高中函数对称性总结分析

合集下载

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

【解析】求两个不同函数的对称轴,用设点和对称原理作解。

证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。

高中数学《函数对称性》重要结论—优享文档

高中数学《函数对称性》重要结论—优享文档

高中数学《函数对称性》重要结论二、函数对称性的几个重要结论(一)函数)(x f y =图象本身的对称性(自身对称)若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。

推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数3、函数)(x f y =与()y f x =-图象关于X 轴对称4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称(三)抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数y =f(x)关于直线x =a 轴对称,则以下三个式子成立且等价:(1)f(a +x)=f(a -x) (2)f(2a -x)=f(x) (3)f(2a +x)=f(-x)性质2 若函数y =f(x)关于点(a ,0)中心对称,则以下三个式子成立且等价:(1)f(a +x)=-f(a -x)(2)f(2a -x)=-f(x)(3)f(2a +x)=-f(-x)易知,y =f(x)为偶(或奇)函数分别为性质1(或2)当a =0时的特例。

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性关岭民中数学组 (一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性)1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f(2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-2、奇偶性的拓展 : 同一函数的对称性(1)函数的轴对称:函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+))()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。

得证。

说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等。

∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称⇔)2()(x a f x f -=∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称⇔)2()(x a f x f +=-(2)函数的点对称:(函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(c b a + 对称证明:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+- 可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称 得证。

函数点对称线对称及周期总结

函数点对称线对称及周期总结

函数点对称线对称及周期总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII函数对称性、周期性全解析函数对称性、周期性是函数这一部分在历年高考中的一个重点,现在全部解析如下:一、同一函数的周期性、对称性问题(即函数自身)1、周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。

如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。

2、对称性定义(略),请用图形来理解。

3、对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。

得证。

若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。

函数对称性的总结

函数对称性的总结

函数对称性的总结函数对称性是数学中的一个重要概念,它描述了函数图像在某些操作下的不变性。

函数对称性有多种形式,包括对称轴对称、点对称和周期性等。

这些对称性不仅仅是数学上的概念,它们在自然界和现实生活中也有广泛的应用。

在这篇文章中,我们将对函数对称性进行详细的总结和讨论。

首先,我们来谈谈对称轴对称性。

对称轴对称是指函数图像以某一直线为轴对称,即对于函数图像上的任意一点P,它关于对称轴上的另一点P'是关于对称轴对称的。

对称轴对称性在直角坐标系中通常体现为对称轴为y轴的情况,此时函数图像关于y轴对称。

也有一些例外,比如平方函数y = x^2关于x轴对称,开方函数y = √x关于y轴对称。

对称轴对称性常见于各种二次函数、三次函数等。

其次,点对称性是另一种常见的函数对称性。

点对称是指函数图像关于某个点对称,即对于函数图像上的任意一点P,它关于对称中心O的另一点P'是关于对称中心对称的。

对于点对称性来说,对称中心可以是任意点,不一定是坐标轴上的点。

点对称性常见于正弦函数、余弦函数等周期函数中。

接下来,我们来看一下周期性对称性。

周期性是指函数具有固定的周期,即对于函数中的任意一点P,在以周期为基准的一段距离内,P点和P'点的函数值相同。

周期函数是常见的具有周期性对称性的函数。

例如正弦函数y = sin(x)、余弦函数y = cos(x)、正切函数y = tan(x)等都具有周期性对称性。

除了以上三种常见的函数对称性,还有一些特殊的对称性值得关注。

例如,奇函数和偶函数是两种特殊的对称性形态。

奇函数是指满足f(-x) = -f(x)的函数,即函数图像关于坐标原点对称。

常见的奇函数有正弦函数和奇次多项式。

偶函数是指满足f(-x) = f(x)的函数,即函数图像关于y轴对称。

常见的偶函数有余弦函数和偶次多项式。

奇函数和偶函数的对称性在函数的定义和求解中有很多实际应用。

最后,函数对称性在数学中起着重要的作用。

知识点:函数的对称性总结

知识点:函数的对称性总结

知识点:函数的对称性总结函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。

函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。

本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。

一、函数自身的对称性探究定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上, 2b-y = f (2a-x)即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。

