第三章 一元函数积分学

合集下载

一元函数积分学——不定积分与定积分的概念、性质及应用

一元函数积分学——不定积分与定积分的概念、性质及应用


原式=∫
x2 − x
1 dx

2∫
1 dx
1− x2
=

xdx


dx x

2
arcsin
x
= 1 x2 − ln x − 2arcsin x + C
2
例4
求积分

1
+
1 cos
2
x
dx.

原式=

1+
1 2 cos2
x
dx −1
=
1 2

1 cos2
x
dx
= 1 tan x + C.
2
13
∫ 例5 求积分
如 cos x 的原函数的一般表达式为
sin x + C(C为任意常数)
1 在(0,+∞)的原函数的一般表达式为
x ln x + C(C为任意常数)
4
定义3.2(不定积分的定义)
若F(x) 是 f (x)在区间I内的一个原函数,则 f (x) 的原函数的一般表达式 F(x) + C (C为任意常数)
∫3
2
例2 求积分
( x2 −
)dx. 1− x2
1
1

原式= 3∫ x2 dx − 2∫
dx 1− x2
= − 3 − 2arcsin x + C x
9
2. 基本积分公式
实例
x µ+1 ′ = x µ
µ +1
∫ ⇒ xµdx = xµ+1 + C . µ+1 (µ ≠ −1)

高数强化第三章《一元函数积分学》(思维导图)

高数强化第三章《一元函数积分学》(思维导图)

第三章一元函数微分学不定积分基本概念原函数不定积分原函数的存在性连续函数一定有原函数区间上有第一类间断点,在该区间没有原函数存在第二类间断点,可能有,可能无不定积分的性质基本积分公式三种主要积分法第一类换元法(凑微分法)第二类换元法分部积分法三种常见可积函数积分有理函数积分三角有理式积分①万能代换(一般法)②三角变形,换元,分部(特殊法)简单无理函数积分令根号下的一堆=t反常积分(广义积分)无穷区间上的反常积分定义定理1)比较判别法2)比较法的极限形式3)P积分无界函数的反常积分定义定理1)比较判别法2)比较法的极限形式3)P积分定积分应用几何应用平面图形的面积直角坐标系极坐标系空间体体积旋转体体积二重积分、元素横截面面积的体积常用曲线:双纽线摆线星形线心形线(数三)经济学中的应用常见函数边际函数、边际分析弹性函数、弹性分析注意需求价格弹性的正负!定积分概念分匀合精几何意义一重:线与坐标轴围成的面积二重:线与线围成的面积有正负可积性(存在)充分条件函数在[a,b]连续,积分存在在[a,b]有界,且只有有限个间断点,积分存在在[a,b]上只有有限个第一类间断点,积分存在必要条件积分存在,函数在[a,b]有界计算(值)牛顿莱布尼茨公式换元积分分部积分利用奇偶性、周期性公式点火公式∫(0,π)xf(sinx)dx=π/2∫(0,π)f(sinx)dx变上限积分定积分性质不等式积分中值定理积分中值定理、广义积分中值定理常见题型不定积分计算不定积分不定积分杂例多做,积累题型定积分概念、性质、存在准则定积分概念、性质、几何意义连乘形式:①夹逼②取对数也有不等式和积分中值定理的使用定积分计算先考虑下奇偶性,但有些题可能直接做更简便总结计算方法变上限积分函数及其应用连续性:f(x)在[a,b]可积,则变上限积分在[a,b]连续可导性:变上限积分在区间除x0点外均连续,则在x0处①连续②可去③跳跃的可导性及值理解!!记住!P112奇偶性:第一章函数奇偶性处理变上限积分常用:洛必达、等价无穷小代换、积分中值定理积分不等式定积分不等式性质变量代换积分中值定理变上限积分可以将f(x)与其导数联系起来柯西积分不等式反常积分反常积分的敛散性1)比较判别法2)比较法的极限形式3)P积分反常积分计算核心用法:换元、分部要积累!定积分应用几何应用先画草图!经济学中的应用关联。

高等数学 第三章 一元函数微积分学及其应用

高等数学 第三章 一元函数微积分学及其应用

x x0
x0
x
xx0
x x0
存在,则称该极限为 y f x 在点 x0 处的导数,记为
dy
df (x)
f x0 , y xx0 , dx xx0 或
dx xx0
10
二、导数的定义
第三章 一元函数微分学及其应用
这时也称函数 y f x 在点 x0 处可导.
如果该极限不存在,称函数 y f x 在点 x0处不可导 .
例1 求函数 y ln x 在点 x e 处的切线斜率.

k lim f (x) f (x0 ) = lim ln x ln e
x x0
x x0
xe x e
ln x = lim e
xe x e
lim
ln 1
xe e
xe
xe
所以
xe lim e 1
xe x e e
第三章 一元函数微分学及其应用
y
此刻切线的斜率即为 k lim y y0 lim f (x) f (x0 )
x x xx0
0
x x0
x x0
y f x
N Δy T
从上面的例子可以看出, 在求切线斜率的过
程中, 需要用到极限
lim f (x) f (x0 )
x x0
x x0
M C
α
Δx
O
x0
xx
7
二、导数的定义
故 y x2
在 x=0处导数为零,即
dy dx
x x0
0.
O
x
图 3-7
12
二、导数的定义
第三章 一元函数微分学及其应用
例3 求函数 y | x |,在点 x 0 处(见图2-8)的导数.

高数积分

高数积分

例如
1 1 内的原函数. (ln x ) = ( x > 0), ln x 是 在区间(0,+∞ )内的原函数 x x
四川职业技术学院数学教研室

(sin x )

= cos x, sin x 是cos x 的原函数 的原函数.
第三章 一元函数积分学
课题十三 不定积分的概念和性质
2. 原函数存在定理
dy 根据题意知 = 2x , dx 的一个原函数. 即 f ( x ) 是2 x 的一个原函数
∵ ∫ 2 xdx = x + C ,
2
∴ f ( x) = x2 + C ,
2
由曲线通过点( , ) 由曲线通过点(1,2) C = 1, 所求曲线方程为 y = x + 1. 四川职业技术学院数学教研室
d[∫ f ( x)dx] = f ( x)dx
∫ F ′( x)dx = F ( x) + C,
∫ dF ( x ) = F ( x ) + C.
3
结论:求导数(或微分 运算与求不定积分 结论:求导数 或微分 运算与求不定积分的运算 或微分)运算与求不定积分的运算 互逆的 是互逆的. 1 3 2 [例4] 验证等式 ∫ ( x + sin x )dx = x cos x + C成立. 证
y
y = F( x) + C1
y = F(x)
y = F( x) + C2
o
x
四川职业技术学院数学教研室
第三章 一元函数积分学
课题十三 不定积分的概念和性质
3. 不定积分的性质 由不定积分的定义, 由不定积分的定义,可知
性质1: 性质 性质2: 性质

第三章 一元函数积分学

第三章 一元函数积分学

注意 使用此公式的关键在于将
f [( x)] ( x)dx f (( x))d( x) F(( x)) C
即 将 f [(x)](x)dx拼凑成f ((x))d(x)
第一类换元法又称为凑微分法。
例10 求 2x 1dx
解:原式=
1
2
(2
x
1)
3 2
C
23
1
(2
x
1)
3 2
C
3
例14 求 cos2 xdx
分部积分过程:
uvdx udv uv vdu uv uvdx
应用分部积分法时,可按下述步骤计算:
u(x)v'(x)dx u(x)d(v(x) (凑微:定出)
u( x)v( x) v( x)d(u( x)(分部:利用分部积分公式)
u( x)v( x) v( x)u'( x)dx (积分)
由不定积分的定义可知,不定积分就是微分运 算的逆运算。因此,有一个导数或微分公式,就 对应地有一个不定积分公式。
基本积分表
序号
1 2 3 4 5
F (x) f (x)
(kx C) k
( 1 x1 ) x
1 (ln x ) 1
x
( a x ) a x ln a
(e x ) e x
f (x)dx F(x) C
ex )dx
解:原式=
cos x 2arctan x ex C
直接积分法:利用不定积分的运算性质和积分 基本公式直接计算出不定积分的方法。
例7 求
x4 1 x2
dx
解:原式
(
x2
1)( x 2 1 x2
1)
dx
1 1 x2 dx

