我国纳滤膜研制及应用技术进展
我国膜技术的应用现状与前景_黄加乐
开创许多新的应用领域 。 分离膜是膜技术的基础 , 新型膜材料有的能够在苛刻的条件下(强酸性 、强碱 性 、高温下 、强溶剂)使用 , 有的能在更低的压力下操 作 , 这将对传统技术的改造有极大的推动作用 。 如 新型的纳滤膜技术在饮用水净化 、锅炉用水软化 、染 料 、抗生素 、多肽 、多醣等化工和生物工程产物的分 级和浓缩等方面 , 其成本远远低于其他技术 。 我国 对纳滤膜技术的开发和应用将越来越广泛 。膜过程 是膜技术的关键 , 优化设计膜过程将获得更好的经 济效益和环境效益 。新型膜技术不仅可以替代某些 单元操作 , 而且可以与许多单元操作相结合 , 以取得 更好的分离效果 。 例如利用膜技术把催化反应和分 离过程结合起来 , 把催化剂包含在膜中既可以提高 转化率和产品纯度 , 又可减低成本 。膜技术与生物 反应器相结合的新工艺 , 能够大规模提高发酵生产 率 , 并且能耗低 , 将工业化应用于乳酸 、柠檬酸等生 产之中 。 中科院开发的某种新型渗透汽化膜及其工 艺过程 , 将变革 M TBE(一种无铅汽油添加剂)的生 产工艺 , 产生可观的经济效益 。专家预计在 2010 年 左右 , 包含膜技术的人工器官 、智能分离膜 、活性输 送膜等将获得实际应用 ;2020 年之后 , 这些新一代 膜产品的销售额将超过现有的膜产品 。 3.2 能源价格
复合膜
非对称性膜 复合膜
非对称性膜 离子交换膜
离子交换膜
均 相膜复合膜 非对称性膜
均相膜 、复合膜 非对称性膜 乳状液膜 支撑液膜
疏水性膜
·4 ·
福建化工 2000 年 第 3 期
2 我国膜技术的应用现状 2.1 概述
近 30 年来 , 以分离膜为基础的膜技术取得了令 人瞩目的飞速发展 。 八十年代以来 , 我国膜产业获 得了较大的发展 。 1997 年全世界膜市场已经达到 40 亿美元以上 , 当年中国膜产业的总产值也已超过 6 亿元人民币 。膜技术已广泛地应用于我国经济的 许多部门 。 微滤膜的应用近年来增长较快 , 我国每 年需要微滤膜的产值大约 7800 万元人民币 。 超滤 技术是应用最为广泛的膜过程 , 产值约占整个膜产 业的 25 %以上 。 纳滤技术的开发与应用在我国还 处于初始阶段 , 尚未形成产业 。反渗透技术是几种 膜技术中在中国开发应用最早的一种 , 主要用于海 水淡化 、苦咸水脱盐 、锅炉补给水的处理和饮用水的 制备 , 此外在食品 、医药和废水处理方面也有广泛应 用 。 电渗析技术主要用于苦咸水脱盐 、锅炉水软化 , 在医药 、化工 、食品饮料行业及废水处理方面也得到 了广泛应用 。气体膜分离技术和渗透汽化膜技术近 年来也扩大了应用范围 。 2.2 膜分离技术在化工中的应用
纳滤在水处理中的应用现状及展望
纳滤在水处理中的应用现状及展望纳滤是一种通过在微孔膜上过滤水中微粒和溶质的技术,它已经被广泛应用于水处理领域。
纳滤技术的应用不仅在于提高水质,还可以解决多种水处理问题,比如去除微生物、微粒和微量有害化学品等。
本文将就纳滤在水处理中的应用现状及展望进行探讨。
一、纳滤技术在水处理中的应用现状1.1 纳滤技术在饮用水净化中的应用纳滤技术已经成为饮用水净化领域的主流技术之一。
它可以有效地去除水中的微生物、有机物、重金属和颗粒物质,从而提高水质。
纳滤膜的微孔结构可以有效阻隔微小的微生物和细菌,从而减少饮用水中的致病微生物的含量,保障饮用水的安全。
1.2 纳滤技术在工业废水处理中的应用工业废水中通常含有大量的悬浮固体、油脂、有机物和重金属等有害物质,传统的废水处理方法通常难以有效去除这些物质。
而纳滤技术可以通过微孔膜的过滤作用有效去除废水中的悬浮固体和微粒物质,从而达到回收再利用的目的。
纳滤技术还可以将废水中的有机物和重金属有效地去除,降低废水中有害物质的含量,减少对环境的污染。
1.3 纳滤技术在海水淡化中的应用海水中含有大量的盐分和微生物等,传统的海水淡化技术要求高能耗和高成本,而纳滤技术可以通过微孔膜的选择性过滤作用,将海水中的盐分和微生物有效地去除,从而实现海水的淡化和净化。
纳滤技术在海水淡化中的应用,不仅可以解决淡水资源短缺的问题,还可以为海水资源的有效利用做出贡献。
二、纳滤技术在水处理中的展望2.1 纳滤技术在水处理中的创新随着科技的不断发展,纳滤技术在水处理领域也不断得到创新。
未来,纳滤技术将更加注重对微孔膜的材料、结构和制备工艺的研究,以提高纳滤膜的过滤效率和抗污染性能。
纳滤技术还将应用于新型的水处理设备和系统中,以满足不同领域的水处理需求。
2.2 纳滤技术在水处理中的环保应用随着环保意识的增强,纳滤技术将更加注重在水处理中的环保应用。
未来,纳滤技术将更加关注对水处理过程中的能耗、废物排放和资源利用的影响,以实现水处理过程的高效、清洁和可持续发展。
纳滤膜的发展历程
纳滤膜的发展历程纳滤膜是一种用于分离物质的特殊膜材料。
其发展历程可以追溯到20世纪50年代,经过了数十年的研究与发展,至今已经成为重要的分离与净化技术之一。
最早的纳滤膜是由羊肠制成的。
由于羊肠具有特殊的结构,可以单向通透水分子等小分子,而阻挡其它较大分子的通过。
这种羊肠膜被称为“纳滤膜的鼻祖”。
随着时间的推移,科学家们开始研发出更为高效的纳滤膜材料。
1960年代,发现了聚酰胺纤维膜的纳滤效应。
这种材料具有极小的孔径,能够有效地过滤掉溶解在水中的离子、大分子有机物质等。
聚酰胺纤维膜开创了新的纳滤膜材料时代。
在1970年代,研究人员又发现了新的纳滤膜材料——多孔陶瓷膜。
多孔陶瓷膜的孔径更小,能够通过更加精细的分子筛选,实现更高效的分离与净化。
这种材料使纳滤膜技术得到了进一步的发展。
随着纳滤膜技术的发展,一系列的新型材料被推出。
1980年代,研究人员开发出了中空纤维膜。
中空纤维膜由许多微小的中空纤维组成,能够提供更大的过滤表面积,增加分离效率。
这种膜具有较高的机械强度和稳定性,被广泛应用于饮用水净化、食品加工等领域。
1990年代,随着纳米技术的发展,纳滤膜材料迎来了一次巨大的突破。
研究人员创造性地利用纳米材料制备出新型的纳滤膜。
这些膜具有更加精确的孔径控制,能够有效地过滤微小的颗粒、离子等。
纳米纳滤膜在水处理、药物制造等领域具有广泛的应用前景。
21世纪以来,由于纳滤膜技术的不断发展,新型材料与新的制备技术不断涌现。
如中子纳滤膜、电动纳滤膜等。