(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)∵ f (x) + f (2a-x) =2bf (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。

故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。

推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者)推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(ab),则y = f (x)是周期函数,且2| a-b|是其一个周期。

高中数学函数图像的对称与周期性

高中数学函数图像的对称与周期性

高中数学函数图像的对称与周期性在高中数学中,函数图像的对称性和周期性是一个非常重要的概念。

对称性是指函数图像关于某个轴或点对称,而周期性是指函数在一定区间内以某个固定的周期重复。

一、对称性1. 关于y轴对称当一个函数图像关于y轴对称时,意味着对于函数中的任意一点(x, y),点(-x, y)也在函数图像上。

这种对称性可以用来简化函数图像的绘制和分析。

例如,考虑函数y = x^2,它是一个二次函数,具有关于y轴对称的性质。

我们可以通过绘制函数图像的一部分,再利用对称性得到完整的图像。

2. 关于x轴对称当一个函数图像关于x轴对称时,意味着对于函数中的任意一点(x, y),点(x, -y)也在函数图像上。

这种对称性也可以用来简化函数图像的绘制和分析。

例如,考虑函数y = sin(x),它是一个正弦函数,具有关于x轴对称的性质。

我们可以通过绘制函数图像的一部分,再利用对称性得到完整的图像。

3. 关于原点对称当一个函数图像关于原点对称时,意味着对于函数中的任意一点(x, y),点(-x, -y)也在函数图像上。

这种对称性同样可以用来简化函数图像的绘制和分析。

例如,考虑函数y = x^3,它是一个三次函数,具有关于原点对称的性质。

我们可以通过绘制函数图像的一部分,再利用对称性得到完整的图像。

二、周期性1. 周期函数周期函数是指在一定区间内以某个固定的周期重复的函数。

周期函数的图像具有一定的规律性,可以通过观察周期来简化函数图像的绘制和分析。

例如,考虑函数y = sin(x),它是一个周期为2π的正弦函数。

我们可以通过绘制一个周期内的函数图像,再利用周期性得到完整的图像。

2. 非周期函数非周期函数是指在任意区间内不以固定周期重复的函数。

非周期函数的图像通常没有明显的规律性,需要通过其他方法进行分析和绘制。

例如,考虑函数y = x^2,它是一个非周期函数。

我们需要根据函数的性质和变化规律来绘制函数图像。

三、举一反三通过对函数图像的对称性和周期性的分析,我们可以得到一些解题技巧和方法。

函数对称性周期性和奇偶性规律总结

函数对称性周期性和奇偶性规律总结

函数对称性、周期性和奇偶性关岭民中数学组一、同一函数的函数的奇偶性与对称性:奇偶性是一种特殊的对称性1、奇偶性:1 奇函数关于0,0对称,奇函数有关系式0)()(=-+x f x f2偶函数关于y 即x=0轴对称,偶函数有关系式 )()(x f x f =-2、奇偶性的拓展 : 同一函数的对称性1函数的轴对称:函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称;得证;说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等;∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称⇔)2()(x a f x f -=∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称⇔)2()(x a f x f +=-2函数的点对称:函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(c b a + 对称证明:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+- 可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称 得证;说明: 关于点),(b a 对称要求横坐标之和为2a ,纵坐标之和为2b ,如())a x a x +-与( 之和为 2a ;3函数)(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称;但在曲线cx,y=0,则有可能会出现关于b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称;4复合函数的奇偶性的性质定理:性质1、复数函数y =fgx 为偶函数,则fg -x =fgx;复合函数y =fgx 为奇函数,则fg -x =-fgx;性质2、复合函数y =fx +a 为偶函数,则fx +a =f -x +a ;复合函数y =fx +a 为奇函数,则f -x +a =-fa +x;性质3、复合函数y =fx +a 为偶函数,则y =fx 关于直线x =a 轴对称; 复合函数y =fx +a 为奇函数,则y =fx 关于点a,0中心对称;总结:x 的系数一个为1,一个为-1,相加除以2,可得对称轴方程总结:x 的系数一个为1,一个为-1,fx 整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心;总结:x 的系数同为为1,具有周期性;二、两个函数的图象对称性1、()y f x =与()y f x =-关于X 轴对称;证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y -∵11(,)x y 与11(,)x y -关于X 轴对称,∴11()y f x =与()y f x =-关于X 轴对称. 