活性炭的功能化处理极大的影响钯碳催化剂活性

合集下载

活性炭作用初中化学

活性炭作用初中化学

活性炭作用初中化学
活性炭是一种日常生活中用得比较多的化学物质,它几乎可以在每个家庭中都
见一些,但很多人不知道活性炭具有什么特点及相关的用途。

活性炭因其特殊的结构而具有广泛的应用,尤其是在扩散性过程中有重要的作用。

活性炭的本质就是一种碳固体,它由纤维或热分解物质来源的供体中起到着重
要的作用。

它具有较大的比表面积,比表面积一般可达一定的位置,活性炭的比表面积一般比普通非活性炭高出几百倍之多。

极低的污染也是活性炭的重要特点之一,活性炭可以有效地过滤出各种有机和无机污染物,这也是它在水处理领域的主要作用。

活性炭在实验中也有很多运用,例如研究生物物质的表观性质、调节物质的稀
释和浓缩、改变有机物的抑制性能。

此外,活性炭还可以利用于吸附剂过滤、空气净化传感器、细菌抑制系统、气液比以及金属离子检测等。

总之,活性炭作用于初中化学方面非常丰富,其独特的特点使它成为实验室中
必不可少的化学材料。

除了多次用于实验,活性炭也可以作为水处理领域用途,用来去除流水中的污染物。

如果合理利用活性炭,将可以获得更环保的家庭环境。

活性炭活化原理

活性炭活化原理

精心整理活性炭的活化机理及应用活性炭是一种非常优良的吸附剂,它是利用植物原料(木屑、木炭、果壳、果核)、煤和其它含碳工业废料作原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加工制造而成。

根据活化介质的不同,活性炭活化方法分为物理活化法、化学活化法和物理—化学复合活化法。

物理活化水蒸汽、二氧化碳、空气或它们的混合气体对环境污染小,因其依靠氧化碳原子形成孔隙结构,活化温度较高且活性炭得率低。

化学活化法活性炭得一.1.CO+H2般在800上述三个化学反应均是吸热反应,即随着活化反应的进行,活化炉的活化反应区域温度将逐步下降,如果活化区域的温度低于800℃,上述活化反应就不能正常进行,所以在活化炉的活化反应区域需要同时通入部分空气与活化产生的煤气燃烧补充热量,或通过补充外加热源,以保证活化炉活化反应区域的活化温度。

活化反应属于气固相系统的多相反应,活化过程中包括物理和化学两个过程,整个过程包括气相中的活化剂向炭化料外表面的扩散、活化剂向炭化料内表面的扩散、活化剂被炭化料内外表面所吸附、炭化料表面发生气化反应生成中间产物(表面络合物)、中间产物分解成反应产物、反应产物脱附、脱附下来的反应产物由炭化料内表面向外表面扩散等过活化反应通过以下三个阶段最终达到活化造孔的目的。

第一阶段是炭化时形成的但却被无序的碳原子及杂原子所堵塞的孔隙的打开,即高温下,活化气体首先与无序碳原子及杂原子发生反应。

第二阶段是打开的孔隙不断扩大、贯通及向纵深发展,孔隙边缘的碳原子由于具有不饱和结构,易于与活化气体发生反应,从而造成孔隙的不断扩大和向纵深发展。

2.化化学法、KOH以(600~800℃)在KOHKOH 的加入也加快了非碳原子N、H等的脱除,KOH活化反应成孔机理就是通过KOH与原料中的碳反应,把其中的部分碳刻蚀掉,经过洗涤把生成的盐及多余的KOH洗去,在被刻蚀的位置出现了孔。

这一过程主要发生以下反应:4KOH+—CH2一K2CO3+K2O+3H2K2CO3+2—C—2K+3COK2O+—C—2K+CO2KOHK2O+H2OC+H2OH2+COCO+H20H2+C02K2O+CO2K2CO3K2O+H22K+H2OK2O+C2K+CO在KOH活化法制备活性炭时,活化后的洗涤是关键。

活性炭的运用现状及优化

活性炭的运用现状及优化

活性炭的运用现状及优化活性炭的生成原料主要是果壳,木屑,椰壳等多个方面,后期再经过加工处理才完成的,其中比较明显的特点是对气体,溶液中的有机物质与无机物质都有特别高的吸附功效,并且同时也具备特别高的催化与吸附能力,它的形成原因主要是由表面化学功能与表面结构的特征所组成。

1 活性炭的改性研究当今社会经济与科学技术的发展都是非常迅速的,同时,市场上对于活性炭功能的要求也越来越严格,一般的活性炭分布的领域是比较广的,即使是这样,也很难满足国内外的市场需求,那么,对于活性炭的革新与改进是势在必行的,发展它的功能化与专用化是未来的必然趋势,其方法主要是对于处理技术与工艺控制的调整,通过对其表面进行改性,来加强它的催化与吸附功效。

2 活性炭的表面改性活性炭的表面化学性质决定了其化学吸附特性。

化学性质主要指活性炭表面的化学官能团,可分为含氧官能团和含氮官能团。

含氧官能团又可分为酸性含氧官能团和碱性含氧官能团;酸性基团有羧基、酚羟基、醌型羰基、正内酯基及环式过氧基等,碱性氧化物普遍认为是苯并比的衍生物或类吡喃酮结构基团。