这些新型纳滤膜不仅提高了分离效率,同时降低了能耗和成本,为纳滤膜应用开辟了更广阔的前景。
总的来说,纳滤膜的发展经历了从羊肠膜到聚酰胺纤维膜、多孔陶瓷膜、中空纤维膜再到纳米纳滤膜的演进过程。
不断提高的分离效率和经济性使纳滤膜成为了重要的分离与净化技术,在食品、饮用水处理、医药等领域发挥了积极作用。
随着科学技术的进一步进展,相信纳滤膜还有更多的应用与突破等待我们去发现和探索。
纳滤膜技术及其应用的研究进展
v0 . 2 11
№ .O 1
O t ,O 6 c.2O
Hale Waihona Puke 纳 滤 膜 技 术 及 其 应 用 的 研 究 进 展
曹国凭, 张学峰
( 河北理工大学 建筑工程学 院, 北 唐 山 030 ) 河 60 9
[ 要] 随着膜技术的发展 , 世 纪 8 年代出现的纳滤膜弥补 了 摘 2 0 O 反渗透与超滤之 间的空白。 纳滤膜(aohao e b l , F 又称“ nnf ri m m rq N ) i tn a ̄ 疏松型” 反渗透膜。通常情况下, 膜的截 留相对分子 质量界限为 20 0 。 0 1 0 与截 留相对分子质量相对应的膜孔径为 1 故将这 类膜称为纳 0 ~3 m, n 滤膜。纳滤膜可以截 留糖类等低相对分子质量有机物和高价无机 盐( gO 等)但对单价无 MS 4 ,
[ 中图分类号] T 912 U9 . [ 文献标识码] A [ 文章编号] 10 — 1520)0 08 — 4 06 77(06 1— 63 0
Na o lr t n M e r n n t p i t n n f ta i mb a e a d IsAp l a i i o c o
f ey h c k st edf rn e o e m a o rsu e b t e n te t o s e fte me rn u i ee tin c n r l .w h ma e i e e c f r e t n pe s r ew e w i s 0 mba e d e t df rn o o - e i h p i h d h 0
C AO o—p n Gu ig,Z HANG e— fn Xu eg
( o eeo rht t a E g er g H bi nvr t o c neadTcn l yTn sa 6 0 9 C i ) C l g f c ic r ni e n , ee U i sy f i c n eho g, ag n0 30 , hn l A eu l n i e i S e o h a
纳滤是一种介于超滤和反渗透之间的一种膜分离技术
纳滤膜分离机理、应用及发展趋势摘要:综述了纳滤膜的分离机理及其应用研究现状和进展。
纳滤膜分离过程是一个不可逆过程,其分离机理可以运用电荷模型和细孔模型,以及近年才提出的静电排斥和立体阻碍模型等来描述。
纳滤膜应用研究现状的介绍。
关键词:纳滤;分离机理;应用;发展1 纳滤膜的概述纳滤是一种介于超滤和反渗透之间的一种膜分离技术,截留分子量大约在200~1000范围,孔径约为几纳米,分离对象的粒径约为1 nm。
纳滤具有膜技术共同的高效节能的特点,是近来世界各国优先发展的膜技术之一。
目前纳滤已在生活用水,工业给水和废水的处理,食品,生化制药等领域得到广泛的应用。
纳滤膜的孔径在纳米级内,其中有些膜对不同价阴离子的Donnan电位有较大差别,其中截留分子量为数百级,对不同价的阴离子有显著的截留差异,可以让进料中部分或绝大部分无机盐通过,并且操作压力低,透过通量较大。
这些特点使纳滤在水的软化、有机低分子的分级、有机物的除盐净化等方面,有独特的优点和明显的节能效果。
2 纳滤膜的分离机理2.1 纳滤膜过程的不可逆过程分析纳滤膜分离过程与微滤、超滤、反渗透等膜分离过程一样,是一个不可逆过程,膜内传递现象通常用非平衡热力学模型[1]来表征。
该模型把膜当作一个“黑匣子”,以压力差为驱动力,产生流体及离子流动。
推动力和流动之间的关系可用现象论方程式表示,方程式中的系数被称之为膜的特征参数,包括膜的反射系数、溶质透过系数及纯水透过系数等。
其中膜的反射系数相当于溶剂透过通量无限大时的最大截留率。
2.2 电荷模型电荷模型又可根据对膜内电荷及电势分布情形的不同假设分为空间电荷模型(the Space Charge Model)[1~4]和固定电荷模型(the Fixed-Charge Model)[1,5,6]。
空间电荷模型最早由Osterle等提出,假设膜由孔径均一而且其壁面上电荷均匀分布的微孔组成,微孔内的离子浓度和电场电势分布、离子传递和流体流动分别由Poisson-Boltzmann方程、Nernst-Planck方程和Navier-Stokes方程等来描述。
中国膜技术发展历程
膜生物反应器(Membrane Bioreactor, 简称MBR)是当今世界公认的先进的污水处理和污水资源化技术,它是将膜分离技术中的超滤、微滤或纳滤膜组件与污水生物处理中的生物反应器相互结合而形成的新型处理系统。
这种集成式组合新工艺把生物反应器的生物降解作用和膜的高效分离技术溶于一体。
由于膜的高效分离作用使MBR具有多传统生物处理工艺所不具备的许多突出优点:出水水质优良稳定,可直接回用;容积负荷高,占地面积小,整个系统流程紧凑;剩余污泥产量少;运行管理方便等。
同时,膜的一次性高成本投入、膜污染、膜的较短使用寿命等依然是制约膜技术运用的瓶颈。
MBR技术的最佳适用范围为:出水水质要求高的项目(出水水质优于《城镇污水处理厂污染物排放标准(GB18918-2002)》中一级A类限制);处理出水有回用要求的项目(污水资源化项目);工程用地比较紧张的项目;高浓度有机废水项目。
该技术的出现是对我国传统污水治理理念和污水处理技术的一次颠覆和带来的一场伟大变革,将对中国的水处理行业和环境保护产业带来深层次的巨大影响;同时,它也使水处理行业从工程化向设备化和产业化成为可能。
膜技术在90年代后期发展迅速,特别是进入21世纪后,随着膜材料生产的规模化、膜组件及其处理产品的设备化和集成化,膜设备生产技术的普及化和价格大众化,膜技术的发展已经从实验室潜在技术迅速发展成为工程实用技术。
已经在许多大型工程应用中应用,出水水质稳定,运行可靠为膜处理技术的运用和发展积累了宝贵的经验。
1.膜生物反应器MBR技术在中国的发展进程我国MBR技术的发展历史几乎与国外接近,除了早期与国外有差距外,但是最近几年在技术应用方面与国外几乎同步,并且在部分领域在世界上有领先优势,因为中国对于MBR技术的需求远比国外迫切且市场潜力巨大。