注:换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于2、()y f x =与()y f x =-关于Y 轴对称;证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y - ∵11(,)x y 与11(,)x y -关于Y 轴对称,∴()y f x =与()y f x =-关于Y 轴对称;注:因为11(,)x y -代入()y f x =-得111(())()y f x f x =--=所以()y f x =-经过点11(,)x y -换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=x 对称;()(())()g x f x f x -=--=3、()y f x =与(2)y f a x =-关于直线x a = 对称;证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以(2)y f a x =-经过点11(2,)a x y -∵11(,)x y 与11(2,)a x y -关于x a =轴对称,∴()y f x =与(2)y f a x =-关 于直线x a = 对称;注:换种说法:)(x f y =与()(2)y g x f a x ==-若满足)2()(x a g x f -=,即它们关于a x =对称;4、)(x f y =与)(2x f a y -=关于直线a y =对称;证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以)(2x f a y -=经过点11(,2)x a y -∵11(,)x y 与11(,2)x a y -关于y a =轴对称,∴)(x f y =与)(2x f a y -=关于直线a y =对称.注:换种说法:)(x f y =与()2()y g x a f x ==-若满足a x g x f 2)()(=+,即它们关于a y =对称;5、)2(2)(x a f b y x f y --==与关于点a,b 对称;证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以2(2)y b f a x =--经过点11(2,2)a x b y --∵11(,)x y 与11(2,2)a x b y --关于点a,b 对称,∴)2(2)(x a f b y x f y --==与关于注:换种说法:)(x f y =与()2(2)y g x b f a x ==--若满足b x a g x f 2)2()(=-+,即它们关于点a,b 对称;(2)2(2(2))2()g a x b f a a x b f x -=---=-6、)(x a f y -=与()y f x b =-关于直线2b a x +=对称; 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f a x =-经过点11(,)a x y -,()y f b x =-经过点11(,)b x y +,∵11(,)a x y -与11(,)b x y +关于直线2b a x +=对称, ∴)(x a f y -=与()y f x b =-关于直线2b a x +=对称; 三、总规律:定义在R上的函数()x f y =,在对称性、周期性和奇偶性这三条性质中,只要有两条存在,则第三条一定存在;一、 同一函数的周期性、对称性问题即函数自身一、函数的周期性:对于函数)(x f y =,如果存在一个不为零的常数T,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期;如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期;1、周期性:1函数)(x f y =满足如下关系式,则T x f 2)(的周期为A 、)()(x f T x f -=+B 、)(1)()(1)(x f T x f x f T x f -=+=+或 C 、)(1)(1)2(x f x f T x f -+=+或)(1)(1)2(x f x f T x f +-=+等式右边加负号亦成立 D 、其他情形2函数)(x f y =满足)()(x a f x a f -=+且)()(x b f x b f -=+,则可推出 )](2[)]2([)]2([)2()(a b x f b x a b f b x a b f x a f x f -+=---=--+=-=即可以 得到)(x f y =的周期为2b-a,即可以得到“如果函数在定义域内关于垂直于x 轴两条直线对称,则函数一定是周期函数”3如果奇函数满足)()(x f T x f -=+则可以推出其周期是2T,且可以推出对称 轴为kT T x 22+=)(z k ∈,根据)2()(T x f x f +=可以找出其对称中心为 )0(kT ,)(z k ∈以上0≠T如果偶函数满足)()(x f T x f -=+则亦可以推出周期是2T,且可以推出对称中心为)0,22(kT T +)(z k ∈,根据)2()(T x f x f +=可以推出对称轴为kT T x 2+=)(z k ∈ 以上0≠T4如果奇函数)(x f y =满足)()(x T f x T f -=+0≠T ,则函数)(x f y =是 以4T 为周期的周期性函数;如果偶函数)(x f y =满足)()(x T f x T f -=+ 0≠T ,则函数)(x f y =是以2T 为周期的周期性函数;定理1:若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f -=+)(其 中b a ≠,则函数()x f y =以()b a -2为周期.定理2:若函数()x f 在R 上满足()x a f x a f --=+)(,且()x b f x b f --=+)( 其中b a ≠,则函数()x f y =以()b a -2为周期.定理3:若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f --=+)(其 中b a ≠,则函数()x f y =以()b a -4为周期.定理4:若函数fx 的图像关于直线x=a 和x=b 都对称,则fx 是周期函数,2b-a 是它的一个周期未必是最小正周期;定理5:若函数fx 的图像关于点a,c 和b,c 都成中心对称,则fx 是周期函数,2b-a 是它的一个周期未必是最小正周期;定理6:若函数fx 关于点a,c 和x=b 都对称,则fx 是周期,4b-a 是它的一个周期未必是最小正周期;定理7:若函数fx 满足fx-a=fx+aa>0,则fx 是周期函数,2a 是它的一个周期;定理8:若函数fx 满足fx+a=-fxa>0或fx+a=)(1x f 或fx+a=-)(1x f 则fx 周期函数,2a 是它的一个周期; 定理9:若函数)0,1)(()(1)(1)(>≠-+=+a x f x f x f a x f ,则fx 是周期函数,4a 是它的一个周期;若fx 满足)0,1)(()(1)(1)(>≠+-=+a x f x f x f a x f ,则fx 是周期函数,2a 是它的一个周期;。

