量纲分析

合集下载

建模 第九章量纲分析

建模 第九章量纲分析

五、大作业(以队为单位完成)



题目:每个队从2005或2006年竞赛题中任选一个题目,采取三人合作方 式完成一篇论文.成员之间要有效的分工和合作,队长要发挥核心领导 和组织作用.论文上注明三个成员的姓名. 在9月8日前交到我的邮箱 这次作业的目的: 熟悉赛题 熟悉论文写作格式 培养团队协作精神 熟悉建模的每个环节(选题-查阅文献资料-分析题意-做出模型假设建立模型和求解模型-改进模型-评价模型-(应用模型)等. 培养攻关意识 提示:可以参考参考甚至 模仿已有的论文。
其中k是常数,下面列出变量和对应的量纲 变量 | F k v A ρ -------------------------------------------------量纲 | MLT -2 M0L0T0 LT-1 L2 M L-3
就量纲而言,由假设(2)得, MLT 2 =(M 0 L0T 0 )(LT 1 ) a (L2 ) b (ML3 ) c ,
THE END
变量 | v r g ρ μ ----------------------------------------------------2 -1 -3 -1 -2 量纲 | LT L LT M L ML T
.
(3)确定无量纲乘积,由Buckingham(布金汉) 定理,列出线性方程组
在变量中间找出所有的无量纲乘积,其形式 必为va r b g c d e (1) 故量纲为(LT 1 )a (L) b (LT 2 )c (ML3 ) d (ML1T 1 ) e , 因为(1)式是无量纲的, 所以, a+b+c-3d-e=0 -a-2c-e=0 d+e=0
T M 1L 1 2T 2 1

