理论力学复习总结(知识点)
理论力学知识回顾及汇总
0 t 1 2 。 0 0t t 2 2 2 0 2 ( 0 )
3. 摩擦 静滑动摩擦:两个相互接触的物体虽有相对运动趋势,但仍保持相对静止时,接触 面间产生的切向阻力,称为静滑动摩擦力或简称静摩擦力。最大静摩擦力:
0 Fs Fmax 。
库仑静摩擦定律: Fmax f s FN 。 摩擦角正切等于静摩擦系数: tan f Fmax / F N f S 。 若面法线间的夹角小于等于摩擦角,即主动力的合力作用线在摩擦锥内,物体处于 平衡,这种现象称为自锁。 4. 滚动摩阻 滚动摩阻力偶矩: 0 M f M max ;最大滚动摩阻力偶矩: M max FN 。
平面力系
1. 平面汇交力系合成与平衡的几何方法 力的多边形是求平面汇交力系合力的几何方法,平衡条件是力的多边形是自行封闭。 2. 平面汇交力系合成与平衡的解析方法 力在轴的投影的概念及计算。平面汇交力系平衡的解析条件是:
F
x
0; F y 0;
3. 平面力对点的矩的概念及计算 力对点的矩是一个代数量,其计算公式: M o (F) Fh 。 正负号规定:习惯逆时针转动为正。 合力矩定理:合力对某一点的矩等于各个分力对同一点的矩的代数和。 4. 平面力偶理论 力偶:把大小相等、方向相反、作用线平行的两个力叫做力偶。 力偶矩: M Fd 。 平面力偶系平衡的充要条件是:力偶系中各力偶矩的代数和等于零: 5. 力的平移定理 作用在刚体上 A 点的力 F, 可以平行移动到刚体内任一点 B, 但必须同时附加一个力 偶才能保持力 F 对刚体的原有作用效果,其力偶矩等于原力对 B 点之矩。 6. 平面任意力系向一点简化 平面任意力系向作用面内任意一点简化,可得一个力和一个力偶。这个力的大小和 方向等于各个分力的矢量和,作用线过简化点,称为力系的主矢;力偶的力偶矩的 大小和方向等于力系中各个分力对简化中心力矩的矢量和,称为力系的主矩。主矢 与简化中心的位置无关;主矩一般与简化中心的位置有关。 7. 平面力系的简化结果 力系简化为合力: 1. 主矢不为零,主矩为零,合力作用点过简化中心; 2. 主矢不为零,主矩不为零,合力作用点不过简化中心。力系简化为力偶:主矢为 零,主矩不为零,主矩与简化中心无关。 3. 力系平衡:主矢为零,主矩为零。 8. 平面力系的平衡方程
大理论力学知识点总复习
大理论力学知识点总复习1.摩擦力:摩擦力是物体相互接触时发生的一种力。
根据接触面之间的压力大小和物体的粗糙程度,可以分为静摩擦力和动摩擦力。
2.牛顿第一定律:牛顿第一定律也称为惯性定律,它指出一个物体如果没有外力作用,将保持静止或匀速直线运动。
3. 牛顿第二定律:牛顿第二定律描述了物体在受到外力作用下的加速度与作用力的关系。
F=ma,其中F代表作用力,m代表物体的质量,a代表物体的加速度。
4.牛顿第三定律:牛顿第三定律指出,对于任何作用力都有相等大小、方向相反的反作用力。
这意味着作用力和反作用力总是成对存在的。
5.动量守恒定律:当物体间没有外力作用时,系统的总动量保持不变。
动量的大小等于物体的质量乘以其速度。
6.能量守恒定律:在一个封闭系统中,能量总量保持不变。
能量可以相互转化,但总能量不会减少或增加。
7. 动能与势能:动能是物体由于运动而具有的能量,公式为K=1/2mv²,其中m为物体的质量,v为物体的速度。
势能是物体由于位置变化而具有的能量,公式为E=mgh,其中m为物体的质量,g为重力加速度,h为高度。
8.弹性碰撞与非弹性碰撞:弹性碰撞指在碰撞过程中物体之间的动能守恒,且碰撞后物体之间没有能量损失。
非弹性碰撞指碰撞后物体之间有能量损失。
9.万有引力定律:万有引力定律描述了两个物体之间的引力与它们质量和距离的关系。
公式为F=G(m1m2/r²),其中F为引力,G为万有引力常量,m1和m2为两个物体的质量,r为它们之间的距离。
10.刚体力学:刚体力学研究刚体的运动和平衡条件。
刚体是指形状和大小在外力作用下不会改变的物体。
11.流体力学:流体力学研究流体(包括气体和液体)的运动和性质。
其中包括流体的压力、密度和流速等。
