.5B.10C.15D.20【分析】根据三角形中线的性质列出等式,得出答案.【解答】解:如图,∵AD和BE是△ABC的两条中线,∴△ABD面积=△ACD面积,△BCE面积=△ABE面积,即S1+S4=S2+S3①,S2+S4=S1+S3②,①﹣②得:S1﹣S2=S2﹣S1,∴S1=S2.∵△ABD的面积为10,∴△BCE的面积=10,故选:B.【点评】本题主要考查了三角形中线的性质,难度适中,熟练掌握三角形的面积公式是解题的关键.17.如图,O是△ABC的重心,则图中与△ABD面积相等的三角形个数为()A.3B.4C.5D.6【分析】根据题干条件D、E、F为△ABC三边的中点,故得BD=CD,又知△ABD与△ADC的高相等,于是得到△ABD与△ACD的面积相等并且为△ABC面积的一半,同理可得△CBE与△ABE,△ACF与△BCF面积相等,并且都为△ABC面积的一半,即可求出与△ABD面积相等的三角形个数,【解答】解:∵O是△ABC的重心,∴BD=CD,又∵△ABD与△ADC的高相等,∴△ABD与△ACD的面积相等=S△ABC,同理可知:△CBE与△ABE,△ACF与△BCF面积相等,并且都为△ABC面积的一半,∴图中与△ABD面积相等的三角形个数为5个,故选:C.【点评】本题主要考查三角形面积、重心的性质及等积变换的知识点,解答本题的关键是熟练掌握三角形的面积=底×高,此题难度一般.18.如图,在△ABC中,点D是∠ABC和∠ACB角平分线的交点,若∠BDC=110°,那么∠A=()A.40°B.50°C.60°D.70°【分析】求出∠ABC+∠ACB的度数即可解决问题.【解答】解:∵∠BDC=110°,∴∠DBC+∠DCB=70°,∵点D是∠ABC和∠ACB角平分线的交点,∴∠ABC+∠ACB=2(∠DBC+∠DCB)=140°,∴∠A=180°﹣140°=40°,故选:A.【点评】本题考查三角形的内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.如图在△ABC中,D是AB上一点,E是AC上一点,BE,CD相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE的度数为()A.68°B.58°C.52°D.48°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BDF=∠A+∠ACD,再根据三角形的内角和定理求出∠BFD,然后根据对顶角相等解答.【解答】解:∵∠A=70°,∠ACD=20°,∴∠BDF=∠A+∠ACD=70°+20°=90°,在△BDF中,∠BFD=180°﹣∠BDF﹣∠ABE=180°﹣90°﹣32°=58°,∴∠CFE=∠BFD=58°.故选:B.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.20.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°【分析】根据三角形内角和定理求出∠1,根据三角形外角的性质求出∠2,根据邻补角的概念计算即可.【解答】解:∠1=90°﹣30°﹣60°,∴∠2=∠1﹣45°=15°,∴∠α=180°﹣15°=165°,故选:A.【点评】本题考查的是三角形内角和定理和三角形的外角的性质,掌握三角形内角和等于180°是解题的关键.21.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足点为D,则下列结论中正确的个数为()①AB与AC互相垂直;②∠ADC=90°;③点C到AB的垂线段是线段AB;④线段AB的长度是点B到AC的距离;⑤线段AB是点B到AC的距离.A.5B.4C.3D.2【分析】根据点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离;当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线进行分析.【解答】解:∵∠BAC=90°,∴AB与AC互相垂直;故①正确;∵AD⊥BC,∴∠ADC=90°,故②正确;点C到AB的垂线段是线段AC;故③错误;线段AB的长度是点B到AC的距离;故④正确;线段AB的长度是点B到AC的距离,故⑤错误;故选:C.【点评】本题主要考查了点到直线的距离,关键时注意点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.22.直角三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是()A.22.5°B.45°C.67.5°D.135°【分析】设∠B=x°,由直角三角形的性质结合条件可得到关于x的方程,可求得答案.【解答】解:设∠B=x°,则∠A=3x°,由直角三角形的性质可得∠A+∠B=90°,∴x+3x=90,解得x=22.5,∴∠B=22.5°,故选:A.【点评】本题主要考查直角三角形的性质,熟练掌握直角三角形的两锐角互余是解题的关键.23.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=3∠C【分析】由直角三角形内角和为180°求得三角形的每一个角,再判断形状.【解答】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形,D选项中∠A=∠B=3∠C,即7∠C=180°,三个角没有90°角,故不是直角三角形,故选:D.【点评】注意直角三角形中有一个内角为90°.24.如图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A.40°B.50°C.60°D.70°【分析】根据直角三角形的性质求出∠AEB的度数,根据对顶角相等求出∠DEC,根据直角三角形的两个锐角互余计算即可.【解答】解:∵AB⊥BD,∠A=40°,∴∠AEB=50°,∴∠DEC=50°,又AC⊥CD,∴∠D=40°,故选:A.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两个锐角互余是解题的关键.二.填空题(共5小题)25.一副学生用的三角板如图放置,则∠AOD的度数为105°.【分析】依据三角形内角和定理,即可得到∠BOC=105°,再根据对顶角相等,即可得出∠AOD的度数.【解答】解:由题可得,∠ACB=45°,∠DBC=30°,∴△BCO中,∠BOC=180°﹣45°﹣30°=105°,∴∠AOD=∠BOC=105°,故答案为:105°.【点评】本题考查了三角形的内角和定理以及对顶角的性质,利用三角形内角和为180°是关键.26.如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为110°.【分析】根据三角形的内角和等于180°求出∠B,根据两直线平行,同位角相等可得∠ADE=∠B,再根据翻折变换的性质可得∠A′DE=∠ADE,然后根据平角等于180°列式计算即可得解.【解答】解:∵∠C=125°,∠A=20°,∴∠B=180°﹣∠A﹣∠C=180°﹣20°﹣125°=35°,∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=35°,∴∠A′DE=∠ADE=35°,∴∠A′DB=180°﹣35°﹣35°=110°.故答案为:110°.【点评】本题考查了平行线的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.27.如图,在△ABC中,∠B=60°,AD平分∠BAC,点E在AD延长线上,且EC⊥AC.