一次函数与方程、不等式之间的关系

合集下载

一次函数与方程(组)、不等式及二次函数与二元一次方程、不等式的关系

一次函数与方程(组)、不等式及二次函数与二元一次方程、不等式的关系

一次函数与方程(组)、不等式及二次函数与二元一次方程、二元一次不等式的关系1、一次函数与一元一次方程从“数”的角度看,解方程kx+b=0相当于一次函数y=kx+b 的函数值为0时,求自变量的取值;从“形”的角度看,解方程kx+b=0,相当于确定直线y=kx+b 与x 轴交点横坐标的值 一次函数与一元一次不等式从“数”的角度看,解不等于式kx+b 〉0(<0)相当于一次函数y=kx+b 的函数值>0(<0)时,求自变量x 的取值范围;从“形”的角度看,求不等于式kx+b>0(<0)的解集,相当于确定直线y=kx+b 在x 轴上(下)方部分所对应的自变量x 取值范围 从“数”的角度看,解不等于式11b x k +〉22b x k +相当于一次函数111b x k y +=与222b x k y +=函数值y 1>y 2时,求自变量的取值范围;从“形”的角度看,解不等于式11b x k +〉22b x k +,相当于确定直线111b x k y +=在直线222b x k y +=上(下)方部分所对应的自变量x 取值范围 一次函数与二元一次方程组从“数”的角度看,解二元一次方程组{y =k 1x +b 1y =k 2x +b 2相当于求自变量x 为何值时相应的两个函数y =k 1x +b 1与y =k 2x +b 2的函数值相等,从“形”的角度看,解二元一次方程组,相当于确定直线y =k 1x +b 1与y =k 2x +b 2交点的坐标类比可得出二次函数与二元一次方程、二元一次不等式的关系:1、从数的角度看,解方程02=c bx ax ++相当于二次函数c bx ax y ++=2的函数值y=0时自变量x 的值,从形的角度看,解方程02=++c bx ax 相当于确定二次函数c bx ax y ++=2与x 轴的交点模坐标的值2、从数的角度看,解方程)0(02<>++c bx ax 相当于二次函数c bx ax y ++=2的函数值y>0(<0)时自变量x 的取值范围,从形的角度看,解方程)0(02<>++c bx ax 相当于确定二次函数c bx ax y ++=2与在x 轴上(下)方部分所对应的自变量x 取值范围。

函数与方程不等式之间的关系

函数与方程不等式之间的关系

函数与方程不等式之间的关系
函数、方程和不等式是数学中的基本概念,它们之间存在密切的联系。

函数是描述两个变量之间关系的数学模型,通常表示为 y = f(x),其中 x 和
y 是变量,f 是函数关系。

函数有多种类型,其中一次函数是最简单的一种,表示为 y = ax + b,其中 a 和 b 是常数,a ≠ 0。

方程是含有未知数的等式,用来表示未知数和已知数之间的关系。

一元一次方程是最简单的一类方程,形如 ax + b = 0,其中 a 和 b 是已知数,a ≠ 0。

解这个方程可以得到未知数的值。

不等式是用不等号连结的两个解析式,表示两个量之间的大小关系。

一元一次不等式是最简单的一类不等式,形如 ax + b > 0 或 ax + b < 0,其中 a 和 b 是已知数,a ≠ 0。

解这个不等式可以得到满足不等式的值的范围。

函数、方程和不等式之间存在密切的联系。

一次函数和一元一次方程、一元一次不等式之间的关系特别重要。

对于一次函数 y = ax + b,当函数的值等于 0 时,自变量 x 的值就是一元一次方程 ax + b = 0 的解。

如果一次函数的值大于 0,则自变量 x 的值满足一元一次不等式 ax + b > 0;如果一次函数的值小于 0,则自变量 x 的值满足一元一次不等式 ax + b < 0。

因此,函数、方程和不等式是相互联系的,可以通过它们之间的关系来理解和解决数学问题。

一次函数、方程及一次不等式的关系

一次函数、方程及一次不等式的关系

文峰说:
满200,再购的商品9折
金鹰的优惠方案的起点是购物满
300 元.
文峰的优惠方案的起点是购物满 200 元.
一样 ⑴如果累计购物不超过200元,则两家商场的花费____ .
文峰 ⑵如果累计购物超过200元而不超过300元,则在____ 花费少. ⑶如果累计购物超过300元. 解:设累计购物 x元 ( x 300) ,如果在文峰花费少则
随堂演练
1、在一次函数y=2x-3中,已知x=0 则y= ;若已知y=2则x= ;
2、当自变量x 时,函数 y=3x+2的值大于0;当x 时, 函数y=3x+2的值小于0。 3、已知函数y=-3x+6,当x y>0.当x 时,y≤-2。 时,
5、已知函数y1 = 2 x – 4与y2 = - 2 x + 8的图象, 观察图象并回答问题: (1)x取何值时,2x-4>0? (2)x取何值时,-2x+8>0? (3)x取何值时,2x-4>0与-2x+8>0同时成立? (4)你能求出函数y1 = 2 x – 4与y2 = - 2 x + 8的 图象与X轴所围成的三角形的面积吗?
收获和体会
实际问题与一元一次不等式
重客隆和新世纪两商店以同 问题1: 样价格出售同样的商品,并且又各自 推出不同的优惠方案:
新世纪
我店累计购买100元商品 后,再购买的商品按原 价的90%收费。
我店累计购买50元商品后,再购 买的商品按原价的95%收费。
重客隆
讨论开始
分析:若新世纪收费<重客隆收费
系数化为1,得
∴累计购物超过150元时在新世纪购物花费小。
答:
当 0 x 50或 x 150 时,在两家 商店购物没有区别; 当 50 x 150 时,在重客隆购物花 费小; 当 时,在新世纪购物花费小