12.静力学:静力学研究物体处于平衡状态时的力学性质。
对于平衡物体,其力合为零,力矩合为零。
13.动力学:动力学研究物体运动时的力学性质。
通过牛顿第二定律可以描述物体的加速度。
理论力学 期末复习知识点
第一章静力学公理与物体的受力分析§1.1 静力学公理✧公理1 二力平衡公理(条件)作用在刚体上的两个力,使刚体保持平衡的充分必要条件是:这两个力大小相等,方向相反,且在同一直线上。
✧公理2 加减平衡力系原理在已知力系上加上或减去任意的平衡力系,不改变原力系对刚体的作用。
(效应不变)✧公理3 力的平行四边形法则作用在物体上的同一点的两个力,可以合成为一个合力。
合力作用点也是该点,合力的大小和方向,由这两个力为边构成的平行四边形的对角线确定。
✧公理4 作用和反作用定律作用力与反作用力总是同时存在,两力的大小相等、方向相反、沿着同一直线,分别作用在两个相互作用的物体上。
✧公理5 刚化原理变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,其平衡状态保持不变。
✓推论1 力的可传性作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力对刚体的作用。
✓推理2 三力平衡汇交定理作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三力必在同一平面内,且第三力的作用线通过汇交点。
§1.2 约束和约束力一、约束的概念•自由体:位移不受限制的物体。
•非自由体:位移受限制的物体。
•约束:对非自由体的某些位移起限制作用的周围物体。
二、约束反力(约束力)•约束力:约束对物体作用的力。
•在静力学中,约束力和物体受到的其它已知力(主动力)组成平衡力系,可用平衡条件求出未知的约束力。
三、工程常见约束•光滑平面约束•柔索约束•光滑铰链约束•固定铰链支座•止推轴承径向轴承•平面固定端约束§1.3 物体的受力分析和受力图受力分析:确定构件受了几个外力,每个力的作用位置和方向的分析过程。
•步骤:1.取研究对象(画分离体:按原方位画出简图)。
2.画主动力:主动力照搬。
3.画约束反力:根据约束性质确定。
第二章 平面汇交力系与平面力偶系§2–1 平面汇交力系平面汇交力系:各力的作用线都在同一平面内且汇交于一点的力系。
理论力学知识点总结(15篇)
理论力学知识点总结第1篇xxx体惯性力系的简化:在任意瞬时,xxx体惯性力系向其质心简化为一合力,方向与质心加速度(也就是刚体的加速度)的方向相反,大小等于刚体的质量与加速度的乘积,即。
平面运动刚体惯性力系的简化:如果刚体具有质量对称面,并且刚体在质量对称面所在的平面内运动,则刚体惯性力系向质心简化为一个力和一个力偶,这个力的作用线通过该刚体质心,大小等于刚体的质量与质心加速度的乘积,方向与质心加速度相反;这个力偶的力偶矩等于刚体对通过质心且垂直于质量对称面的轴的转动惯量与刚体角加速度的乘积,其转向与角加速度的转向相反。
即(10-3)定轴转动刚体惯性力系的简化:如果刚体具有质量对称面,并且转轴垂直于质量对称面,则刚体惯性力系向转轴与质量对称面的交点O简化为一个力和一个力偶,这个力通过O点,大小等于刚体的质量与质心加速度的乘积,方向与质心加速度的方向相反;这个力偶的力偶矩等于刚体对转轴的转动惯量与角加速度的乘积,其转向与角加速度的转向相反。
即(10-4)理论力学知识点总结第2篇定点运动刚体的动量矩。
定点运动刚体对固定点O的动量矩定义为:(12-6)其中:分别为刚体上的质量微团的矢径和速度,为刚体的角速度。
当随体参考系的三个轴为惯量主轴时,上式可表示成(12-7)(2)定点刚体的欧拉动力学方程。
应用动量矩定理可得到定点运动刚体的欧拉动力学方程(12-8)(3)陀螺近似理论。
绕质量对称轴高速旋转的定点运动刚体成为陀螺。
若陀螺绕的自旋角速度为,进动角速度为,为陀螺对质量对称轴的转动惯量,则陀螺的动力学方程为(12-9)其中是作用在陀螺上的力对O点之矩的矢量和。
理论力学知识点总结第3篇牛顿第二定律建立了在惯性参考系中,质点加速度与作用力之间的关系,即:其中:分别表示质点的质量、质点在惯性参考系中的加速度和作用在质点上的力。