主要发展阶段如下:•1990~2000:实验室阶段,小试、中试、示范工程;•2000~2003:每天百吨级的规模,主要用于小区楼宇、工业等领域;•2003~2005:每天千吨级的规模开始应用,主要用于城市污水和工业污水领域;• 2004~2005:每天万吨级的规模工程的可行性研究阶段,并为实施做准备。
纳滤膜的技术及应用介绍
纳滤膜的孔径较小容易堵塞需要定期清洗和维护 纳滤膜的过滤精度有限无法完全去除水中的杂质和污染物 纳滤膜的制造成本较高限制了其在某些领域的应用 纳滤膜的耐化学腐蚀性较差不适用于某些化学物质的过滤
纳滤膜技术的发展趋势:随着科技的进步纳滤膜技术将更加高效、节能、环保应用领域将 更加广泛。
未来展望:纳滤膜技术将在水处理、食品加工、医药、化工等领域发挥重要作用成为重 要的环保技术之一。
药等领域
技术特点:纳滤 膜具有耐高温、 耐酸碱、抗污染 等优点使用寿命 长易于维护和更
换
添加项标题
纳滤膜的分离效果:纳滤膜可以分离出分子量在1000-10000D 之间的物质如蛋白质、多糖等
添加项标题
影响纳滤膜分离效果的因素:纳滤膜的孔径、膜的厚度、膜的 材质、膜的表面性质、膜的渗透压等
添加项标题
纳滤膜在工业废水处理中的应用:纳滤 膜可以用于处理含有重金属、有机物、 无机盐等污染物的工业废水实现废水的 净化和回用。
纳滤膜在工业废水处理中的挑战:纳滤 膜在工业废水处理中可能会受到污染物 的污染和堵塞需要定期清洗和维护。
纳滤膜在食品工 业中的应用:如 牛奶、果汁、饮 料等物料的浓缩 和提纯
纳滤膜在制药工 业中的应用:如 药物、疫苗等物 料的浓缩和提纯
水质量
纳滤膜技术可 以降低饮用水 处理成本提高
处理效率
纳滤膜技术在 饮用水处理中 具有广泛的应 用前景如家庭 净水器、公共
供水系统等
纳滤膜技术简介:纳滤膜是一种具有选择 性分离功能的膜可以分离不同分子量的物 质。
纳滤膜在工业废水处理中的优势:纳滤 膜具有较高的分离效率和稳定性可以降 低废水处理成本提高废水处理效果。
纳滤膜技术简介:纳滤膜是一种具有选择性分离功能的膜可以分离不同分子量的物质。
纳滤膜技术的进展和应用前景
纳滤膜技术的进展和应用前景随着人们对水质要求的不断提高,水处理技术也在不断创新发展。
其中,纳滤膜技术是近年来备受关注的一种水处理技术。
该技术可将水中的悬浮固体、胶体、有机物和微生物等物质过滤出来,以达到净化水质的目的。
本文将围绕纳滤膜技术的进展和应用前景,从以下几个方面进行探讨。
一、技术原理纳滤膜技术是一种通过膜分离的水处理技术。
与传统的微滤、超滤和反渗透等技术相比,纳滤膜的膜孔直径更小,一般在1-100纳米之间,可将水中的颗粒等极小物质完全过滤掉。
其过滤机理主要是利用膜多孔性和截留效应来实现对水中物质的筛选和过滤。
同时,也可以通过改变膜孔的大小和形状,来使膜对不同物质呈现出不同的过滤和截留效果。
二、技术进展在纳滤膜技术的研发和应用过程中,科研人员们通过改进材料制备工艺、优化膜孔的精度和形状,并加强制程监测等手段,进一步提高了纳滤膜的过滤效率和使用寿命,并实现了对水质的更细化处理。
1.纳滤膜材料的发展纳滤膜材料的种类和性能对技术的发展起到了至关重要的作用。
近年来,随着高分子材料的不断改进和应用,以及无机材料的开发和应用,纳滤膜的材料种类和性能不断得到提升和改进。
例如,聚砜、聚脲、聚吡咯、聚乙烯醇、卟啉等材料的应用,使得纳滤膜的选择性、通透性和抗污染性能得到了显著提高。
2.纳滤膜的稳定性和抗污染性研究纳滤膜的稳定性和抗污染性决定了其在实际应用中的使用寿命和效果。
因此,在纳滤膜的研发和应用过程中,对其稳定性和抗污染性的研究和优化也一直是科研人员们的研究重点。
目前,研究者通过改进膜结构,增强膜材料的特性以及引入类固醇、聚合物和酸等物质,提高了膜的稳定性和抗污染性。
3.纳滤膜组装和工艺在纳滤膜应用中,纳滤膜的组装和工艺也直接影响着纳滤膜的使用效果和寿命。
因此,科研人员们一直在探索并改进纳滤膜的组装和工艺,以提高其性能和使用寿命。
目前,纳滤膜的制备工艺也在不断改进,包括离子交换法、表面聚合法、自组装法和化学还原法等。
2024年纳滤膜市场分析现状
2024年纳滤膜市场分析现状引言纳滤膜是一种重要的膜分离技术,在液体处理、水处理、食品饮料等领域有着广泛的应用。
本文旨在分析纳滤膜市场的现状,包括市场规模、市场趋势、主要应用领域等,以便为相关企业及投资者提供参考。
市场规模纳滤膜市场在过去几年呈现稳步增长的趋势,预计未来几年仍将保持较高的增长率。
根据市场分析数据,纳滤膜市场规模在2019年达到X亿美元,预计到2025年将达到X亿美元,年平均增长率为X%。
市场规模的快速增长主要得益于纳滤膜在水处理和生物医药领域的广泛应用。
市场趋势技术创新推动市场发展纳滤膜技术的不断创新推动了市场的发展。
新型纳滤膜材料的研发,如陶瓷纳滤膜、有机纳滤膜等,使纳滤膜在各个应用领域具有更广泛的适用性。
此外,纳滤膜设备的智能化和自动化程度的提高也带动了市场的增长。
水处理领域是主要应用领域水处理领域是纳滤膜的主要应用领域之一。
纳滤膜可以有效地去除水中的微生物、颗粒物和溶解性物质,被广泛应用于饮用水、工业用水等领域。
近年来,随着环境污染和水资源紧张问题的日益严重,纳滤膜在水处理领域的需求不断增加。
生物医药领域有潜力生物医药领域也是纳滤膜的重要应用领域之一。
纳滤膜可以用于生物医药领域中的细胞培养、分离纯化等过程,具有高效、可控、可重复利用等优势。
随着生物医药产业的迅速发展,纳滤膜在该领域的应用潜力将进一步释放。
市场竞争格局纳滤膜市场竞争格局较为激烈,主要厂商包括陶氏化学公司、基督教汉高公司、索莱思公司等。
这些厂商凭借着技术优势、产品品质和客户服务能力等方面的优势占据着市场的一定份额。
此外,新兴的纳滤膜企业也在市场中崭露头角,增加了市场的竞争度。
市场挑战与机遇市场挑战纳滤膜市场面临着一些挑战。
首先,纳滤膜的制造成本相对较高,限制了其在某些应用领域的推广应用。
其次,纳滤膜的污染与阻塞问题也是市场发展的不利因素。
此外,市场竞争激烈,企业需要不断提高产品品质和服务水平,以保持竞争力。
市场机遇纳滤膜市场也面临着一些机遇。
纳滤在水处理中的应用现状及展望
纳滤在水处理中的应用现状及展望一、纳滤技术概述纳滤技术是利用孔径在1-100纳米范围内的纳米级孔隙膜分离水中的微小颗粒、胶体、微生物等物质的一种膜分离技术。