量纲分析法

量纲分析法

量纲分析法量纲分析法是科学研究和工程实践中一种常用的方法,用于简化和分析复杂的物理方程。

通过引入合适的量纲和无量纲量,可以减少物理方程的数量和复杂性,从而更容易理解和应用。

量纲是衡量物理量的属性,可以理解为物理量的尺度或单位。

常见的量纲有长度、质量、时间、温度等。

在科学领域,量纲的统一是一项基本原则,它要求所有参与物理方程运算的物理量必须具有相同的量纲。

例如,在牛顿定律中,质量的量纲是质量,加速度的量纲是长度除以时间的平方,力的量纲是质量乘以加速度。

无量纲量是指除去量纲后的物理量。

通过合适的变量代换和无量纲化操作,可以将含有多个物理量的复杂方程转化为只涉及少数几个无量纲量的简化形式。

这样做的好处是降低了方程的复杂性,使得我们可以更清晰地理解和研究方程的行为。

量纲分析法的基本思想是通过量纲的统一和无量纲化的技巧,将物理方程从具体的数值问题转化为一般的函数关系问题。

这样一来,可以用较少的实验和计算来研究和验证一类问题的特性,从而节省时间和资源。

量纲分析法在研究新领域的物理学问题、模拟和优化工程设计等方面发挥了重要作用。

量纲分析法的步骤通常包括以下几个方面:第一步是选择物理量,并通过其量纲建立物理方程。

在建立方程时,需要确保所选物理量之间的关系是正确的,并符合基本的物理定律。

第二步是确定主要影响因素,即哪些物理量对方程起主导作用。

对于复杂的问题,这一步可能会需要经验和专业知识的支持。

第三步是进行量纲分析,即将方程中的各个物理量转化为无量纲形式。

这一步需要根据物理量的量纲关系进行变量代换和无量纲化运算。

第四步是根据无量纲方程进行简化和分析。

通过缩小问题的数量级和去除复杂的单位,我们可以更容易地理解方程,并得到问题的一般解。

第五步是进行数值模拟和实验验证。

通过选择合适的数值和实验条件,我们可以验证和应用无量纲方程,并得到具体问题的解。

总的来说,量纲分析法是一种简化和分析物理方程的有效方法。

通过量纲的统一和无量纲化的技巧,我们可以将复杂的问题转化为一般的函数关系问题,从而更容易理解和应用。

第二章+量纲分析

第二章+量纲分析
常见的无量纲组合数
1)Reynold 数:惯性力与粘性力之比, Re =
2
ρUL UL ; = μ υ
2)Froude 数:惯性力与重力之比, Fr = U ;
gL
3)Prandtl 数:动量扩散率与热扩散率之比, Pr = c p μ / k ; 4)Nuselt 数:总传热与导热传热之比,Nu=hL/k;
首次提出量纲的科学概念 指出各物理量均可由量纲表示 建立量纲分析与相似理论的 Π 定理
(3) 基本概念 基本量:具有独立量纲的量 有量纲量:量值与度量时的单位有关的量 无量纲量:量值与度量时的单位无关的量 (4) 实质 量值取决于量纲,无量纲化后才可以进行各物理量之间相对大小的比较。物理 现象和规律与单位系统无关,从而经过无量纲化之后,可以揭示各物理量之间的 基本关系。 (5) 应用范围 量纲分析广泛应用于自然科学之中,尤其是在物理、工程、力学分支的分析和 模型实验和计算机模拟实验中的应用更加广泛。
§ 2.2 Π 定理和相似律
(1)量纲的表示 选定单位系统:公制(c g s;M K S;L-M-T 系统) ; 英制(in-lb-s,1in=2.54cm,1lb=253.6g) 。 选定基本量:基于 Maxwell 幂次关系。基本量不等于单位系统,而是可以 由单位系统表示的量纲独立的量。 (2)Bunkingham
c = f ( ρ , g , a, λ , h) ;
选取基本量: ρ , g , h ; 无量纲组合: Π =
c a λ , Π1 = , Π 2 = h h gh c h a = f ( , )。 λ h gh
由 Π 定理(隐函数形式) ,可得:
从而可得结论:a. 由于相速度与波长有关,水波是色散波; b. 速度与密度无关。 如:在湖面上丢下石子,水波很快消散。整个过程出现色散,能量消耗和驻面波 能量分散三种现象。 两种极限情况: h h a. 浅水长波( 1, → 0 )

量纲分析

量纲分析

一、瑞利法
瑞利法的基本原理是某一物理过程同几个物理量有关:
f (q1 , q2 , q3 ,qn ) 0
其中的某个物理量
qi
可表示为其他物理量的指数乘积:
a b p
qi Kq1 q 2 q n 1
(5—2)
写出量纲式:
[qi ] [q1 ]a [q2 ]b [qn1 ] p
L T
3
1
(M L T ) (L) (M L T )
b 1
1 c
(5)根据量纲和谐求量纲指数 0 ac [M]: 3 2a b c [L]: [T]: 1 2a c 得:a 1 , b 4 , c 1
[Re] [
d (L T )L ] 1 2 1 L T
Re 是由3个有量纲乘除组合得到的无量纲量, 称为雷诺(Reynolds number)数。
依据无量纲数的定义和构成,可归纳出无量纲量具有以下特 点。
1.客观性
正如前面指出,凡有量纲的物理量,都有单位。同一物 理量,因选取的度量单位不同,数值也不同。如果用有量纲 量作过程的自变量,计算出的因变量数值,将随自变量选取 单位的不同而不同。因此,要使运动方程式的计算结果不受 人主观选取单位的影响,就需要把方程中各项物理量组合成 无量纲项。从这个意义上说,真正客观的方程式应是由无量 纲项组成的方程式。
V2 W p1V1 ln V I

其中压缩后与压缩前的体积比 V2 成无量纲项,才 V1 能进行对数运算。
三、量纲和谐原理
量纲和谐原理是量纲分析的基础原理。凡正确反映客 观规律的物理方程,其各项的量纲一定是一致的,这是被 无数事实证实了的客观原理。例如粘性流体运动微分方程 式在x方向的公式:

水力学第六章 量纲分析和相似原理

水力学第六章  量纲分析和相似原理
• 2 定理
任何一物理过程,包括有量纲物理量 k+1 个: x1, x2 ,, xk1 ;
而在这些物理量中的基本物理量为 m 个,于是就可以把这些量排
列成 k+1—m 个独立的无因次参数 1, 2 ,, k1m 。 f (x1, x2 , x3, xk1) f1(1, 2 , 3, k1m ) 定理应用依赖于理论分析和实验研究。
流动的动力相似,要求同名力作用,相应的同名力成比例。 同名力成比例
Fp Gp Tp Pp S p E p I p Fm Gm Tm Pm Sm Em I m
在水流实验中主要有
Fp Fm
Gp Gm
Tp Tm