若∠E=50°,则∠ADC的度数是100°.【分析】根据三角形内角和和角平分线的定义解答即可.【解答】解:∵EC⊥AC.∠E=50°,∴∠DAC=40°,∵AD平分∠BAC,∴∠BAD=40°,∵∠B=60°,∴∠ADC=40°+60°=100°,故答案为:100°.【点评】此题考查三角形内角和,关键是根据三角形内角和、三角形的外角性质和角平分线的定义解答.28.如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=153°,则∠B的度数为63°.【分析】利用平行线的性质求出∠C,再根据∠B=90°﹣∠C计算即可.【解答】解:∵∠1+∠EDC=180°,∠1=153°,∴∠EDC=27°,∵DE∥BC,∴∠EDC=∠C=27°,∵∠A=90°,∴∠B=90°﹣∠C=63°,故答案为63°.【点评】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.29.如图,在△ABC中,AD、AE分别是边BC上的中线与高,AE=4,△ABC的面积为12,则CD的长为3.【分析】利用三角形的面积公式求出BC即可解决问题.【解答】解:∵AE⊥BC,AE=4,△ABC的面积为12,∴×BC×AE=12,∴×BC×4=12,∴BC=6,∵AD是△ABC的中线,∴CD=BC=3,故答案为3.【点评】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握基本知识,属于中基础题.三.解答题(共3小题)30.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.31.如图,在△ABC中,CF、BE分别是AB、AC边上的中线,若AE=2,AF=3,且△ABC 的周长为15,求BC的长.【分析】根据三角形中线的定义求出AB、AC,再利用三角形的周长的定义列式计算即可得解.【解答】解:∵CF、BE分别是AB、AC边上的中线,AE=2,AF=3,∴AB=2AF=2×3=6,AC=2AE=2×2=4,∵△ABC的周长为15,∴BC=15﹣6﹣4=5.【点评】本题考查了三角形的角平分线、中线和高,熟记概念并准确识图是解题的关键.32.如图,在△ABC中∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,求∠DAE的度数.【分析】根据三角形的内角和等于180°列式求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后根据∠DAE=∠BAD﹣∠BAE计算即可得解.【解答】解:∵∠B=30°,∠ACB=110°,∴∠BAC=180°﹣30°﹣110°=40°,∵AE平分∠BAC,∴∠BAE=∠BAC=×40°=20°,∵∠B=30°,AD是BC边上高线,∴∠BAD=90°﹣30°=60°,∴∠DAE=∠BAD﹣∠BAE=60°﹣20°=40°.【点评】本题考查了三角形的角平分线、中线和高,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.。
北师大版七年级数学下册4.1.2认识三角形同步练习含答案
4.1认识三角形第二课时一、选择题1.已知一个三角形的两边长分别为3和4,则第三边的长不可能的是()A.2 B.3 C.4 D.12.小李有2根木棒,长度分别为10cm和15cm,要组成一个三角形(木棒的首尾分别相连接),还需在下列4根木棒中选取()A.4cm长的木棒 B.5cm长的木棒 C.20cm长的木棒 D.25cm长的木棒3.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 4.三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.165.如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6 B.7 C.8 D.9二、填空题6.若三角形三条边长分别是1,a,5(其中a为整数),则a的取值为.7.己知三角形的三边长分别为2,x﹣1,3,则三角形周长y的取值范围是.8.在△ABC中,三边长分别为4、7、x,则x的取值范围是.三、解答题9.如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.10.已知三角形三条边分别为a+4,a+5,a+6,求a的取值范围.11.a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.12.一个不等边三角形的边长都是整数,且周长是12,这样的三角形共有多少个?参考答案一、选择题(共5小题)1.D;2.C;3.D;4.C;5.D;二、填空题(共3小题)6.5;7.6<y<10;8.3<x<11;三、解答题(共4小题)9.【解答】(1)1<BC<9;(2)∵∠ACD=125°,∴∠ACB=180°﹣∠ACD=55°,∵DE∥AC,∴∠BDE=∠ACB=55°.∵∠E=55°,∴∠B=180°﹣∠E﹣∠BDE=180°﹣55°﹣55°=70°.10.【解答】解:由题意得:,解得:a>﹣3。
《同步课时卷》北师大版七年级数学(下册)4.1 认识三角形(2)(附参考答案)
《同步课时卷》北师大版七年级数学(下册)4.1 认识三角形(2)1.以下列各组线段为边,能组成三角形的是( )A.1 cm,2 cm,4 cmB.4 cm,6 cm,8 cmC.5 cm,6 cm,12 cmD.2 cm,3 cm,5 cm2.如果三角形的两边长分别为3和5,第三边是偶数,则第三边长可以是( )A.2B.3C.4D.83.在三角形中,任意两边之和第三边,任意两边之差第三边.4.如果一个等腰三角形的两条边长分别为21 cm和8 cm,那么第三边长为cm.5.等边三角形的各个内角是度,等腰直角三角形的两个底角是度.6.已知三角形的两边长分别为3 cm和8 cm,则此三角形的第三边的长可能是( )A.4 cmB.5 cmC.6 cmD.13 cm7.已知等腰三角形的两边长分别为3 cm和6 cm,则该等腰三角形周长是( )A.9 cmB.12 cmC.15 cmD.12 cm或15 cm8.如图4-1-17,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是( )图4-1-17A.20米B.15米C.10米D.5米9.下列各组长度的线段能构成三角形的是( )A.1.5 cm,3.9 cm,2.3 cmB.3.5 cm,7.1 cm,3.6 cmC.6 cm,1 cm,6 cmD.4 cm,10 cm,4 cm10.两根木条的长分别为7 cm和10 cm,要选择第三根木条,将它们钉成一个三角形框架,那么第三根木条长x的范围是.11.一个三角形的两边长分别为2 cm和9 cm,若第三边的长为奇数,则第三边的长为cm.12.已知a,b,c是△ABC的三边的长,请化简a. 13.某同学手里拿着长为3和2的两个木棍,想要找一个木棍,用它们围成一个三角形,那么他找的这根木棍长满足条件的整数解是( )A.1,3,5B.1,2,3C.2,3,4D.3,4,514.已知三角形的两边a=3,b=7,则下列长度的四条线段中能作为第三边c的是( )A.3B.4C.7D.1015.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可组成的三角形的个数是( )A.1个B.2个C.3个D.4个16.在△ABC中,两边分别为6 cm,8 cm,则第三边c的取值范围是.17.(1)为什么“三角形任意两边之和大于第三边”?(2)为什么“三角形任意两边之差小于第三边”?18.把长度分别为20 cm,15 cm,8 cm的三根木棒搭成一个三角形.(1)若把20 cm的木棒换成7 cm的木棒能否搭成一个三角形?(2)若把20 cm的木棒换成5 cm的木棒能否搭成一个三角形?(3)把20 cm的木棒换成什么范围内的木棒才能搭成一个三角形?参考答案1.B2.C3.大于小于4.215.60 456.C7.C8.D9.C10.3 cm<x<17 cm11.912.解:==(b+c)-a+(a+c)-b=b+c-a+a+c-b=2c.13.C14.C15.B16.2 cm<x<14 cm17.解:(1)因为“两点之间,线段最短”,所以“三角形任意两边之和大于第三边”.(2)因为在△ABC中,a+b>c(任意两边之和大于第三边),所以a+b-b>c-b(两边同时加上-b),所以a>c-b.18.解:(1)因为7+8=15,所以不能组成三角形,所以搭不成.(2)因为5+8=13<15,所以不能组成三角形,所以搭不成.(3)因为15-8=7,15+8=23,所以木棒的取值范围是7 cm~23 cm(不包含端点).。