其工作原理是利用膜表面的孔隙来排除水中的各种杂质,从而实现对水体的精细分离和净化。
相比传统的过滤技术,纳滤技术具有工作效率高、处理成本低、占地面积小等优点,因此在水处理领域具有巨大的应用潜力。
二、纳滤在水处理中的应用现状1. 饮用水净化纳滤技术在饮用水净化方面应用广泛。
通过纳滤膜的微孔结构,可以有效拦截水中的微生物、病毒等微小颗粒物质,从而实现对饮用水的高效净化。
目前,纳滤技术已经在一些地区的自来水厂得到了应用,为人们提供了高品质的饮用水。
2. 工业废水处理工业废水中含有大量的废弃物质和有害物质,传统的废水处理方法往往难以完全清除这些物质。
而纳滤技术可以通过微孔膜的分离作用,有效地去除废水中的颗粒物质和有害物质,从而实现对工业废水的高效处理和净化。
目前,纳滤技术已经在许多工业领域得到了广泛应用,取得了良好的处理效果。
3. 农业灌溉水处理农业灌溉水中常常含有大量的杂质和微生物,直接使用这样的水会对农作物生长和土壤环境造成不利影响。
而纳滤技术可以有效地去除灌溉水中的各种杂质和微生物,提高灌溉水的质量,保障农作物的生长和土壤的健康。
目前,一些农业生产基地已经开始采用纳滤技术对灌溉水进行处理,取得了良好的效果。
三、纳滤在水处理中的展望1. 技术持续完善随着科学技术的不断发展,纳滤技术也在不断完善和改进。
未来,纳滤膜的微孔结构将更加细致,对水中微小颗粒的拦截效果将进一步提高。
纳滤技术在膜材料、膜制备和膜模块等方面也将不断创新,为纳滤技术的应用提供更加优质的技术支持。
2. 应用领域不断拓展纳滤技术在饮用水、工业废水、农业灌溉水等领域的应用已经取得了一定的成果,未来还有更多的应用领域等待纳滤技术的拓展。
比如海水淡化、生活污水处理、水资源回收等方面,纳滤技术都具有很大的潜力和发展空间。
纳滤膜技术及应用介绍
纳滤膜技术及应用介绍纳滤膜技术是一种通过纳米孔径膜进行分离和过滤的膜技术。
纳滤膜又称为纳米滤膜,其孔径通常在1-100纳米之间,比传统微滤膜的孔径小得多。
由于其极小的孔径,纳滤膜能够有效地分离和过滤大部分微观粒子和溶质,具有高效、高选择性和高通量的特点。
它广泛应用于饮用水处理、废水处理、生物医药、食品饮料、化工等领域,具有重要的应用价值。
纳滤膜技术的应用领域非常广泛。
首先,它在饮用水处理和废水处理领域发挥着重要作用。
纳滤膜通过其微小的孔径可以有效地去除水中的微生物、细菌、病毒、重金属离子和有机物质等有害物质,从而提高水质水量。
其次,在生物医药领域,纳滤膜被广泛应用于生物制药的药品提纯、细胞分离、蛋白质纯化等方面。
由于其高选择性和高通量的特点,纳滤膜具有良好的吸附性能和分离效果,能够有效提高生物医药制药工艺的效率和质量。
此外,纳滤膜还被广泛应用于食品饮料行业。
例如,纳滤膜可以用于果汁的澄清和浓缩、啤酒的酵母分离、乳制品的浓缩和蛋白质分离等工艺中,能够提高食品饮料的品质和口感。
另外,在化工领域,纳滤膜也有着重要的应用。
它可以用于有机溶剂的回收、脱盐水的处理、工业废水的处理等方面,满足工业生产中对溶剂和水质的要求,减少污染物的排放,保护环境。
纳滤膜技术的发展历程可以追溯到20世纪60年代初,起初主要用于海水淡化和废水处理。
在过去的数十年里,随着纳米技术和膜技术的不断发展,纳滤膜技术得到了长足的发展,成为膜分离技术的重要分支之一。
纳滤膜的制备方法多种多样,包括溶液浇铸法、溶胶凝胶法、电渗析法、原子层沉积法等。
这些方法可以制备不同材质和结构的纳滤膜,如聚合物膜、陶瓷膜、金属膜等,以满足各种不同领域的需求。
纳滤膜的材料选择对其性能和应用起着至关重要的作用。
目前常见的材料包括聚丙烯、聚四氟乙烯、聚醚砜、聚醚酮、纳米复合膜等。
这些材料具有优异的耐化学腐蚀性、耐高温性和机械强度,能够满足不同工艺条件下的使用需求。
膜分离技术的研究进展及当前应用领域和前景展望
膜分离技术的研究进展及当前应用领域和前景展望丁西(江南大学食品学院,江苏无锡)摘要:介绍了膜分离技术的发展,综述了微滤、超滤、纳滤、反渗透、电渗析的分离原理,各种膜分离过程的影响因素。
并且概述了膜分离技术在当前各领域的应用,着重介绍了膜分离技术在乳制品加工、油脂加工和葡萄酒酿造等方面的应用,并展望了膜分离技术的发展前景。
关键词:膜分离技术;原理;应用;前景膜分离技术是一项高新技术,虽然二百多年以前人们便已发现膜分离现象,但直到20世纪60年代开始,由于美国埃克森公司第一张工业用膜的诞生,膜技术才进入快速发展时期。
膜技术的发展虽然不长,但因为膜技术独具优越性,目前在工业中已得到广泛的应用,例如在环保、水处理、化工、冶金、能源、医药、食品、仿生等领域。
膜分离技术是指借助于外界能量或化学位差的推动,通过特定膜的渗透作用,实现对两组分或多组分混合的液体或气体进行分离、分级、提纯以及浓缩富集的技术。
目前常见的膜分离过程可分为以下几种,微滤(Microfiltration,MF)、超滤(Ultrafiltration,UF)、纳滤(Nanofiltration,UF)、反渗透(Reverseosmosis,RO)、电渗析(Electrodialysis,ED)等。
膜分离技术具有过程简单、无二次污染、分离系数大、无相变、高效、节能等优点,操作无需特许条件,可在常温下进行,也可直接放大。
对于性质相似组分的分离,该技术具有独特优势,而且可以与常规分离方法联合应用。
世界上许多国家都把它作为国家的重点发展项目。
欧、美、日等发达国家目前在该技术上已处于领先地位;我国从“六五”到973 计划也一直将其列为重点支持项目,国发展改革委员会颁布了组织实施膜技术及其应用产业化专项公告。
1.膜分离技术的分离原理和特点1.1微滤微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05~10μm之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。
《2024年膜分离技术的研究进展及应用展望》范文
《膜分离技术的研究进展及应用展望》篇一一、引言膜分离技术是一种基于膜的物理分离过程,具有高效、节能、环保等优点,被广泛应用于水处理、生物医药、食品工业、能源等多个领域。
近年来,随着科学技术的发展和人们对于节能环保要求的提高,膜分离技术得到了快速发展,不仅在理论上进行了大量的研究,同时在实践中也得到了广泛的应用。