张宇1000题(最新版)第三章习题详解

张宇1000题(最新版)第三章习题详解

17.【答案】A
∫ ∫ ∫ 【解】根据引力公式可得出引力 F =
l 0
kmµ
(a + x)2
dx
=
−l 0
(
kmµ
a − x)2
d
(

x
)
=
0 −l
(
kmµ
a − x)2
dx
18.【答案】B
【解】选(B)的理由如下:因为 f ′(x) < 0, 所以 f (x) 在[a,b] 上单调减,又因为 f ′′(x) > 0,
cos2
xdx
=

2
π
2 cos2 xdx =2π
0
π 2 0
1
+
cos 2
2
x
dx
=
π2 2
14.【答案】A
【解】双纽线方程的极坐标形式为 r 2 = cos 2θ . 因为曲线围成的区域具有对称性,所以
∫ ∫ S = 4
π 4
1
r
2 (θ
)dθ
=2
π
4 cos 2θ dθ.
02
0
15.【答案】C
−∞
−∞
a
设 f ( x) = x ,则 f ( x) 是 (−∞, +∞) 上连续的奇函数,且 lim ∫ R f ( x)dx = 0 .但是 R→+∞ − R
∫ ∫ ∫ ∫ ∫ 0
f ( x)dx =
0
xdx = ∞ ,
+∞ f ( x)dx =
+∞ xdx = ∞ ,故
+∞ f ( x)dx 发散,这表明命题
【解】曲线 y = x(x −1)(2 − x) 与 x 轴有三个交点 x = 0,1, 2, 且当 0 < x < 1 时 y < 0, 当

D第三章一元函数积分学

D第三章一元函数积分学

(1)1 dx arcxsC in arcxc C o; s 1x2
( 1)2 d x arc x tC a n ac rc o x tC ; 1 x 2
(1)3 sh xdxcx hC;
(1)4 cx h dxsx hC.
例 3 求不定积分
1
a
例 1 求 si n3x(2)dx.
解 对照基本积分表,上式与si表 x ndx相 中, 似
如果把 dx 写成了 d(3x + 2), 那么就可用定理 1 及
sin xdxcox sC, 为此将 dx 写成 dx1d(3x2), 3
代入式中, 那么
sin3(x2)dx 1 sin3x(2)d(x32). 3
令 3x + 2 = u 则
1
3
sinudu 1cosuC1co3sx(2)C.
six n dxcox sC;
(3)因(为 arc x)ta 1 1 n x2或(arccox)t11x2,
所以得
d xarc x tC a n ar cc o x tC ; 1x2
(4)因(为 ex)ex, 所以得
exdxexC.
例2
求不定积分

1 x
dx.
解 被积函 1的 数定义x域 0.为 x
当 x > 0 时,因为(lnx)1, 所以 x
1dxlnxC; x
当 x < 0 时,因l为 n x ()1(1)1,
x x
所以
1dxln( x)C. x
合并以上两种情况,当 x 0 时,得
1dxln| x|C. x
(1)积分曲线族中任意一条曲线, 可由其中某一 条(例如,曲线 y = F(x) ) 沿 y 轴平行移动|C|单位而 得到. 当 C > 0 时,向上移动;当 C < 0 时,向下移动;