函数对称性的总结

函数对称性的总结

参考一:函数对称性总结函数的对称性一、三角函数图像的对称性1、y =f (x ) 与y =-f (x ) 关于x 轴对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =-g (x ) ,即它们关于y =0对称。

2、y =f (x ) 与y =f (-x ) 关于Y 轴对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (-x ) ,即它们关于x =0对称。

3、y =f (x ) 与y =f (2a -x ) 关于直线x =a 对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (2a -x ) ,即它们关于x =a 对称。

4、y =f (x ) 与y =2a -f (x ) 关于直线y =a 对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (x ) =2a ,即它们关于y =a 对称。

5、y =f (x ) 与y =2b -f (2a -x ) 关于点(a , b ) 对称。

换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (2a -x ) =2b ,即它们关于点(a , b ) 对称。

6、y =f (a -x ) 与y =f (x -b ) 关于直线x =二、单个函数的对称性一、函数的轴对称:定理1:如果函数y =f (x )满足f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2a +b 2对称。

对称.推论1:如果函数y =f (x )满足f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称. 推论2:如果函数y =f (x )满足f (x )=f (-x ),则函数y =f (x )的图象关于直线x =0(y 轴)对称. 特别地,推论2就是偶函数的定义和性质. 它是上述定理1的简化.二、函数的点对称:定理2:如果函数y =f (x )满足f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于点(a , b )对称.推论3:如果函数y =f (x )满足f (a +x )+f (a -x )=0,则函数y =f (x )的图象关于点(a , 0)对称.推论4:如果函数y =f (x )满足f (x )+f (-x )=0,则函数y =f (x )的图象关于原点(0, 0)对称. 特别地,推论4就是奇函数的定义和性质. 它是上述定理2的简化.性质5:函数y =f (x ) 满足f (a +x ) +f (b -x ) =c 时,函数y =f (x ) 的图象关于点(a +b ,c )对称。

(完整版)对称性和周期性性质总结

(完整版)对称性和周期性性质总结

函数の对称性和周期性一、几个重要の结论(一)函数图象本身の对称性(自身对称)1、函数 )(x f y =满足 )()(x T f x T f -=+(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。

2、函数 )(x f y =满足 )2()(x T f x f -=(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。

3、函数 )(x f y =满足 )()(x b f x a f -=+の充要条件是 )(x f y =图象关于直线 22)()(b a x b x a x +=-++=对称。

特殊地,如果a=0,b=0,则其关于x=0即关于y 轴对称,此时)()(x b f x a f -=+变为f(x)=f(-x),其实就是偶函数。

4、如果函数 )(x f y =满足 )()(11x T f x T f -=+且 )()(22x T f x T f -=+,( 1T 和 2T 是不相等の常数),则 )(x f y =是以为 )(212T T -为周期の周期函数。