本文将主要就膜分离技术的研究进展及其应用前景进行综述和展望。
二、膜分离技术研究进展(一)技术分类与特性根据不同原理和用途,膜分离技术主要分为微滤(MF)、超滤(UF)、纳滤(NF)和反渗透(RO)等。
微滤主要用于去除大颗粒物质;超滤则能去除病毒和部分大分子物质;纳滤则介于超滤和反渗透之间,具有较高的截留分子量;反渗透则能实现高盐分和低盐分的分离。
这些技术各自具有独特的特性和应用领域。
(二)技术原理及研究进展膜分离技术的原理主要是利用膜的选择透过性进行物质分离。
在技术上,研究主要集中在新型膜材料的开发、膜制备工艺的优化以及膜的抗污染性等方面。
随着材料科学的发展,越来越多的新型膜材料如纳米复合膜、有机-无机复合膜等被开发出来,这些材料具有更高的通量、更好的截留性能和更长的使用寿命。
此外,膜的制备工艺也在不断优化,如热致相分离法、界面聚合法等,这些方法提高了膜的制备效率和性能。
三、应用领域及案例分析(一)水处理领域在水处理领域,膜分离技术被广泛应用于海水淡化、饮用水处理、污水处理等方面。
例如,在海水淡化中,反渗透技术能有效去除海水中的盐分和杂质,实现海水淡化的目标。
在饮用水处理中,超滤和纳滤技术能有效去除水中的细菌、病毒和部分大分子有机物,提高饮用水的安全性。
(二)生物医药领域在生物医药领域,膜分离技术被用于药物提纯、生物大分子分离等方面。
例如,利用纳滤技术可以有效地从中药提取液中提取出有效成分;利用超滤技术可以有效地去除生物制品中的杂质和病毒等污染物。
(三)食品工业领域在食品工业领域,膜分离技术被用于果汁澄清、乳品加工等方面。
微滤、超滤、纳滤和反渗透技术的最新进展
微滤、超滤、纳滤和反渗透技术的最新进展微滤、超滤、纳滤和反渗透技术的最新进展1. 引言水是生命之源,无论是工业生产还是人类生活,都离不开水资源。
然而,随着人口的增加和工业化的推进,水资源的供应和污染问题日益突出。
传统的水处理技术已经无法满足当前的需求,因此,微滤、超滤、纳滤和反渗透等新兴水处理技术应运而生。
本文将介绍这些技术的原理、应用和最新进展。
2. 微滤技术微滤技术是利用孔径为0.1-10μm的微孔膜进行物质分离和净化的技术。
其原理是通过压力差驱动,使水从微孔膜的上游向下游流动,而较大分子、悬浮物、细菌等则被截留在膜表面。
微滤技术可以广泛应用于饮用水处理、污水处理、海水淡化等领域。
近年来,微滤膜材料的研发、膜模块的改进和操作条件的优化等方面取得了很多进展,提高了膜的分离性能和经济性。
3. 超滤技术超滤技术是利用孔径为0.001-0.1μm的超滤膜对水进行分离和净化的技术。
超滤技术相比微滤技术具有更高的分离效率和更小的孔径。
其原理与微滤技术类似,但可以有效地去除更小的颗粒和胶体物质。
超滤技术广泛应用于饮用水处理、废水回用和深度处理等领域。
近年来,超滤膜材料的研发、膜孔径的控制和膜组件的优化等方面取得了重要进展,提高了超滤膜的分离性能和稳定性。
4. 纳滤技术纳滤技术是利用孔径为1-100纳米的纳滤膜对水进行过滤和分离的技术。
纳滤技术相比超滤技术具有更高的分离效率和更小的孔径,可有效去除胶体和高分子有机物。
纳滤技术广泛应用于饮用水处理、工业废水处理和生物制药等领域。
近年来,纳滤膜材料的改良、膜表面修饰和操作参数的优化等方面取得了重要突破,提高了纳滤技术的分离效率和稳定性。
5. 反渗透技术反渗透技术是利用半透膜对水进行分离和富集的技术。
其原理是通过施加较高的压力使水分子逆向渗透,从而去除溶解在水中的溶质和杂质。
反渗透技术广泛应用于海水淡化、废水处理、生产纯水等领域。
近年来,反渗透膜的制备工艺、膜材料的改进和膜模块的优化等方面取得了显著进展,提高了反渗透技术的分离效率和经济性。
2024年纳滤膜市场环境分析
2024年纳滤膜市场环境分析引言纳滤膜是一种用于过滤物质的薄膜,通常由有机或无机材料制成。
近年来,纳滤膜在各个领域得到了广泛应用,包括食品与饮料、制药、化工等行业。
本文将对纳滤膜市场的环境进行分析,以了解该市场的发展趋势和机会。
1. 市场规模与增长潜力纳滤膜市场在过去几年中保持了稳定增长的态势。
根据市场研究机构的数据,全球纳滤膜市场规模在2020年达到了XX亿美元,并预计在未来几年内将保持5%的年均增长率。
这主要得益于纳滤膜在水处理、食品与饮料以及制药等领域的广泛应用。
2. 技术发展趋势随着技术的不断进步,纳滤膜的性能也得到了显著提升。
新型纳滤膜采用了更先进的材料和制备工艺,具有更高的分离效率和更长的使用寿命。
此外,一些公司还通过研发新的纳滤膜材料,如石墨烯等,以进一步提高性能并开拓新的应用领域。
3. 市场驱动因素纳滤膜市场的增长主要受到以下几个因素的驱动:3.1 水处理行业的需求增加随着全球水资源短缺问题的日益突出,水处理行业对纳滤膜的需求不断增加。
纳滤膜能有效去除水中的悬浮固体、细菌和病毒等有害物质,提高水质,满足人们对清洁饮用水的需求。
3.2 食品与饮料行业的发展纳滤膜在食品与饮料行业中被广泛应用于液体分离和浓缩过程,用于去除悬浮颗粒、微生物和其他杂质。
随着消费者对食品质量和安全性要求的提高,食品与饮料行业对纳滤膜的需求也在增加。
3.3 制药行业的持续发展纳滤膜在制药行业中被用于药物分离、浓缩和纯化等过程。
随着人们健康意识的提高和医疗水平的不断改善,制药行业的发展将继续推动纳滤膜市场的增长。
4. 市场竞争格局纳滤膜市场竞争激烈,主要的纳滤膜供应商包括美国的GE公司、日本的东丽公司、德国的索特华与英国的普罗德斯与依诺德等。
这些公司通过技术创新、产品质量和服务水平的提高来提升自身在市场中的竞争力。
5. 市场前景与机会纳滤膜市场的前景广阔,主要体现在以下几个方面:5.1 新兴应用领域的发展除了传统的水处理、食品与饮料和制药等领域,纳滤膜在环保、能源和电子等新兴领域也具有广阔的应用前景。
纳滤复合膜的制备及其在水处理中的研究进展
第6期 收稿日期:2020-12-22基金项目:国家自然科学基金资助项目(51803150)作者简介:翟笑影(1994—),女,河南人,硕士学历,主要从事纳滤催化膜的制备及性能方面的研究;通信作者:陈熙(1977—),教授,主要从事高分子功能膜材料在催化、分离、吸附方面的应用研究。
纳滤复合膜的制备及其在水处理中的研究进展翟笑影1,2,马永迪1,2,王建祖1,2,王帅1,2,史圆圆1,2,史鑫1,2,陈熙1,2(1.天津工业大学材料科学与工程学院,天津 300387;2.天津工业大学省部共建分离膜与膜过程国家重点实验室,天津 300387)摘要:近年来,工业发展迅速,水污染问题日益严重。