(整理)第三章一元函数的积分学

(整理)第三章一元函数的积分学

第三章 一元函数的积分学§1 不定积分【考试要求】1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式.2.掌握不定积分的换元积分法和分部积分法.3.会求有理函数、三角函数有理式的积分和简单无理函数的积分.一、基本概念1.原函数与不定积分定义若()()F x f x '=,(,)x a b ∈,则称()F x 是()f x 在(,)a b 内的一个原函数.(一般地,“在区间(,)a b 内”几个字常省略).若()F x 是()f x 的一个原函数,则()F x C +也是()f x 的原函数(其中C 为任意常数),()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰.若()F x 是()f x 的一个原函数,则()d ()f x x F x C =+⎰.2.不定积分与原函数的关系(1)不定积分与原函数是两个不同的概念,前者是个集合,后者是该集合中的一个元素,因此()d ()f x x F x ≠⎰.(2)设()F x ,()G x 是()f x 的任意两个原函数,则()()F x G x C =+((,)x a b ∈).(3)原函数的几何意义:称()y F x C =+为()f x 的积分曲线,其上横坐标为x 处的切线互相平行.3.原函数存在定理设()f x 在(,)a b 内连续,则在(,)a b 内必有原函数.4.不定积分的基本性质(1)()d ()d kf x x k f x x =⎰⎰ (k 为常数);(2)[()()]d ()d ()d f x g x x f x x g x x ±=±⎰⎰⎰;(3)求导与求不定积分互为逆运算① (()d )()f x x f x '=⎰ ,d ()d ()d f x x f x x =⎰;② ()d ()f x x f x C '=+⎰,d ()()f x f x C =+⎰;5.基本积分公式(熟练掌握)(1)d k x kx C =+⎰;(2)11d 1x x x C μμμ+=++⎰; (3)1d ln ||x x C x=+⎰; (4)d ln x x a a x C a=+⎰; (5)e d e x x x C =+⎰;(6)sin d cos x x x C =-+⎰;(7) cos d sin x x x C =+⎰;(8) 2sec d tan x x x C =+⎰;(9)2csc d cot x x x C =-+⎰;;(10)sec tan d sec x x x x C ⋅=+⎰;(11)csc cot d csc x x x x C ⋅=-+⎰;(12)d arcsin xx C =+⎰;(13)2d arc ta n 1x x C x=++⎰; (14)tan d ln |cos |x x x C =-+⎰;(15)cot d ln |sin |x x x C =+⎰;(16)d arcsin xx C a =+⎰; (17)22d 1arctan x x C a x a a=++⎰; (18)sec d ln |sec tan |x x x x C =++⎰;(19)csc d ln |csc cot |x x x x C =-+⎰;(20)22d 1ln 2x a x C a x a a x +=+--⎰;(21)d ln x x C =++⎰; (22)21arcsin 22a x x C a =++⎰. 6.初等函数的原函数初等函数在其定义区间内必有原函数,但它的原函数不一定是初等函数.不能用初等函数来表示(积不出来)的不定积分如下:2e d x x ⎰, 2e d x x -⎰, sin d x x x ⎰, cos d x x x⎰, 2sin d x x ⎰, 2cos d x x ⎰, d ln x x ⎰,e d x x x⎰,e ln d x x x ⎰,ln |sin |d x x ⎰等.二、不定积分的积分法1.公式法 将被积函数变形,直接利用公式.2.换元法 引入新的变量,再积分.第一类换元法(凑微分法)设()f u 的原函数为()F u ,()u x ϕ=有连续的导数,则[()]()d f x x x ϕϕ'⋅⎰ [()]d ()f x x ϕϕ=⎰()u x ϕ=()()d [()][()]u x f u u F u C F x C ϕϕ==+=+⎰凑微分 换元 积分 变量还原常见的凑微分公式(1)1()d ()d()f ax b x f ax b ax b a+=++⎰⎰,0a ≠;(2)11()d ()d()n n n n f x x x f x x n -=⎰⎰; (3)(e )e d (e )d(e )x x x x f x f =⎰⎰;(4)d 1(ln )(ln )d(ln )x f x f x x x n =⎰⎰;(5)21111()d ()d()f x f x x x x=-⎰⎰; (6)12f x f =⎰⎰; (7)(sin )cos d (sin )d(sin )f x x x f x x =⎰⎰;(8)(cos )sin d (cos )d(cos )f x x x f x x =-⎰⎰;(9)2(tan )sec d (tan )d(tan )f x x x f x x =⎰⎰;(10)2(cot )csc d (cot )d(cot )f x x x f x x =-⎰⎰;(11)21(arctan )d (arc tan )d(arc tan )1f x x f x x x ⋅=+⎰⎰; (12)1(arcsin )d (arcsin )d(arcsin )f x x f x x ⋅=⎰⎰; (13)d xf x f ⋅=⎰⎰;(14)()d ()d ln |()|()()f x f x x f x C f x f x '==+⎰⎰. 第二类换元法设()x t ϕ=单调,有连续的导数,且()0t ϕ'≠,如果[()]()d ()f t t t F t C ϕϕ'=+⎰,则()d f x x =⎰ ()x x ϕ=[()]()d f t t t ϕϕ'⎰1()[()]t x F t C ϕ-==+1[()]F x C ϕ-=+.换元 积分 变量还原3.分部积分法 设()u u x =,()v v x =具有连续的导数,则d d uv x uv u v x ''=-⎰⎰ 或 d d u v uv v u=-⎰⎰称为分部积分公式.4.特殊函数类的积分有理函数:先化为多项式与简单分式,再逐项积分.三角函数有理式:令tan 2x u =,化为有理函数的积分.简单无理函数:引入代换去掉根号,化为有理函数的积分.常用的分项公式如下:(1)111(1)1x x x x=-++; (2)111(1)1x x x x=+--; (3)2211(1)1x x x x x=-++; (4)22211111(1)(1)(1)1(1)x x x x x x x x x =-=--+++++; (5)2222111(1)1x x x x=-++. 常用的三角公式如下:(1)21cos 2cos 2x x +=;(2)21cos 2sin 2x x -=;(3)21sin (sin cos )22x x x ±=±三、典型例题题型1 直接积分法 (即将被积函数分解为几个简单函数的代数和再分项积分)例1 求下列不定积分(1) 231d 5x xx x ++⎰; (2)10d (2)x x x +⎰;(3) 42d x x x +⎰; 解 原式2222d 111d arctan (1)1x x x C x x xx x ⎡⎤==-=--+⎢⎥++⎣⎦⎰⎰.(4)2222+sin sec d 1x x x x x ⋅+⎰; 解 原式精品文档()()2222221+sin 11sec d sec d d 11xx x x x x xx x +-=⋅=-++⎰⎰⎰tan arctan x x C =-+.题型2 换元积分法(第一类和第二类)例1 求下列不定积分(1)2sin cos d 1sin x xx x ⋅+⎰; (2)d x⎰解原式ln dln d u x x u ========⎰⎰⎰11d()2arcsin arc 12u u C --==+=⎰ .(3)3xx ⎰;解原式23221122u x x x x x u========⎰⎰⎰32111(1(1)d(1)222u u u u =+-=++-⎰⎰⎰535222212211[(1)(1)](1)(125353u u C x =+-++=+-+ . (4)sin 222esin d exxxx ⋅⎰; 解 原式sin 222sin 22sin11esin d e d(sin 22)e44x xx x x x x x --=⋅=--=-⎰⎰(5)1d (1e )xxx x x ++⎰; (6)ln(tan )d sin cos x x x x ⋅⎰.例2 求x ⎰.解:原式2[ln()3x x =+=+⎰例3 求 342e ed e 2e 1x xx xx +-+⎰. 解:原式2222e (e e )d(e e )1d e (e e )(e e )e ex x x x x x x x x x x x x C -----+-===-+---⎰⎰ 例4 求 241d 1x x x ++⎰.解:原式22221111d()1d arctan 11()2x x x x x C x x x x+--===++-+⎰⎰例5 求下列不定积分(1)xx ⎰;(2)3d x x ⎰; 解 令π323sec ,0,d sec tan d 22x t t x t t t ⎛⎫=<<=⋅ ⎪⎝⎭ ,原式23233tan 34tan 4sec tan d d sin 23sec 33sec 2t t t t t t t t =⋅⋅==⎛⎫ ⎪⎝⎭⎰⎰⎰241231sin 2arccos 324322t t C x x ⎛⎫=-+=- ⎪⎝⎭.(3)d x ⎰.解 令2tan ,d sec d x t x t t ==,原式2222sec d cos d dsin arcta (2tan 1)sec 1sin 1sin t t t t tt t t t ====+++⎰⎰⎰arctanx C =+.注 1ο,令s i n x a t = 或 cos x a t =;2ο,令sec x a t = 或 csc x a t =或 ch x a t =;3ο,令tan x a t = 或 cot x a t =或 sh x a t =;4ο三角代换变量还原时利用辅助三角形. 例6 求下列不定积分(1)d x⎰;解 原式()d31d13xx-==⎰⎰1ln|31|3x C=-++.(2)21d446xx x-+⎰.解原式()()2111212d21arctan221xx C x-=-=⋅+ -+⎰.(注对二次三项式2ax bx c++或其平方根,配方后使用公式).例7求下列不定积分(1)d x⎰(2)21lnd(ln)xxx x--⎰.(注1xt=称为倒代换,当分母的次数高于分子的次数时,可考虑用此代换).例8 求e (1e )d x xx +⎰(注 可考虑指数代换e xu =或e sin xt =).例9 求d x x⎰,(令:t =)解令t =,22tan 1tan d 2tan sec d .t x t x t t t =⇒=+⇒=⋅原式(2222arctan 2sec tan d 2tan d 2sec 1tan t t t t t t t t t t t ⋅=⋅⋅=⋅=⋅+⎰⎰⎰()222sec 1d 2d(tan )2tan tt t t t t t t t =⋅-=-=⋅-⎰⎰⎰22tan 2ln |cos |t t t t C =⋅+-+212ln ||arctan x=⋅+-+22ln ||arctanx =⋅--+.