酸性化物使活性炭具有极性的性质,有利于吸附各种极性较强的化合物,碱性化合物易吸附极性较弱或非极性物质。

2.1 活性炭表面氧化改性活性炭氧化改性是指活性炭在适当条件下经过强氧化剂进行表面处理,以提高酸性基团的含量,可以增强对极性物质的吸附能力。

氧化程度越高,含氧官能团越多。

氧化处理可以改变活性炭的孔隙结构、比表面积,容积降低,孔隙变宽,极性基团增加,对极性物质的吸附能力增强。

目前常用的氧化剂有HNO3、H2O2、HClO3、H2SO4、O3,HF等。

其中,以HNO3改性应用最广,改性效果最好。

采用HNO3和HClO对活性炭进行改性处理,HNO3是最强的氧化剂,产生大量的酸性基团,HClO的氧化性较温和,可调整活性炭的表面酸性至适宜值,氧化后活性炭表面的几何形状变得更加均一。

研究发现,对于HNO3改性,在处理温度低于333K时,主要是中孔受到影响,当处理温度达到363K时,微孔增多而中孔缺失。

钯碳催化剂提钯

钯碳催化剂提钯

钯碳催化剂提钯一、引言钯是一种重要的贵金属,广泛应用于化学、电子、医药等领域。

然而,钯的产量有限,价格昂贵,因此如何提高钯的利用率成为了一个重要的研究方向。

钯碳催化剂是一种常用的钯催化剂,其制备方法和性能研究一直备受关注。

本文将介绍一种新型的钯碳催化剂提钯方法。

二、钯碳催化剂的制备方法钯碳催化剂是将钯与活性炭等载体材料混合制备而成的。

传统的制备方法包括浸渍法、共沉淀法、还原法等。

这些方法虽然制备简单,但是存在着钯利用率低、催化剂活性不高等问题。

近年来,一种新型的钯碳催化剂制备方法被提出,即“碳纳米管模板法”。

该方法利用碳纳米管的孔道结构作为模板,将钯离子沉积在碳纳米管孔道内,然后通过高温煅烧将碳纳米管模板去除,得到具有高比表面积和孔道结构的钯碳催化剂。

该方法制备的钯碳催化剂具有高催化活性和稳定性,可以用于多种有机反应。

三、钯碳催化剂提钯方法传统的钯碳催化剂提钯方法包括酸性溶液浸泡法、氧化钯还原法等。

这些方法虽然可以提取钯,但是存在着提取效率低、催化剂活性下降等问题。

近年来,一种新型的钯碳催化剂提钯方法被提出,即“氧化钯还原-酸性溶液浸泡法”。

该方法首先将钯碳催化剂在氧化钯的存在下还原,得到具有高催化活性的钯碳催化剂。

然后将还原后的钯碳催化剂浸泡在酸性溶液中,利用酸性溶液中的氯离子与钯形成络合物,从而实现钯的提取。

该方法提取效率高、催化剂活性不受影响,可以用于大规模生产。

四、结论钯碳催化剂是一种重要的钯催化剂,其制备方法和提钯方法一直备受关注。

碳纳米管模板法是一种新型的钯碳催化剂制备方法,可以制备出具有高比表面积和孔道结构的钯碳催化剂。

氧化钯还原-酸性溶液浸泡法是一种新型的钯碳催化剂提钯方法,可以提高钯的提取效率和催化剂活性。

这些新型的方法为钯的高效利用提供了新的思路和方法。

含钯废活性炭催化剂中金属钯的回收

含钯废活性炭催化剂中金属钯的回收

含钯废活性炭催化剂中金属钯的回收张保明【摘要】本文主要研究了含钯废活性炭催化剂中金属钯的回收.其间运用洗涤预处理、高温焙烧的方法,除去含钯废活性炭催化剂中的大部分有机物及载体炭,得到的钯精矿经还原后用盐酸和氯酸钠浸出.本文考察了焙烧方式和氯化铵沉淀温度等因素对钯回收率的影响,得到钯的回收率99.5%,纯度不低于99.95%.【期刊名称】《中国资源综合利用》【年(卷),期】2019(037)002【总页数】3页(P27-29)【关键词】含钯废活性炭催化剂;预处理;焙烧;氯化铵沉淀【作者】张保明【作者单位】江西省君鑫贵金属科技材料有限公司,江西上饶 334000【正文语种】中文【中图分类】X831活性炭可以负载贵金属,其产物具有良好的催化性能,贵金属催化剂广泛应用于农药制造、医药制造、石油化工、精细化工催化等行业中。

其中,钯炭催化剂具有催化活性高、选择性好等优点,例如,除草剂、除虫剂、合成染料、氟呱啶、甲苯二异氰酸酯合成、苯二甲酸加氢精制等均采用含钯活性炭催化剂[1-3]。

经过一段时间使用后,催化剂中的钯被杂质污染而失去活性,需更换新催化剂。

由于我国贵金属钯资源紧缺,无法满足各行业所需,每年需从国外进口大量钯,因此对含钯废催化剂进行回收和循环利用,这对于解决我国钯资源短缺以及环境问题具有重大意义。

我国每年回收处理废钯碳催化剂约1000 t,原料主要来源是大型石化、医药、精细化工等企业。

国内大部分钯炭回收企业主要采用焙烧、还原、王水溶解、氨络合、盐酸酸化、氨络合、水合肼还原等工艺得到贵金属钯,工艺比较成熟,本文主要研究钯炭焙烧前预处理、焙烧方式等精制过程的优化工艺。