Pp Pm

Ip Im
或 F
G
T
P
I
§6-2 相似原理 • 2运动相似
要求两流动的相应流线几何相似,或相应点的流速大小成比例,方向相同。
时间比尺
t

tp tm
速度比尺
up um
lp /tp lm / tm
l t
u
加速度比尺
a
up /tp um / tm
u t
l t2
§6-2 相似原理 • 3动力相似
• ②糙率相似;
• ③流动尽可能处于阻力平方区;
• ④模型对最小水深的要求(表面张力影响);
• ⑤模型应遵守的规范。
hm0.05m
本章小结: 1量纲和谐原理。 2流动相似概念,几何、运动、动力相似。 3相似准数,雷诺准数,弗汝德准数。 本章无习题,熟悉基本概念 例6-1的推导过程。
以压力表示
Fp Fm

Ep Em

第五章量纲分析和相似原理

第五章量纲分析和相似原理

Ρ ρ,ρ rho 电阻系数(小写)
∑ ζ,s sigma 总和(大写),表面密度;跨导(小写) Φ φ phi 磁通;角 Ψ ψ psi 角速;介质电通量(静电力线);角 Ω ω omega 欧姆(大写);角速(小写);角
补充资料
A α 阿尔法 B β 贝塔 Γ γ 伽玛 Δ δ 德尔塔 Ε ε 伊普西隆 Ζ δ 泽塔 Μ κ 米欧 Νλ纽 Ξ μ 克西 Ο ν 欧米克隆 ∏π派 Ρξ柔 ∑ ζ 西格玛 Τη陶
对于不可压缩流体运动,则选取M、L、T三个基本量纲,其 他物理量量纲均为导出量纲。 速度 dimv=LT-1; 力 dimF=MLT-2; 加速度 dima=LT-2 动力粘度 dimκ=ML-1T-1
综合以上各量纲式,可得任一物理量q的量纲dimq都可用3
个基本量纲的指数乘积形式表示。
补充资料
1
2
n
据量纲和谐原理 [L]: 有: [T]: [M]: a = a1 1 + a2 2 +……+an n b = b1 1 + b2 2 +……+bn n c = c1 1 + c2 2 +……+cn n
解出: 1 , 2 , 3 , …….. n
(4)举例:已知影响水泵输入功率的物理量有:水的
2、量纲的分类:
(1)基本量纲(独立量纲) ——不能用其它量纲导出的、互相独立的量纲。 长度量纲: [L] 如: 质量量纲: [M] 时间量纲: [T] 温度量纲: [Θ] (2)导出量纲(非独立量纲)
如: 速度量纲: [ L T –1] ; 流量量纲: [ L3 T –1] 。
——可由基本量纲导出的量纲。
2
1 =1

第9章 量纲分析

第9章 量纲分析
用[ ]表示物理量的 量纲,用( )表 示物理量的单位
量纲的分类:基本量纲 导出量纲
基本量纲是一组具有独立性的量纲。在 水力学领域中有三个基本量纲:[ L ] , [ T ], [ M ]。
导出量纲由基本量纲组合或推导出来的 量纲。如加速度的量纲 [a]=LT-2 ;力的量 纲 [F]=[ma]=MLT-2
可知p / v2与其余三个无量纲数有关,那么
p/v2=F1(l/d, /d, 1/Re)= (l/d)F2( /d, 1/Re)
p/g= p/= (l/d)(v2/2g)F2( /d, 1/Re)
令= F2( /d, 1/Re) p/= (l/d)(v2/2g)
这就是达西公式, 为沿程阻力系数, 表示了等直圆管中流动流体的压降与 沿程阻力系数、管长、速度水头成
1=l1v1d1 2=2v2d2 3=3v3d3 4= p4v4d4
将上述表达式写成量纲形式 [1]=L(ML-3)1(LT-1)1L1=M0L0T (1) [2]=L(ML-3)2(LT-1)2L2=M0L0T0
(2) [3]=ML-1T-1(ML-3)3(LT-1)3L3=M0L0T0
(3) [4]=ML-1T-2 (ML-3)4(LT-1)4L4=M0L0T0
所以 3=/vd=1/Re 求解方程(4) M: 1+4=0 → 4= -1
T: -2-4=0 → 4= -2 L: -1-3 4+ 4+4=0 → 4= 0 所以 4= p / v2 因此,所解问题用无量纲数表示的方程为
F(l/d, /d, 1/Re, p / v2)=0
至此,问题求解结束,进一步对上式整理规范。 由上式
有量纲量和无量纲量
水力学中任何物理量C的量纲可写成 [C]=[ M ][ L ][ T ]