中考数学复习:函数与方程、不等式的关系

中考数学复习:函数与方程、不等式的关系

中考数学复习:函数与方程、不等式的关系1.函数与方程的关系(1)关于x的一元二次方程ax2+bx+c=0(a≠0)的解⇔抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标的值;(2)关于x的一元二次方程ax2+bx+c=mx+n(am≠0)的解⇔抛物线y=ax2+bx+c (a≠0)与直线y=mx+n(m≠0)交点的横坐标的值.2.函数与不等式的关系(1)关于x的不等式ax2+bx+c>0(a≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于x轴上方的所有点的横坐标的值;(2)关于x的不等式ax2+bx+c<0(a≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于x轴下方的所有点的横坐标的值;(3)关于x的不等式ax2+bx+c>mx+n(ma≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于直线y=mx+n(m≠0)上方的所有点的横坐标的值;(4)关于x的不等式ax2+bx+c<mx+n(ma≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于直线y=mx+n(m≠0)下方的所有点的横坐标的值.例题讲解例1在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.若该抛物线在-2<x<-1这一段位于直线l:y=-2x+2的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的表达式.解:如图,因为抛物线的对称轴是x=1,且直线l与直线AB关于对称轴对称.所以抛物线在-1<x<0这一段位于直线l的下方.又因为抛物线在-2<x<-1这一段位于直线l的上方,所以抛物线与直线l的一个交点的横坐标为-1.当x=-1时,y=-2×(-1)+2=4,则抛物线过点(-1,4),将(-1,4)代入y=mx2-2mx-2,得m+2m-2=4,则m=2.所以抛物线的表达式为y=2x2-4x-2.例2已知y=ax²+bx+c(a≠0)的自变量x与函数值y满足:当-1≤x≤1时,-1≤y≤1,且抛物线经过点A(1,-1)和点B(-1,1).求a的取值范围.解:因为抛物线y=ax²+bx+c经过A(1,-1)和点B(-1,1),代入得a+b+c=-1,a-b+c=1,所以a+c=0,b=-1,则抛物线y=ax²-x-a,对称轴为x=12a.①当a<0时,抛物线开口向下,且x=12a<0,如图可知,当12a≤-1时符合题意,所以-12≤a<0.当-1<12a<0时,图像不符合-1≤y≤1的要求,舍去.②当a>0时,抛物线开口向上,且x=12a>0.如图可知,当12a≥1时符合题意,所以0<a≤12.当0<12a<1时,图像不符合-1≤y≤1的要求,舍去.综上所述,a的取值范围是-12≤a<0或0<a≤12.例3在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,'b)给出如下定义:1 '1b abb a ≥⎧=⎨-<⎩,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5).(1)若点P在函数y=﹣x+3(﹣2≤x≤k,k>﹣2)的图象上,其限变点Q的纵坐标b′的取值范围是﹣5≤b′≤2,求k的取值范围;(2)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.解:(1)依题意,y=﹣x+3(x≥﹣2)图象上的点P的限变点必在函数y=313-21x xx x-+≥⎧⎨-≤<⎩的图象上.∴b′≤2,即当x=1时,b′取最大值2.当b′=﹣2时,﹣2=﹣x+3.∴x=5.当b′=﹣5时,﹣5=x﹣3或﹣5=﹣x+3.∴x=﹣2或x=8.∵﹣5≤b′≤2,由图象可知,k的取值范围是5≤k≤8.(2)∵y=x2﹣2tx+t2+t=(x﹣t)2+t,∴顶点坐标为(t,t).若t<1,b′的取值范围是b′≥m或b′<n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于﹣[(1﹣t)2+t],即n=﹣[(1﹣t)2+t].∴s=m﹣n=t+(1﹣t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1),当t=1时,s取最小值2,∴s的取值范围是s≥2.1);点B;5≤k≤8;s≥2.进阶训练1.若关于x 的一元二次方程x 2+ax +b =0有两个不同的实数根m ,n (m <n ),方程x 2+ax+b =1有两个不同的实数根p ,q (p <q ),则m ,n ,p ,q 的大小关系为( )A .m <p <q <nB .p <m <n <qC .m <p <n <qD .p <m <q <nB【提示】 函数y =x 2+ax +b 和函数y =x 2+ax +b -1的图像如图所示,从而得到p <m <n<q解:函数y =x 2+ax +b 如图所示: xq n m p O2.在平面直角坐标系xOy 中,p (n ,0)是x 轴上一个动点,过点P 作垂直于x 轴的直线,交一次函数y =kx +b 的图像于点M ,交二次函数y =x ²-2x -3的图像于点N ,若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的表达式.y =-2x +1【提示】 依据题意并结合图像可知,一次函数的图像与二次函数的图像的交点的横坐标分别为-2和2,由此可得交点坐标分别为-2和2,由此可得交点坐标为(-2,5)和(2,-3)将交点坐标分别代入一次函数表达式即可3.在平面直角坐标系xOy中,二次函数y=mx2-(2m+1)x+m-5的图像与x轴有两个公共点,若m取满足条件的最小整数,当n≤x≤1时,函数值y的取值范围是-6≤y≤4-n,求n的值n的值为-2【提示】根据已知可得m=1.图像的对称轴为直线x=32.当n≤x≤1<32时,函数值y随自变量x的增大而减小,所以当x=1时,函数的值为-6,当x=n时,函数值为4-n.所以n2-3n-4=4-n,解得n=-2或n=4(不符合题意,舍去),则n的值为-2。

方程函数不等式之间关系

方程函数不等式之间关系