1 试验部分1.1 原料原料为维生素E生产过程产生的废钯炭催化剂,此催化剂以活性炭为载体,主要活性成分为贵金属钯。

其中,贵金属钯的质量分数为0.8%~1.0%,同时还含有大量的冰醋酸及少量的硅、铁、铜等元素。

1.2 试剂与仪器试剂:甲酸、盐酸、氨水、氯酸钠、水合肼等均为分析纯。

钯碳 金属催化

钯碳 金属催化

钯碳金属催化
钯碳(Pd/C)是一种常用的金属催化剂,由钯和活性炭组成。

它具有高催化活性和选择性,在有机合成中广泛应用。

钯碳催化剂被广泛应用于氢化、加氢解酰基、加氢脱氨、加氢去卤等反应中。

它在催化剂中的钯原子起到催化作用,活性炭则起到载体的作用,提供表面积和孔隙结构,增加反应物与催化剂的接触面积和反应活性。

钯碳催化剂具有以下优点:
1. 高催化活性:钯具有较高的催化活性和选择性,在许多重要的有机反应中展现出良好的催化效果。

2. 易于使用:钯碳催化剂可以方便地制备和处理,并且反应条件较为温和。

3. 可再生性:钯碳催化剂可以通过再氢化和再激活等方法进行再生,提高催化剂的使用寿命和降低成本。

然而,钯碳催化剂也存在一些限制:
1. 钯价格较高:由于钯的稀缺性和昂贵的生产成本,钯碳催化剂较为昂贵,限制了其在一些大规模应用中的使用。

2. 钯催化剂对空气敏感:钯碳催化剂对水、氧气和空气中的其他成分敏感,容易被氧化或失活,需要在惰性气氛或干燥条件下运用。

钯碳催化剂的应用范围很广,可以应用于有机合成中许多重要的反应,例如氢化反应、Suzuki偶联反应、Heck反应、还原
反应等。

它在药物合成、材料科学、环境保护等领域也具有重要的应用价值。

钯碳催化剂cas号

钯碳催化剂cas号

钯碳催化剂cas号
钯碳催化剂(Palladium Carbon Catalyst)是一种广泛应用于加氢、脱氢、氧化等化学反应的催化剂,由于钯具有优异的催化性能,使得钯碳催化剂在化工、医药、燃料等领域得到广泛应用。

钯碳催化剂的CAS号是12421-78-0,CAS号是美国化学文摘服务社为化学物质制定的登记号,是独一无二的,可以用于识别具体的化学物质。

钯碳催化剂的制备方法有多种,其中最常用的是浸渍法。

浸渍法是将活性炭载体浸入含有钯盐和其他添加剂的溶液中,经过吸附、洗涤、干燥、焙烧等工序后得到钯碳催化剂。

浸渍法具有操作简单、制备方便、活性组分含量高等优点,是制备钯碳催化剂的重要方法之一。

钯碳催化剂的活性组分是钯,其含量直接影响催化剂的催化性能,因此制备过程中需要严格控制钯盐的用量和浸渍工艺参数,以保证得到高活性、高稳定性的催化剂。

此外,为了提高钯碳催化剂的催化性能和稳定性,通常需要添加一些助剂,如表面活性剂、分散剂、稳定剂等。

这些助剂的作用是改善活性炭载体的表面性质、促进钯盐的分散和防止催化剂失活等。

在使用过程中,钯碳催化剂会受到一些因素的影响,如反应温度、压力、反应物浓度等。

因此,需要根据具体的反应条件选择合适的催化剂和工艺参数,以保证化学反应的顺利进行和产物的质量。

总的来说,钯碳催化剂是一种重要的化学反应催化剂,其制备和应用需要综合考虑多种因素。

了解其CAS号可以帮助我们更好地识别和跟踪具体的化学物质,对于化学研究和工业生产都具有重要意义。

影响催化剂活性因素

影响催化剂活性因素

钯碳催化剂‎影响催化剂‎活性因素一.以下原因可‎使催化剂活‎性下降:1.非可逆:a.半融b.化学成份变‎化c.化合物有生‎成d.破碎或剥落‎e.附着了反应‎产物及其它‎物质2.可逆:a.暂时地生成‎化合物b.吸咐3.中毒:a.毒化作用分‎阶段进行,催化剂的中‎毒程度逐渐‎增加,继而失去大‎部份活性,以至最终完‎全失去催化‎作用,此种现象称‎为阶段性中‎毒或累积中‎毒。

b.由于有过量‎的催化剂毒‎物,对A反应虽‎然失去活性‎,但对B反应‎仍能很好地‎保持其活性‎,此种现象称‎为选择性中‎毒。

c.使Ni催化‎剂发生中毒‎的含卤化合‎物有:CHCl3‎ C4H4C‎l(OH) CH2=CHCH2‎B r C2H5I‎ C6H5C‎l C2H5B‎r NaI KI 等。

d.使催化剂中‎毒的有机胺‎强度顺序:2-甲基喹啉>喹啉>吡咯>哌啶>葵胺>苯胺e.水的毒化作‎用:苯核在加压‎下,在Ni催化‎剂上进行液‎相加氢时,如果有水存‎在,反应会减慢‎。