量纲分析

量纲分析

第一节量纲分析方法1.1量纲当对一个物理概念进行定量描述时,总离不开它的一些特性,比如,时间、质量、密度、速度、力等等,这种表示不同物理特性的量,称之为具有不同的“量纲”。

概括来说,将一个物理导出量用若干个基本量的乘方之积表示出来的表达式,称为该物理量的量纲式,简称量纲(dimension)(量纲又称为因次)。

它是在选定了单位制之后,由基本物理量单位表达的式子。

在国际单位制(I)中,七个基本物理量长度、质量、时间、电流、热力学温度、物质的量、发光强度的量纲符号分别是L、M、T、I、Q、N和J 速度v = ds/dt 量纲: = 加速度a = dv/dt 量纲: 力F = ma 量纲: 压强P = F/S 量纲:实际中,也有些量是无量纲的,比如等,此时记为。

有量纲的物理量都可以进行无量纲化处理量纲有赖于基本量的选择,是外加的有关量的度量手段。

模型所描述的规律应该独立于量纲的影响。

机理模型的深入探讨应该排除量纲的影响,因此机理模型需要无量纲化。

使用无量纲量来描述客观规律。

在量纲表达式中,其基本量量纲的全部指数均为零的量,即无量纲量,也称纯数。

1.无量纲量具有数值的特性,它可以通过两个量纲相同的物理量相除得到,也可由几个量纲不同的物理量通过乘除组合得到。

2.无量纲量具有这样一些特点:①无量纲数既无量纲又无单位,因此其数值大小与所选单位无关。

即无论选择什么单位制计算,其结果总是相同的。

当然,同一问题必须用同一单位制进行计算。

②对数、指数、三角函数等超越函数的运算往往都是对无量纲量来讲的。

③一个力学方程,如果用无量纲数表示的话,它的应用就可以不受单位制的限制。

要正确反映一个物理现象所代表之客观规律,当用数学公式描述已物理量时,等号两端就必须保持量纲的一致性和单位的一致性,即其所遵循的物理方程式各项的量纲必须一致,可以用这一原理来校核物理方程和经验公式的正确性和完整性。

量纲分析就是基于量纲一致的原则来分析物理量之间关系的一种方法。

量纲分析法

量纲分析法

量纲分析法量纲分析法是一种工程数学方法,用于处理含有多个变量的物理问题。

这种方法非常有用,因为在实际应用中,我们通常需要考虑许多不同的变量和参数,这些参数可能具有不同的单位和量纲,使得问题变得复杂和难以处理。

利用量纲分析法,可以将各个参数转换为无量纲形式,从而简化问题并提高计算精度。

1. 什么是量纲首先,我们需要明确什么是量纲。

量纲是一个物理量所具有的度量属性,通常包括基本量纲,比如长度、时间、质量、电流等等。

每个量纲都有一个标准单位,比如米、秒、千克、安培等等。

通过组合不同的基本量纲和单位,我们可以得到其他物理量的单位和量纲。

比如速度可以表示为长度/时间,加速度可以表示为长度/时间^2。

在处理物理问题时,量纲是非常重要的,因为它们决定了各个物理量之间的关系和单位的选择。

2. 如何运用量纲分析法量纲分析法是一种基于量纲的数学方法,用于研究变量之间的关系和有效参数的数量。

在使用这种方法时,我们需要将所有涉及的物理量和参数转换为无量纲形式,然后通过比较各个无量纲参量的数量级和变化趋势来分析问题。

这种方法可用于许多不同的物理问题,例如流体力学、热传递、电路分析等等。

下面我们以流体力学为例来讲解量纲分析法的应用过程。

首先,我们考虑一个典型的流体力学问题:水从一根直管中流出的速度是多少?公司设计师可以运用以下方程式解决此题: v = (P1 - P2) / ρL其中v是水的速度,P1和P2是入口和出口处的压力,ρ是水的密度,L是管道长度。

我们观察到这个公式涉及四个参数,每个参数都有自己的单位和量纲。

在使用量纲分析法时,我们需要将它们都转换为无量纲形式。

我们可以定义以下五个无量纲参量:F1 = v L / νF2 = (P1 - P2) / (0.5ρv^2)F3 = D / LF4 = ε/ D其中,ν是水的动力粘度,D是管道的直径,ε是管道壁面粗糙度。