◆知识讲解1.一元一次方程、一元一次不等式及一次函数的关系一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax +b (a≠0,a ,b 为常数)中,函数的值等于0时自变量x 的值就是一元一次方程ax +b=0(a≠0)的解,所对应的坐标(-ba,0)是直线y=ax+ b 与x 轴的交点坐标,反过来也成立;直线y=ax +b 在x 轴的上方,也就是函数的值大于零,x 的值是不等式ax+ b>0(a≠0)的解;在x 轴的下方也就是函数的值小于零,x 的值是不等式ax +b<0(a≠0)的解.2.坐标轴的函数表达式函数关系式x=0的图像是y 轴,反之,y 轴可以用函数关系式x=0表示;•函数关系式y=0的图像是x 轴,反之,x 轴可以用函数关系式y=0表示.3.一次函数与二元一次方程组的关系一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标,所以一次函数及其图像与二元一次方程组有着密切的联系.4.两条直线的位置关系与二元一次方程组的解(1)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有唯一的解⇔直线y=k 1x+b 1不平行于直线y=k 2x+b 2⇔k 1≠k 2.(2)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩无解⇔直线y=k 1x+b 1∥直线y=k 2x+b 2 ⇔k 1=k 2,b 1≠b 2.(3)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有无数多个解⇔直线y=k 1x+b 1与y=k 2x+b 2重合⇔k 1=k 2,b 1=b 2.◆例题解析例1 (2006,长河市)我市某乡A ,B 两村盛产柑橘,A•村有柑橘200t ,•B•村有柑橘300t .现将这些柑橘运到C ,D 两个冷藏仓库,•已知C•仓库可储存240t ,•D•仓库可储存260t ;从A 村运往C ,D 两处的费用分别为每吨20元和25元,从B 村运往C ,D 两处的费用分别为每吨15元和18元,设从A村运往C仓库的柑橘重量为xt,A,B•两村运往两仓库的柑橘运输费用分别为y A元和y B元.(1)请填写下表,并求出y B,y A与x之间的函数关系式;(2)试讨论A,B两村中,哪个村的运费较少;(3)考虑到B村的经济承受能力,B村的柑橘运费不得超过480元.在这种情况下,•请问怎样调运,才能使两村运费之和最小?求出这个最小值.【分析】(1)根据运输的吨数及运费单价可写出y,y与x之间的函数关系.(2)欲比较y A与y B的大小,应先讨论y A=y B的大小,应先讨论y A=y B或y A>y B或y A<y B 时求出x的取值范围.(3)根据已知条件求出x的取值范围.根据一次函数的性质可知在此范围内,两村运费之和是如何变化的,进而可求出相应的值.【解答】(1)y A=-5x+5000(0≤x≤200),y B=3x+4680(0≤x≤200).(2)当y A=y B时,-5x+5000=3x+4680,x=40;当y A>y B时,-5x+5000>3x+4680,x<40;当y A<y B时,-5x+5000<3x+4680,x>40.∴当x=40时,y A=y B即两村运费相等;当0≤x<40时,y A>y B即B村运费较少;当40<x≤200时,y A<y B即A村费用较少.(3)由y B≤4830得3x+4580≤4830.∴x≤50.设两村运费之和为y,∴y=y A+y B,即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当A村调往C仓库的柑橘重为50t,调运D仓库为150t,B村调往C仓库为190t,调往D仓库110t的时候,两村的运费之和最小,最小费用为9580元.例2 某家庭今年3个月的煤气量和支付费用见下表:该市的煤气收费方法是:基本费+超额费+•保险费,•若每月用气量不超过最低量am3,则只付3元基本费和每户的定额保险费c元;若用气量超过acm3,则超过的部分每立方米支付b元,并知c≤5元,求a,b,c.【分析】数学能帮助我们解决许多生活中的实际问题,本题要求a,b,c的值,•不妨设每月用气量为x(m2),支付费用为y(元),再根据题意列出x,y的关系表达式,即y=3(0) 3()()c x ab x ac x a+≤≤⎧⎨+-+>⎩由此可推断出a,b,c的值.【解答】设每月用气量为xm3,支付费用为y元,根据题意得y=3(0) 3()()c x ab x ac x a+≤≤⎧⎨+-+>⎩∵c≤5,∴c+3≤8因2月份和3月份的费用均大于8,故用气量大于最低限度am3,将x=25,y=14;x=35,y=19分别代入②得143(25) 193(35)b a cb a c=+-+⎧⎨=+-+⎩④-③得:10b=5 ∴b=0.5把b=0.5代入③得a=3+2c又因1月份的用气量是否超过最低限度尚不明确,故当a<4时,将x=4•代入②得4=3+0.5[4-(3+2c)]+c,即4=3.5-c+c不成立则a≥4,此时的付款分式选①,有3+c=4∴c=1把x=1代入a=3+2c得a=5∴a=5,.b=0.5,c=1.【点评】本题要求a,b,c的值,表面看与一次函数无关,•但实际上题中不仅包含函数关系,而且是一个分段函数,求分段函数解析式的关键是分清各段的取值范围,其条件分别在各自的取值范围内使用,若有不确定的情形,须进行分类讨论.1.(2008,武汉)如图1所示,直线y=kx+b经过A(-2,-1)和B(-3,0)两点,则不等式组12x<kx+b<0的解集为_______.图1 图2 图32.(2006,江苏南通)如图2,直线y=kx(k>0)与双曲线y=4x交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1的值等于_______.3.如图3所示,L甲,L乙分别表示甲走路与乙骑自行车(在同一条路上)行走的路程s与时间t的关系,观察图像并回答下列问题:(1)乙出发时,与甲相距______km;(2)走了一段路后,乙的自行车发生故障,停下来修理,修车为_____h;(3)乙从出发起,经过_____h与甲相遇;(4)甲行走的路程s与时间t之间的函数关系式_______;(5)如果乙自行车不出现故障,那么乙出发后经过______h与甲相遇,相遇处离乙的出发点____km.并在图中标出其相遇点.4.(2006,山西太原)如图所示的图形都是二次函数y=ax2+bx+a2-1的图像,若b>0,则a 的值等于()A.152-B.-1 C.152--D.15.如图,一次函数y=kx+6的图像经过A,B两点,则kx+b>0的解集是()A.x>0 B.x<2C.x>-3 D.-3<x<26.(2004,安徽省)购某种三年期国债x元,到期后可得本息和y元,已知y=kx,•则这种国债的年利率为( ) A .k B .3k C .k -1 D .13k - 7.(2006,浙江舟山)近阶段国际石油迅速猛涨,中国也受期影响,为了降低运行成本,部分出租车进行了改装,改装后的出租车可以用液化气来代替汽油.•假设一辆出租车日平均行程为300km .(1)使用汽油的出租车,假设每升汽油能行驶12km ,当前的汽油价格为4.6元/L ,•当行驶时间为t 天时,所耗的汽油费用为p 元,试写出p 关于t 的函数关系式;(2)使用液化气的出租车,假设每千克液化气能行驶15~16km ,•当前的液化气价格为4.95元/kg ,当行驶时间为t 天时,所耗的液化气费用为w 元,试求w 的取值范围(用t 表示);(3)若出租车要改装为使用液化气,每辆需配置成本为8000元的设备,•根据近阶段汽油和液化气的价位,请在(1)(2)的基础上,计算出最多几天就能收回改装设备的成本?•并利用你所学的知识简单说明使用哪种燃料的出租车对城市的健康发展更有益.(用20字左右谈谈感想).8.(2006,枣庄)已知关于x 的二次函数y=x 2-m x+222m +与y=x 2-m x -222m +,这两个二次函数的图像中的一条与x 轴交于A ,B 两个不同的点.(1)试判断哪个二次函数的图像经过A ,B 两点; (2)若点A 坐标为(-1,0),试求点B 坐标;(3)在(2)的条件下,对于经过A ,B 两点的二次函数,当x 取何值时,y 的值随x•值的增大而减小?。