如果用铂属‎催化剂,则反应加速‎。

二.催化剂颗粒‎的作用:催化剂颗粒‎的外形尺寸‎,对液相反应‎有很大的影‎响,颗粒尺寸小‎,愈容易促进‎反应。

将催化剂磨‎细就可提高‎1.5~2.0倍以上的‎活性。

三.使3gNi‎催化剂的加‎氢能力(对苯的)减半时所需‎的毒物量:噻吩 0.6 mg 氯苯 3.0mg 水100m‎g 溴乙烷 1.0mg 溴苯 15.0mg四.不同含量钯‎炭对硝基苯‎(在乙酸中)的加氢作用‎:1%(500+5)相对速度 7.6 3%(166+5)相对速度 3.55%(100+5)相对速度 1.8 10%(50+5)相对速度 1.20.5%以下,效率会迅速‎下降,实际上可用‎1%以上钯炭。

五.对催化反应‎有利物质:a.吡啶和硝基‎苯在Ni催‎化加氢时,如添加少量‎乙酸,对反应有促‎进作用。

b.轻金属(如Be)和碱土金属‎化合物,不仅对催化‎剂没有毒化‎作用,有时还能提‎高选择性和‎活性。

钯碳催化剂套用

钯碳催化剂套用

钯碳催化剂套用钯碳催化剂在化学反应中的应用是一个热门话题。

钯碳催化剂是由钯和活性炭组成的复合材料,具有高效催化活性和良好的稳定性,被广泛应用于有机合成、环境保护和能源转化等领域。

钯碳催化剂在有机合成中具有重要的应用价值。

钯碳催化剂可以催化各种有机反应,如氢化反应、氧化反应、氮化反应等。

其中,钯碳催化剂在氢化反应中表现出色,可以将烯烃、醛酮、芳香化合物等高效地还原为相应的烃。

此外,钯碳催化剂还可以催化碳碳键的形成,如Suzuki反应、Heck反应等,这些反应在药物合成和材料科学中具有重要意义。

除了有机合成,钯碳催化剂在环境保护领域也发挥着重要作用。

钯碳催化剂可以催化有机废水的处理,将有机污染物转化为无害的物质。

此外,钯碳催化剂还可以催化废气中的有害气体的转化,如一氧化碳的氧化、氮氧化物的还原等。

这些应用可以有效地减少环境污染,保护生态环境。

钯碳催化剂在能源转化领域也有广泛的应用。

钯碳催化剂可以催化燃料电池中的氧还原反应,提高电池的效率和稳定性。

此外,钯碳催化剂还可以催化氢能源的制备和利用,如水裂解制氢、氢与氧的反应等。

这些应用有助于实现清洁能源的开发和利用,推动可持续能源的发展。

钯碳催化剂具有许多优点,使其成为催化剂领域的热门研究方向。

首先,钯碳催化剂具有高催化活性和选择性,可以在较温和的条件下进行反应,降低能源消耗和废物产生。

其次,钯碳催化剂具有较高的稳定性和寿命,可以反复使用,降低生产成本。

此外,钯碳催化剂还可以通过调节钯的形态和分散度来调控其催化性能,提高催化效率。

然而,钯碳催化剂也存在一些挑战和问题。

首先,钯是一种昂贵的催化剂,其成本较高。

其次,钯碳催化剂在某些反应中可能会受到毒性物质的中毒,降低催化活性。

此外,钯碳催化剂的制备和表征也具有一定的复杂性,需要进一步改进和优化。

钯碳催化剂作为一种高效催化剂,在有机合成、环境保护和能源转化等领域具有广泛的应用前景。

随着对催化剂性能的深入研究和技术的不断发展,相信钯碳催化剂将在更多领域展现其威力,为人类社会的发展做出更大的贡献。

钯碳催化剂

钯碳催化剂

摘要:Pd/C催化剂的研究开发情况,包括催化剂性能及催化剂制备工艺。

着重介绍了该催化剂性能改进、催化剂栽体活性炭的预处理工艺以及浸渍溶液中添加辅助溶液的研究进展。

关键词:Pd/C催化剂;制备技术钯炭催化剂催化活性高、选择性好,在石油化工、精细化工和有机合成中占有举足轻重的地位。

自从1872年发现钯炭对苯环上的硝基加氢还原反应具有催化作用以来,钯炭催化加氢以其流程简、转化率高、产率高和三废少等优点,引起了国内外极大的关注,相继有大量的专利及文献报道[1]。

在现今炼油、石油化工等工业催化反应中, 有很多的钯催化反应, 尤其是氢化反应中的选择加氢, 以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯, 均广泛采用和开发钯催化剂。

对石油重整反应, 钯也是常选取的催化剂组分之一。

在脱氢反应和异构化反应中, 虽多数应用贵金属催化剂, 但主要是Pt , 直接用钯的不多。

在NO x催化处理研究中, 负载贵金属类催化剂是最早研究和开发的, 并在实际应用方面也取得了相当大的进展[ 2] 。

由于贵金属类催化剂存在价格昂贵、活性温度范围窄和有氧存在时容易失活等缺点, 应用上受到一定的限制。

因此开发这类催化剂的代用品是目前环保催化研究中的热门课题, 使用少量Pd的催化剂被认为是最富有潜力的[ 3] 。

在开发Pd-基催化剂的过程中, 使用活性炭为载体具有独特的意义。

这不仅因为活性炭具有大的表面积、良好的孔结构用丰富的表面基团, 同时还有良好的负载性能和还原性, 而后者在消除NO x的过程中又是不可缺少的。

可以设想, 当催化剂负载在活性炭上时, 一方面有可能制得高分散的催化系, 另一方面炭能作为还原剂参与反应, 提供一个还原环境, 降低反应温度并提高催化剂活性。

炭催化剂的研究现状钯炭催化剂是催化加氢最常用的催化剂,广泛适用于双键、硝基、亚硝基和羰基加氢等领域。

活性炭具有大的表面积、良好的孔结构、丰富的表面基团,同时有良好的负载性能和还原性,当钯负载在活性炭上,一方面可制得高分散的钯,另一方面活性炭能作为还原剂参与反应,提供一个还原环境,降低反应温度和压力,并提高催化剂活性。