北师大版数学七年级下册 认识三角形同步练习(Word版含答案)
4.1.2 认识三角形 北师大版一、单选题1.下列长度(单位:cm )的三条线段,能组成三角形的是( ) A .2,3,5 B .2,5,8 C .5,5,2 D .5,5,10 2.在△ABC 中,已知AB =3,BC =4,则AC 的长可能是( )A .1B .4C .7D .9 3.若三角形的两边a 、b 的长分别为3和4,则其第三边c 的取值范围是( ) A .3<c <4 B .2≤c ≤6 C .1<c <7 D .1≤c ≤7 4.若三条线段中a =3,b =5,c 为奇数,那么以a 、b 、c 为边组成的三角形共有( )A .1个B .2个C .3个D .4个 5.如图,△1、△2、△3是△ABC 的外角,若△1:△2:△3=4:3:2,则△ABC 的度数为( )A .60°B .80°C .90°D .100°6.如图,为了估计一池塘岸边两点A ,B 之间的距离,小颖同学在池塘一侧选取了一点P ,测得100m,90m PA PB ==,那么点A 与点B 之间的距离不可能是( )A .20mB .120mC .180mD .200m 7.已知三角形三边为a 、b 、c ,其中a 、b 两边满足|a ﹣3|+(b ﹣7)2=0,那么这个三角形的最大边c 的取值范围是( )A .c >7B .7<c <10C .3<c <7D .4<c <108.如图所示,由三角形两边的和大于第三边,可得到的结论是( )A .AB AD BC +>B .PD CD BP +>C .AB AC BC +>D .BP CP AC +>9.已知△ABC 的三条边分别为a ,b ,c ,化简|a +b ﹣c |﹣|b ﹣a ﹣c |+|a ﹣b +c |( ) A .3a ﹣b +c B .a +b ﹣c C .a ﹣b ﹣c D .﹣a +3b ﹣3c二、填空题10.不等边三角形的最长边是9,最短边是4,第三边的边长是奇数,则第三边的长度是___.11.已知a ,b ,c 是△ABC 的三边,化简:|a +b -c |+|b -a -c |=________.12.一个三角形的一个外角是它相邻内角的2倍,是不相邻某个内角的4倍,则这个三角形的各内角度数为________________.13.在ABC 中,AM 是BC 边上的中线,已知AB ﹣AC =5,且AMC 的周长是20,则ABM 的周长是________.14.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是_________.三、解答题15.已知三角形三边长分别为a ,b ,c ,其中a ,b 满足(a ﹣8)2+|b ﹣6|=0,求这个三角形的第三边长c 的取值范围.16.已知a ,b ,c 分别为ABC 的三边,且满足32a b c +=-,26a b c -=-.(1)求c 的取值范围;(2)若ABC 的周长为12,求c 的值.17.如图所示,OE 是△AOB 的平分线,OD 是△BOC 的平分线,△AOB=90º, △EOD=60º,求△BOC 的度数18.如图,已知AB△CD,△DAE=△CAB,△ACB=△EFC,请说明AD△BC.参考答案:1.C【解析】根据三角形的三边关系,A .2+3=5,不能组成三角形,不符合题意;B .2+5=7<8,不能组成三角形,不符合题意;C .5+5=10>2,5-5=0<2,能组成三角形,符合题意;D .5+5=10,不能组成三角形,不符合题意;故选C .2.B【解析】△AB =3,BC =4,△4−3<AC <4+3,即1<AC <7 .观察选项,只有选项B 符合题意.故选:B .3.C【解析】解:△三角形的两边a 、b 的长分别为3和4,△其第三边c 的取值范围是4334c -<<+ ,即17c << .故选:C4.C【解析】解:c 的范围是:5﹣3<c <5+3,即2<c <8.△c 是奇数,△c =3或5或7,有3个值.则对应的三角形有3个.故选:C .5.A【解析】解:设1∠、2∠、3∠的度数分别为4x 、3x 、2x ,则432360x x x ++=︒,解得,40x =︒,23120x ∴∠==︒,18012060∴∠=︒-︒=︒,ABC故选:A.6.D【解析】解:△P A=100m,PB=90m,△根据三角形的三边关系得到:PA PB AB PA PB-<<+,△10m190m<<,AB△点A与点B之间的距离不可能是20m,故选A.7.B【解析】解:根据题意得:a﹣3=0,b﹣7=0,解得a=3,b=7,因为c是最大边,所以7<c<7+3,即7<c<10.故选:B.8.C【解析】解:A、在△ABD中,AB AD BD+>,原结论不正确,故该选项不符合题意;+>,原结论不正确,故该选项不符合题意;B、在△PCD中,PD CD CP+>,正确,故该选项符合题意;C、在△ABC中,AB AC BC+>,原结论不正确,故该选项不符合题意;D、在△PBC中,BP CP BC故选:C.9.B【解析】解:△a、b、c分别为△ABC的三边长,△a+b−c>0,b−a−c<0,a−b+c>0,△|a+b−c|−|b−a−c|+|a−b+c|=a+b−c−(a+c−b)+a−b+c=a+b−c−a−c+b+a−b+c=a+b−c.故选:B.10.7【解析】解:设第三边长是c ,则9﹣4<c <9+4,即5<c <13,又∵第三边的长是奇数,不等边三角形的最长边为9,最短边为4, ∴c =7.故答案为:7.11.2a【解析】解:△,,a b c 是ABC ∆的三条边,△00a b c b a c +->--<,, △||()()a a b c b a c b a c b c =+-+-+--+++-=2a b c b a c a +--++=. 故答案为:2a .12.30°,60°,90°【解析】解:设和它相邻的内角为x °,则x °+2x °=180°,解得x =60°,2x =120°,可求出与它不相邻的某个内角是30°,根据三角形内角和定理可知,另一个角为90°.则这个三角形的各内角度数为30°,60°,90°.故答案为:30°,60°,90°.13.25.【解析】解:△AMC 的周长是20,△AM+MC +AC =20,△AM 是BC 边上的中线,△BM =MC ,又△AB ﹣AC =5,△AB =5+AC , △ABM 的周长=AB +BM +AM =5+AC +MC +AM =5+20=25, 故答案为25.14.15【解析】解:设三角形的第三边为x ,则4<x <10, 又第三边x 为整数,则x 可以取5,6,7,8,9,所以三角形的周长最小值为3+7+5=15. 