一次函数与方程、不等式的关系 教法建议

一次函数与方程、不等式的关系  教法建议

一次函数与方程、不等式的关系教法建议
本节在知识上注重一次函数与方程、不等式的横向联系,以便学生学会把一次函数纳入相应的知识网络;在思维方法上注重数形结合,双向思维,为一次函数的灵活运用打下基础。

为此建议:
1.在教学中,应突出学生对文字表述、解析表达式以及图像这三种数学语言的互相转化。

如“试着做做”中的文字表述:“x取哪些值,它们所对应的y的值都大于(或小于)5?”转化为数学表达式即求不等式2x-1>5(或2x-1<5)的解集。

教学时,可在已画函数y=2x-l 图像的基础上再画出所有纵坐标为5的点(即直线y=5)作为参照图形,找出图像上纵坐标等于5、大于5、小于5的点,并确定其相应的横坐标。

这样,就将数学表达式转化为图形语言,从而为本节后面的问题以及今后各类函数与相应的方程、不等式关系的学习奠定了基础。

2.将例题中的3个问题转化为相应的方程、不等式以及用图像解释,均可酌情由学生独立或合作交流来完成。

3.对例题可增加思考题:“(2,-1)可看做哪个方程组的解?”从而过渡到一元一次方程与二元一次方程组的联系,为后面的“做一做”提供相应的准备。

一次函数与方程、不等式、方程组关系PPT课件

一次函数与方程、不等式、方程组关系PPT课件

05
CHAPTER
总结与展望
总结一次函数与方程、不等式、方程组的关系
一次函数与方程的关系
一次函数与方程组的关系
一次函数是线性方程的几何表示,通 过将方程中的x替换为函数表达式,可 以得到相应的方程。
一次函数可以用于解决线性方程组问 题,通过消元法或代入法将方程组转 化为一次函数的交点问题。
一次函数与不等式的关系
斜率
一次函数图像的倾斜程度 由斜率k决定,k>0时,图 像为增函数;k<0时,图 像为减函数。
截距
b为y轴上的截距,表示函 数与y轴交点的纵坐标。
一次函数的图像
绘制方法
通过代入一组x值计算对应的y值 ,得到一系列点,将这些点连接 成线即可得到一次函数的图像。
图像特点
一次函数图像是一条直线,斜率为 k,截距为b。
一次函数与方程、不等式、方 程组关系ppt课件
目录
CONTENTS
• 一次函数的基本概念 • 一次函数与方程的关系 • 一次函数与不等式的关系 • 一次函数的应用 • 总结与展望
01
CHAPTER
一次函数的基本概念
一次函数的定义
01
02
03
一次函数
形如y=kx+b(k≠0)的 函数,其中x是自变量,y 是因变量。
一次函数与一元一次不等式组
一元一次不等式组
由两个或两个以上一元一次不等式组成的集合。
关系
对于一元一次不等式组,可以通过将其转化为一次函数的形式,利用函数的交点来求解。例如,解不等式组 $begin{cases} x + 2 > 0 x - 1 < 0 end{cases}$,可以将其转化为两个一次函数的形式,然后找到两个函数的 交点,即解集。

函数、方程、不等式之间的关系

函数、方程、不等式之间的关系

函数、方程、不等式之间的关系很多学生在学习中把函数、方程和不等式看作三个独立的知识点。

实际上,他们之间的联系非常紧密。

如果能熟练地掌握三者之间的联系,并在做题时灵活运用,将会有事半功倍的收效。

★函数与方程之间的关系。

先看函数解析式:(0)y ax b a =+≠,这是一个一次函数,图像是一条直线。

对于这个函数而言,x 是自变量,对应的是图像上任意点的横坐标;y 是因变量,也就是函数值,对应的是图像上任意点的纵坐标。

如果令0y =,上面的解析式也就变成了0ax b +=,也就是一个一元一次方程了。

我们知道,一般在求一个函数图像与x 轴交点的时候,令0y =(同理求一个函数图像与y 轴交点的时候,令0x =)。

所以上面的意义可以这样表达:将函数解析式中的y 变为0,那么就得到相应的方程。

这个方程的解也就是原先的函数图像与x 轴交点的横坐标。

这就是函数解析式与方程之间的关系,它适用于所有的函数解析式。

举例说明如下:例如函数23y x =-的图像如右所示:该函数与x 轴的交点坐标为3(,0)2,也就是在函数解析式23y x =-中,令0y =即可。

令0y =也就意味着将一元一次函数23y x =-变成了一元一次方程230x -=,其解和一次函数与x 轴的交点的横坐标是相同的。

接下来推广到二次函数:例如函数2252y x x =-+的图像如右图所示:很容易验证,该函数图象与x 轴的交点的横坐标正是方程22520x x -+=的解。

如果右边的函数图象是通过列表、描点、连线的方式作出来的,虽然比较精确,但过程十分繁琐。

在实际中,很多时候并不要求我们把函数图象作得很精准。

有时候只需要作出大致图像即可。

既然上面讲述了函数图象与对应的方程之间的关系,我们可不可以通过利用方程的根来绘制对应的函数图象呢函数2252y x x =-+对应的方程是22520x x -+=,先求出这个方程的两个解。