题型3 分部积分法关键:正确地选择u 和v ,选择u ,v 的原则:1οv 好求; 2οd v u ⎰要比d u v ⎰简单.例1 求下列不定积分(1)2(22)e d xx x x +-⎰; (2)2(1)ln d xx x +⎰;(3)e cos d xx x x ⎰; (4)sin ln d x x ⎰ 解 原式1sinln dsinln sinln cosln d x x x x x x x x xx=-=-⋅⋅⎰⎰sinln cosln d sinln cox x x x x x x ⎡=-=-⋅⎣⎰()()1sinln cosln sinln d x x x x x xx=-+-⎰()sinln cosln sinln d x x x x x =--⎰所以 原式()sinln cosln 2xx x C =-+.(5)22arctan d (1)xx x x +⎰; 解 原式22arctan arctan 1d d arctan d(-)arctan d 1x x x x x x x x x =-=-+⎰⎰⎰⎰()221111arctan d arctan 12x x x x x x =-+⋅-+⎰()()22221111arctan d arctan 221x x x x x x =-+-+⎰ 22211111arctan d 212x x x x x ⎛⎫=-+-- ⎪+⎝⎭⎰()()22111arctan ln ln 122x x x x =-+-+-()22111arctan ln arctan 212x x x x x =-+-+.(6)ln(x x x +⎰.解原式ln(x x x =+⋅⎰dln(x =⋅+-⋅⎰ln(d x x =⋅+-=⎰.例2 求 22sin d (cos sin )xx x x x -⎰. 解 原式2sin sin sin 1d d (cos sin )cos sin x x x x x x x x x x x x x ⎛⎫=⋅= ⎪--⎝⎭⎰⎰sin 11cos sin cos sin x x x x x x x x ⎛⎫=⋅-⋅ ⎪--⎝⎭⎰2sin 11s d cos sin (cos x x x x x x x x x ⎛⎫=⋅-=⎪-⎝⎭⎰.例3 求ed xx x ⎰.(先换元,后分部积分) 解: 原式222222d d 12ln(1)d 2[ln(1)2d ]1tt x t t ttt t t t t =++=+-+⎰⎰24arctan C =-++.题型4 分项--分部积分法(将积分分成两项(或多项)的积分和,然后利用分部积分抵消不可积部分)例1 求 2ln 1d ln x x x-⎰; 例2求 22e (tan 1)d x x x +⎰. 题型5 有理函数积分例1 求25d 613x x x x +-+⎰; 例2 求221d (1)x x x +⎰.题型6 三角有理函数积分例1 求 d sin 22sin xx x+⎰ 例2 求d 1sin cos xx x --⎰题型7 简单无理函数积分例1求d x⎰; 例2 求d x⎰.例3求d x⎰(0,0)a b x <<>.解:原式2=⎰2arcsin C =+;题型8 分段函数的积分例1 求|1|ed x x -⎰.例2 求2()max(1,)x x ϕ=的一个原函数()F x ,且(0)1F =.题型9 含有抽象函数的不定积分例1设()d arcsin xf x x x C =+⎰,求1d ()x f x ⎰.例2设()f x 为非负连续函数,当0x ≥时,有20()()d e 1xxf x f x t t ⋅-=-⎰,求()d f x x ⎰. 解 方程化为20()()d ()()d =e 1xxxf x f x t t f x f x t t ⋅-=--⎰⎰,()d ()d u x txxf x t t f u u =--====⎰⎰,代入原方程得()20()d e 1xxf x f u u ⋅=-⎰,令()()()()()20()d exxF x f u u F x f x F x F x ''=⇒=⇒⋅=⎰,两边积分()()()2d e 1d xF x F x x x '⋅=-⎰⎰,得()2211e 22xF x x C =-+, 又()()22100,e 212xF C F x x =⇒=-∴=--,()()(F x F x ∴=≥.()()d f x x F x C =+=⎰.例3设(,)f x y 可微,且(,)ff x y x∂=-∂,e cos xf y y-∂=∂,(0,0)0f =,求(,)d f x x x ⎰. 例4设()f x 在[0,)+∞上可导,(0)1f =,且满足01()()()d 01xf x f x f t t x '-+=+⎰,求[()()]e d xf x f x x -'''-⎰.四、不定积分常用的计算技巧总结(考生自看)1.加减常数法例1 求 cos d 1cos xx x-⎰. 解:原式2cos 111()d (1)d 1cos 1cos 2sin (/2)x x x x x x x -=+=-+=----⎰⎰.2.加减函数法例2 求 21d 1exx +⎰. 解:原式2222221e e e 1d (1)d ln(1e )1e 1e 2x x xx x xx x x C +-==-=-++++⎰⎰.例3 求 d (1)nxx x +⎰. 解:原式1111d d d ln ||ln |1(1)1nnn n n nx x x x x x x x x x x x n -+-==-=-+++⎰⎰⎰.3.乘除函数法例4 求 d e ex x x-+⎰.解:原式22e d de arctane 1(e )1(e )x xxx x x C ===+++⎰⎰. 4.分母整体化法例5 求 2100d (1)xx x +⎰. 解:原式2219899100100100(1)(1)d d (2)d u xu u u u u u u uu u=+-----=====-+⎰⎰⎰9798991212979899u u u C ---=-+-+.例6 求 2sin d (sin cos )xx x x +⎰.解:原式π4222πsin()sin csin 114d d π2sin 2sin ()4u x u x u x x u u x =+-=====+⎰⎰⎰2d d(sin )()[l n |csc(4sin sin 4u u x u u =-=+⎰⎰.5.依分母分解法例7 求 3cos 4sin d cos 2sin x xx x x-+⎰. 解:因为cos x 与sin x 的导数互相转化,所以 可设3cos 4sin (cos 2sin )(cos 2s x x A x x B x -=+++(2)cos (2)sin A B x A B x =++- 故得:231,224A B A B A B +=⎧⇒=-=⎨-=-⎩. 原式cos 2sin (cos 2sin )d 2d cos 2sin cos 2sin x x x x x x x x x x '++=-+=-++⎰⎰.6.还原法例8 求 11(1)ed x xx x x++-⎰.解:11121ed (1)ed ed d(ex x x x xxx x x x x x+++=+-=+⎰⎰⎰⎰1111ed eed ex x x x xxxxx x x x C ++++=+-=+⎰⎰.7.待定函数法 例9 (上例)解:因为被积函数是一个函数与1ex x+的乘积,它的一个原函数必定也是某一个函数与1e x x+的乘积.令 111(1)ed ()ex x xxx x F x C x +++-=+⎰,其中()F x 为待定函数, 两边求导数11211(1)e[()()(1)]ex x xxx F x F x xx++'+-=+-,22111(1)()()(1)()x F x F x F x x x'∴+-=+-⇒=, 故 原式1ex xx C +=+.8.相关积分法例10 求 221e sin d x I x x =⎰,221e cos d xI x x =⎰.解:221222211e d e ,21e cos2d e (cos2sin 2),4xx x x I I x C I I x x x x C ⎧+==+⎪⎪⎨⎪-==++⎪⎩⎰⎰ 1I ∴=22111e e (cos2sin 2)224x x x x C⎡⎤-++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =-++; 2I =22111e e (cos2sin 2)224x x x x C⎡⎤+++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =+++.五、练习题31-1.若()f x 的导函数是e cos xx -+,则()f x 的一个原函数为( ).(A) e cos xx -- (B) esin x x --+ (C)ecos xx --- (D) esin xx -+2.若()f x '为连续函数,则(2)d f x x '=⎰( ).(A) (2)f x C + (B) ()f x C + (C)1(2)2f x C + (D) 2(2)f x C + 3.若()f x 是以l 为周期的连续函数,则其原函数( ).(A) 是以l 为周期的连续函数 (B)是周期函数,但周期不是l(C) 不是周期函数 (D)不一定是周期函数4.设cos x x 是()f x 的一个原函数,求()d xf x x '⎰. 5.2222221sin cos d d sin cos sin cos x x x x x x x x +=⋅⋅⎰⎰. 6. 22e 1e (1)d (e )d sin sin xxxx x x x--=-⎰⎰.7.11e ed d 1e 1e xxx xx x +-=++⎰⎰. 8.45422sincos d sin (1sin )dsin x x x x x x =⋅-⎰⎰.9.1515sin cos d (sin cos )d(sin cos )(sin cos )x xx x x x x x x +=---⎰⎰.10.21111d d d(1)111n n n nnn n n x x x x x x x x x x --⋅+-==++++⎰⎰⎰. 11.cos sin d(sin cos )d cos sin cos sin x x x x x x x x x-+=++⎰⎰.12.321()arctan d arctan d()33x x x x x x x ++=⎰⎰. 13.2d x x⎰. 14.d 1d(3)3xx =⎰⎰ 15.22222d 2ln 2d d 2d 1d 12(14)2(12)ln 2(1)ln 2xxxu x x x x u x x x u u u =========+++⎰⎰⎰.16.22sin d x x x ⎰.17.arcsin 2arcsin x =-⎰⎰.18.2arctan tan 3d sec d 22ed sin d (1)xx ttx t tx x e t t x ==+====⎰⎰. 19.241d 1x x x -+⎰. 20.421d (1)x x x +⎰21. 1183848282821d d d (1)(1)4(1)x x x x x x x x x x ⋅==+++⎰⎰⎰42221d 4(1)x tt t t =+===⎰2tan 24d sec d 1tan sec d 4sec t u t u u u u u u ======⎰.22. 112d d x x x x +-+=⎰⎰22112d[(1)3]2x =-++⎰⎰.23. 