选择性加氢的钯碳催化剂的制备

选择性加氢的钯碳催化剂的制备

选择性加氢的钯/碳催化剂的制备2016-07-11 13:26来源:内江洛伯尔材料科技有限公司作者:研发部选择性加氢的钯/碳催化剂的制备负载型钯/碳催化剂主要用于不饱和有机物的选择性加氢,尤其适用于粗对苯二甲酸精制工艺,粗对苯二甲酸中的对羧基苯甲醛(简称4-CBA)等杂质进行通过加氢后转变为其它的化合物,便可用结晶的方法分离提纯。

由于钯/碳催化剂通常采用单一的活性组份,对它的改进研究一直集中在载体的结构以及金属Pd在载体上的分布状况,而这确实对催化剂的性能会产生很大的影响。

由于加氢反应是在金属Pd的表面进行的,一般而言,对于金属Pd负载量相同的催化剂,其金属Pd的分散度愈高,即催化剂中负载的金属Pd的微晶(晶粒尺寸小于25纳米)含量愈高,催化剂的活性更好,使用寿命也愈长。

如果直接将含Pd化合物(如氯钯酸钠或氯化钯)负载到活性炭上,活性炭表面会很快出现很薄的有光泽的金属Pd层,这主要是由于活性炭表面含有如醛基、自由电子等还原基团,极易使Pd离子还原成零价的金属Pd,这样制得的催化剂中金属Pd的分散度很低。

解决上述技术问题的技术方案:一种用于选择性加氢的钯/碳催化剂的制备方法,催化剂以颗粒或成型活性炭为载体,负载活性组份金属Pd,催化剂中金属Pd的含量为0.2~5wt%,制备方法依次包括以下步骤:1)载体活性炭进行酸洗,酸洗液的H+离子浓度为0.1~5mol/l酸取自盐酸、硝酸或磷酸中的一种;2)载体活性炭用水洗涤至中性后干燥;3)载体活性炭用含卤素离子的水溶液浸润,浸润液的卤素离子浓度为0.01~0.5mol/l,浸润液用量为活性炭饱和吸附量的0.1~3.0倍,浸润时间为2~24小时,所述的卤素离子为Br-1或I-1;4)干燥载体活性炭除去水分;5)用含Pd化合物的溶液浸渍或喷洒载体活性炭使含Pd化合物负载于活性炭得到催化剂前体,催化剂前体经老化后用还原剂进行还原处理,使Pd化合物中的Pd还原为金属Pd即得催化剂产品。

钯碳催化剂失活原因及对策

钯碳催化剂失活原因及对策

钯碳催化剂失活原因及对策2016-04-25 12:34来源:内江洛伯尔材料科技有限公司作者:研发部钯碳在PTA生产装置中,加氢反应器为固定床反应器,片状的把碳催化剂充填在反应器的中、下部,床层上部至反应器顶部有较大的空间,CTA水溶液从反应器上部进人,通过一个分布器向下均匀喷淋,将把碳催化剂床层完全浸没在CTA水溶液中。

反应器底部装有筛网管,筛网的规格约为12目,用于支撑催化剂和防止细碳颗粒通过。

钯碳催化剂失活分为:钯碳催化剂的磨损流失,钯碳催化剂的结垢,钯碳催化剂中毒,钯碳催化荆的烧结,加氮反应条件等几个方面的影响。

金属把微晶一般分布在活性炭靠近表面的微孔内,任何磨擦都会导致催化剂磨损,产生细小的活性炭颗粒,造成活性组分金属把流失,从而导致催化剂的活性下降;氧化反应的副反应会生成一些高分子有机物以及金属腐蚀产物,这些副产物的粘性较大,会随CTA进人加氢反应器,吸附在催化剂表面和微孔内,覆盖了一部分催化剂活性中心,阻碍了加氢反应。

在氧化单元开、停车时,CTA中这些粘性物质的含量更高,会导致催化剂失活;原料中的CO、Cl-以及一些有机杂质等造成的催化剂暂时失活,称为暂时性中毒, 硫会造成催化剂永久性中毒。

硫化物(如HZS、硫酸盐等)随原料和辅料进人反应系统后,与把反应生成硫化二钯(dPZS)或硫化四钯(dP4)S〔’〕,这两种反应产物又被HZ 还原成大晶粒的金属单质钯,这种大晶粒把的活性比高度分散状态下的微晶把(新鲜催化剂中,70%左右的把晶粒尺寸在2.5nm以下,称为微晶钯)低得多。