很容易根据十字相乘法(21)(2)0x x --=得出该方程的两个解分别为12和2。

一次函数与方程不等式的关系

一次函数与方程不等式的关系

一次函数与方程不等式的关系一、什么是一次函数一次函数是指一个未知数的最高次数为1的多项式函数,也就是一次函数的表达式为 y= kx+b ,其中 k 和 b 分别是斜率和截距。

二、一次函数的图像特征对于一次函数,它的图像是一条直线,有以下的图像特征:1. 斜率 k 决定了图像在坐标系中的倾斜程度。

2. 截距 b 决定了图像与 y 轴的交点位置。

三、一次函数的解析式一次函数的解析式为 y= kx+b ,其中 k 和 b 是常数。

通过给定的 k 和 b 的值,可以构建出这个一次函数的解析式。

四、一次不等式的解法对于一次不等式 ax+b >0 (其中 a 和 b 都是实数,在本节中我们以一次不等式大于0为例),解法如下:1. 如果 a > 0 ,则不等式的解集为 x>-b/a 。

2. 如果 a < 0 ,则不等式的解集为 x<-b/a 。

注:不等式的解集指的是所有满足不等式的实数 x 的集合。

五、一次函数与一次不等式的关系一次函数与一次不等式之间有着紧密的联系。

如果一个一次函数的表达式为y= kx+b ,则对于x 的取值范围可以转化为一次不等式的形式:1. 当 k>0 ,b>=0 时,函数图像位于 y 轴上方,此时函数图像上的点对应的 x 值范围应为 x>-b/k 。

因此,该一次函数对应的一次不等式为kx+b >0,此时其解集为 x>-b/k 。

2. 当 k>0 ,b<0 时,函数图像位于 y 轴下方,此时函数图像上的点对应的 x 值范围应为 x>-b/k 。

因此,该一次函数对应的一次不等式为kx+b >0,此时其解集为 x>-b/k 。

3. 当 k<0 ,b>=0 时,函数图像位于 y 轴上方,此时函数图像上的点对应的 x 值范围应为 x<-b/k 。

因此,该一次函数对应的一次不等式为kx+b <0,此时其解集为 x<-b/k 。

浅议一次函数与方程(不等式)的关系

浅议一次函数与方程(不等式)的关系

浅议一次函数与方程(不等式)的关系发表时间:2018-09-11T10:57:13.667Z 来源:《教学与研究》2018年11期作者:董检容[导读] 从初中数学教材来看,七年级学习了一元一次方程和一元一次不等式,八年级学习了一次函数知识,学生一般对于这三方面知识了解得比较透彻董检容(湖南省耒阳市实验中学湖南耒阳 421800)摘要:从初中数学教材来看,七年级学习了一元一次方程和一元一次不等式,八年级学习了一次函数知识,学生一般对于这三方面知识了解得比较透彻,但对于三者之间的联系却知之甚少,因而教师应该贯穿着三方面的知识,使学生体会到一次函数与一元一次方程、一元一次不等式的密切联系,感受到“数形结合”在数学研究的作用。

关键词:一元一次方程,一元一次不等式,关系。

中图分类号:G623.5 文献标识码:A 文章编号:ISSN0257-2826 (2018)11-014-02一、一次函数形如y=kx+b(k.b是常数,k≠0),用自变量的一次整式表示的函数叫一次函数.特别地,当b=0时,一次函数y=kx(k≠0)叫做正比例函数。

通过该公式更能清楚的看到x和y的一一对应关系,只要确定了x(y),就能确定唯一的y(x)与之对应。

通过列表、描点、连线得到了一次函数的图像是一条直线。

那么学生知道了找直线与坐标轴的交点并连线就可以得到y=kx+b(k≠0)的图像.其中正比例函数象是经过原点的直线.在此基础上,还学习一次函数的图像与性质.例如.当k>0时,图象一定经过第一.三象限,当k<0时图像一定经过第二,四象限.而b>0时图像与y轴交于正半轴,b<0时图象与y轴交于负半轴.初学时学生感到枯燥,难懂,所以教师得借助多媒体课件进行授课.应用多媒体课件直观,明了,激发学生学习积极性。

二、一次函数与一元一次方程和一元一次不等式之间的关系从数学表达式上看,一次函数的表达式是y=kx+b,一元一次方程的表达式是kx+b=0,一元一次不等式的表达式是kx+b>(<)0.由此可见,一元一次方程式表达的是函数y=0时x的数值,而一元一次不等式表达的是y>0或者y<0时x的取值范围.以下举例说明:问:画出函数的图像,根据图像指出:(1)x取何值时,函数值y等于零?(2)x取何值时,函数值y大于零?【分析】:教师利用多媒体演示画出的图象.由图象可知当x=-2时,函数值等于零;当x>-2时函数值大于零归纳:从数的角度来看,一次函数y=kx+b(k≠0)的函数值是0时.对应的x的值就是一元一次方程kx+b=0的解;当一次函数y=kx+b的值大于0时,对应的x的值就是一元一次方程kx+b=0的解;当一次函数y=kx+b的值大于0时对应部分x取值的集合,就是不等式kx+b>0的解集;当一次函数y=kx+b的值小于0时,对应部分x的取值的集合,就不等式kx+b<0的解集. 从形的角度来看,直线y=kx+b(k≠0 )与 x轴交点的横坐标就是方程kx+b=0的解;直线y=kx+b位于x轴上方部分对应的x的值的集合,就是不等式kx+b>0的解集;直线y=kx+b位于x轴下方部分对应的x值的集合,就是不等式kx+b<0的解集【例】. 某零件制造车间有工人20名,已知每人每天可以制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元,在这20人中,车间每天安排x人制造甲种零件,其余工人制造乙种零件。

8年级一次函数与不等式方程的关系.doc

8年级一次函数与不等式方程的关系.doc

一次函数与方程及一元一次不等式一、核心纲要1. 一次函数与一元一次方程的关系直线y = hc + b(k 丰0)与x 轴交点的横坐标,就是一元一次方程kx + b = 0仗丰0)的解。

求直线y = kx + bb hb 与天轴交点时•,可令尸0,得到方程kx + b = 0,解方程得x = -Y ,直线y = kx + b 交%轴于点(-?, 0), 一?k kk就是直线y = kx + b 与兀轴交点的横坐标。

注:(I)从“数”看:kx + b = 0(k 0)的解O 在一次函数y = kx + b(k 0)中,令y=0时,兀的值。

(2)从“形”看:d + b = 0仗工0)的解o —次函数y = la + b(k^0)的图像与x 轴交点的横坐标。

2. 一次函数与一元一次不等式的关系(1) 任何一元一次不等式都可以转化为ax + b>0或ax + b<0 (a,b 为常数,QH O)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范馬。

(2) 函数图像的位置决定两个函数值的大小关系:哪一个函数图像处于上方,则哪一个比较大。

特别说明:函数y 的图像在无轴上方oy>0;函数y 的图像在兀轴下方oyVO 。

3. 一次函数与二元一次方程(组)的关系(1) 一次函数的解析式y = kx + b(k^Q)^身就是一个二元一次方程,直线y = +上有无数个点,每个点的横纵坐标都满足二元一次方程$ =总+ /?伙工0),因此二元一次方程的解也就有无数个。

(2) 一次函数y = kx + b(k^0)① 从“数”看:它是一个二元一次方程;② 从“形”看:它是一条直线。

二—直线y=kx-b(k=0)上的每一个点的横、纵坐标 廿:声T 的解<^=^>直线比与门的交点的横纵坐标 y ?=k ?x-rb ?4. 两条直线的位置关系与二元一次方程组的解V =化无+也〜1'有唯一解O •百线V 二心兀+勺不平行于玄线V = + H 怎y = k 1x^b 1二兀一次方程y=kx-b(k= 0)的每一组解 方程组(1)二元一次方程组I y = k.x^b.亠,一亠,(2)二兀一次方程组{ 无解O直线y =斤[无+也平行于直线y = k^x + b^ o k{ = k2.b} b2I y = k2x + b2 y = k.x + b}(3)二元一次方程组{ 有无数多个解o直线y = 3 + ®与y = k^x + b^重合o k}= k»b、=[y = k2x^b25.比较两个函数值人小的方法(1)画图像,求交点;(2)过交点作平行于y轴的氏线:(3)谁高谁大。