将上式在直角坐标轴上投影可得到直角坐标形式的质点运动微分方程(6-2)如果已知质点的运动轨迹,则利用牛顿第二定律可得到自然坐标形式的质点运动微分方程(6-3)对于自由质点,应用质点运动微分方程通常可研究动力学的两类问题。
理论力学知识点总结
理论力学知识点总结理论力学是研究物体运动规律的一门基础物理学科,它主要研究在力的作用下物体的运动状态。
以下是理论力学的知识点总结:1. 基本概念- 力:物体间的相互作用,可以改变物体的运动状态。
- 质量:物体所含物质的多少,是物体惯性大小的量度。
- 惯性:物体保持其运动状态不变的性质。
- 运动:物体位置随时间的变化。
- 静止:物体相对于参照系位置不发生改变的状态。
2. 牛顿运动定律- 第一定律(惯性定律):物体在没有外力作用下,将保持静止或匀速直线运动。
- 第二定律(加速度定律):物体的加速度与作用力成正比,与物体质量成反比,方向与作用力方向相同。
- 第三定律(作用与反作用定律):对于任何两个相互作用的物体,它们之间的作用力和反作用力大小相等、方向相反。
3. 功和能- 功:力在物体上做功,等于力与位移的乘积,是能量转化的量度。
- 动能:物体由于运动而具有的能量,与物体质量和速度的平方成正比。
- 势能:物体由于位置而具有的能量,与物体位置有关。
- 机械能守恒定律:在没有非保守力做功的情况下,系统的机械能(动能加势能)保持不变。
4. 动量和角动量- 动量:物体运动状态的量度,等于物体质量与速度的乘积。
- 角动量:物体绕某一点旋转运动状态的量度,等于物体质量、速度与该点到物体距离的乘积。
- 动量守恒定律:在没有外力作用的系统中,系统总动量保持不变。
- 角动量守恒定律:在没有外力矩作用的系统中,系统总角动量保持不变。
5. 刚体运动- 平动:刚体上所有点的运动状态相同,即刚体整体移动。
- 转动:刚体绕某一点或某一轴的旋转运动。
- 刚体的转动惯量:衡量刚体对转动的抵抗程度,与刚体的质量分布和旋转轴的位置有关。
6. 振动和波动- 简谐振动:物体在回复力作用下进行的周期性振动,其运动方程为正弦或余弦函数。
- 阻尼振动:在阻尼力作用下的振动,振幅随时间逐渐减小。
- 波动:能量在介质中的传播,包括横波和纵波。
7. 分析力学- 拉格朗日力学:通过拉格朗日量(动能减势能)来描述物体的运动。
理论力学复习重点
静力学静力学是研究物体在力系作用下平衡的科学。
第一章、静力学公理和物体的受力分析教学目标:掌握物体的受力分析和正确画出受力图。
知识结构:1、基本概念:力、刚体、约束和约束力的概念。
2、静力学公理:(1)力的平行四边形法则;(三角形法则、多边形法则)注意:与力偶的区别(2)二力平衡公理;(二力构件)(3)加减平衡力系公理;(推论:力的可传性、三力平衡汇交定理)(4)作用与反作用定律;(5)刚化原理。
3、常见约束类型与其约束力:(1)光滑接触约束——约束力沿接触处的公法线;(2)柔性约束——对被约束物体与柔性体本身约束力为拉力;(3)铰链约束——约束力一般画为正交两个力,也可画为一个力;(4)活动铰支座——约束力为一个力也画为一个力;(5)球铰链——约束力一般画为正交三个力,也可画为一个力;(6)止推轴承——约束力一般画为正交三个力;(7)固定端约束——两个正交约束力,一个约束力偶。
4、物体受力分析和受力图:(1)画出所要研究的物体的草图;(2)对所要研究的物体进行受力分析;(3)严格按约束的性质画出物体的受力。
意点:(1)画全主动力和约束力;(2)画简图时,不要把各个构件混在一起画受力图;(3)灵活利用二力平衡公理(二力构件)和三力平衡汇交定理;(4)作用力与反作用力。
第二章、平面汇交力系与平面力偶系教学目标:掌握平面汇交力系和平面力偶系的合成与平衡的计算方法。
知识结构:1、平面汇交力系:(1)几何法(合成:力多边形法则;平衡:力多边形自行封闭)(2)解析法(合成:合力大小与方向用解析式;平衡:平衡方程F x 0 ,F y0 )意点:(1)投影轴尽量与未知力垂直;(投影轴不一定相互垂直)(2)对于二力构件,一般先设为拉力,若求出负值,说明受压。