故答案为:15.15.214c <<【解析】△()2860a b -+-=,△80a -=,60b -=,△8a =,6b =,△a b c a b -<<+,△214c <<.故三角形第三边长c 的取值范围为:214c << 16.(1)2<c <6(2)3.5【解析】(1)△a ,b ,c 分别为△ABC 的三边,a +b =3c -2,a -b =2c -6, △3226c c c c ->⎧⎨-<⎩, 解得:2<c <6.故c 的取值范围为2<c <6;(2)△△ABC 的周长为12,a +b =3c -2, △a +b +c =4c -2=12,解得c =3.5.故c 的值是3.5.17.30°【解析】解:△OE平分△AOB,△AOB=90°,△1452BOE AOB∠=∠=︒,△OD是△BOC的平分线,△△BOC=2△BOD,△△EOD=60°,△15 BOD EOD BOE∠=∠-∠=︒,△△BOC=30°.18.见解析【解析】解:△△BCD=△ACD+△ACB,又△△BCD=△E+△EFC,△△ACD+△ACB=△E+△EFC,△△ACB=△EFC,△△ACD=△E,△AB△CD,△△CAB=△ACD,△△CAB=△DAE,△△E=△DAE,△AD△BC.。
北师大版七年级数学下册同步练习:4.1认识三角形(1)
《作业推荐》01-认识三角形(1)一、单选题1.()叫做三角形A.连接任意三点组成的图形B.由不在同一条直线上的三条线段首尾顺次相接所成的图形C.由三条线段组成的图形D.以上说法均不对【答案】B【解析】【分析】根据三角形的定义进行判断即可.【详解】因为三角形的定义是:由不在同一条直线上的三条线段首尾顺次相接所成的图形.故选:B.【点睛】本题考查了三角形的定义,属于概念题,正确并熟练掌握三角形的定义是解决本题的关键.2.图中三角形的个数是()A.3个B.4个C.5个D.6个【答案】C【解析】【分析】根据三角形的定义解答即可.【详解】解:图中三角形有:△ABC,△ABE,△BEC,△BDC,△DEC.故选:C.【点睛】本题考查了三角形的概念,由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.3.如图,一个三角形只剩下一个角,这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.以上都有可能【答案】B【解析】【分析】三角形按角分类,可以分为锐角三角形、直角三角形、钝角三角形.有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形;三个角都是锐角的三角形是锐角三角形.从题中可知,只能看到一个角是钝角.所以这个三角形为钝角三角形.故选:B.【点睛】本题考查了三角形的分类的灵活应用.4.在ΔABC中,∠A=21°,∠B=34°,则ΔABC是().A.锐角三角形B.直角三角形C.钝角三角形D.锐角或钝角三角形【答案】C【解析】【分析】根据三角形的内角和定理求得∠C的度数进行判断即可得解.【详解】根据三角形的内角和定理得,∠C=180°−∠A−∠B=180°−21°−34°=125°,则ΔABC是钝角三角形,故选:C.【点睛】本题主要考查了钝角三角形的概念,熟练掌握三角形的内角和定理是解决本题的关键.5.下列说法中正确的是()A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角【答案】A【解析】【分析】利用三角形的特征分析.【详解】根据三角形的内角和是180度可知:A、三角形的内角中至少有两个锐角,正确;B、三角形的内角中最多有1个钝角,故不对;C、三角形的内角中最多有一个直角,故不对;D、三角形的内角中最多有1个钝角.故不对;故选A.【点睛】主要考查了三角形的定义和分类.6.若ΔABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C=2∠A,则此三角形()A.一定是直角三角形B.一定是钝角三角形C.一定有一个内角为45°D.一定有一个内角为60°【答案】D【解析】【分析】本题可利用三角形内角和公式求出∠A的度数,继而可利用举反例进行排除求解本题.【详解】因为三角形内角和为180°,∠B+∠C=2∠A,故∠A+∠B+∠C=∠A+2∠A=3∠A=180°,所以∠A=60°,故D选项正确.假设△ABC为等边三角形,此时符合题干要求,故可用此特例排除A,B,C选项.【点睛】本题考查三角形内角和公式,通过角度关系判别图形性质,此类型题目作为单选题,可选用举例法快速解答.二、填空题7.锐角三角形的三个角都是 ________;直角三角形中必有一个角是______;钝角三角形中也必定有一个角是_________.【答案】 (1). 锐, (2). 直, (3). 钝.【解析】【分析】根据锐角三角形、直角三角形和钝角三角形的意义直接填写即可.【详解】锐角三角形的三个角都是锐角;直角三角形中必定有一个是直角;钝角三角形中也必定有一个角是钝角.故答案为锐,直,钝.【点睛】此题考查三角形按角的大小分三类:锐角△、直角△和钝角△.8.若∠A=∠B=2∠C ,则△ABC 是_____三角形.(填“钝角”△“锐角”或“直角”△【答案】锐角【解析】【分析】根据三角形的内角和为180°和已知条件设未知数,列方程求解,再判断形状.【详解】设三角分别是∠A △a °△∵∠A △∠B △2∠C △∴∠B △a °△∠C △12a °,则a °△a °△12a °△180°,解a △72°△∴三角形是锐角三角形. 【点睛】此题主要考查了三角形的内角和定理:三角形的内角和为180°,正确的设出一个角并表示出其他角是解决此题的关键. 9.观察图中的三角形,把它们的标号填入相应横线上.锐角三角形_______,直角三角形________,钝角三角形________.【答案】 (1). 3,5 (2). 1,4,6 (3). 2,7【解析】【分析】分别根据三角形的分类得出答案即可.【详解】锐角三角形3,5,直角三角形1,4,6,钝角三角形2,7.故答案为:3,5;1,4,6;2,7.【点晴】10.如图,点D是△ABC的边BC上的一点,则在△ABC中∠C所对的边是__________;在△ACD中∠C所对的边是__________;在△ABD中边AD所对的角是__________;在△ACD中边AD所对的角是__________.【答案】(1). AB(2). AD(3). ∠B(4). ∠C【解析】【分析】根据三角形的定义,找准所在三角形,然后确定答案即可.【详解】在△ABC中∠C所对的边是AB;在△ACD中∠C所对的边是AD;在△ABD中边AD所对的角是∠B;在△ACD中边AD所对的角是∠C;故答案为:AB;AD;∠B;∠C.【点睛】本题主要考查了三角形,关键是掌握三角形的边、三角形的角的定义.三、解答题11.如图,在△ABC中,D,E是BC,AC上的点,连接BE,AD,交于点F,问:(1)图中有多少个三角形?并把它们表示出来.(2)△BDF的三个顶点是什么?三条边是什么?(3)以AB为边的三角形有哪些?(4)以F为顶点的三角形有哪些?【答案】答案见解析【解析】试题分析:利用三角形的定义以及三角形有关的角和边概念分别得出即可.试题解析:△1△8个△△ABC,△ABF,△ABE,△ABD,△BDF,△AEF,△ACD,△BCE△△2△三个顶点△B△D△F△三条边△BD,BF,DF△△3△△ABC,△ABF,△ABD,△ABE△△4△△ABF,△BDF,△AEF△点睛:此题主要考查了三角形有关定义,正确把握相关定义是解题关键.12.△△ABC△△△△∠A△∠B△30°△∠C△4∠B△△∠A△∠B△∠C△△△△△△△△△△△△△△△△【答案】这个三角形是钝角三角形.