2d d d x xx x x =+⎰⎰⎰.24.313(1)4d d x x x x +-+=⎰⎰.25.d 4sin 3cos 5x x x ++⎰(可令tan 2xt =);26. 3sin 2cos d 2sin 3cos x x x x x ++⎰(可令tan 2xt =或依分母分解法);27.设(cos )sin f x x '=(0)x π<<,求()f x . 28.设()F x 是()f x 的一个原函数,且当0x ≥时,有2e()()2(1)xx f x F x x ⋅=+,又(0)1F =, ()0F x >, 求()f x .29.()d ()f x x F x C =+⎰,且当0x ≥时,有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .30.求2[ln ()ln ()][()()()]d f x f x f x f x f x x ''''++⎰.31.设ln(1)(ln )x f x x +=,计算()d f x x ⎰.32.2()(1)()d exxf x x f x x x '-+⎰. 33.1e (ln )d x x x x +⎰.3-1参考答案1.A2.C3.D 4.2cos sin xx C x--+. 5.tan cot x x C -+.6.e cot xx C ++. 7.ln(1e )xx C -++.8.579111sin sin sin 579x x x C -++9.455(sin cos )4x x C -+.10.1[(1)ln |1|]n nx x C n+-++.11.ln|cos sin|x x C++.12.32arctan36x x xx C+-+.13.arcsin x Cx--+14.1ln|3|3x C++. 15.11(arctan2)ln22xxC-++.16.321sin2cos2sin26448x x xx x x C --++.17.arcsin C-++.18arctan1e+xxC-.1ln C+. 20.311arctan 3x C x x-+++. 21. 44811arctan 881x x C x-⋅++. 22. 2ln |1|x C +-++.23. 1arcsin 22x x C --+. 244ln |1|x C +-++.25. 1tan 22C x -++. 26.125ln |2sin 3cos |1313x x x C -++.27. 1()arcsin 22x f x x C =++. 28.232e()2(1)xx f x x =+.29.2sin 2()xf x =.30.()()[ln ()()1]f x f x f x f x C ''-+. 31.e ln(1e )ln(1e )xxxx C --++-++.32.()ex f x C x +. 33.e ln xx C +.§2 定 积分【考试要求】 1.理解定积分的概念,掌握定积分的基本性质及定积分中值定理.2.掌握定积分的换元积分法和分部积分法.3.理解积分上限函数,会求它的导数,掌握牛顿 –莱布尼茨公式.4.了解反常(广义)积分的概念,会计算反常(广义)积分.一、基本概念 1.定积分定义设()f x 在[,]a b 上有定义且有界,做下述四步:(1)分割:用1n -个分点分割区间[,]a b011i ia x x x x -=<<<<;(2)作乘积:()i i f x ξ∆,其中1[,]i i i x x ξ-∈,1i i i x x x -∆=-;(3)求和:1()ni i i f x ξ=∆∑;(4)取极限:01lim ()ni i i f x λξ→=∆∑,其中1max ||i i nx λ≤≤=∆,如果上述极限存在,则称()f x 在[,]a b 上可积,并称上述极限为()f x 在[,]a b 上的定积分,记作1lim ()()d nbi i ai f x f x x λξ→=∆=∑⎰.注 ()d baf x x ⎰的值与对区间[,]a b 的分法无关,与i ξ的取法无关,与积分变量用什么字母表示无关;与[,]a b 有关,与()f x 有关, 即()d ()d bbaaf x x f t t =⎰⎰.2.定积分的存在性定理设()f x 在[,]a b 上连续,或在[,]a b 上有界且只有有限个第一类间断点,则()d ba f x x ⎰一定存在.3.几何意义定积分()d baf x x ⎰表示由曲线()y f x =,,x a x b ==及x 轴所围平面图形面积的代数和.4.定积分的运算性质:(1)()d ()d a abbf x x f x x =-⎰⎰. (4)[()()]d ()d ()d bb baaaf xg x x f x x g x x ±=±⎰⎰⎰.(2)()d 0aaf x x =⎰. (5)()d ()d b baakf x x k f x x =⎰⎰.(3)d bax b a =-⎰. (6)()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.5.定理定理1 (定积分的比较定理)若在[,]a b 上恒有()()f x g x ≤,则()d ()d bbaaf x xg x x ≤⎰⎰.推论1 若()f x 与()g x 在[,]a b 上连续,()()f x g x ≤,且至少有一点0[,]x a b ∈,使00()()f x g x <,则()d ()d bbaaf x xg x x<⎰⎰.推论2 若在[,]a b 上恒有()0f x ≥,则()d 0baf x x ≥⎰.推论3 ()d ()d bbaaf x x f x x ≤⎰⎰. 定理2(估值定理)若在[,]a b 上,()m f x M ≤≤,则()()d ()ba mba f x x Mb a -≤≤-⎰.定理3(积分中值定理)(1)若()f x 在[,]a b 上连续,则[,]a b ξ∃∈,使()d ()()baf x x f b a ξ=-⎰.(2)若()f x 在[,]a b 上连续,()g x 在[,]a b 上不变号,且在[,]a b 上可积,则[,]a b ξ∃∈,使()()d ()baf xg x x f ξ=⎰⎰.定理4(变上限积分函数及其导数) 设()f x 在[,]a b 上连续,()()d xa F x f t t =⎰称为变上限积分函数,则导数为d ()()d ()()d xt x aF x f t t f t f x x ='===⎰.推论1 设()()()d x aF x f t t ϕ=⎰,则()d ()()d [()]()d x aF x f t t f x x x ϕϕϕ''==⋅⎰.推论2 设21()()()()d x x F x f t t ϕϕ=⎰,则21()2211()d ()()d [()]()[()](d x x F x f t t f x x f x x x ϕϕϕϕϕϕ'''==⋅-⋅⎰.推论3 设()()()()d x aF x f t g x t ϕ=⎰,则()()()()d x a F x g x f t t ϕ'⎡⎤'=⎢⎥⎣⎦⎰()()()d ()[()](x ag x f t t g x f x ϕϕϕ''=+⎰.定理5(变上限积分函数与不定积分的关系) 设()f x 在[,]a b 上连续,则变上限积分函数()()d xaF x f t t =⎰是()f x 的一个原函数, 即()d ()d xaf x x f t t C =+⎰⎰.注:不定积分()d f x x ⎰只能作为运算符号,不能表示一个具体的原函数,特别当()f x 为一个抽象的函数时,无法用()d f x x ⎰来讨论它的某一原函数的性质;而()d xa f t t ⎰为某一确定的原函数,可以用它来讨论此原函数的性质.定理6(牛顿-莱布尼兹公式)设()f x 在[,]a b 上连续,()F x 是()f x 的一个原函数,则()d ()()()bb aaf x x F x F b F a ==-⎰. 6.定积分的计算方法(1) 换元法:设()f x 在[,]a b 上连续,()x t ϕ=在[,]αβ上有连续的导数,且当t 从α变到β时,()t ϕ从()a ϕα=单调地变到()b ϕβ=,则()d [baf x x f βαϕ=⎰⎰要点:换元要换限,变量不还原,不换元则不换限.(2)分部积分法:设()u x ,()v x 在[,]a b 上有连续的导数,则d d bbb aaauv x uv u v x ''=-⎰⎰或 d d b b b aaau v uv v u =-⎰⎰.注:求不定积分时适用的积分法,相应地也适用定积分的求法.7.广义积分的概念与计算 (1)无穷限的广义积分ο1 设()f x 在[,)a +∞上连续,则()d lim()d baab f x x f x x +∞→+∞=⎰⎰;ο2 设()f x 在(,]b -∞上连续,则()d lim()d b baa f x x f x x -∞→-∞=⎰⎰;ο3 设()f x 在(,)-∞+∞上连续,则()d lim()d lim ()d bbaaa b f x x f x x f x x +∞-∞→-∞→+∞=+⎰⎰⎰.仅当等式右边的两个极限都存在时,左边的无穷限广义积分收敛,否则发散.注意: ο3式中等式右边的两个极限若有一个不存在,则()d f x x +∞-∞⎰发散.(2)无界函数的广义积分(瑕积分) ο1 设()f x 在(,]a b 上连续,lim ()x af x +→=∞, 则()d lim ()d bbaa f x x f x x εε++→=⎰⎰,x a =称为瑕点.ο2 设()f x 在[,)a b 上连续,lim ()x bf x -→=∞, 则0()d lim ()d bb aaf x x f x x εε+-→=⎰⎰,x b =称为瑕点.ο3 设()f x 在[,]a b 上除点c 外均连续,lim ()x cf x →=∞,则()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰12120lim ()d lim ()d c bac f x x f x x εεεε++-+→→=+⎰⎰.x c =称为瑕点.仅当等式右边的极限存在时,瑕积分收敛,否则发散.注意:ο3式中等式右边的两个极限若有一个不存在,则瑕积分()d ba f x x ⎰发散.二、重要结论(1)利用定积分定义求n 项和的极限 设()f x 连续,则ο1 1()d lim ()nban k b a b af x x f a k n n →∞=--=+⋅∑⎰.ο2 111()d lim ()nn k k f x x f n n →∞==⋅∑⎰.(2)奇、偶函数的积分ο1 设()f x 连续,若()f x 为偶函数,则()d xf t t ⎰为奇函数;若()f x 为奇函数,则对任意a ,()d xaf t t ⎰为偶函数.ο2 设()f x 在[,]a a -上连续,则()d [()()]d aaaf x x f x f a x-=+-⎰⎰(3)周期函数的积分设()f x 在(,)-∞+∞上连续,且以T 为周期,则ο1 202()d ()d ()d T a TTT af x x f x x f x x +-==⎰⎰⎰;ο2 0()d ()d nTT a f x x n f x x =⎰⎰;ο3 0()d ()d a nT Taf x x n f x x +=⎰⎰.即:周期函数在每个周期长度区间上的积分均相等,与起点无关.(4)常用结论ο1 ππ22(sin )d (cos )d f x x f x x =⎰⎰, 令π2x t =-;ο2 ππ00π(sin )d (sin )d 2xf x x f x x =⎰⎰, 令πx t =-;ο3 ππ2(sin )d 2(sin )d f x x f x x =⎰⎰,。