2、平面力对点之矩——M O F Fh ,逆时针正,反之负意点:灵活利用合力矩定理注3、平面力偶系:1)力偶:由两个等值、反向、平行不共线的力组成的力系。
2)力偶M Fh ,逆时针正,反之负。
理论力学快速知识点总结
理论力学快速知识点总结一、牛顿运动定律牛顿三定律是经典力学的基石,它包括三个定律:1. 牛顿第一定律:当物体处于静止或匀速直线运动时,它会保持这种状态,除非受到外力的作用。
2. 牛顿第二定律:物体的加速度与作用力成正比,且与物体的质量成反比。
它的数学表达式为F=ma,其中F表示作用力,m表示物体的质量,a表示物体的加速度。
3. 牛顿第三定律:任何两个物体之间的相互作用力都是相等的,方向相反。
二、运动的描述在力学中,需要描述物体的运动状态。
常用的描述方法包括:1. 位移和速度:位移是指物体从一个位置到另一个位置的变化,速度是位移随时间的变化率。
速度的数学定义为v=Δx/Δt,其中Δx表示位移的变化量,Δt表示时间的变化量。
2. 加速度:加速度是速度随时间的变化率。
加速度的数学定义为a=Δv/Δt,其中Δv表示速度的变化量,Δt表示时间的变化量。
3. 动量:动量是描述物体运动状态的物理量,它与物体的质量和速度有关。
动量的数学定义为p=mv,其中p表示动量,m表示物体的质量,v表示物体的速度。
三、牛顿运动定律的应用牛顿运动定律是力学中最基本的规律,它可以应用于各种不同的情况,包括:1. 自由落体运动:自由落体是指物体只受重力作用,不受其他力的影响。
根据牛顿第二定律,自由落体的加速度为g≈9.8m/s^2。
2. 斜抛运动:斜抛运动是指物体同时具有水平和竖直方向的运动。
根据牛顿第二定律,斜抛运动可以分解为水平和竖直方向的分量运动。
3. 圆周运动:圆周运动是指物体沿着圆形轨道运动。
根据牛顿第二定律,圆周运动的向心力由向心加速度和物体质量决定。
四、能量和动量守恒定律能量和动量是物体运动的重要物理量,它们遵循守恒定律。
1. 能量守恒定律:能量守恒定律表明,在一个封闭系统中,能量的总量是不变的。
这意味着能量可以在不同形式之间转化,但总量保持不变。
2. 动量守恒定律:动量守恒定律表明,在一个封闭系统中,动量的总量是不变的。
(完整版)理论力学复习总结(知识点)
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即FR=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。
理论力学教程知识点总结
理论力学教程知识点总结一、基本概念1.1 质点:质点是理论力学研究的对象之一,它是一个没有体积的点,只有质量和位置。
在质点运动的研究中,忽略了质点的大小和形状,只关心质点的位置和速度。
1.2 力:力是导致物体产生运动、变形或改变物体的运动状态的原因。
在理论力学中,力是一个基本概念,是对物体产生影响的原因。
根据牛顿第二定律,力是导致物体加速度改变的原因,与物体质量和加速度成正比。
1.3 运动:运动是物体在空间中位置随时间变化的过程。
物体的运动可以是直线运动、曲线运动或者是平面运动等。
在理论力学中,研究物体的运动规律和运动状态的改变。
1.4 动力学:动力学是研究物体运动规律的科学,包括物体的运动状态、位置、速度、加速度等方面的研究。
动力学是理论力学的核心内容之一,是理解物体运动规律和力的作用关系的基础。
1.5 动力学方程:动力学方程是描述物体运动规律的方程,根据牛顿第二定律,动力学方程描述了物体的运动状态和受到的力之间的关系。
动力学方程包括牛顿第二定律 F=ma,它表示物体受到的外力等于质量与加速度的乘积。
二、运动方程2.1 牛顿第一定律:牛顿第一定律也称为惯性定律,它指出物体在不受外力作用时,会保持静止或匀速直线运动的状态。
牛顿第一定律是动力学方程的基础,它表明物体的运动状态需要受到外力的作用才会发生改变。
2.2 牛顿第二定律:牛顿第二定律是理论力学的基本定律之一,它描述了物体受到外力作用时的运动规律。
根据这个定律,物体受到的外力等于质量与加速度的乘积,即F=ma。