纳滤膜在脱盐和废水处理方面得到了广泛应用,但仍然存在着小分子有机污染物去除能力不强的缺陷。
将膜的纳滤性能与催化耦合可以克服纳滤膜分离的瓶颈,有效提高水处理能力。
本文简要介绍了纳滤膜及其催化纳滤复合膜的制备方法以及应用。
关键词:纳滤;膜分离;催化中图分类号:TQ028.8 文献标识码:A 文章编号:1008-021X(2021)06-0091-02ResearchProgressofNanofiltrationandCatalyticCompositeMembranesZhaiXiaoying1,2,MaYongdi1,2,WangJianzu1,2,WangShuai1,2,ShiYuanyuan1,2,ShiXin1,2,ChenXi1,2(1.SchoolofMaterialsScienceandEngineering,TiangongUniversity,Tianjin 300387,China;2.StateKeyLaboratoryofSeparationMembranesandMembraneProcesses,TiangongUniversity,Tianjin 300387,China)Abstract:Inrecentyears,industryhasdevelopedrapidlyandwaterpollutionhasbecomeincreasinglyserious.Nanofiltrationmembraneshavebeenwidelyusedindesalinationandwastewatertreatment,butstillhavethedefectthattheremovalofsmallmolecularorganicpollutantsisnotstrong.Couplingthenanofiltrationperformanceofthemembranewithcatalysiscanovercometheseparationbottleneckofthenanofiltrationmembraneandeffectivelyimprovethewatertreatmentcapacity.Thisarticlebrieflyintroducesthepreparationmethodsandapplicationsofnanofiltrationmembranesandtheircatalyticnanofiltrationcompositemembranes.Keywords:nanofiltration;membraneseparation;thecatalytic 膜分离是近几十年来出现的一种重要的分离技术。
纳滤膜的发展历程
纳滤膜的发展历程纳滤膜(Nanofiltration membrane)是一种过滤膜技术,其孔径在纳米级别,介于超滤膜和反渗透膜之间。
纳滤膜的发展历程可以追溯到20世纪60年代末。
下面将对纳滤膜的发展历程进行简要介绍。
1967年,美国化学家雷恩金(Reynolds)在一项研究中首次提出了纳滤的概念。
他提出了一种新型膜材料,能够通过纳滤作用实现高通量的离子分离,这为纳滤膜的研究奠定了基础。
1970年代,纳滤膜的研究进展比较缓慢。
科研人员主要关注传统的膜材料如聚醚砜(PES)和聚酯(PET)的纳滤性能改善和优化。
然而,由于限制性较强的孔隙结构和表面电荷效应,纳滤膜的选择性和通量仍然有限。
1980年代至1990年代初,纳滤膜的发展进入了一个新的阶段。
科研人员开始研究和开发新型纳滤膜材料,如聚酰亚胺(PI),聚胺酯(PU)和聚酰胺(PA)。
这些材料具有更高的渗透性和选择性,可以更有效地分离溶质和溶剂。
2000年以后,随着纳米技术的发展,纳滤膜研究进入了一个全新的时代。
科研人员开始探索纳米级孔隙结构和介孔材料在纳滤膜中的应用。
利用纳米材料的特殊性质,如高比表面积和调控孔径大小,纳滤膜的分离性能得到极大的提升。
目前,纳滤膜已经广泛应用于多个领域。
例如,纳滤膜可以用于废水处理,去除溶解性有机物、重金属和离子等;在饮用水处理中,纳滤膜可以去除微生物、有机物和颗粒物。
同时,纳滤膜还可用于食品加工、药物分离纯化、微胶囊制备等。
总之,纳滤膜的发展经历了几十年的探索和进步。
随着材料科学和纳米技术的不断发展,纳滤膜的性能不断改善,应用领域也得到不断拓展。
未来,随着科学技术的不断进步,纳滤膜有望在更多领域发挥作用。
纳滤膜市场分析报告
纳滤膜市场分析报告1.引言1.1 概述概述纳滤膜,即纳米过滤膜,是一种具有微孔结构的薄膜,能够有效过滤掉微小至纳米级别的颗粒和溶质。
纳滤膜应用广泛,涵盖水处理、生物制药、食品与饮料等多个领域。
随着环境污染日益严重,以及人们对生活品质和健康安全的需求不断提高,纳滤膜市场正迅速发展壮大。
本文旨在对纳滤膜市场进行全面分析,并就其市场概况、需求分析、竞争格局、发展趋势和前景展望等方面进行深入探讨,为相关行业的从业者和投资者提供有益的参考和指导。
文章结构部分的内容可以写成:1.2 文章结构:本报告分为引言、正文和结论三个部分。
引言部分将对纳滤膜市场进行概述,介绍本报告的结构和目的,并对纳滤膜市场进行总结。
正文部分将分析纳滤膜市场的概况、需求情况和竞争格局。
结论部分将对纳滤膜市场的发展趋势、前景展望进行分析,并总结全文。
通过这样的结构安排,读者可以系统地了解纳滤膜市场的现状和未来发展趋势。
1.3 目的:本报告旨在对纳滤膜市场进行全面的分析和研究,以深入了解当前纳滤膜市场的发展现状、需求情况和竞争格局。
通过对市场趋势和前景的展望,为相关企业和投资者提供决策参考,促进纳滤膜行业的健康发展和持续增长。
同时,本报告也旨在为行业内外的相关人士提供关于纳滤膜市场的全面了解,为未来的研究和实践提供参考依据。
1.4 总结纳滤膜市场是一个充满活力和潜力的领域,随着环境污染和水资源紧缺问题的日益突出,纳滤膜作为一种高效的膜分离技术,在水处理、废水处理、医药、食品等领域有着广泛的应用前景。
市场需求不断增长,但也面临着激烈的竞争格局和技术挑战。
在未来的发展趋势中,纳滤膜行业将持续创新,不断提升产品性能和技术水平,加大投入研发力度,开发出更加环保、高效的纳滤膜产品。
同时,行业竞争将更加激烈,企业需要不断优化产品结构,提高品牌影响力和市场竞争力,拓展国内外市场,实现可持续发展。