由于微晶钯的浓度降低,把碳催化剂的活性随之降低,甚至严重失活,这种失活是不可逆的;烧结分为热力学烧结和化学烧结:反应温度过高、反应温度不稳定和催化剂床层局部过热会加速晶粒的迁移,增加晶粒之间相遇而被俘获的几率,由此引起的烧结为热力学烧结;Cr3+、Fe,3+、CO2+、Cu2+等金属离子和Cl-、Br-等非金属离子会与把反应,由此引起的烧结为化学烧结,催化剂的热力学烧结表现为金属钯微晶成长和载体活性炭微孔结构的改变,催化剂载体活性炭的烧结则表现为比表面积减少,孔容、孔径重新分布,平均孔径增大和总孔隙率降低,导致活性中心微晶把比例减少。

钯碳催化剂的应用和失活原因及再生

钯碳催化剂的应用和失活原因及再生

钯碳催化剂的应用和失活原因及再生摘要:对钯碳催化剂在精细化工中加氢的应用、催化剂失活的多种原因和再生进行了分析,把催化剂的失活原因归纳为活性组分流失、中毒、堵塞、烧结四大类,文章提出了对催化剂的再生,利用甲醛溶液还原可以有效再生失活钯碳催化剂。

关键词:钯碳催化剂加氢应用催化剂失活再生钯碳催化剂是一种常用的加氢催化剂,广泛应用双键加氢、硝基和亚硝基加氢、芳香族化合物加氢等领域。

钯碳催化剂的制备一般采用浸渍法,一般包括载体碱化预处理,活性金属通常是氯化钯溶液或醋酸钯溶液浸渍、还原、蒸馏水洗去杂质离子、真空密封包装等步骤,还原过程一般采用氢气、肼、甲醛溶液、次磷酸纳,硼氢化纳还原。

一、钯炭催化剂在精细化工中加氢主要有如下应用1.双键加氢双键加氢在石油化工及精细化工中很常见。

收率依据不同的分子有些不同,一般收率多在90%以上,有的收率会在99%,双键加氢的实例有:甲基顺丁烯二酸加氢声成甲基丁二酸,顺T烯二酸酮:加氢生成丁二酸,3一烯基一2一甲氧基一苯酚加氖生成二氖丁香酚。

以及在VE生产巾的中间品法尼基丙酮加氢。

王碧玉[1]等人研究使用钯炭催化剂加氖还原一蒎烯工艺,文献显示在采用钯炭为催化剂,常压,120℃条件下,蒎烯经3 h反应,蒎烷的收率为98%以上。

2.硝基加氢绝大多数芳胺来自相应的硝基化合物,主要芳胺工业制法有三种,①铁粉、硫化碱或水合肼还原:②磺化氨基反应;③催化加氖还原。

,周尽花等[2]人详细研究了5一硝基一1.10一邻菲罗啉还原合成5一氨基一l,l0一邻菲罗啉的化学还原丁岂和用钯炭催化剂氢化还原T岂的区别,其中氯化亚锡一盐酸还原产率为l0.8%,使用铁粉一硫酸还原的收率为36.9%,使用5%钯炭一水合肼的相转移加氢还原的收率为90.2%,收率得到了极大的提高。

3.芳香族化合物加氢芳香族加氢包括苯环加氢以及稠环加氢,其中包括芳香族加氢生成环烷,芳香族化合物部分加氢,上成部分加氢芳香族化合物,毗啶加氢生成哌啶。

钯碳催化剂的应用和失活原因及再生

钯碳催化剂的应用和失活原因及再生

钯碳催化剂的应用和失活原因及再生摘要:对钯碳催化剂在精细化工中加氢的应用、催化剂失活的多种原因和再生进行了分析,把催化剂的失活原因归纳为活性组分流失、中毒、堵塞、烧结四大类,文章提出了对催化剂的再生,利用甲醛溶液还原可以有效再生失活钯碳催化剂。

关键词:钯碳催化剂加氢应用催化剂失活再生钯碳催化剂是一种常用的加氢催化剂,广泛应用双键加氢、硝基和亚硝基加氢、芳香族化合物加氢等领域。

钯碳催化剂的制备一般采用浸渍法,一般包括载体碱化预处理,活性金属通常是氯化钯溶液或醋酸钯溶液浸渍、还原、蒸馏水洗去杂质离子、真空密封包装等步骤,还原过程一般采用氢气、肼、甲醛溶液、次磷酸纳,硼氢化纳还原。

一、钯炭催化剂在精细化工中加氢主要有如下应用1.双键加氢双键加氢在石油化工及精细化工中很常见。

收率依据不同的分子有些不同,一般收率多在90%以上,有的收率会在99%,双键加氢的实例有:甲基顺丁烯二酸加氢声成甲基丁二酸,顺T烯二酸酮:加氢生成丁二酸,3一烯基一2一甲氧基一苯酚加氖生成二氖丁香酚。

以及在VE生产巾的中间品法尼基丙酮加氢。

王碧玉[1]等人研究使用钯炭催化剂加氖还原一蒎烯工艺,文献显示在采用钯炭为催化剂,常压,120℃条件下,蒎烯经3 h反应,蒎烷的收率为98%以上。

2.硝基加氢绝大多数芳胺来自相应的硝基化合物,主要芳胺工业制法有三种,①铁粉、硫化碱或水合肼还原:②磺化氨基反应;③催化加氖还原。

,周尽花等[2]人详细研究了5一硝基一1.10一邻菲罗啉还原合成5一氨基一l,l0一邻菲罗啉的化学还原丁岂和用钯炭催化剂氢化还原T岂的区别,其中氯化亚锡一盐酸还原产率为l0.8%,使用铁粉一硫酸还原的收率为36.9%,使用5%钯炭一水合肼的相转移加氢还原的收率为90.2%,收率得到了极大的提高。