【分析】首先根据三角形内角和定理和已知条件得到相等关系式6∠B+30°=180°,进而求得∠B的值;接下来根据条件即可求得∠A△∠C 的度数, 从而得到三角形的类型.【详解】解:因为∠A△△B△30°,所以∠A△△B△30°.又因为∠C△4△B△且∠A△△B△△C△180°,即6△B△30°△180°,所以∠B△25°△则∠A△55°△△C△100°,所以这个三角形是钝角三角形.【点睛】本题主要考查了三角形的内角和定理以及三角形的分类, 得到等量关系是关键.13.满足下列条件的三角形是锐角三角形、直角三角形还是钝角三角形.(1)△ABC中,∠A△30°△△C△△B△(2)三个内角的度数之比为1:2:3.【答案】(1)锐角三角形;(2)直角三角形.【解析】【分析】根据角的分类对三角形进行分类即可.【详解】(1)△△A△30°△△C△△B△△A△△C△△B△180°△△△C△△B△75°△∴满足条件的三角形是锐角三角形.(2)∵三个内角的度数之比为1△2△3,∴可求得每个内角的度数分别为30°△60°△90°△∴满足条件的三角形是直角三角形.【点睛】本题主要考查了三角形的分类问题.14.在下面一组图形中:△1)各图形中分别有几个三角形?△2)说出各个图形中以B为顶点的角所对的边.【答案】△1△①3个;②6个;③8个;(2△①AC和AD△②AC△AD△AE△③AE△AD△AC△CE△CD△【解析】【分析】(1)根据三角形的定义解答即可△(2)根据交与边的关系解答即可△【详解】△△△1△①图中三角形的个数有3个;②图中三角形的个数有6个;③图中三角形的个数有8个;△2△①图中以B为顶点的角所对的边是AC和AD△②图中以B为顶点的角所对的边是AC△AD△AE△③图中以B为顶点的角所对的边是AE△AD△AC△CE△CD△【点睛】本题考查了三角形的概念,由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边,相邻边的公共端点叫做三角形的顶点.相邻两条边组成的角,叫做三角形的内角,简称为三角形的角△。
七年级数学下册 4.1《认识三角形》习题 北师大版(2021学年)
七年级数学下册4.1《认识三角形》习题(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册4.1《认识三角形》习题(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册4.1《认识三角形》习题(新版)北师大版的全部内容。
《认识三角形》一、选择题1.一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是() A.直角三角形 B.锐角三角形C.钝角三角形D.无法判定2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm3.一个三角形的三边长分别为4,7,x,那么x的取值范围是( )A.3<x<11 B.4<x<7 C.-3<x<11 D.x>34.作△ABC的边AB上的高,下列作法中,正确的是( )5.若直角三角形中的两个锐角之差为22°,则较小的一个锐角的度数是( )A。
24° B.34°C。
44°D.46°6.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( ) A。
120° B.90°C。
60° D.30°二、填空题7.在△ABC中,AC=5cm,AD是△ABC的中线,若△ABD的周长比△ADC的周长大2cm,则BA =________。
8.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF和△BEF的面积分别为S△ABC,S△ADF和S△BEF,且S△ABC=12,则S△ADF-S△BEF=________.9.如图所示,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,且AD=4,若点P在边AC 上移动,则BP的最小值为________.10.如图,AB∥CD,CE与AB交于点A,BE⊥CE,垂足为E.若∠C=37°,则∠B= .三、解答题11.已知,如图,D是△ABC中BC边延长线上一点,F为AB上一点,直线FD交AC于E,∠D FB=90°,∠A=46°,∠D=50°。
2019-2020年下学期北师大版七年级数学下4.1认识三角形 同步练习(含答案)
2019-2020北师大七下4.1认识三角形同步练习一、单选题1.以下列各组线段为边,能组成三角形的是()A. 3cm.4cm.8cmB. 8cm,7cm,15cmC. 5cm,5cm,11cmD. 11cm,12cm,13crn2.如图,AE⊥BC于E,BF⊥AC于F,CD⊥AB于D,△ABC中AC边上的高是线段()A. BFB. CDC. AED. AF3.一个缺角的三角形ABC残片如图所示,量得∠A = 60°,∠B = 75°,则这个三角形残缺前的∠C的度数为()A. 75°B. 60°C. 45°D. 40°4.如图,在△ABC巾,∠B=44°,∠C=56°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,则∠ADE的大小是()A. 40°B. 44°C. 50°D. 56°5.如图所示,若△ABC的周长为20,则AB的长可能为()A. 8B. 10C. 12D. 146.已知三角形的两边长分别为4和9,则此三角形的第三边长可以是()A. 4B. 5C. 9D. 137.在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是( )A. B.C. D.8.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A. AB=2BFB. ∠ACE= ∠ACBC. AE=BED. CD⊥BE9.已知a、b、c是△ABC的三条边长,化简|a+b−c|−|c−a−b|的结果为()A. 2a+2b-2cB. 2a+2bC. 0D. 2c10.如图,某同学在课桌上无意中将一块三角板叠放在直尺上,则∠1+∠2等于( )A. 60°B. 75°C. 90°D. 105°11.如图,AB//CD,AD=CD,∠1=65∘,则∠2的度数是()A. 50∘B. 60∘C. 65∘D. 70∘12.在△ABC 中,∠A= 12∠B= 13∠ C,则此三角形是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形二、填空题13.已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是________.14.在Rt△ABC中,锐角∠A=25°,则另一个锐角∠B=________.15.三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的根,则该三角形的周长为________.16.如图,直线L1∥L2,且分别与△ABC的两边AB、AC相交,若∠A=40°,∠1=45°,则∠2的度数为________.17.如图,在△ABC中,∠A=40°,∠ABC与∠ACB的平分线相交于点P,则∠BPC的度数为________.18.如图, BD和DE分别是△ABC和△ABD的中线,若△ABC的面积为16cm2,则△EBD 的面积为________ cm2.三、解答题19.如图,请按下列要求用尺规作图,不写作法,但要保留痕迹:(1)作出△ABC的角平分线CD;(2)作出△ABC的高AE.20.