这里表示F1 代表惯性力,F2 代表压力力,F3 代表管道长度比,F4 代表管道细度等无量纲参量。

量纲分析法

量纲分析法

第三节 量纲分析法量纲分析是20世纪初提出的, 在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上, 利用物理定律的量纲齐次原则,确定各物理量之间的关系。

3.1 量纲齐次原则与Pi 定理许多物理量是有量纲的,有些物理量的量纲是基本的,另一些物理量的量纲则可以由基本量纲根据其定义或某些物理定律推导出来。

例如在动力学中,把长度l , 质量m 和时间t 的量纲作为基本量纲,记为[][][]T t M m L l ===,,; 而速度f v ,力的量纲可表示为[][]21,--==MLT f LT v .在国际单位制中,有7个基本量:长度、质量、时间、电流、温度、光强度和物质的量,它们的量纲分别为L 、M 、T 、I 、Θ、J 、和N ;称为基本量纲。

任一个物理量q 的量纲都可以表成基本量纲的幂次之积,[]ηξεδγβαJ N I T M L q Θ=量纲齐次性原则:用数学公式表示一个物理定律时,等式两端必须保持量纲一致。

量纲分析就是在保证量纲一致的原则下,分析和探求物理量之间关系;先看一个具体的例子,再给出量纲分析的一般方法。

例3—1: 单摆运动,质量为m 的小球系在长度为l 的线的一端,线的另一端固定,小球偏离平衡位置后,在重力mg 作用下做往复摆动,忽略阻力,求摆动周期t 的表达式。

解:在这个问题中有关的物理量有g l m t ,,,设它们之间有关系式3211αααλg l m t =---------------(3.1)其中32,,ααα为待定常数,入为无量纲的比例系数,取(3.1)式的量纲表达式有[][][][]321αααg l m t = 整理得:33212αααα-+=T LM T --------------(3.2)由量纲齐次原则应有⎪⎩⎪⎨⎧=-=+=12003321αααα ---------------(3.3)解得:,21,21,0321-===ααα 代入(3.1)得 glt λ= -------(3.4)(3.4)式与单摆的周期公式是一致的下面我们给出用于量纲分析建模的 Buckingham Pi 定理,定理:设n 个物理量n x x x ,,,21 之间存在一个函数关系()0,,,21=n x x x f --------------(3.5)[][]m x x 1为基本量纲,n m ≤。

《量纲分析》课件

《量纲分析》课件

an
a1 1
a2
2
ak
k
❖ 描述物理现象的函数关系式可写成:
❖ 含有k个量纲的独立量的n个物理量之间的函数关系式, 简化为(n-k)个无量纲乘积(π)之间的关系式——无 量纲方程
材料工程基础及设备多媒体课件
8.2.3 量纲分析的一般说明
1、量纲独立:K个物理量,其中任一个物理量的量纲均不能由 其它物理量的量纲组合来表示,则称k个物理量的量纲彼此 独立。
a a a a 1
2
k
k 1
1
2
k
a a a a 1
2
k
k2
1
2
k
材料工程基础及设备多媒体课件
an a11 a2 2 ak k
❖ 则有:
a1 1
ak a2
2
1
ak
k
1
1
ak 1
a1 1
a2 2
ak k
a1
1
an a2 2
ak
k
1
nk
❖ 求解方程封闭:直接求解
方程不封闭:以(n--3)个量为待定量
❖ 逐项令待定量一项为1,其余为零,写出结果矩阵。
❖ 写出各无量纲乘积及准数方程。
材料工程基础及设备多媒体课件
例题:水流中物体的运动
例题:水流中物体的运动
F= f(μ、g、w、L、ρ)
❖ 写出量纲矩阵: ❖ 矩阵的秩:r =3
无量纲乘积数目n-k=3 ❖设 ❖ 写出指数方程 ❖ n>3 ,
8.2 量纲分析
原理:1、量纲和谐性原则 2、 Π定理
重点:量纲分析法
材料工程一个完整的物理方程,其各项量纲必定是和谐的。
量纲分析法的物理本质在于描述现象的微分方程中各项量纲的 一致性。