综上所述,纳滤膜市场在未来将迎来更多的机遇和挑战,积极应对市场变化,不断创新是企业持续发展的关键。
膜技术的研究现状及应用研究进展
膜技术在水处理中的应用膜技术被称为是21世纪的水处理技术,是近40年来发展最迅速、应用最广泛的技术。
膜技术在水处理中应用的基本原理是:利用水溶液(原水) 中的水分子具有透过分离膜的能力,而溶质或其他杂质不能透过分离膜,在外力作用下对水溶液(原水) 进行分离,获得纯净的水,从而达到提高水质的目的。
郑州益源天泽环境科技有限公司与传统水处理技术相比,膜技术具有节能、投资少、操作简便、处理效率高等优点,膜技术的应用给人类带来了巨大的环境和经济效益。
1、膜技术在给水处理中的应用发达国家如法国、荷兰、美国等已有越来越多的人口饮用采用膜技术生产的饮用水:法国有一座产水量高达314×105 m3/d 的膜法净水厂;英国建设的膜净水厂最大产水量达到80000 m3/d。
郑州益源天泽环境科技有限公司在淡水资源缺乏的地区,以海水、苦碱水或处理后的市政污水作为直接或间接饮用水源(回灌地下作为地下饮用水源) , 已成为拓展现有水供应的有效方法,如1993年巴黎郊区建成一座产水量为2800 m3/d 的纳滤净水厂,利用经传统工艺处理后的地表水生产饮用水,此地表水经过三级纳滤系统处理,可有效去除其中的杀虫剂及THAs 前体。
在全世界范围内已建成的以二级市政污水为水源生产高质量饮用水的示范性膜法净水处理厂中,以美国科罗拉多州丹佛市的膜法水处理厂最为有名,其处理系统中的反渗透装置发挥着去除总溶解性固体和有机污染物的作用。
2、膜技术在废水处理中的应用膜技术在郑州益源天泽环境科技有限公司废水处理方面的研究和应用几乎涉及到废水处理的各个领域,包括电泳漆废水和石油、化工、纺织、食品加工、造纸、医药、机械加工等行业的废水处理。
近年来,随着环境污染的加剧和水资源的枯竭,人们对水的循环再利用、深度处理的呼声和要求越来越高,如何尽可能多地回收利用现有的水资源已成为人们关注的焦点,废水作为一种资源的观点也逐渐被公众所接受。
膜技术在废水处理中的应用也向综合利用方向转变,一些新的膜过程不断地得到开发研究,如膜软化、渗透汽化、膜蒸馏、支撑膜液、膜生物反应器、仿生膜及生物膜等过程的研究工作不断深入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国纳滤膜研制及应用技术进展发表时间:2009-05-25T12:59:11.140Z 来源:《中小企业管理与科技》2009年4月上旬刊供稿作者:刘映[导读] 近年来,纳滤技术已经成为膜分离领域的研究热点,并在制药、生物化工、食品、水处理等诸多领域广泛应用。
摘要:纳滤膜出现在上世纪八十年代,1993年,高从堦院士在国内首次提出纳滤膜概念[1],近年来,纳滤技术已经成为膜分离领域的研究热点,并在制药、生物化工、食品、水处理等诸多领域广泛应用。
关键词:纳滤膜膜技术水处理0 引言纳滤技术介于超滤和反渗透之间的一种膜分离技术, 其截留分子量在200~1000范围,孔径为几纳米,其分离对象的粒径为约1nm。
纳滤膜有着很多显著的优点,例如操作压力低,通量高,对离子形式的盐和一些有机分子的高效去除能力,而设备投资和运行保养的费用却很低。
正是因为这些优点,纳滤技术在世界范围内的各个领域被越来越多的应用。
纳滤膜出现在上世纪八十年代,1993年,高从堦院士在国内首次提出纳滤膜概念[1],近年来,纳滤技术已经成为膜分离领域的研究热点,并在制药、生物化工、食品、水处理等诸多领域广泛应用。
1 纳滤膜的研制1.1 醋酸纤维素类纳滤膜周金盛等人[2]应用相转化法制备了醋酸纤维素(CA)-三醋酸纤维素(CTA)不对称纳滤膜。
针对CA/CTA比,混合溶剂比例,添加剂和制膜条件等因素对膜性能的影响进行了研究。
所制得的膜在操作压力1MPa和进水温度5~25℃条件下,对1000mg/L的NaCl水溶液脱盐率达到了15~60%,而对1000mg/Na2SO4水溶液脱盐率为85~98%。
刘玉荣等人[3]对醋酸纤维纳滤膜连续成膜工艺进行了研究,确定了连续制备醋酸纤维纳滤膜的工艺条件。
在机制膜制备中,材料的毛疵点可能导致膜面的疵点和缺陷。
而材料表面的微细的软毛,则有利于铸膜液与增强材料的结合,使膜不宜从增强材料上剥离。
醋酸纤维类纳滤膜是早期在膜市场投入生产的产品,但使纳滤膜大量应用于生产实践当中并迅速发展的,是复合型纳滤膜的出现。
1.2 复合纳滤膜 1993年,高从堦在国内首先采用界面缩聚法制备芳香族聚酰胺复合纳滤膜(PA类纳滤膜)的是,并指出该膜对MgSO4的脱盐率优于NaCl,可用于水质的软化。
岑美柱和章勤等人[4]采用高取代度氰乙基纤维素与二醋酸纤维素共混为膜材料,丙酮、二氧六环混合溶剂,以有机醇为主、加入适量其他添加剂为致孔剂,通过冰水凝胶浴干湿法纺丝,制得性能良好的中空纤维纳滤膜,该膜在给水质量浓度1800mg/L、操作压力为0.6MPa、水温25℃条件下,对二价盐CaCl2、一价盐NaCl的水溶液的脱盐率分别大于90%和小于60%,水通量均大于3.5mL/(cm2·h)。
于品早[5]以聚偏氟乙酸(PVDF)为第二组分聚合物与三醋酸纤维素(CTA)共混,通过冻胶法纺丝工艺制备成中空纤维纳滤膜。
研究了固含量,纺丝工艺和后处理条件对膜性能的影响,并测试了不同操作条件下的模性能,取得了满意的结果。
1.3 荷电纳滤膜1.3.1 荷负电纳滤膜鲁学仁[6]以丙烯酸-丙烯腈共聚物为荷电材料,以聚砜酰胺(PSA)为基膜研制了荷负电的纳滤膜。
对共聚物的合成,荷电剂浓度,反应温度和反应时间等制膜条件进行了系统试验。
同时还研究了荷电膜离子交换容量与膜性能的关系。
制得的膜在0.6MPa下,对自来水脱盐率为40~50%,水通量为5~10mL/(cm 2·h),IEC为6.0×10-4~8.0×10-4meq/cm2。
苗晶等人[7]采用均相合成的方法制备了一种典型的两性聚电解质-壳聚糖硫酸酯(SCS)。
以SCS的水溶液为复合纳滤膜活性层铸膜液,戊二醛为交联剂,聚砜超滤膜为基膜,采用涂敷与交联的方法制备了壳聚糖硫酸酯/聚砜(SCS/PSF)复合纳滤膜,采用环境扫描电镜(ESEM)对其表面和断面结构进行了表征,并研究了活性层铸膜液的组成及制备条件对复合膜截留性能的影响。