如图,△ABC是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.21.a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.22. (1)数轴上有A、B两点,若A点对应的数是﹣2,且A、B两点间的距离为3,则点B对应的数是________;(2)已知线段AB=12cm,直线AB上有一点C,且BC=4cm,M是AC的中点,AM的长为________;(3)已知∠AOB=3∠BOC,∠BOC=30°,则∠AOC=________;(4)已知等腰三角形两边长为17、8,求三角形的周长.23.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:(1)∠BAE的度数;(2)∠DAE的度数;24.△ABC的三个内角∠A、∠B、∠C满足以下条件:3∠A>5∠B,3∠C≤2∠ B.(1)试找出两组符合条件的∠A、∠B、∠C的度数;(2)满足条件的三角形是什么三角形?为什么?25.如图(1)如图(1),已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.求∠DAE的度数;(2)如图(2),已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C=(x+36)°,①∠CAE=________(含x的代数式表示)②求∠F的度数.________参考答案一、单选题1. D2.A3. C4. A5. A6. C7. D8. C9. C 10. C 11. A 12. B二、填空题13. 直角三角形14. 65°15. 13 16. 95°17.110∘18. 4三、解答题19.(1)解:作△ABC的角平分线CD如下图:(2)解:作△ABC的高AE如下图:20.解:根据题意,就是要将△ABC分为四等份,即面积相等的四份,一种是取三边的中点,两两相连,并与三角形的另一个顶点和其对边上的中点相连,所得的四个三角形的面积互相相等;另一种,在一边上取四等分点,分别连接这条边对应的顶点和这三个点,可以知道四个三角形等底同高,故面积相等.第一种是取各边的中点,分别取,AB.BC,AC的中点D,E,Y,连接DE,EY和AE,所形成的四个三角形面积相等(如下图).第二种,在BC边上取四等分点D,E,F,分别连接AD,AE,AF,所形成的四个三角形面积相等(如下图).21.(1)解:∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴{3c−2>c2c−6<c,解得:1<c<6(2)解:∵△ABC的周长为18,a+b=3c﹣2,∴a+b+c=4c﹣2=18,解得c=522. (1)-5或1(2)8cm或4cm(3)120°或60°(4)解:由题意可知若三边长为17、17、8,此时8+17>17,周长为42;若三边长为17、8、8,此时8+8<17,无法围成三角形,此情况舍去;故等腰三角形的周长为42.23.(1)解:∵∠B+∠C+∠BAC=180°,∴∠BAC=180°-∠B-∠C=180°-70°-30°=80°,∵AE 平分∠BAC ,∴∠BAE=1/2∠BAC=40°(2)解:∵AD ⊥BC ,∴∠ADE=90°,而∠ADE=∠B+∠BAD ,∴∠BAD=90°-∠B=90°-70°=20°,∴∠DAE=∠BAE-∠BAD=40°-20°=20°24.(1)解:设3∠A=5∠B ,3∠C=2∠B ,∴∠A=53∠B ,∠C=23∠B , ∵∠A+∠B+∠C=180°,∴53∠B+∠B+23∠B=180°,∴∠B=54°,∵3∠A >5∠B ,3∠C≤2∠B ,∴∠A >90°,∠C≤36°,∴两组符合条件的 ∠A 、 ∠B 、 ∠C 的度数为:100°,50°,30°;120°,40°,20°. (2)解:∵3∠A >5∠B ,3∠C≤2∠B ,∴∠B <35∠A ,①∠C≤23∠B ,②即23∠B <25∠A ,∴∠C <25∠A ,③①+③得:∠B+∠C <∠A ,∵∠A+∠B+∠C=180°,∴2(∠B+∠C )<180°,即∠B+∠C <90°,∴2∠A >180°,∴∠A >90°,∴△ABC 为钝角三角形.25.(1)解:∵∠B=30°,∠C=50°,∴∠CAB=180°-∠B-∠C=100°,∵AD是△ABC角平分线,∴∠CAE= 1∠CAB=50°,2∵AE分别是△ABC的高,∴∠ADC=90°,∴∠CAD=90°-∠C=40°,∴∠DAE=∠CAE-∠CAD=50°-40°=10°(2)解:72°-x°;∠AEC=∠BAE+∠B=72°,∵FD⊥BC,∴∠F=18°。
《同步课时卷》北师大版七年级数学(下册)4.1 认识三角形(1)(附参考答案)
《同步课时卷》北师大版七年级数学(下册)4.1 认识三角形(1)1.由所组成的图形叫做三角形.2.如图4-1-1所示,则图4-1-1(1)图中有个三角形,它们分别是;(2)在△ACD中,∠A的对边是;(3)在△CDB中,BD所对的角是;(4)CD是和的公共边;(5)∠B是和的公共角;(6)∠CDB是的内角.3.三角形三个内角的和等于;按三角形内角的大小可以把三角形分成三类: , , ;直角三角形的两个锐角.4.任意三角形中,至多有个钝角.5.在△ABC中,∠A=40°,∠B=80°,则∠C的度数为( )A.30°B.40°C.50°D.60°6.将一副直角三角板,按如图4-1-2所示叠放在一起,则图中∠α的度数是( )图4-1-2A.45°B.60°C.75°D.90°7.如图4-1-3,在△ABC中,∠B=40°,过点C作CD∥AB,∠ACD=65°,则∠ACB的度数为( )图4-1-3A.60°B.65°C.70°D.75°8.如图4-1-4,已知AD与BC相交于点O,AB∥CD,如果∠B=40°,∠D=30°,则∠AOC的大小为( )图4-1-4A.60°B.70°C.80°D.120°9.如图4-1-5,以DC为边的三角形共有个,它们分别是.图4-1-510.如图4-1-6,已知点D,E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为( )图4-1-6A.100°B.90°C.80°D.70°11.如图4-1-7,在△ABC中,∠A=60°,∠B=50°,则∠ACD=.图4-1-712.请尝试分别用下面三种方法证明三角形的内角和等于180°,并归纳这些方法的共同特点,如图4-1-8.图4-1-813.如图4-1-9,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是( )图4-1-9A.75°B.55°C.40°D.35°14.如图4-1-10,∠A=35°,∠B=∠C=90°,则∠D的度数是( )图4-1-10A.35°B.45°C.55°D.65°15.如图4-1-11,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为( )图4-1-11A.60°B.75°C.90°D.105°16.如图4-1-12,已知∠ACB=90°,CD⊥AB,垂足为点D,图中有个直角三角形,它们分别是,与∠A互余的角是,与∠A相等的角是.图4-1-1217.如图4-1-13,∠1+∠2+∠3+∠4的值为.图4-1-1318.如图4-1-14,DE∥BC,分别交AB,AC于D,E两点,CF为BC的延长线,若∠ADE=50°,∠ACF=110°,则∠A=.图4-1-1419.如图4-1-15,在△ABC中,∠A=∠1,∠2=∠B,∠B=∠ACB,求∠ACB的度数.图4-1-1520.