5、如果偶函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以2T 为周期の周期性函数。

6、如果奇函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以4T 为周期の周期性函数。

我当初の总结是:函数对称包涵两种:一是点对称,而是线对称,比如偶函数属于线对称,奇函数属于点对称,奇偶函数对称都是关于0.即偶函数关于x=0对称,奇函数关于(0,0)对称。

那么如果一个函数是双重对称,那么该函数就是周期函数,那么什么叫多重对称呢?且看下面列子你就明白了:1, 若函数关于两条线x=a 和x=b 对称(这就叫双重对称),那么该函数一定是周期函数,且周期为2|b-a|。

2, 若函数关于两个点(a,0)和(b,0)(注都是x 轴上の点),那么该函数一定是周期函数,且周期为2|b-a|。

函数的对称性总结

函数的对称性总结

函数的对称性总结函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。

函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。

本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。

一、函数自身的对称性探究定理1.函数y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b。

(“若f (x) + f (2a-x) = 2b,则函数y = f (x)的图像关于点A (a ,b)对称”命题正确,且“若数y = f (x)的图像关于点A (a ,b)对称,则f (x) + f (2a-x) = 2b成立”逆命题也正确,则称“函数y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b”。

)证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x)即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。

(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)∵f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。

故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。

推论:函数y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0定理2. 函数y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x) 。

函数对称性

函数对称性
∵ f (x) + f (2a- x) =2b∴f (x0) + f (2a- x0) =2b,即2b- y0 = f (2a- x0) 。
故点M1(2a-x0,2b-y0)也在 图像上;而点M与点M1关于点P(a ,b)对称。
在掌握了(*)式以后,也基本解决了函数 在平面内关于任一点对称的问题。
(1)f(a+x)=f(a-x)。
(2)f(2a-x)=f(x)。
(3)f(2a+x)=f(-x)。
性质2、若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:
(1)f(a+x)=-f(a-x)。
(2)f(2a-x)=-f(x)。
解:设点 是函数 图象上的任一点。
若 ,则点M关于函数 的图象上;
若 ,则点 关于直线 的对称点为 ,这点也在 的图象上;
若 ,可类似说明。
所以 与 的图象关于直线 对称。
例4.设f(x)是定义在R上的偶函数,且f(1+x)= f(1-x),当-1≤x≤0时,
⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。
⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。
(A) 1999; (B)2000; (C)2001; (D)2002。
解:∵y = f(x-1)和y = g-1(x-2)函数的图像关于直线y = x对称,

高中数学对称知识点总结

高中数学对称知识点总结

一、对称性的概念及常见函数的对称性1、对称性的概念①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。

②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。

2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。

②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。

③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。

④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。

⑤指数函数:既不是轴对称,也不是中心对称。

⑥对数函数:既不是轴对称,也不是中心对称。

⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。

⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。

⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。

⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心。

⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。

⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。

函数点对称线对称及周期总结

函数点对称线对称及周期总结

函数点对称线对称及周期总结
称。

函数对称性和周期性是高中数学中的重要内容。

首先,对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定
义域内的每一个值时,都有f(x+T)=f(x)都成立,那么就把函数
y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。

其次,对于函数y=f(x),如果满足以下条件,就说这个函
数具有对称性:偶函数关于y轴对称,偶函数有关系式f(-
x)=f(x);奇函数关于原点对称,奇函数有关系式f(x)+f(-x)=0.
这些关系式还可以进行拓展,例如函数y=f(x)关于x=a对称的
条件为f(a+x)=f(a-x),可以写成f(x)=f(2a-x)或f(-x)=f(2a+x)的
形式。

同样地,函数y=f(x)关于点(a,b)对称的条件为f(a+x)+f(a-x)=2b,也可以写成f(2a+x)+f(-x)=2b或f(2a-x)+f(x)=2b的形式。