3.芳香族化合物加氢芳香族加氢包括苯环加氢以及稠环加氢,其中包括芳香族加氢生成环烷,芳香族化合物部分加氢,上成部分加氢芳香族化合物,毗啶加氢生成哌啶。

活性炭的作用是什么

活性炭的作用是什么

活性炭的作用是什么活性炭是一种具有很高吸附能力的吸附剂,由于其独特的物理和化学特性,被广泛应用于各个领域。

下面将详细介绍活性炭的作用。

首先,活性炭在环境保护中发挥着重要的作用。

活性炭能够吸附和去除水和空气中的污染物,如有机物、重金属、氯气等有害物质。

例如,在水处理领域,活性炭可以通过去除水中的异味、有机物和有机溶剂来提高水质。

同时,在空气净化方面,活性炭可以吸附空气中的有害气体、甲醛、苯等有害物质,净化室内空气,提供更健康的生活环境。

其次,活性炭在食品和医药工业中也具有重要的应用。

在食品工业中,活性炭能够去除食品中的有害物质、异味和色素,提高食品的质量和口感。

在医药工业中,活性炭主要用于药剂的脱色、脱味,同时还用作药理学研究的实验材料,具有很高的药学价值。

此外,活性炭在环境治理中也起着重要的作用。

活性炭能够用于处理废气、废水和固体废弃物等,有效地去除有害物质并减少对环境的影响。

例如,在废气处理领域,活性炭可以通过吸附去除废气中的有机物和有害物质,减少空气污染。

在废水处理领域,活性炭可以用于去除废水中的有机物、重金属离子等,提高废水的处理效果。

同时,在固体废弃物处理中,活性炭也被广泛应用于垃圾焚烧、污泥处理和水处理等方面,减少固体废弃物对环境的危害。

此外,活性炭还具有其他一些应用。

在工业生产中,活性炭可以用作催化剂的载体,提高催化反应的效率。

在电池制造中,活性炭可以用于锂电池负极材料的制备,提高电池性能。

同时,活性炭在金属提取、合成气、甲烷储存等方面也具有重要应用。

综上所述,活性炭具有吸附能力强、环境友好、广泛应用等特点,是一种非常重要的材料。

其在环境保护、食品和医药工业、环境治理以及其他领域的应用,都使得活性炭发挥了重要的作用,为人们提供了更加健康和清洁的生活环境。

活性炭活化原理

活性炭活化原理

精心整理活性炭的活化机理及应用活性炭是一种非常优良的吸附剂,它是利用植物原料(木屑、木炭、果壳、果核)、煤和其它含碳工业废料作原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加工制造而成。

根据活化介质的不同,活性炭活化方法分为物理活化法、化学活化法和物理—化学复合活化法。

物理活化水蒸汽、二氧化碳、空气或它们的混合气体对环境污染小,因其依靠氧化碳原子形成孔隙结构,活化温度较高且活性炭得率低。

化学活化法活性炭得一.1.CO+H2般在800上述三个化学反应均是吸热反应,即随着活化反应的进行,活化炉的活化反应区域温度将逐步下降,如果活化区域的温度低于800℃,上述活化反应就不能正常进行,所以在活化炉的活化反应区域需要同时通入部分空气与活化产生的煤气燃烧补充热量,或通过补充外加热源,以保证活化炉活化反应区域的活化温度。

活化反应属于气固相系统的多相反应,活化过程中包括物理和化学两个过程,整个过程包括气相中的活化剂向炭化料外表面的扩散、活化剂向炭化料内表面的扩散、活化剂被炭化料内外表面所吸附、炭化料表面发生气化反应生成中间产物(表面络合物)、中间产物分解成反应产物、反应产物脱附、脱附下来的反应产物由炭化料内表面向外表面扩散等过活化反应通过以下三个阶段最终达到活化造孔的目的。

第一阶段是炭化时形成的但却被无序的碳原子及杂原子所堵塞的孔隙的打开,即高温下,活化气体首先与无序碳原子及杂原子发生反应。

第二阶段是打开的孔隙不断扩大、贯通及向纵深发展,孔隙边缘的碳原子由于具有不饱和结构,易于与活化气体发生反应,从而造成孔隙的不断扩大和向纵深发展。

2.化化学法、KOH以(600~800℃)在KOHKOH 的加入也加快了非碳原子N、H等的脱除,KOH活化反应成孔机理就是通过KOH与原料中的碳反应,把其中的部分碳刻蚀掉,经过洗涤把生成的盐及多余的KOH洗去,在被刻蚀的位置出现了孔。

这一过程主要发生以下反应:4KOH+—CH2一K2CO3+K2O+3H2K2CO3+2—C—2K+3COK2O+—C—2K+CO2KOHK2O+H2OC+H2OH2+COCO+H20H2+C02K2O+CO2K2CO3K2O+H22K+H2OK2O+C2K+CO在KOH活化法制备活性炭时,活化后的洗涤是关键。