如图4-1-16,点D为△ABC内的一点,∠A=50°,∠ABD=20°,∠ACD=30°,求∠BDC的度数.图4-1-16参考答案1.不在同一直线上的三条线段首尾顺次相接2.(1)3 △ABC,△ADC,△DBC(2)CD(3)∠DCB(4)△ADC和△BDC(5)△DBC和△ABC(6)△CDB3.180° 锐角三角形,直角三角形,钝角三角形互余4.15.D6.C7.D8.B9.3 △ADC,△BDC,△EDC10.C11.110°12.解:(1)在BC上取一点D,过D作DE∥AB,DF∥AC,则∠A=∠1=∠2,∠B=∠4,∠C=∠3,所以∠A+∠B+∠C=∠2+∠4+∠3=180°.(2)过点A作AD∥BC,则∠B=∠3,∠C=∠2,所以∠A+∠B+∠C=∠1+∠3+∠2=180°.(3)过△ABC内任一点O,作DG∥AB,EF∥BC,MN∥AC,则∠A=∠8=∠1,∠B=∠4=∠5=∠2,∠C=∠7=∠6=∠3,所以∠A+∠B+∠C=∠1+∠2+∠3=180°.这几种方法的共同特点就是构造出平角,辅助线是作平行线.13.C14.A15.D16.3 △ACB,△ADC,△BDC ∠B,∠ACD ∠BCD17.360°18.60°19.解:因为∠A+∠B+∠ACB=180°,∠2=180°-∠ADC=∠A+∠1,又因为∠A=∠1,所以∠2=2∠1,又因为∠B=∠2,所以∠B=2∠1,因为∠B=∠ACB,所以∠ACB=2∠1,所以∠1+2∠1+2∠1=180°,所以∠1=36°,所以∠ACB=72°.20.如图所示:解:因为∠A+∠ABC+∠ACB=180°,所以∠1+20°+∠2+30°+50°=180°,所以∠1+∠2=80°.因为在△BDC中,∠BDC+∠1+∠2=180°,所以∠BDC=180°-80°=100°.。
北师大版七年级数学下4.1认识三角形同步练习含答案.doc
初中数学试卷 鼎尚图文**整理制作4.1认识三角形1.有长度分别为10 cm ,7 cm ,5 cm 和3 cm 的四根铁丝,选其中三根组成三角形,则 ( )A .共有4种选法B .只有3种选法C. 只有2种选法 D .只有1种选法2.如图5—17所示,在ΔABC 中,∠ACB 是钝角,让点C 在射线 BD 上向右移动,则 ( )A .ΔACB 将变为锐角三角形,而不会再是钝角三角形B .ΔACB 将先变为直角三角形,然后再变为锐角三角形,而不 会再是钝角三角形C.ΔACB 将先变为直角三角形,然后变为锐角三角形,接着又 由锐角三角形变为钝角三角形D .ΔACB 先由钝角三角形变为直角三角形,再变为锐角三角 形,接着又变为直角三角形,然后再次变为钝角三角形3.如图5—18所示,在ΔABC 中,AD 平分∠BAC ,且与BC 相交于点D ,∠B =40°,∠BAD =30°,则∠C 的度数是 ( )A .70°B .80°C .100°D .1l0°4.如图5—19所示,ΔABC 中,点D ,E 分别在AB ,BC 边上,DE ∥AC ,∠B =50°,∠C =70°,那么∠1的度数是 ( )A.70°B.60°C.50°D.40°5.如图5—20所示,在ΔABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=.6.如图5—21所示,在ΔABC中,AB=AC,CD平分∠ACB交AB于点D,AE∥DC交BC的延长线于点E,已知∠E=36°,则∠B=度.7.任意画一个锐角三角形、一个直角三角形、一个钝角三角形,然后画出经过每个三角形中最大角的顶点的角平分线、中线和高.观察这三个图形,说出所画的角平分线、中线和高在三角形的内部还是外部.8.如图5—22所示,DE是过ΔABC的顶点A且与BC平行的直线,请利用这个图形说明∠BAC+∠B+∠C=180°.9.如图5—23所示,已知∠XOY=90°,点A,B分别在射线OX,OY上移动.BE 是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C,则∠ACB 的大小是否变化?如果保持不变,请说明原因;如果随点A,B的移动而发生变化,求出变化范围.10.两条平行直线上各有n个点,用这n对点按如下规则连接线段:①平行线之间的点在连接线段时,可以有共同的端点,但不能有其他交点;②符合①要求的线段必须全部画出.如图5—24所示,图(1)展示了当n=1时的情况,此时图中三角形的个数为0;图(2)展示了当n =2时的一种情况,此时图中三角形的个数为2.(1)当n =3时,请在图(3)中画出使三角形个数最少的图形,此时图中三角形的个数为 .(2)试猜想:当有n 对点时,按上述规则画出的图形中最少有多少个三角形?(3)当n =2006时,按上述规则画出的图形中最少有多少个三角形?参考答案1.C[提示:根据三角形三边关系判断.]2.D3.B[提示:根据角平分线的定义知∠CAD =∠BAD =30°,所以∠C =180°-40°-60°=80°.故选B .]4.B[提示:本题利用了三角形内角和定理及“两直线平行,同位角相等”的定理.因为DE ∥AC ,所以∠l =∠A .又因为∠A =180°-∠B-∠C =60°,所以∠1=60°.故选B .]5.82.5°[提示:因为AB =AC ,所以∠ABC =∠ACB =21-(180°-∠A )=65°.因为BD 平分∠ABC ,所以∠ABD =21∠ABC =32.5°,而∠BDC 是ΔABD 的外角,所以∠BDC =∠A +∠ABD =82.5°.故填82.5°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1认识三角形
1.有长度分别为10 cm, 7 cm, 5・cm 和3 cm 的四根铁丝,选其中三根组成三 角形,贝U ()
A.共有4种选法
B.只有3种选法
C.只冇2种选法
D.只冇1种选法
2.如图5—17所示,在A4BC 中,ZACB 是钝角,让点C 在射线 上向右移动,贝
IJ ()
A. MCB 将变为锐角三角形,而不会再是钝角三角形
B. Z CB 将先变为直角三角形,然后再变为锐角三角形,而不 会再是饨角三角形
C. AAC5将先变为直角三角形,然后变为锐角三角形,接着又
曲锐角三角形变为钝角三角形 D. M CB 先由钝角三角形变为直角三角形,再变为锐角三角 形,接着乂变为直角三角形,然后再次变为钝角三角形
3.如图5—18所示,在 MBC 屮,AQ 平分ZBAC,但与BC 相交于点D, ZB =40° ,
ZBAD=30° ,则ZC 的度数是 ( )
A. 70°
B. 80°
C. 100°
D. 110°
4.如图5—19所示,△ ABC 屮,点、D, E 分别在AB, BC 边上,DE//AC, ZB = 50° ,
ZC=70° ,那么Z1的度数是 ( )
A. 70°
B. 60°
C. 50°
D. 40° 5.如图 5—20 所示,在△ ABC 中,AB=AC f ZA = 50° , BD 为 ZABC 的平分 线,则 ZBDC=
国5・R
A n 5 <18 A
图5・20
例1、已知在AABC 中,CE 、BD 分别是AB 、AC 边上的中线,若AE=2, AD=3,
练习:AABC 的周长为18, BE 、CF 分别为AC 、AB 边上的中线,BE 、CF 相 交于点O, AO 的延长线交BC 于点D,且AF=3cm, AE=2cm,求AB 、AC 、BD 的长。
例2、如图,AD 是AABC 的屮线,AB=6cm, AC=5cm,求厶ABD 和厶ADC 的 周长的差。
例3、如图,AD 是AABC 的中线,AE 是AACD 的中线,已知DE=2,
(1)
求 BD 、BE 、BC 的长; (2) 若AACE 面积为4,求AACD 、AABC
的面积。
^△ABC 的周长为15,求BC 的长.