最后,需要注意的是,函数自身不可能关于y=b对称,因为这样就不符合函数的定义了。

函数对称知识点高中总结

函数对称知识点高中总结

函数对称知识点高中总结一、函数对称的定义1. 函数对称轴函数对称轴是指当函数关于某个直线对称时,这条直线就是函数的对称轴。

对称轴可以是x轴、y轴,也可以是直线y=x或y=-x等。

2. 函数对称关系当函数关于某个直线对称时,函数图象在这条直线上的对应点互相关于对称轴对称。

具体地说,设函数为y=f(x),对称轴为直线x=a,若对于任意点(x,y),都有a-x对称点也在函数图象上,即有f(a-x)=f(x)。

3. 偶函数若函数f(x)满足f(x)=f(-x),即对于任意x,有f(x)=f(-x),则称f(x)为偶函数。

偶函数的图象关于y轴对称。

4. 奇函数若函数f(x)满足f(x)=-f(-x),即对于任意x,有f(x)=-f(-x),则称f(x)为奇函数。

奇函数的图象关于原点对称。

二、函数对称的性质1. 对称关系的性质(1)关于y轴对称的函数f(x)满足f(x)=f(-x),即f(x)为偶函数;(2)关于原点对称的函数f(x)满足f(-x)=-f(x),即f(x)为奇函数。

2. 函数对称轴的性质(1)当函数对称于y轴时,其对称轴为y轴,表现为f(x)=f(-x);(2)当函数对称于x轴时,其对称轴为x轴,表现为f(x)=-f(-x);(3)当函数对称于直线y=x时,其对称轴为y=x,表现为f(y)=f(x);(4)当函数对称于直线y=-x时,其对称轴为y=-x,表现为f(-y)=f(-x)。

3. 对称函数的图象(1)偶函数的图象关于y轴对称;(2)奇函数的图象关于原点对称。

三、函数对称的分类1. 偶函数与奇函数(1)偶函数:满足f(x)=f(-x)的函数称为偶函数。

例如,y=x^2、y=cosx等都是偶函数。

(2)奇函数:满足f(x)=-f(-x)的函数称为奇函数。

例如,y=x^3、y=sinx等都是奇函数。

2. 关于坐标轴的对称函数(1)关于y轴对称:函数图象关于y轴对称,即f(x)=f(-x)的函数。

函数对称性公式大总结

函数对称性公式大总结

函数对称性公式大总结函数对称性是数学中一个非常重要的概念,它在解题过程中起着至关重要的作用。

在本文中,我们将对函数的对称性进行大总结,包括函数的奇偶对称性、周期性以及其他常见的对称性形式。

通过本文的学习,相信读者能够更加深入地理解函数对称性的概念,并在实际问题中灵活运用。

首先,我们来讨论函数的奇偶对称性。

一个函数f(x)在定义域内满足f(-x) = f(x)的条件时,我们称该函数具有偶对称性;而当一个函数f(x)在定义域内满足f(-x) = -f(x)的条件时,我们称该函数具有奇对称性。

奇偶对称性在函数的图像上有着明显的几何特征,对于奇函数来说,其图像关于原点对称;而对于偶函数来说,其图像关于y轴对称。

在实际问题中,我们可以通过奇偶对称性来简化函数的运算,减少工作量,提高解题效率。

其次,我们来讨论函数的周期性。

一个函数f(x)在定义域内满足f(x+T) = f(x)的条件时,我们称该函数具有周期T。

周期函数在实际问题中有着广泛的应用,比如描述天体运动的周期性、电路中的周期信号等。

通过对周期函数的研究,我们可以更好地理解自然界中的规律,并且在工程技术中有着重要的应用价值。

除了奇偶对称性和周期性,函数还可能具有其他形式的对称性,比如轴对称、中心对称等。

这些对称性形式在几何图形的研究中有着重要的应用,比如描述圆、椭圆、双曲线等图形的对称性。

通过对这些对称性形式的研究,我们可以更好地理解几何图形的性质,从而解决与几何相关的实际问题。

总结来说,函数对称性是数学中一个重要且广泛应用的概念,通过对函数的奇偶对称性、周期性以及其他形式的对称性进行深入研究,我们可以更好地理解函数的性质,并在实际问题中灵活运用。