第七章 量纲分析与相似理论

第七章 量纲分析与相似理论

2. 定理法 (布金汉法)
若物理方程为
f ( x1 , x2 ,, xn ) 0
而这些变量中含有m个基本物理量,则可组合这些变量成 为(n – m)个无量纲 ) 0
x5 x4 1 a1 b1 c1 2 a2 b2 c2 x1 x2 x3 x1 x2 x3
Cu up um
Cu Cl Ct
速度比尺 加速度比尺
Cv
vp vm
时间比尺
Ct tp tm
C Ca l2 am Ct
ap
重力加速度比尺
Cg
gp gm
1
三、动力相似
两个流动各对应点上受到的各种同名力方向相同、大小 成比例 ,即
力的比尺
CF Tp Tm Gp Gm Pp Pm Ep Em Sp Sm Ip Im
F Km a v b R c
根据量纲和谐性,有
dim F MLT K M LT L
2 a 1 b c
M :1 a
L :1 b c
a 1
T : 2 b
b2 c 1
F Km v2 / R
例7-2 由实验得知:恒定有压管流的临界流速 vc 与管径 d 、流体密度 和粘度 有关,试用瑞利 法求出它们之间的关系式。
Fp Fm CI
Ne
C Cl3Ca C Cl2 Cv2
力的比尺 CF
Fp Fm
F l 2v2

2 2 pl p vp 2 2 mlm vm
牛顿相似准则是两 个流动动力相似的 充分与必要条件
(Ne ) p (Ne )m
Fp
2 2 pl p vp

量纲分析法

量纲分析法

量纲分析法量纲分析法是求解物理问题的一种常用方法,它是建立在物理量之间存在着量纲关系的基础上的。

我们都知道,物理量是有量纲的,例如长度有米(m)、质量有千克(kg)等等。

物理量之间可能存在着各种复杂的关系,但是它们之间的量纲关系却是简单明了的。

在这个基础上,我们可以通过对物理量之间的量纲关系进行分析,得到大致的物理规律和关系式。

量纲分析法的应用范围广泛,可以用于求解机械、电学、热学等方面的问题。

特别是对于那些难以通过精确计算求得解析解的问题,量纲分析法常常能够给出很好的近似解。

量纲和单位的概念在进一步介绍量纲分析法之前,我们需要先了解一下量纲和单位的概念。

量纲是指物理量所具有的性质或特征。

例如,长度、质量、时间等都是物理量的量纲。

一般来说,我们用中括号表示一个物理量的量纲,例如$[L]$表示长度的量纲,$[M]$表示质量的量纲。

单位是指用来度量某一物理量的标准。

对于同一物理量,不同的国家或文化可能使用不同的单位。

例如,长度可以使用米、英尺、码等作为单位,质量可以使用克、千克、磅等作为单位。

物理量之间的量纲关系物理量之间的量纲关系非常重要,因为它们是建立任何物理公式或关系式的基础。

对于任意一个物理量,我们都可以通过对其进行基本量的组合或者一些次幂等数学运算,得到它的量纲式。

例如,对于单位长度的物理量,我们可以用基本物理量长度$L$表示它,那么它的量纲式为:$$[L]^1$$同理,对于单位速度$v$,由速度的定义可以得到:$$[L]^1\text{T}^{-1}其中,T表示时间的量纲。

通常情况下,我们将同一物理量的所有单位转化为相同的标准单位后,再进行量纲关系的分析。

例如,对于长度这一物理量,我们选用标准单位米(m)作为计量单位,则长度的量纲为$[L]$,而英尺的长度则可以表示为$0.3048\text{m}$。

量纲分析的基本原理和步骤量纲分析的基本原理是“对等量纲式进行运算时,只能加减,不能乘除”。

量纲分析

量纲分析

量纲分析量纲分析是20世纪初提出的, 在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上, 利用物理定律的量纲齐次原则,确定各物理量之间的关系。