A
B
C
例 4、(1)如图,在AABC 中,BD 平分ZABC, ZA=38° , ZC=72°,则ZADB= ___
(2)如图,AABC 中,AD 平分ZCAE, ZB=40° , ZDAE=80°,则ZACD= _______
(3)如图,AABC 中,BD 、CE 分别平分ZABC 、ZACB, ZB0C=130° ,则ZA 二 ____
(1) 如图1,当ZACB 、ZABC 的平分线交于点0时,则ZBOC 二 ______________
(2) 如图2,当ZABC 的平分线BD 与ZACB 的外角平分线交于点0时*,
则 ZBOC= ___________ ;
(3) 如图3,当ZABC 的外角平分线与ZACB 的外角平分线交于点0时,
则 ZBOC= ____________
例6、如图,D 是\ABC 的边BC 上一点,过点D 作DE//AC 交AB 于点E ,作DF // AB 交AC 于点F,若Zl = /2,贝IKDAD 是44BC 的角平分线吗?(写出证切苹程)②若
= AE = 3,你能求出四边形AEDF 的周长吗?
练习:如图,在\ABC 中,CQ 是高,点E 、F 、G 分别在BC 、AB 、AC 上,且EF 丄AB, Zl = Z2 ,①试判断QG 与BC 的位置关系?并说明理由。
②若Z3 = 150°, ZA = 20° , 求 ZDCB
o
例 5、如图,AABC 中,ZA=40° ,
A
B D
D
G
例7、(1)如图,已知AD 、BE 分别是\ABC 中〃 C 、AC 边上的高,BC = 5 , AC = 4f AD = 3f 贝ij BE = _______________
练习:如图,0是等边三角形AABC 内任意一点,0D 丄43, 0E 丄BC, 0F 丄AC, AM 是BC 边上的高,试说明:OD + OE + OF = AM 0
例8、(1)如右图,在\ABC 中,0为高CD 、BE 的交点,若
ZABC = 60° , ZBOC = 102°,则乙4C3= _________________ —
(2)如右图,在MBC 屮,ZA = 55°, \ABC 的两条高CD 、BE 交 于点
O,贝ij ZBOC = _________________ :
(3)锐角\ABC 中,BD 、CE 是两条高,相交于点M, BF 、CG 是两条角平分线,相 交于点 N,如果 ZBA/C = 100°,贝ij ZBNC = _____________________ ;
例 9、( 1)如图,在 \ABC 中,AD 平分 ZCAB , AH 丄 BC 于点 //, ZB = 49° , ZC = 56° , 则 ADAH = ___________ ;
(2)如图,在\ABC 中,= 34° , ZACB = 104° , AQ 是BC 上的高,AE^ZBAC 的平分线,贝'J ZDAE = ___________________________ ; A H D B B E C D
例 10、(1)如图,\ABC 中,上ABC — ZBDC , ZA = ZABD ,求 ZA 的度数
;
(2)如图,AE. CD 分别为\ABC 的高线,
BC 若 AB = 5C 7??> AE = 4CM 、CD = 3cm ,则
参考答案
1.C[提示:根据三角形三边关系判断.]•
2.D
3.B[提示:根据角平分线的定义知,所以ZC=180° -40° -60° =80°・故选B.]
4.B[提示:本题利用了三角形内角和定理及“两直线平行,同位角相等”的定理.因为所以Z1=ZA.又因为ZA=180°・ZB・/C=60°,所以Z 1=60°・故选B・]
5.82. 5°[提示:因为AB=AC,所以ZABC=ZACB =丄-(180°・Z4) = 65° .
2
因为平分ZABC,所以ZABD =丄ZABC=32. 5°,而ZBDC是的?
外角,所以ZBDC=
ZA+ZABD=S2. 5°・故填82・ 5°。
]
6.72[提示:由已知条件知AE//DC,所以ZPCB=ZE=36°•又因为CD平分ZACB,所以ZACB = 2ZDCB=72° .又因为AB=AC,所以ZB=ZACB= 72°。
故填72.]
7.捉示:三者都在三角形的内部.
8.提示:利用图中的两对内错角相等,即ZB=ZDAB, ZC=ZCAE,得ZB+ NC+Na4C=ZBW+NBAC+ZC4E=18(T .
9.提示:作ZABO的平分线交AC于点D则ZBDA=180°・(ZDAB+NDBA)
= 180°•丄(ZOAB+XOBA)=135° ,由BD, BE 分别是ZOBA和ZY84 的平2
分线,可知丄CB,所以ZACB=ZBDA・ZDBC=135。
・90° =45°.可见Z
ACB的大小始终为45°・
10•解:(1)图略4 ⑵⑵-2)个三角形(3)当川=2006时,能画出最少三角形的个数为2X2006-2=4010(个).。