钯碳催化剂失活原因分析及处理措施

钯碳催化剂失活原因分析及处理措施
钯碳催化剂中活性中心钯吸附 H2,使 H2 与 浆料中的 4-CBA反应生成对羧基苯甲酸。钯碳 催化剂中活性中心钯对 CO的吸 附 力 远 大 于 对 H2的吸附力。当原料 H2 中所含的杂质 CO浓度 过高时,活性中心钯与 CO结合,造成有效活性中 心浓度下降,催化剂出现中毒现象。根据中毒的 强弱程度,可以采取不同的措施使得钯碳催化剂 恢复活性。 222 永久性中毒
钯碳催化剂的金属钯微晶一般分布在活性炭 靠近表面的微孔内,钯碳催化剂表面的负载深度 只有几十微米。使用过程中任何磨擦撞击都会导 致催化剂的磨损,部分变成更加细小的催化剂颗 粒,导致 活 性 组 分 金 属 钯 流 失[3]。 因 此,随 着 使 用过程中环境的影响,催化剂不断地被物料冲刷,
收稿日期:2019-01-30。 作者简介:徐锋,男,1993年出生,2016年毕业于南京林业大 学高分子材料与工程专业,助理工程师 ,目前担任中国石化 上海石油化工股份有限公司涤纶部 2#氧化联合装置工艺员, 主要负责工艺技术管理和日常运行管理。
2 钯碳催化剂失活原因分析 影响钯碳催化剂活性的因素主要有催化剂活
性金属含量、载体的孔径和孔融、活性组分的颗粒 大小、催化剂表面结构以及金属钯在载体上的分 布状况等[1]。
目前钯碳催化剂成本十分高昂,因此研究其 失活原因对抑制其失活并延长其寿命具有现实意 义。在加氢体系中,影响催化剂失活的原因是多 种多样的,Hughes则将其归纳为四类:中毒失活、 堵塞失活、烧结失活和热失活[2]。文章根据近几 年来催化剂失活领域内的研究成果,将催化剂的 失活归纳为活性组分流失、中毒、堵塞、烧结四大 类并分别进行讨论。 21 钯碳催化剂活性组分流失
(2)生 产 过 程 中 存 在 的 问 题。 因 反 应 器、压 力、液位等因素的影响,催化剂活性组分在溶液的 冲刷下逐渐流失。由于催化剂装填、表面结料以 及局部阻塞等原因,导致加氢反应器内液体流动 不均衡,使得钯碳催化剂受压不均匀,反应压力的 波动造成钯碳催化剂颗粒之间发生磨擦,引起载 体的破碎。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活性炭的功能化处理极大的影响钯碳催化剂活性
2016-07-26 14:01来源:内江洛伯尔材料科技有限公司作者:研发部
钯碳催化剂TEM和粒径分布图
活性炭由于具有较大的比表面积、丰富的孔道结构和良好的导电性能, 是一类燃料电池催化剂的理想载体. 常用的活性炭有乙炔黑、VulcanXC72、Vulcan XC72R、Black Pearls 2000 和Ketjen Black等. 大量研究表明, 活性炭表面的官能团一方面能够增强表面亲水性, 作为活性沉积中心促进金属前驱体在表面的吸附和沉积, 从而有效提高金属粒子的分散度和抑制粒子的团聚长大, 另一方面, 表面官能团与负载金属之间的相互作用能够改变金属粒子的表面电子状态, 从而影响金属催化剂的活性和稳定性. 因此, 对炭载体的功能化处理具有重要的实际应用价值. 目前, 对炭载体的功能化处理通常采用强氧化剂, 如HNO3、HNO3/H2SO4、H2O2, 或强碱如KOH等进行表面氧化和修饰以形成大量的羧基、羰基、酯基和羟基等含氧官能团. 然而, 此类强氧化处理一方面容易破坏活性炭的石墨结构, 造成电导率的降低; 另一方面也会导致活性炭的比表面积急剧减小, 金属粒子在载体表面分布不均, 出现团聚. 最近亦有研究者采用弱氧化性物质如柠檬酸、乙酸等修饰炭载体, 引入适量含氧官能团, 同时改善负载金属粒子的分散度, 从而提
高催化剂的催化活性. 此外, 在炭载体表面引入含氮官能团, 一方面能够产生可参与催化反应的活性位; 另一方面, 由于表面氮原子强的供电子行为和π-π共轭作用提供高的电子迁移率并显著影响载体的表面化学活性, 从而可以提高载体的电导率, 增强催化剂的长程稳定性. 近年来, 不少研究者尝试采用多种方法, 如用化学气相沉积(CVD)、NH3高温活化、固相反应、溶剂热反应和等离子体处理等在炭载体表面引入含氮官能团.Jiang等通过依次在HNO3/H2SO4和氨水中超声处理, 在纳米碳纤维表面引入含氮和含氧基团, 作为Pt纳米催化剂载体. 唐亚文等用氨水处理活性炭, 引入含氮基团, 用作Pd催化剂的载体.
常州大学石油化工学院曹剑瑜等人采用乙二胺四乙酸(EDTA)对活性炭进行功能化处理, 研究了其对表面基团、炭载Pd纳米粒子结构及Pd催化剂电催化性能的影响. 傅里叶变换红外(FTIR)光谱和X射线光电子能谱(XPS)表征表明, EDTA处理在炭表面引入了含氮基团. X射线粉末衍射(XRD)光谱、透射电镜(TEM)和电化学测试结果显示, 活性炭经EDTA处理后, 负载的Pd 粒子粒径虽有所增大, 但由于炭载体与Pd粒子相互作用的增强, Pd利用率增加, 催化剂对甲酸氧化的活性和稳定性均显著提高. 电化学阻抗谱(EIS)分析进一步揭示, 甲酸在该催化剂电极上的电氧化反应具有较低的电荷传递电阻.。

相关文档
最新文档