为了能够应用数学来描述物理对象,我们需要对其定量化。

物理对象的定量化需要有单位和数值,单位是作为度量标准的某个物理量。

被测物理量的数值大小不仅取决于其本身,而且取决于所选用的单位。

例如为了描述一块地的范围,需要确定其面积的单位和数值的大小。

我们可以说这是块大小为1平方公里的地,也可以说这是块大小为1000000平方米的地。

离开了单位,仅根据数值我们无法判断一块地的大小。

单位的选取往往带有任意性,比如说度量长短可以选用米为单位,也可以选用厘米、分米、公里甚至光年为单位。

然而这些单位都是用来度量同一个物理量—长度的,它们之间可以相互换算,具有某种统一性。

我们把这种统一性称为量纲。

单位:物理量的大小;量刚:物理单位的种类。

m 、cm、mm 长度类用L表示分、小时、秒时间类用T表示公斤、克质量用M表示一般来说,测量同一个物理量可以有不同的单位,但是它的量纲是唯一的。

例如,测量长度可以用厘米、分米、公里甚至光年为单位,量刚只能用L来表示。

通常用[量]来表示物理量的量纲,不同的物理量往往有不同的量纲:长度的量纲记为L,时间的量纲记为T,质量的量纲记为M,无单位的物理量的量纲记为1。

一个具体的物理对象往往要有许多不同的物理量来描述其不同的特性,我们可以把其中的一些看成是基本量,其他的是导出量。

基本量的量纲称为基本量纲,互不依赖,互相独立的,不能从其他量纲推导出来量纲。

在国际单位制中有7个基本量纲:质量[M]、长度[L]、时间[T] 、电流[I]、热力学温度[Θ]、物质的量[N]、发光强度[J]其他量的量纲可以由基本量纲导出。

导出量纲:可用基本量纲推导出来的量纲例如,我们取基本的量纲为L、T和M,那么面积的量纲为L2,速度的量纲为LT-1,加速度的量纲为LT-2。

第5章 量纲分析和相似原理

第5章 量纲分析和相似原理

为无量纲数
qi 3 i a b c (i 1, n 3) q1 q2 q3

基本量量纲独立的 条件是量纲式中的 指数行列式不等于0
例5-3


例5-3 求有压管流压强损失表达式。
(1)找出有关物理量。由经验和对已有资料的分析可 知,管流的压强损失p 与流体的性质(密度 ,运动 粘度 )、管道条件(管长 l 、直径 d 、壁面粗糙高 度 k )以及流动情况(速度 )有关,有关量数为 n 7

§5.1 §5.2 §5.3 §5.4
第5章 量纲分析和相似原理 量纲分析的意义和量纲和谐原理(掌握) 量纲分析法(掌握) 相似理论基础(掌握) 模型实验(了解)

§5.1 量纲分析的意义和量纲和谐原理 §5.1.1 量纲的概念 1、量纲:是指撇开单位的大小后,表征物理量的性 质和类别。 如长度量纲为[L]。 ——“质”的表征。 2、单位:量度各种物理量数值大小的标准量,称单 位。如长度单位为m或cm等。——“量”的表征。 3、基本量纲与导出量纲 基本量纲:具有独立性的,不能由其他量纲推导出来 的量纲叫做基本量纲。一般取长度、时间、质量、温 度,即[L-M-T-θ];对于不可压缩流体,采用长度、 时间、质量作为基本量纲,即[L-M-T] ; 导出量纲:是指由基本量纲导出的量纲。
2 2 2
4
ks a4 d b4 c4

(4)决定各 项基本量指数。
1 1 1
1 : diห้องสมุดไป่ตู้ p dim( a d b c )
ML1T 2 ( LT 1 ) a1 ( L)b1 ( ML3 )c1 M :1 c1 a1 2 L : 1 a1 b1 3c1 T : 2 a1