希望本文的内容能够为读者提供一些帮助,让大家对函数对称性有着更深入的认识。

在学习中,我们要注重理论联系实际,通过大量的练习来加深对函数对称性的理解。

只有通过不断地实践和思考,我们才能够真正掌握函数对称性的概念,并在解题过程中得心应手。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中函数对称性总结
新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。

尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。

以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。

所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。

一、对称性的概念及常见函数的对称性
1、对称性的概念
①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。

②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。

2、常见函数的对称性(所有函数自变量可取有意义的所有值)
①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。

②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。

③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。

④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。

⑤指数函数:既不是轴对称,也不是中心对称。

⑥对数函数:既不是轴对称,也不是中心对称。

⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。

⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。

⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上
向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。

⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心。

⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。

⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。

但容易犯错误的是同学们可能误以为最值处是它的对称轴,例如在处理函数y=x+1/x时误以为会有f0.5)=f(1.5),我在教学时总是问学生:你可看见过老师将“√”两边画得一样齐?学生们立刻明白并记忆深刻。

⒀三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。

⒁绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。

前者显然是偶函数,它会关于y轴对称;后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx│就没有对称性,而y=│sinx│却仍然是轴对称。

二、函数的对称性猜测
1、具体函数特殊的对称性猜测
①一个函数一般是不会关于x轴的
这是由函数定义决定的,因为一个x不会对应两个y的值。

但我们在此略微引申,一个曲线是可能关于x轴对称的。

例1判断曲线y^2=4x的对称性。

②函数关于y轴对称
例2判断函数y=cos(sin(x))的对称性。

③函数关于原点对称
例3判断函数y=(x^3)×sinx的对称性。

④函数关于y=x对称
例4判断函数y=1/x的对称性。

⑤函数关于y=-x对称
例5判断函数y=-4/x的对称性。

我总结为:设(x,y)为原曲线图像上任一点,
如果(x,-y)也在图像上,则该曲线关于x轴对称;
如果(-x,y)也在图像上,则该曲线关于y轴对称;
如果(-x,-y)也在图像上,则该曲线关于原点对称;
如果(y,x)也在图像上,则该曲线关于y=x对称;
如果(-y,-x)也在图像上,则该曲线关于y=-x轴对称。

2、抽象函数的对称性猜测
①轴对称
例6如果函数y=f(x)满足f(x+1)=f(4-x),求该函数的所有对称轴。

(任意取值代入例如x=0有f(1)=f(4),正中间2.5,从而该函数关于x=2.5对称)
例7如果函数y=f(x)满足f(x)=f(-x),求该函数的所有对称轴。

(按上例一样的方法可以猜出对称轴为x=0,可见偶函数是特殊的轴对称)
例8如果f(x)为偶函数,并且f(x+1)=f(x+3),求该函数的所有对称轴。

(因为f(x+1)=f(-x-3),按上例可以猜出对称轴x=-1,又因为它以2为周期,所以x=k是它所有的对称轴,k∈Z)
②中心对称
例9如果函数y=f(x)满足f(3+x)+f(4-x)=6,求该函数的对称中心。

(因为自变量加起来为7时函数值的和始终为6,所以中点固定为(3.5,3),这就是它的对称中心)
例10如果函数y=f(x)满足f(-x)+f(x)=0,求该函数的所有对称中心。

(按上例一样的方法可以猜出对称中心为(0,0),可见奇函数是特殊的中心对称)
例11如果f(x)为奇函数,并且f(x+1)+f(x+3)=0,求该函数的所有对称中心和对称轴。

(由周期性定义知周期为4,又f(x+1)=-f(x+3),从而f(x+1)=f(-x-3),按上例知x=-1为对称轴,所以x=-1+2n为对称轴,(2k,0)为对称中心,其中k∈Z)
我总结为:
①当括号里面x前面的符号一正一负时告诉我们的就是对称性,其中的对称为多少我们可以用特殊值代入来猜测,这里并不主张记结论,因为很容易与后面的结论相混淆。

②而当x前面的符号相同时告诉我们的是周期性。

例如f(x+1)=f(x-5)是告诉我们它以6为周期。

相关文档
最新文档