一次函数和方程关系解不等式的方法一次函数与一元一次不等式

一次函数和方程关系解不等式的方法一次函数与一元一次不等式
(3)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值=0的情形;反之,使函数值y=0的x的取值就是方程ax+b=0(a≠0)的解。
一次函数和方程关系:
一次函数
一元一次方程
形式
y=kx+b
ax+b=0
内容
表示的是一对(x,y)之间的关系,
它有无数对解
表示的是未知数x的值,
最多只有1个值
一元一次不等式与一元一次方程、一次函数的关系:
(1)一元一次不等式ax+b>0(a≠0)是一次函数y=ax+b(a≠0)的函数值>0的情形;一元一次不等式ax+b<0(a≠0)是一次函数y=ax+b(a≠0)的函数值<0的情形。
(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;使函数值y<0(x轴下方的图像)的x的取值范围是ax+b<0的解集。
相互关系
一次函数与x轴交点的横坐标就是相应的一元一次方程的根
例如:
y=4x+8与x轴的交点是(2,0),
则一元一次方程4x+8=0的根是x=2。
函数和不等式:
解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;
从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
对应一次函数y=kx+b,它与x轴交点为(b/k,0)。
当k>0时,不等式kx+b>0的解为:x> b/k,不等式kx+b<0的解为:x< b/k;

中考数学:一次函数的性质与应用问题真题+模拟(原卷版北京专用)

中考数学:一次函数的性质与应用问题真题+模拟(原卷版北京专用)

中考数学一次函数的性质与应用问题【方法归纳】(1)一次函数与方程、不等式之间的关系:利用待定系数法确定一次函数的解析式,一次函数与x轴和y轴交点、不等式的解集、一次函数的平移、参数的确定等、(2)一次函数与几何图形的面积问题:首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(3)一次函数的优化问题:通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(4)用函数图象解决实际问题:从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.2.一次函数的应用(1)分段函数问题:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题:解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)常见题型:行程问题、表格问题、图象问题、最大利润问题、方案问题常用的解题思路:①建立函数模型的方法;②分段函数思想的应用.【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点(4,3),(−2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图x的图象向下平移1个单位长度得到.象由函数y=12(1)求这个一次函数的解析式;(2)当x>−2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【真题再现】必刷真题,关注素养,把握核心1.(2016·北京·中考真题)如图,在平面直角坐标系xOy中,过点A(−6,0)的直线l1与直线l2:y= 2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.2.(2019·北京·中考真题)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=−k分别交于点A,B,直线x=k与直线y=−k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.3.(2020·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【模拟精练】一、解答题1.(2022·北京房山·二模)已知,在平面直角坐标系xOy中,直线l:y=ax+b(a≠0)经过点A(1,2),与x轴交于点B(3,0).(1)求该直线的解析式;(2)过动点P(0,n)且垂直于y轴的直线与直线l交于点C,若PC≥AB,直接写出n的取值范围.2.(2022·北京朝阳·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,2).(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.3.(2022·北京东城·二模)如图,在平面直角坐标系xOy中,双曲线y=k(k≠0)经过点xA(2,−1),直线l:y=−2x+b经过点B(2,−2).(1)求k,b的值;(2)过点P(n,0)(n>0)作垂直于x轴的直线,与双曲线y=k(k≠0)交于点C,与直线l交于点xD.①当n=2时,判断CD与CP的数量关系;②当CD≤CP时,结合图象,直接写出n的取值范围.4.(2022·北京北京·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=−x的图象平移得到,且经过点(1,1).(1)求这个一次函数的表达式;(2)当x>−1时,对于x的每一个值,函数y=mx−1(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.5.(2022·北京丰台·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移4个单位长度得到.(1)求这个一次函数的解析式;(2)一次函数y=kx+b的图象与x轴的交点为A,函数y=mx(m<0)的图象与一次函数y= kx+b的图象的交点为B,记线段OA,AB,BO围成的区域(不含边界)为W,横、纵坐标都是整数的点叫做整点,若区域W内恰有2个整点,直接写出m的取值范围.6.(2022·北京密云·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(0,−3)和点B(5,2).(1)求这个一次函数的表达式;(2)当x≥2时,对于x的每一个值,函数y=mx+2(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.7.(2022·北京西城·二模)在平面直角坐标系xOy中,一次函数y=−x+b的图象与x轴交于点(4,0),且与反比例函数y=m的图象在第四象限的交点为(n,−1).x(1)求b,m的值;<y p<4,连接OP,结(2)点P(x p,y p)是一次函数y=−x+b图象上的一个动点,且满足mx p合函数图象,直接写出OP长的取值范围.8.(2022·北京平谷·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由x平移得到,且过点(0,−1).函数y=12(1)求这个一次函数y=kx+b(k≠0)的表达式;(2)当x>−2时,对于x的每一个值,函数y=mx+1的值大于一次函数y=kx+b(k≠0)的值,求m的取值范围.9.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.10.(2022·北京昌平·二模)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与直线y=x平行,且过点(2,1).(1)求这个一次函数的解析式;(2)直线y=kx+b(k≠0)分别交x,y轴于点A,点B,若点C为x轴上一点,且S△ABC=2,直接写出点C的坐标.11.(2022·北京顺义·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象平x,且经过点A(2,2).行于直线y=12(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,一次函数y=kx+b(k≠0)的值大于一次函数y=mx−1(m≠0)的值,直接写出m的取值范围.x+b与直线l2:y=2x 12.(2022·北京石景山·一模)在平面直角坐标系xOy中,直线l1:y=12交于点A(m,n).(1)当m=2时,求n,b的值;(2)过动点P(t,0)且垂直于x轴的直线与l1,l2的交点分别是C,D.当t≤1时,点C位于点D上方,直接写出b的取值范围.13.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函.数y=mx(1)当函数y=m的图象经过点Q时,求m的值并画出直线y=-x-m.x(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.14.(2022·北京丰台·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,1).(1)求这个一次函数的解析式;(2)当x>0时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.15.(2022·北京·东直门中学模拟预测)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=kx的图象上,求m的值;(2)如果点A,B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;②当x≥3时,如果不等式mx−1>ax+b始终成立,结合函数图象,直接写出m的取值范围.16.(2022·北京一七一中一模)在平面直角坐标系xOy中,直线l与双曲线y=kx(k≠0)的两个交点分别为A(−3,−1),B(1,m).(1)求k和m的值;(2)求直线l的解析式;(3)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线y=k(k≠0)于点Q.当点Q位x于点P的左侧时,求点P的纵坐标n的取值范围.17.(2022·北京市燕山教研中心一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0) x的图象向上平移3个单位长度得到.的图象由函数y=12(1)求这个一次函数的解析式;(2)当x>2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.18.(2022·北京平谷·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点(﹣1,0),(0,2).(1)求这个一次函数的表达式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值小于一次函数y=kx+b(k≠0)的值,直接写出m的取值范围.19.(2022·北京门头沟·一模)我们规定:在平面直角坐标系xOy中,如果点P到原点O的距离为a,点M到点P的距离是a的整数倍,那么点M就是点P的k倍关联点.(1)当点P1的坐标为(−1.5,0)时,①如果点P1的2倍关联点M在x轴上,那么点M的坐标是;②如果点M(x,y)是点P1的k倍关联点,且满足x=−1.5,−3≤y≤5.那么k的最大值为________;(2)如果点P2的坐标为(1,0),且在函数y=−x+b的图象上存在P2的2倍关联点,求b的取值范围.20.(2022·北京朝阳·一模)在平面直角坐标系xOy中,对于直线l:y≡kx+b,给出如下定义:若直线l与某个圆相交,则两个交点之间的距离称为直线l关于该圆的“圆截距”.(1)如图1,⊙O的半径为1,当k=1,b=1时,直接写出直线l关于⊙O的“圆截距”;(2)点M的坐标为(1,0),①如图2,若⊙M的半径为1,当b=1时,直线l关于⊙M的“圆截距”小于4√5,求k的取值5范围;②如图3,若⊙M的半径为2,当k的取值在实数范围内变化时,直线l关于⊙M的“圆截距”的最小值为2,直接写出b的值.21.(2022·北京房山·一模)如图1,一次函数y=kx+4k(k≠0)的图象与x轴交于点A,与y 轴交于点B,且经过点C(2,m).(1)当m=9时,求一次函数的解析式并求出点A的坐标;2(2)当x>-1时,对于x的每一个值,函数y=x的值大于一次函数y=kx+4k(k≠0)的值,求k 的取值范围.22.(2022·北京房山·一模)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P,Q两点(Q在P,H之间).我们把点P称为⊙I关于直线a的“远点”,把PQ·PH 的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4),半径为1的⊙O与两坐标轴交于点A,B,C,D.①过点E作垂直于y轴的直线m﹐则⊙O关于直线m的“远点”是点__________________(填“A”,“B”,“C”或“D”),⊙O关于直线m的“特征数”为_____________;②若直线n的函数表达式为y=√3x+4,求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy、中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√3为半径作⊙F.若⊙F与直线l相离,点N(–1,0)是⊙F关于直线l的“远点”,且⊙F关于直线l的“特征数”是6√6,直接写出直线l的函数解析式.23.(2022·北京·中国人民大学附属中学分校一模)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1−x2|⩾|y1−y2|,则点P1与点P2的“非常距离”为|x1−x2|;若|x1−x2|<|y1−y2|,则点P1与点P2的“非常距离”为|y1−y2|.(1)已知点A(−1,0),B为y轴上的一个动点,2①若点A与点B的“非常距离”为4,直接写出点B的坐标:;②求点A与点B的“非常距离”的最小值;(2)已知C是直线y=1x+2上的一个动点,2①若点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②若点E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.24.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.25.(2022·北京通州·一模)已知一次函数y1=2x+m的图象与反比例函数y2=k(k>0)的x图象交于A,B两点.(1)当点A的坐标为(2,1)时.①求m,k的值;②当x>2时,y1______y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值26.(2022·北京西城·xOy中,直线l1:y=kx+b与坐标轴分别交于A(2,0),B(0,4)两点.将直线l1在x轴上方的部分沿x轴翻折,其余的部分保持不变,得到一个新的图形,这个图形与直线l2:y=m(x−4)(m≠0)分别交于点C,D.(1)求k,b的值;(2)横、纵坐标都是整数的点叫做整点.记线段AC,CD,DA围成的区域(不含边界)为W.①当m=1时,区域W内有______个整点;②若区域W内恰有3个整点,直接写出m的取值范围.27.(2022·北京海淀·一模)在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.28.(2022·北京十一学校一分校一模)在平面直角坐标系xOy中,函数y=k的图象与直线yx=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n,且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交(x>0)的图象于点N.函数y=kx①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若0<PN≤3PM,结合函数的图象,直接写出n的取值范围.29.(2022·北京·东直门中学模拟预测)在平面直角坐标系xOy中,对于点P(x1,y1),给出如下定义:当点Q(x2,y2)满足x1+x2=y1+y2时,称点Q是点P的等和点.已知点P(2,0).(1)在Q1(0,2),Q2(−2,−1),Q3(1,3)中,点P的等和点有______;(2)点A在直线y=−x+4上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点B(b,0)和线段MN,对于所有满足BC=1的点C,线段MN上总存在线段PC上每个点的等和点.若MN的最小值为5,直接写出b的取值范围.30.(2022·北京市第五中学分校模拟预测)在平面直角坐标系xOy中,直线l1:y=ax(a≠0)过点A(﹣2,1),直线l2:y=mx+n过点B(﹣1,3).(1)求直线l的解析式;(2)用含m的代数式表示n;(3)当x<2时,对于x的每一个值,函数y=ax的值小于函数y=mx+n的值,求m的取值范围.。