高等数学研究生教材目录

高等数学研究生教材目录

高等数学研究生教材目录第一章极限与连续1.1 实数及其性质1.2 数列与极限1.3 函数与极限1.4 极限运算法则1.5 连续与间断1.6 中值定理与极值问题第二章导数与微分2.1 导数的概念2.2 导数的几何意义与物理意义2.3 微分的概念与计算方法2.4 高阶导数与高阶微分2.5 隐函数与参数方程的导数2.6 函数的单调性与曲线的凹凸性第三章一元函数的积分学3.1 不定积分3.2 定积分与积分的几何意义3.3 定积分的计算方法3.4 反常积分3.5 牛顿—莱布尼兹公式与定积分的应用3.6 微积分基本定理与换元积分法第四章多元函数微分学4.1 二元函数的极限与连续4.2 二元函数的偏导数4.3 隐函数与参数方程的偏导数4.4 多元复合函数的偏导数4.5 方向导数与梯度4.6 多元函数的极值及条件极值第五章重积分与曲线曲面积分5.1 二重积分的概念与性质5.2 二重积分的计算方法5.3 三重积分的概念与性质5.4 三重积分的计算方法5.5 曲线积分的概念与计算方法5.6 曲面积分的概念与计算方法第六章微分方程6.1 常微分方程的基本概念与解的存在唯一性6.2 一阶线性微分方程6.3 高阶线性微分方程与常系数齐次线性微分方程6.4 高阶线性微分方程与常系数非齐次线性微分方程6.5 常微分方程的近似解与级数解法6.6 常微分方程的应用与控制问题第七章空间解析几何与向量代数7.1 空间中的点、直线及其方程7.2 空间中的平面及其方程7.3 空间曲线及其参数方程7.4 向量的概念与运算7.5 向量的线性相关与线性无关7.6 空间中的向量积与混合积第八章多元函数积分学8.1 二重积分的曲线坐标与极坐标化法8.2 三重积分的柱面坐标、球面坐标与轮换对称性8.3 曲线积分的参数化与曲线坐标法8.4 曲面积分的参数化与曲面坐标法8.5 多元函数积分学在物理与工程中的应用8.6 曲线积分与曲面积分的变量替换第九章常微分方程数值解9.1 常微分方程初值问题的数值方法9.2 常微分方程边值问题的有限差分方法9.3 常微分方程边值问题的轮换对称法9.4 常微分方程边值问题的变分法9.5 常微分方程初值问题与边值问题的MATLAB解法9.6 常微分方程数值解方法的应用示例第十章特殊函数与积分变换10.1 常见特殊函数的性质与应用10.2 变限积分与非定积分10.3 积分变换的基本概念与性质10.4 拉普拉斯变换与傅里叶变换10.5 微分方程的解法应用于积分变换10.6 积分变换在控制与信号处理中的应用每一章节内容都经过仔细编排,涵盖了高等数学研究生教材的核心知识点。

一元函数积分学

一元函数积分学

一元函数积分学
一元函数积分学是高等数学中的一个重要分支,它研究了一个实
数变量的函数的积分。

在我们日常生活中,积分被广泛应用于各个领域,如经济学、物理学、工程学等等。

在微积分中,积分是求解面积、体积、概率、质量等量的重要工具之一。

一元函数积分学的主要内容包括定积分、不定积分、变限积分、
换元积分、分部积分等。

其中,定积分是一种重要的积分,它求解的
是在一定区间内的函数曲线下方的面积。

不定积分则不限制求解的区间,可以得到一个函数的原函数。

变限积分和换元积分是定积分的推
广和扩展,能够更加灵活地求解积分问题。

分部积分则是一种将积分
转化为乘积的方法,对于某些复杂的积分问题可以起到关键作用。

在学习一元函数积分学时,我们需要掌握函数积分的基本性质、
定理和方法,并能够熟练地运用它们求解各种积分问题。

此外,我们
还需要了解积分的应用,以便将它们运用到实际问题中解决实际问题。

总的来说,一元函数积分学是高等数学学习中非常重要的一个分支,它具有广泛的应用价值,是我们学习数学的必备知识点之一。

微积分讲义_第三章-一元函数的导数和微分

微积分讲义_第三章-一元函数的导数和微分

3.6 导数和微分在经济学中的简单应用,由于知识体系的关联性,我们把本节放到第四章后面讲。
例11.求
的导数
【答疑编号11030311:针对该题提问】
例12.求
的导数
【答疑编号11030312:针对该题提问】
例13.求
的导数
【答疑编号11030313:针对该题提问】
例14.求
的导数
【答疑编号11030314:针对该题提问】
例15.(教材习题3.2,8题)已知 【答疑编号11030315:针对该题提问】
切线方程为 法线方程为
例8、求双曲线
处的切线的斜率,并写出在该点处的切线方程和法线方程。
【答疑编号11030108:针对该题提问】
解 由导数的几何意义, 得切线斜率为
所求切线方程为
法线方程为
六、可导与连续的关系 1.定理 凡可导函数都是连续函数. 注意:该定理的逆定理不成立,即:连续函数不一定可导。 我们有:不连续一定不可导 极限存在、连续、可导之间的关系。
2.连续函数不存在导数举例
例9、讨论函数
在x=0处的连续性与可导性。
【答疑编号11030109:针对该题提问】
解:
例10、 P115第10题

,α在什么条件下可使f(x)在点x=0处。
(1)连续;(2)可导。 【答疑编号11030110:针对该题提问】 解:(1)
(2)
七、小结 1.导数的实质:增量比的极限; 2.导数的几何意义:切线的斜率; 3.函数可导一定连续,但连续不一定可导;
第三章 一元函数的导数和 微分
一、问题的提出 1.切线问题 割线的极限位置——切线位置
3.1 导数概念
如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即