《量纲分析》课件

《量纲分析》课件

添加标题
添加标题
添加标题
添加标题
公式分析:通过分析物理量之间的 关系,确定其量纲
量纲分析的优点:可以快速、准确 地确定物理量的量纲,提高计算效 率
参数分析法
基本概念:量纲分析是一种数学方法,用于分析物理量之间的关系 应用领域:广泛应用于物理学、化学、生物学等领域 基本步骤:确定物理量之间的关系,建立方程组,求解未知参数 优点:可以简化复杂的物理问题,提高解决问题的效率
图形分析法
基本概念:量纲分 析是一种通过图形 表示物理量之间的 关系的方法
应用领域:广泛应 用于物理学、化学、 生物学等领域
优点:直观、易于 理解,便于分析物 理量之间的关系
步骤:确定物理量 之间的关系,画出 图形,分析量纲关 系,得出结论
Байду номын сангаас
量纲分析的应用
在物理建模中的应用
量纲分析可以帮助我们理解物理量之间的关系,从而建立更准确的物理模型。 在流体力学中,量纲分析可以帮助我们理解流体的流动特性,从而建立更准确的流体力学模型。 在热力学中,量纲分析可以帮助我们理解热力学定律,从而建立更准确的热力学模型。 在电磁学中,量纲分析可以帮助我们理解电磁场的特性,从而建立更准确的电磁学模型。
精度和误差的影响
量纲分析无法 准确预测实际 测量的精度和
误差
量纲分析无法 考虑测量过程 中的系统误差
和随机误差
量纲分析无法 预测测量结果
的不确定性
量纲分析无法 考虑测量仪器 的精度和稳定 性对测量结果
的影响
主观因素的影响
量纲分析依赖于人的主观判断 和经验
量纲分析可能受到人的主观偏 见和认知偏差的影响
量纲分析的重要性
量纲分析是科 学研究中不可 或缺的工具, 可以帮助我们 理解和解释物
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.
解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.
量纲矩阵为:
A=)
⎥⎥⎥⎦⎤⎢⎢
⎢⎣⎡---ρ()()
()()()()(001310013212s v P T M L
齐次线性方程组为:
⎪⎩

⎨⎧=--=+=-++0
30
32221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y
由量纲i P 定理得 1
1
31ρπs v P -=, 1
1
3ρλs v P =∴ , 其中λ是无量纲常数. 2.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞
系数,用量纲分析方法给出速度v 的表达式.
解:设v ,
ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,
[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.
量纲矩阵为
A=)
()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即
⎪⎩⎪
⎨⎧==+=+0
2y -y - y -0
y y 0y y -3y -y 431
324321 的基本解为y=(-3 ,-1 ,1 ,1)
由量纲i P 定理 得 g v μρπ1
3--=. 3
ρ
μλg
v =∴,其中λ是无量纲常数.
3.用量纲分析法研究人体浸在匀速流动的水里时损失的热量,记水的流速ν,密度ρ,比热c ,粘性系数μ,热传导系数k ,人体尺寸d ,证明人体与水的热交换系数h 与上述各物理量的关系可表为⎪⎭

⎝⎛ψ=
k c d v d k h μμρ,,ψ是末定函数,h 定义为单位时间内人体的单位面积在人体与水的温度为1℃时的热量交换。

证明:
设)(0,,,,,,=d k c v h f μρ,有长度量纲L,质量量纲M,时间量纲T,加入温度量纲
θ,有
[]13--=θMT h ,[]1-=LT v ,[]M L 3-=ρ,[]122--=θT L c ,[]11--=MT L μ,[]13--=θLMT k ,
[]L d =.
A=⎥⎥⎥⎥⎦


⎢⎢
⎢⎣⎡----------010100
1031201301101011112310[][][][]
θT M L
d k c v h μρ
得:()0321=πππ,,F ,c v h ρπ11-=,k v h 112--=ρμπ,d v 13-=ρμπ (其中321,,πππ都是无量量纲)
化简后为:d hk 11-=π,12-=ck μπ,d v 13-=ρμπ 因为)(0,,,,,,=d k c v h f μρ与()0321=πππ,,F 等价 而()0321=πππ,,F ⇒()321ππψπ,=⇒⎪⎭
⎫ ⎝⎛ψ=
k c d v d k h μμρ, 于是有⎪⎭

⎝⎛ψ=
k c d v d k h μμρ,,证明完毕。

5.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期
的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期.
解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为
0),,,,(=k g m l t f
其量纲表达式为:
1
12120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t
10-=MT L , 其中L ,M ,T 是基本量纲.
量纲矩阵为
A=)
()()()()()()()(120011010001
010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组
⎪⎩⎪

⎧=--=+=+0
200541
5342y y y y y y y 的基本解为
⎪⎩
⎪⎨⎧
--=-=)
1,21
,1,21,0()0,21,0,21,1(21
Y Y 得到两个相互独立的无量纲量
∴g
l
t =
1π, )(21πϕπ=, 2
/12
/12mg
kl =π ∴)(2
/12/1mg kl g l t ϕ=
,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'
t ;l ,'
l ;m ,'
m . 又)(2
/12/1g m l k g l t '''=
'ϕ 当无量纲量l l m m '='
时, 就有 l
l l g g l t
t '
=
⋅'='.
⎩⎨⎧==---2
2
/112/11
2/12/1ππk g m l g tl。

相关文档
最新文档