人教版八年级下册19.2.3一次函数和方程和不等式的关系(教案)

人教版八年级下册19.2.3一次函数和方程和不等式的关系(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数、方程和不等式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(3)针对实际问题的抽象,教师需要引导学生关注问题中的数量关系,如“速度与时间的关系”,并指导学生将其转化为一次函数模型。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“一次函数和方程和不等式的关系”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数之间的关系的问题?”(例如:两个物品的价格和数量关系)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数、方程和不等式的奥秘。
(2)通过绘制一次函数图像,让学生观察并理解不等式kx+b>0或kx+b<0的解集与图像的关联。
(3)结合实际例题,如“某商品的售价与成本之间的关系”,让学生学会建立一次函数模型,并求解相关问题。
2.教学难点
-掌握一次函数图像与一元一次方程、不等式之间的转换关系,特别是不同情况下的图像特征。
-理解在图像上如何判断方程的根以及不等式的解集,尤其是在k、b取值不同的情况下。
三、教学难点与重点
1.教学重点
-理解并掌握一次函数与一元一次方程之间的关系,能够运用一次函数图像求解方程。
-学会利用一次函数图像解一元一次不等ห้องสมุดไป่ตู้,并能解释图像与不等式解集的关系。

中考数学总复习一次函数与方程、不等式的关系

中考数学总复习一次函数与方程、不等式的关系

一次函数与方程、不等式的关系考点·方法·破译 1. 一次函数与一元一次方程的关系:任何一元一次方程都可以转化成kx +b =0(k 、b 为常数,k ≠0)的形式,可见一元一次方程是一次函数的一个特例.即在y =kx +b 中,当y =0时则为一元一次方程.2. 一次函数与二元一次方程(组)的关系:⑴任何二元一次方程ax +by =c (a 、b 、c 为常数,且a ≠0,b ≠0)都可以化为y =a c x b b-+的形式,因而每个二元一次方程都对应一个一次函数;⑵从“数”的角度看,解方程组相当于求两个函数的函数值相等时自变量的取值,以及这个函数值是什么;从“形”的角度看,解方程组相当于确定两个函数图像交点的坐标.3. 一次函数与一元一次不等式的关系:由于任何一元一次不等式都可以转化成ax +b >0或ax +b <0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看成是当一次函数的函数值大于或小于0时,求相应自变量的取值范围.经典·考题·赏析【例1】直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A .x >-1B .x <-1C .x <-2D .无法确定 【解法指导】由图象可知l 1与l 2的交点坐标为(-1,-2),即当x =-1时,两函数的函数值相等;当x >-1时,l 2的位置比l 1高,因而k 2x >k 1x +b ;当当x <-1时,l 1的位置比l 2高,因而k 2x <k 1x +b .因此选A .【变式题组】01.(浙江金华)一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( ) A .0 B .1 C .2 D .302.如图,已知一次函数y =2x +b 和y =ax -3的图象交于点P (-2,-5),则根据图像可得不等式2x +b >ax -3的解集是________. 03. (武汉)如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式12x >kx +b >-2的解集为_________.第1题图 第2题图 第3题图【例2】若直线l 1:y =x -2与直线l 2:y =3-mx 在同一平面直角坐标系的交点在第一象限,求m 的取值范围. 【解法指导】直线交点坐标在第一象限,即对应方程组的解满足00x y >⎧⎨>⎩,从而求出m 的取值范围.解:23y x y mn =-⎧⎨=-⎩,∴51321x mm y m ⎧=⎪⎪+⎨-⎪=⎪+⎩,∴00x y >⎧⎨>⎩,∴5013201m m m⎧>⎪⎪+⎨-⎪>⎪+⎩,即10320m m +>⎧⎨->⎩,∴-1<m <32.【变式题组】01. 如果直线y =kx +3与y =3x -2b 的交点在x 轴上,当k =2时,b 等于( )A .9B .-3C .32-D .94-02. 若直线122y x =-与直线14y x a =-+相较于x 轴上一点,则直线14y x a =-+不经过( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限03. 两条直线y 1=ax +b ,y 2=cx +5,学生甲解出它们的交点坐标为(3,-2),学生乙因抄错了c 而解出它们的交点坐标为(34,14),则这两条直线的解析式为____________.04. 已知直线y =3x 和y =2x +k 的交点在第三象限,则k 的取值范围是________.【例3】已知直线l 1经过点(2,5)和(-1,-1)两点,与x 轴的交点是点A ,将直线y =-6x +5的图象向上平移4个单位后得到l 2,l 2与l 1的交点是点C ,l 2与x 轴的交点是点B ,求∴ABC 的面积.【解法指导】设直线l 1的解析式为y =kx +b ,∴l 1经过(2,5),(-1,-1)两点, ∴251k b k b +=⎧⎨-+=-⎩,解得21k b =⎧⎨=⎩,∴y =2x +1,∴当y =0时,2x +1=0,x =12-,∴A (12-,0).又∴y =-6x +5的图象向上平移4个单位后得l 2,∴l 2的解析式为y =-6x +9, ∴当y =0时,-6x +9=0,x =32,∴B (32,0). ∴2169y x y x =+⎧⎨=-+⎩,∴13x y =⎧⎨=⎩,∴C (1,3),∴AB =32-(12-)=2,∴S ∴ABC =12×2×3=3.【变式题组】01. 已知一次函数y =ax +b 与y =bx +a 的图象相交于A (m ,4),且这两个函数的图象分别与y 轴交于B 、C 两点(B 上C 下),∴ABC 的面积为1,求这两个一次函数的解析式. 02. 如图,直线OC 、BC 的函数关系式为y =x 与y =-2x +6.点P (t ,0)是线段OB 上一动点,过P 作直线l 与x 轴垂直.⑴求点C 坐标; ⑵设∴BOC 中位于直线l 左侧部分面积为S ,求S 与t 之间的函数关系式;⑶当t 为何值时,直线l 平分∴COB 面积. 演练巩固·反馈提高 01. 已知一次函数y =32x +m ,和y =12-x +n 的图象交点A (-2,0),且与y 轴分别交于B 、C 两点,那么∴ABC 的面积是( ) A .2 B .3 C .4 D .602. 已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)第3题图 第6题图03. 如图,直线y =kx +b 与x 轴交于点A (-4,0),则y >0时,x 的取值范围是( )A .x >-4B .x >0C .x <-4D .x <0 04. 直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-205. 直线y =kx +b 与坐标轴的两个交点分别为A (2,0)和B (0,-3).则不等式kx +b +3≥0的解集为( ) A .x ≥0 B .x ≤0 C .x ≥2 D .x ≤206. 如图是在同一坐标系内作出的一次函数y 1、y 2的图象l 1、l 2,设y 1=k 1x +b 1,y 2=k 2x +b 2,则方程组111222y k x b y k x b ⎧⎨⎩=+,=+的解是( )A .22x y =-⎧⎨=⎩B .23x y =-⎧⎨=⎩C .33x y =-⎧⎨=⎩D .34x y =-⎧⎨=⎩07. 若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点,则a =_________.08. 已知一次函数y =2x +a 与y =-x +b 的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则S ∴ABC =_________.09. 已知直线y =2x +b 和y =3bx -4相交于点(5,a ),则a =___________.10.已知函数y =-x +m 与y =mx -4的图象交点在x 轴的负半轴上,则m 的值为__________. 11.直线y =-2x -1与直线y =3x +m 相交于第三象限内一点,则m 的取值范围是___________. 12.若直线122a y x =-+与直线31544y x =-+的交点在第一象限,且a 为整数,则a =_________. 13.直线l 1经过点(2,3)和(-1,-3),直线l 2与l 1交于点(-2,a ),且与y 轴的交点的纵坐标为7.⑴求直线l 2、l 1的解析式;⑵求l 2、l 1与x 轴围成的三角形的面积; ⑶x 取何值时l 1的函数值大于l 2的函数值?14.(河北)如图,直线l 1的解析式为y =-3x +3,l 1与x 轴交于点D ,直线l 2经过点A (4,0),B (3,32-). ⑴求直线l 2的解析式; ⑵求S ∴ADC ;⑶在直线l 2上存在异于点C 的另一点P ,使得S ∴ADP =S ∴ADC ,求P 点坐标.第14题图15.已知一次函数图象过点(4,1)和点(-2,4).求函数的关系式并画出图象.⑴当x 为何值时,y <0,y =0,y >0? ⑵当-1<x ≤4时,求y 的取值范围; ⑶当-1≤y <4时,求x 的取值范围.16.某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么服药后2h时血液中含药量最高,达每毫升6μg (1μg =10-3mg ),接着就逐步衰减,10h 后血液中含药量为每毫升3μg ,每毫升血液中含药量y (μg )随时间x (h )的变化如图所示,当成人按规定剂量服药后, ⑴分别求x ≤2和x ≥2时,y 与x 之间的函数关系式;⑵如果每毫升血液中含药量在4μg 或4μg 以上时,治疗疾病才是有效的,那么这个有效时间是多长?第16题图l 2。

一次函数与方程组、不等式的关系

一次函数与方程组、不等式的关系

一次函数与方程组、不等式的关系
一次函数与方程组、不等式的关系
一、概述
一次函数,又称一元函数,是利用一个变量由常数、指数、对数、三
角函数和其他的混合动态变量构成的函数。

它可以以简单的一次曲线
定义某一参数变化情况,也可以定义涉及多个变量的复杂方程组,对
曲线参数进行函数式分析和证明。

一次函数可以看做是方程组和不等
式的特例,与方程组、不等式关系密切。

二、一次函数与方程组的关系
一次函数可以看做方程组的特殊情况,当某一方程只有一个未知数时,它就可以转换成一次函数,并有着一定的图形表示,简化了对其进行
分析的过程,极大的提高了效率。

如当一组方程组均为一个未知数冚
构成时,若满足一次函数的性质,那么这组方程组就可以看做是一次
函数的特殊情况。

例如,若我们有一组以y=2x+1构成的一次函数,那么它就可以表示为
形如y-2x-1=0的方程,也就是图形上红色一次函数曲线对应着满足蓝
色方程线的点。

三、一次函数与不等式的关系
与方程组类似,不等式也可以通过一次函数转换,当某一不等式只有一个未知数构成时,就可以用一次函数进行表示,并且由于不等式的加减性,不同类型的不等式有着不同的图形表示。

例如,当y<2x+1的不等式表达式转换为一次函数时,我们可以得到一条红色的上限函数曲线,它就可以表示不等式表达式所给出的结果,也就是解空间位于红色曲线之下的点才符合不等式表达式。

四、总结
一次函数与方程组、不等式的关系密切,它们各自都可以通过对另一个的转换来进行数学分析和求解,而一次函数的表示也简化了数学求解的难度,可以有效的提高效率。

一次函数与一次方程,一次不等式的关系

一次函数与一次方程,一次不等式的关系

一次函数与一次方程,一次不等式的关系知识点:一、一次函数与一元一次方程的关系直线y=kx+b (k ≠0)与x 轴交点的横坐标,就是一元一次方程kx+b=0(k ≠0)的解。

求直线y=kx+b 与x 轴交点时,可令y=0,得到方程kx+b=0,解方程得x=-b/k 。

直线y=kx+b 交x 轴于(-b/k ,0),-b/k 就是直线y=kx+b 与x 轴交点的横坐标。

二、一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为ax=b>0或ax=b<0 (b a 、为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。

三、一次函数与二元一次方程(组)的关系一次函数的解析式y=kx+b (k ≠0)本身就是一个二元一次方程,直线y=kx+b (k ≠0)上有无数个点,每个点的横纵坐标都满足二元一次方程y=kx+b (k ≠0),因此二元一次方程的解也就有无数个。