所制得的复合NF膜在13~15℃、0.30MPa下,对1000mg·L-1Na2SO4和NaCl溶液的截留率分别为91.2%、48.5%,通量分别为3.2、6.7kg·m-2·h-1。
SCS/PSF系列复合膜对无机盐的截留顺序为:Na2SO4>NaCl> MgSO4>MgCl2。
实验结果表明SCS/PSF复合膜表面活性层因吸附电解质溶液中的阴离子而荷负电,并由此决定其对无机盐的截留性能。
1.3.2 荷正电纳滤膜杨艳红和方文骥[8]以聚乙烯亚胺(PEI)和均苯三甲酰氯(TMC)为反应单体,采用界面聚合法制备了一种荷正电纳滤膜。
通过均匀实验设计,得出的优化条件为:PEI浓度为1.75%,十二烷基硫酸钠(SDS)浓度为0.1%,酸接受剂(Na2CO3:NaOH=2∶1)浓度为0.3%(均为质量浓度),界面聚合反应时间(IPT)为2min,膜对一价盐的截留率均在30%左右,对二价盐的截留率接近70%,对低分子有机染料的截留率达90%以上。
2 水处理当中的应用2.1 自来水深度处理崔崇威等人[9]依据大庆水源水质特点确定优质桶装水的生产工艺为:自来水—多介质过滤—臭氧化—生物活性碳过滤—精密过滤—纳滤—臭氧紫外双重消毒—自动化灌装。
纳滤浓水水质分析表明优于原水,提出将其回用于工艺中,结果表明:纳滤浓水的回用可以使桶装饮用水保留一部分人体所需的矿物质,同时提高水的硬度,达到优质桶装水的要求。
组合工艺对有机污染物去除效率较高,出水高锰酸盐指数小于110mg/L,效果稳定。
纳滤膜操作压力低,可使原水部分脱盐,阴离子截留率按NO3-、Cl-、F-、SO42-顺序递增;尤其对该地区水中含量较高的F-有良好的去除效果;阳离子截留率按Na+、K+、Mg2+、Ca2+顺序递增,对高价离子的去除率大于其对一价离子的去除率,对水中无机和有机污染物都具有独特的分离特性。
朱安娜等人[10]针对磁场应用于自来水纳滤软化过程的初步研究表明:与同样条件下的对照实验相比,磁场的存在可以减缓纳滤膜通量衰减的速度。
对膜面结垢的电镜分析发现,磁场引入纳滤膜过程可导致膜面结晶形态的改变。
不加磁场的纳滤过程中,膜面上主要生成颗粒状的方解石;加磁场的纳滤过程中,膜面上针形文石的含量增高,且大多形成团簇结构。
纳滤膜面上针形导磁极后在膜面上以S-N的结合次序形成链状结晶。
2.2 地表水处理地表水的成分与其中的化学物质往往随着季节的变化或是雨后地表冲积物而变化,虽然在处理地表水的过程中我们主要去除的是有机物而不是硬度,纳滤膜仍然是很可靠的选择之一。
李灵芝和王占生[11]以分别以太湖水和淮河水为水源的两地水厂出厂水为研究对象,研究纳滤膜组合工艺对饮用水中可同化有机碳和致突变物的去除效果。
研究表明,纳滤膜对可同化有机碳的去除率为80%,能确保饮用水的生物稳定性,对致突变物的去除率大于90%,使Ames实验结果由阳性转为阴性,对两地不同原水均能生产出安全优质的饮用水。
2.3 废水处理纳滤技术作为一种高效经济的处理手段,已经被应用于很多废水处理工艺当中。
王昕彤和孙余凭[12]采用TFC-S型纳滤膜对含镍废水进行回收处理。
在试验中研究了试验温度、操作压力、进料流率和溶液中Ni2+的质量浓度对Ni2+的质量截留率和透过流率的影响。
料液中Ni2+的质量浓度由30mg/L,经过处理浓缩至17.7g/L,浓液达到直接回用于镀槽的要求,99%的透过液可以达到回用标准,并且回收了约99%的镍。
采用NF膜处理含镍废水具有流程简单、投资小、操作费用低、物料分配合理等特点,适用于工业应用。
牟旭凤[13]对应用聚合物辅助无机膜处理模拟放射性废水进行了研究,比较了相对分子质量分别为8000、50000、和100000的三种聚丙烯酸和截流分子量为1000、3000、8000的无机膜对模拟放射性废水的处理效果。
研究表明聚合物辅助超滤/纳滤技术可以有效地去除沸水中的Sr2+和Co2+,且当采用相对分子量为100000的聚丙烯酸辅助截留相对分子量为8000的无机膜超滤时,去除效果最好。
3 海水淡化目前传统工艺中反渗透海水淡化的回收率小于40%。
陈益棠等人[14]研究开发了死端超滤预处理技术和反渗透-纳滤联合脱盐相结合的膜集成海水淡化新工艺,与传统工艺比较,具有装置体积小,产水回收率高等优点。
以沿岸海水为料液,操作压力1为5.1MP条件下,操作压力2为2.0MPa条件下,装置脱盐率99.21%,产水量397.3L/h产水回收率55%。
海水淡化装置对海水中Ca2+、Mg2+、Na+、HCO3-、Cl-、SO42-、TDS、总碱度、总硬度的去除率分别为99%,99.6%,99.21%,95%,99.35%,98.48,,99.21%,95%,99.4%。
与传统工艺产水成本进行了比较,结果表明:新工艺的总设备直接投资费分别毕回收率为20%和40%时的传统工艺下降20.06%和6.27%。
其中,预处理设备投资费用分别下降43.41%和19%;操作费用中的能源费分别下降13.33%和7.14%。
王玉红等人[15]选择了ESNA1型纳滤膜对NaCl、MgCl2、Na2SO4、MgSO4等4种无机单盐水溶液体系进行分离实验;考察操作压力和料液浓度等的变化对纳滤膜分离性能的影响及纳滤膜脱盐的稳定性,得到一些纳滤膜脱盐的规律;并对ESNA1膜在人工海水和海水软化脱盐中的应用作了初步探索。
无机盐体系脱盐实验结果显示:随操作压力升高和料液浓度增大,ESNA1膜对4种盐溶液中的离子的截留率分别增大和减小,操作压力和料液浓度的变化对一价盐溶液的截留率影响较大,对二价盐溶液的截留率影响较小。
人工海水和海水软化脱盐试验结果显示:ESNA1纳滤膜在实验过程中稳定性好,在较低的操作压力下膜通量也较高,且ESNA1纳滤膜对Ca2+、Mg2+、SO42-离子的截留率均>90%,初步判断此种纳滤膜可用于海水软化预处理。
4 其他应用4.1 药物浓缩为探索膜分离技术在螺旋霉素(SPM)生产提取中的适用情况,韩少卿等人[16]采用超滤、纳滤对工业生产的螺旋霉素板框过滤液进行处理,实验结果表明,操作压力、操作时间及料液流速对超滤过程有很大影响,本实验所用膜件较好的去除了蛋白等大分子杂质,起到纳滤预处理作用;然后采用纳滤膜对超滤液进行浓缩纯化,操作条件如进料压力、料液pH、浓缩倍数及操作方式对纳滤过程均有很大影响。
应用超滤、纳滤技术提取SPM,其收率可达76.3%,大大高于传统溶媒提取收率,产品质量也符合要求。
冉艳红和陈万群[17]对凉茶中草药水提取液进行了纳滤浓缩有效成分的研究,证明纳滤浓缩凉茶中草药提取液是可行的。