《医学高等数学》课件 第三章 一元函数积分学

《医学高等数学》课件  第三章   一元函数积分学

2
1 1
d t
(1
t)
2t
2 ln(1 t)
C
因为t 1 x ,于是
1
dx 1
x
2
1 x 2 ln(1
1 x)C
例10 求 a2 x2 dx。
解 求这个积分的困难在于有根式,但我们可以利用三角公式sin2t+cos2t=1来消去根式。
设x=asint,
2
t
2
,则
t
arcsin
x a
例10 设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线 的方程。
解 设所求的曲线方程为y=f(x),由题设,曲线上任一点(x,y)处的切线斜率为 dy 2x,
dx
即dy 2xdx。
因为 2xdx x2 C,所以必有某个常数C使f(x)=x2+C。即曲线方程为
第二节 不定积分的计算
案例导入:
判断下列积分是否成立:
cos3xdx sin 3x C;
1 3x
5
dx
ln
3x
5
C;
exdx ex C; (2x 5)3 dx (2x 5)4 C.
4
验证了案例之后,我们提出这样的问题,如果遇到这样的积分,我们怎么去求出它 的原函数呢? 这就是我们这一节要着重介绍的换元积分法和分部积分法。

dx 1 dx
a2 x2
a 1 ( x)2
d(x) a
arcsin x C
1 ( x)2
a
a
a
例5 求 e5xdx 。

e5xdx 1 e5xd (5x) 1 e5x C
5
5

成人高考《高等数学一》章节练习题答案及解析

成人高考《高等数学一》章节练习题答案及解析

成人高考《高等数学一》章节练习题答案及解析- 1 -2021 年专升本数学一习题第一章极限、连续1.已知f(x) = � 3x + 2,x ≥0x 2 −1,x < 0。

求f(0)=2. limx→∞sinxx=3. limx→2 (x −2)sin1x−2=4. limx→0xln(3x+1)=5. limx→0sin4xx=6. limx→∞�1 +5x �x =7. limx→0tan2x2x=8. limx→0 (1 −x)1x =9. limx→0 (1 + x)−1x =10. limx→∞�1 +1x �x+2 =11. limx→0x ⋅tanx= 12. limx→0sinxsin2x =13. limx→0ln (2x+1)sin3x14. limx→1x−1x 2 −1=15. limx→4x−4√x+5−3=- 2 -- 2 -16. limx→∞2x 3 +3x 2 +5 7x 3 +4x 2 −1 = 17.设f(x) = �x −1,x < 0 0,x = 0x + 1,x > 0,求limx→0f(x)18. limx→2x 2 +x−6x 2 −4=19. limx→0x−sinxx 2 +x=20.设函数f(x) = �√x3,x < 0,x 2 + 1,x ≥0, 则在点x=0 处是否连续。

21.函数f(x) =x 2 +1x−3的间断点是()。

22.设函数f(x) = �e x,x < 0x + a,x ≥0 在x=0 处连续,则a=()第二章一元函数微分学1.已知f ′(2) = 2,求limΔx→0f(2−3Δx)−f(2)Δx=2.已知f ′(4) = 1,求limΔx→0f(4+2Δx)−f(4)Δx=3x + lnx在点(1,0)处切线斜率K。

4lnx在点(1,0)处的切线方程和法线方程。

5x 2 上的一点,使该点处的切线与直线y = 2x + 2平行。

定积分的概念、性质、和微积分基本定理3-1

定积分的概念、性质、和微积分基本定理3-1
c
b
补充:无论 a、b、c 的相对位置如何,上式总成立, 如 abc


c
a
b
f ( x )dx f ( x )dx f ( x )dx
a b
b
c

a
f ( x )dx f ( x )dx f ( x )dx
a b
c
c
f ( x )dx f ( x )dx
x i 1 o a x1 i xi i 1 记 max xi 如果分割越细,即 0 时, i 上述和式的极限存在,则曲边梯形的面积
i i
f ( )x
n
x n 1 b
x
A lim f ( i )xi
0
i 1
n
4
二、定积分的定义 定义 设 f 是 [a, b] 上的有界函数,对 [a, b] 的 任意分割 D : a x0 x1 x2 xn1 xn b 任取 i [ xi 1 , xi ] , (i 1,, n) 并记 xi xi xi 1
y
A?
a b
x
o
y
用矩形面积近似取代曲边梯形面积。
o
a
(四个小矩形)
b
x
o
a
(九个小矩形)
b
x
小矩形越多,矩形总面积越接近曲边梯形面积。
3
作区间 [a, b] 的一个分割: D : a x0 x1 x2 xn1 xn b
把 [a, b] 分成 n 个小区间 [ xi-1 , xi ] , 长度为 xi xi xi 1 , 在 [ xi-1 , xi ] 上任取一点 i , y 以 xi 为底,f ( i ) 为高的 小矩形面积: Ai f ( i )xi n 个小矩形面积相加得

第三章 一元函数积分学

第三章 一元函数积分学
由不定积分的定义,可以直接得到下列性质:
性质1
df ( x) f ( x) C d 即如果不考虑积分常数C, 积分号 与微分号
f ( x)dx
f ( x) C 或
重叠作用时,不论先后次序,都恰好相互抵消.
说明微分运算与求不定积分的运算是互逆的.
性质2 kf ( x)dx k f ( x)dx ,其中 k 为常数.
3 23 x 3 C. 2 4
x 例11 求 sin dx. 2 1 1 2 x 解 sin dx (1 cos x)dx (1 cos x)dx 2 2 2 1 1 dx cos xdx ( x sin x) C. 2 2 2 cot xdx . 例12 求
F ( x ) C 都是 f ( x ) 的原函数. ) (2) F ( x) C包括了 f ( x的所有原函数 .
证 (1) 对于任意常数C,
( F ( x) C ) F ( x) f ( x) x I ,
F ( x) C 是f ( x)在区间 I 内的原函数.
1 故 ln x 是 在 (,0) (0,) 上的原函数. x 注意 :关于原函数的三个问题:
一是原函数的存在性 二是原函数的个数 三是原函数之间的关系
原函数存在定理: 定理1 若 f ( x)在区间 I内连续,则f ( x) 在区间 I 内 必定存在原函数。 即连续函数一定有原函数. 定理2 设函数 F ( x)和 f ( x) 定义在同一区间 I内, 则 (1)若 F ( x ) f ( x ) ,则对于任意常数 C ,
其中C为任意常数,称为积分常数.
2 ( x 2) dx. 例1 求
.

高等数学一元函数积分学

高等数学一元函数积分学

(四) 分部积分法
分析:(uv) uv uv
uv uv uv
uvdx (uv)dx uvdx
udv uv vdu 分部积分公式: udv uv vdu
例 7:求 x cos xdx
解:设u x,dv cos xdx d(sin x),v sin x
原式= xd(sin x) x sin x sin xdx
第三章 一元函数积分学(20%)
一、 不定积分 二、定积分 三、定积分的应用
考试点津:
• 本讲出题在10分—18分之间,考点不多, 一般在选择题、填空题、计算题中出现, 不定积分是定积分的基础,定积分又是二 重积分、曲线积分的基础,技巧性比较大, 希望同学们多练习。
• 本讲重点:(1)原函数、不定积分的概念 和性质。(2)直接积分方法、换元积分法。 (3)凑微分技巧。
2
a2
例 5:求 dx
x2 a2
(a 0)
解:设x a tan t
t
22
原式=
a sec2 t
a sect dt sectdt ln(sect tan t) C
由 x a tan t,得 tan t x ,sect x2 a2
a
a
所以
原式=ln
x2 a2 x a a C
例:计算
e
ex x
1
dx
2008年解答、8分
解:原式=
e
1 x
1
(ex
)dx
e
1 x
1
d
(e
x
)
1 ex 1
d(ex
1)
u ex 1 1 du ln u C ln ex 1 C
u
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 一元函数积分学一.不定积分例1:设2ln )1(222-=-x x x f ,且x x f ln )]([=ϕ,求⎰dx x )(ϕ(答案:C x x +-+1ln 2)例2:已知xxsin 是)(x f 的一个原函数,求⎰dx x f x )('3(答案:C x x x x x +--cos 6sin 4cos 2)例3:设⎩⎨⎧>≤=0,sin ,)(2x x x x x f ,求⎰dx x f )(例4:设)(x F 是)(x f 的一个原函数,π42)1(=F ,若当0>x 时,有)1(arctan )()(x x x x F x f +=,求)(x f 。