例题解析一、一次函数与一元一次方程综合已知直线y=(3m-2)x+2和y=-3x-2交于x 轴上同一点,m 的值为______已知一次函数y=-x+a 与y=x-b 的图象相交于点(m,8),则b-a=______.二、一次函数与一元一次不等式综合1.已知一次函数y=-2x+525y x =-+.(1)画出它的图象;(2)求出当x=3/2时,y 的值;(3)求出当y=-3时,x 的值;(4)观察图象,求出当x 为何值时,y>0,y<0,y=02.当自变量x 满足什么条件时,函数y=-4x+1的图象在:(1)x 轴上方; (2)y 轴左侧; (3)第一象限.3.已知直线A 为y=x+5,直线B 为y=-2x-6.当A>B 时,x 的取值范围是_____4.已知一次函数y=-2x+3(1)当x 取何值时,函数y 的值在-1与2之间变化?(2)当x 从-2到3变化时,函数y 的最小值和最大值各是多少?5.直线A:y=Mx+b 与直线B:y=Nx 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式Nx>Mx+b 的解集为______.6.当x_________时直线y=x+2上的点在直线y=3x-2上相应点的上方.7.如图,直线y=kx+b (k ≠0)经过A(5,1),B(-2,-3)两点,则不等式0.5x> kx+b>-3的解集为______.5题图 7题图8已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当x=2时,y 的值;(2)x 为何值时,y<0?(3)当-2<x<1时,x 的值范围;(4)当-2<y<1时,y 的值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与方程、不等式之间的关系
人教版九年制义务教育八年级数学下册
宁都县赖村中学谢新华
教学重点、难点:
一次函数与方程、不等式之间的关系
教学目标:
1.让学生理解一次函数与方程、不等式之间的关系,从而解答有关的函数坐标、函数值等问题
2.通过探索一次函数与方程、不等式之间的关系,经历具体到抽象再到具体,到抽象,最后具体的学习过程,体会探索的严谨性,科学性,掌握循序渐进的学习方法,树立数形结合的学习函数的思想方法
3.经历了探索一次函数与方程、不等式之间的关系过程,掌握了学法,树立起了学好函数的信心,体会到成功的喜悦
教学策略:
运用多媒体技术,讲练结合与小组讨论法
教学教学过程
谭金林说:可是这两个点怎么画呢?当函数值大于某值时,x怎
样取值?
这下难住了他们,为此他们举出一个例子已知一次函数y=2x+8,请你帮他们画出两点,作出直线?当y>4时,x取何值?
设计意图:通过举自己身边的两位同学的例子引入课题,从而让问题变得那么的贴近自身实际,提高学习的兴趣
板书:一次函数与方程、不等式之间的关系学习目标
1.能理解感悟一次函数与方程、不等式之间的数形关系,并能运用这种关系解决有关一次函数的问题
2.通过问题解决,经历探索一次函数与方程、不等式之间关系的过程,体验知识产生、发展、形成的过程,感悟数形结合思想
3.通过问题解决,经历探索一次函数与方程、不等式之间的数形关系,掌握了学习函数的方法
设计意图:明确学习目标,使学习更具针对性
一、动动手,填一填
(1)当x 取___值时,函数值等于3.
(2)当x 取___值时,函数值等于0.
(3)当x 取___值时,函数值等于-1
2.已知一次函数y=2x+3的图像(如右上图)及图像上的一
些点的纵坐标,求出相应各点的横坐标
设计意图:让学生亲自计算出x的值,经历函数与方程之间的转化过程,为下面探讨一次函数与方程之间的关系打下实践基础,化抽象为具体
小组合作思考探究:你从问题1和问题2获得什么样的思路方法?(学生先思考,然后师生一起归纳)
1.已知方程y=2x+3
(1)当x取___值时,函数值等于3.
(2)当x取___值时,函数值等于0.
(3)当x取___值时,函数值等于-1
相当于分别解方程:2x+3=3,
2x+3=0,
2x+3=-1,求x的值
也相当于已知一次函数y=2x+3的图像上点的纵坐标,求出相应各点的横坐标
设计意图:拓展延伸,深化认识
二、随堂跟踪,测一测(学生独立完成)
(1)根据图像,不解方程,已知函数y=x-1
当x= _时,函数值为2
当y= _时,该点的横坐标为1
当x= _时,y= 0
(2)已知方程y=-x+2,完成图中的空格(教师补充图像)
0(
(0,
,2)
设计意图:进一步深化,使认识更具严谨性、科学性,为下面理解与感悟提供充分的事实基础,从而掌握学法,树立学好函数与方程的信心
理解与感悟
一次函数与方程之间存在怎样的联系?
一次函数与方程之间存在紧密的联系。

一次函数y=kx+b(k ≠0),当x取何值时,函数值为m;相当于解关于x的一元一次方程kx+b=m求x的值;也相当于已知直线y=kx+b上点的纵坐标m,求该点的横坐标;是数与形紧密结合的关系
设计意图:通过解决问题,让学生经历由具体到抽象,再到具体,最后到归纳出一次函数与方程的关系规律,符合学生认知规律
三、请同学们继续利用数形结合的思想方法探讨下面的问题
4已知方程y=3x+2
(1)当x>时,y>2
(2)当x<时,y<0
(3)当x<时,y <--1
你能用不同颜色的线条在图上表示出来吗?
设计意图:利用信息技术的优势,直观化问题
反思你是怎样解答这个问题的(学生合作讨论)1)求函数值大于2、小于0、小于-1时x的取值范围
相当于解不等式3x+2>2,
3x+2<0
3x+2<-1求x的取值范围,
也相当于在直线上求纵坐标大于2、小于0、小于-1时相应各点的横坐标的取值范围
方法口诀“图像横扫定纵标,图像纵扫定横标”
设计意图:由于有了探索一次函数与方程关系经验方法,自然过渡到一次函数与不等式之间的关系上来,遵循了循序渐进的教学规律,降低了学习的难度
四、随堂练练,试试小牛刀(学生独立完成后代表口答)(1)看图求方程y=2x-4的下列问题
①当y>0时,x的取值范围
②当y>--2时,x的取值范围
③当y <--4时,x的取值范围
①x>2
②x>1
③x<0
设计意图:检验所学,增强自信
理解与感悟
一次函数与不等式之间存在怎样的联系?(师生归纳)
一次函数与不等式之间存在紧密的联系。

一次函数y=kx+b(k ≠0),当x取何值时,y>(<)m;相当于解关于x的一元一次
不等式方程kx+b>(<)m,求x的取值范围;也相当于已知直线y=kx+b上点的纵坐标取值范围,求相应图像对应的横坐标取值范围;是数与形紧密结合的关系。

设计意图:总括一次函数与方程、不等式的关系
五、总结提炼,自我升华(学生边观察边思考,感悟数形思想)
一次函数y=kx+b(K≠0)与方程kx+b=0、不等式kx+b>(或<)0密切相关。

六、课堂巩固练习
(1)已知一次函数y= -x+1
①当y=0时,x的取值为多少?
②当x=0时,y的取值为多少?
③当y的值为2时,x
④当y的值为--1时,x的取值为多少?
答案:①X=1 ②y=1 ③x=-1 ④x=2
(2)已知一次函数y= -x+1的图像,如图上述(1)图
①当y>0时,x的取值范围x<1
②当y <--1时,x的取值范围x>2
③当0<y <2时,x的取值范围-1<x<1
①当x >1时,y的取值范围y<0
②当x <0时,y的取值范围y>1
七、总结收获
本堂课通过运用数形结合的方法探索了一次函数与方程、不等式之间的关系,让我们学会了运用这种方法探索函数的有关问题。

希望同学们在今后学习其他函数如二次函数等时仍然能够运用这种方法探索一些问题
八、目标检测,中考链接(培优)
1.如图,求一次函数y=2x+8、y=-x+2与坐标轴围成的∆ABC 的面积
解:对于函数y=2x+8,
当y=0时,2x+8=0,解之得x=-4,
故B点坐标为(-4,0)
对于函数y=-x+2,
当y=0时,-x+2=0,解之得x=2,
y=2x+8故C点的坐标为(2,0),
对于A点坐标,只需解方程组{y=2x+8
y=-x+2

故A 点坐标为(-2,4),∆ABC 的面积为
= 21 BC ×4 = 2
1 × 6×4 =12
{
y=-x+2
的解
2.已知一次函数
y
1
=2x+8、 的图像,如图
所示,请同学们讨论
(1)y 1>y 2
时,求x 的取值范围
(2)
y
1
<y 2时,求
x 的取值范围
y=2x+8 点拨:求A 点的坐标相当于解方程组
y 2
=-x+2
思路点拨:方法一(巩固拓展,又启下,为学习一次函数与一元一次不等式组打基础) 由y 1>y
2
得2x+8>-x+2,从而有3x +6>0,
故x >-2.
从图像看
方法二
分别作出 y 1= 2x+8 、 y 2
= -x+2 的函数图。

相关文档
最新文档