(答案:)1(21)(x x x f +=)例5:求⎰dx x x )1,,max(23例6:求⎰dx ee xx2arctan二.定积分例1:求极限⎪⎭⎫⎝⎛+++++∞→n n n n 212111lim例2:设)(x f 在]1,0[上连续,且)(1=⎰dx x f ,试证明存在0)1()()1,0(=-+∈ξξξf f 使。

例3:已知)0()1ln()(1>+=⎰x dt t t x f x,求⎪⎭⎫⎝⎛+x f x f 1)((答案:x 2ln 21)例4:设函数)(x f 连续,且,arctan 21)2(20x dt t x tf x =-⎰已知1)1(=f ,求⎰21)(dx x f 的值。

(答案:43) 例5:已知22110,1,ln ,sin )(>≤<≤≤⎪⎩⎪⎨⎧=x x x x x x x f 求⎰=x dt t f x I 0)()(例6:求积分⎰≥-=xx dt t x g t f x I 0)0()()()(,其中当0≥x 时x x f =)(,而⎪⎩⎪⎨⎧≥<≤=220,0,sin )(ππx x x x g 例7:设)(x f 在],[b a 上连续,且0)(>x f ,证明⎰badxx f )(2)()(1a b dx x f ba-≥⎰例8:设)('x f 在]1,0[上连续,求证⎰⎰⎰⎪⎪⎭⎫ ⎝⎛≤11010)(,)('max )(dx x f dx x f dx x f 例9:设)(x f 在]1,0[上连续,且0)(≥x f ,0)1(=f ,求证:存在⎰=∈ξξξ0)()()1,0(dx x f f 使例10:设)(x f 是在),(+∞-∞内的周期函数,周期为T ,并满足)),,(,()()()1(为常数其中L y x y x L y f x f +∞-∞∈∀-≤-;0)()2(0=⎰Tdx x f求证:LT x f T x 21)(max ],0[≤∈ 例11:设函数)(x f 在],[b a 上具有连续的二阶导数,证明在),(b a 内存在一点ξ,使得)('')(2412)()(3ξf a b b a f a b dx x f ba-+⎪⎭⎫ ⎝⎛+-=⎰例12:设函数)(),(x g x f 在区间)0](,[>-a a a 上连续,)(x g 为偶函数,且)(x f 满足)()()(为常数A A x f x f =-+,(1)证明⎰⎰-=aaadx x g A dx x g x f 0)()()(;(2)利用(1)的结论计算⎰-22arctan sin ππdx ex x例13:计算定积分:⎰--+4421sin ππdx ex x(答案:)2(81-π) 例14:计算定积分:⎰π)arctan(cos dx x例15:试证连续函数)(x f 是周期函数的充分必要条件是:存在0>T ,使对一切的x ,有=⎰+Tx xdt t f )(⎰Tdt t f 0)(例16:计算定积分:⎰-πn dx x 02sin 1(答案:n 22)例17:)(x f 是以T 为周期的连续函数,证明:⎰=xx dt t f x F 0)()(或是以T 为周期的周期函数,或是线性函数与周期函数的和。

例18:计算⎰=1)(dx xx f I ,其中⎰-=xt dt e x f 12)(例19:设)(),(x g x f 在],[b a 上连续,且满足),[,)()(b a x dt t g dt t f xaxa∈≥⎰⎰⎰⎰=babadt t g dt t f )()(证明:⎰⎰≤babadx x xg dx x xf )()((2004年数学三)例20:设)(),(x g x f 在]1,0[上的导数连续,且0)('0)(',0)0(≥≥=x g x f f ,.证明:对任何]1,0[∈a ,有⎰+adx x f x g 0)(')(⎰≥1)1()()(')(g a f dx x g x f例21:设)(x f 在],[b a 上一阶可导,M x f ≤)(',且0)(=⎰badx x f 。

证明:当],[b a x ∈时,M a b dt t f xa2)(81)(-≤⎰例22:设)(x f 是区间),0[+∞上单调减少且非负的连续函数,),3,2,1()()(11=-=⎰∑=n dx x f k f a nnk n ,证明数列}{n a 的极限存在。

例23:设)(x f 在]1,0[上连续,对任意的y x ,都有y x M y f x f -≤-)()(,证明nMn k f n dx x f n k 2)(1)(11≤-⎰∑= 例24:设)(x f 在],[b a 上连续,且0)(>x f ,证明:⎰⎰-≥⎥⎦⎤⎢⎣⎡-ba b a dx x f a b dx x f a b )(ln 1)(1ln 例25:设)(x F 是连续函数)(x f 的一个原函数,“N M ⇔” 表示“N M 的充分必要条件是”,则必有(A ))(x F 是偶函数)(x f ⇔是奇函数。

(B ))(x F 是奇函数)(x f ⇔是偶函数。

(A ))(x F 是周期函数)(x f ⇔是周期函数。

(A ))(x F 是单调函数)(x f ⇔是单调函数。

(答案:(A )) (2005年数学一)例25:设)(x f 是连续函数(Ⅰ)利用定义证明函数⎰=xdt t f x F 0)()(可导,且)()('x f x F =(Ⅱ)当)(x f 是以2为周期的周期函数时,证明函数⎰⎰-=2)()(2)(dt t f x dt t f x G x 也是以2为周期的周期函数. (2008年数学一)三.广义积分例1:求dx x x⎰+∞+03)1( 例2:求dx e xe x x⎰+∞--+02)1( 例3:求dx x x⎰+∞2arctan 例4:求xdtt xx ⎰+∞→0sin lim (答案:π2)四.定积分的应用例1:求由)0(12222>>=+b a by a x 与x y =围成的图形面积(两部分都要计算)。

(答案:,arctan b a ab ),arctan (ba ab -π)例2:过点)0,1(P 作抛物线2-=x y 的切线,该切线与上述抛物线及x 轴围成一平面图形,求此图形绕x 轴旋转所成旋转体的体积。

例3:设直线ax y =与抛物线2x y =所围成的图形面积为1S ,它们与直线1=x 所围成的面积为2S ,并且1<a 。

(1) 试确定a 的值,使21S S +达到最小,并求出最小值;(答案:622,21-) (2) 求该最小值所对应的平面图形绕x 轴旋转一周所得旋转体的体积。

(答案:π3012+) 例4:设平面图形A 由x y x 222≤+与x y ≥所确定,求图形A 绕直线2=x 轴旋转一周所得旋转体的体积。

(答案:ππ3222-) 例5:将抛物线ax x y -=2在横坐标c 与0之间(0>>a c )的弧段绕x 轴旋转,问c 为何值时,该旋转体的体积V 等于以弦OP 绕x 轴旋转所成锥体的体积锥V ?例6:过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D .(1) 求D 的面积A .(答案:121-e ) (2) 求D 绕直线e x =旋转一周所得旋转体的体积V .(答案:)3125(62+-e e π)例7:曲线2xx e e y -+=与直线)0(,0>==t t x x 及0=y 围成一曲边梯形。

该曲边梯形饶x 轴旋转一周得一旋转体,其体积为)(t V ,侧面积为)(t S ,在t x =处的底面积为)(t F 。

(I )求)()(t V t S 的值;(答案:2) (II )计算极限)()(lim t F t S t +∞→ (答案:1) (2004年数学二)。

相关文档
最新文档