物体的质量越大,相同的力引起的加速度越小;物体的质量越小,相同的力引起的加速度越大。
2.3 牛顿第三定律:牛顿第三定律也称为作用与反作用定律,它指出作用在物体上的力总有一个与之相等的反作用力。
即使两个物体之间产生相互作用的力,这两个力的大小相等,方向相反。
牛顿第三定律描述了物体之间力的作用关系,是理论力学中一个重要的定律。
2.4 弹簧力:弹簧力是一种常见的力,当物体受到弹簧的拉伸或压缩时,会产生弹簧力。
理论力学教材知识点总结
理论力学教材知识点总结1. 牛顿运动定律牛顿运动定律是理论力学的基础,它包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律:一个物体如果受到合外力作用,将保持静止状态或匀速直线运动状态。
这一定律反映出了物体的运动状态与外力的关系。
牛顿第二定律:物体的加速度与作用在其上的合外力成正比,与物体的质量成反比。
即F=ma,其中F为合外力,m为物体的质量,a为物体的加速度。
牛顿第三定律:任何两个物体之间的相互作用都是相等的,方向相反。
即作用力等于反作用力,它们的方向相反,大小相等。
这三条定律是理论力学的基石,它们为我们理解物体的运动提供了基本的规律。
在学习理论力学的过程中,我们要深刻理解这些定律,并能够灵活运用它们来解决实际问题。
2. 力的概念力是物体之间相互作用的表现,它是导致物体产生加速度的原因。
力的大小可以用牛顿(N)作为单位来表示,力的方向对物体的运动状态有着重要的影响。
在学习力的概念时,我们要了解各种不同类型的力,例如重力、弹力、摩擦力、弦力等,以及它们的性质和作用规律。
3. 动力学动力学是研究物体运动状态变化规律的学科,它包括物体的运动参数、牛顿第二定律、动量定理、动量守恒定律等内容。
动量是描述物体运动状态的物理量,它等于物体质量乘以速度。
动量定理指出,当合外力作用于物体时,物体的动量将发生改变,这个变化率等于作用力的大小与方向。
动量守恒定律说明了在某些特定条件下,物体的总动量是守恒的,即在某个过程中总动量保持不变。
通过学习动力学,我们可以更好地理解物体的运动状态变化规律,掌握物体的动量和动能等重要概念。
4. 静力学静力学是研究物体静止状态和平衡的学科,它包括物体受力平衡条件、力的分解、受力分析等内容。
物体受力平衡条件是指物体受到的各个力的合力和合力矩均为零时,物体处于平衡状态。
通过受力平衡条件,我们可以分析物体受力的情况,判断物体的平衡状态。
力的分解是指将一个斜面上的力分解为平行于斜面和垂直于斜面的两个分力,这样可以更好地分析斜面上物体的运动状态。
期末理论力学知识点总结
期末理论力学知识点总结一、点、质点、物体1、点、质点、物体是力学研究的基本对象。
不考虑物体的大小,可以看作质点。
2、质点是没有大小但具有一定质量的点,用于研究物体的运动和受力情况。
3、物体具有一定形状和大小,通常采用刚体模型研究物体的运动和受力情况。
二、参考系及基本运动1、参考系是对物体的运动进行观察的坐标系统。
常用的参考系有惯性参考系和非惯性参考系。
2、基本运动包括平动和转动。
平动是指物体沿直线运动,转动是指物体旋转运动。
三、位置、位移、速度、加速度1、位置是物体在运动轨迹上的坐标,通常用矢量表示。
2、位移是物体由一个位置移动到另一个位置的矢量差。
3、速度是单位时间内位移的矢量比值,是描述物体运动快慢和方向的物理量。
4、加速度是单位时间内速度变化的矢量比值,是描述物体运动加速或减速的物理量。
四、牛顿运动定律1、牛顿第一定律:物体静止或匀速直线运动时,受力为零或合外力为零。
2、牛顿第二定律:物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
3、牛顿第三定律:任何两个物体相互作用,彼此之间的力的大小相等,方向相反。
五、工作、功、能1、工作是力对物体作用时产生的效果。
功是力对物体作用时所做的功。
2、功是标量,是描述物体受力情况时的一种物理量。
3、势能是物体由于位置关系而具有的能量。
机械能是动能和势能的总和。
六、动量、冲量1、动量是物体运动状态的一种物理量,是物体质量和速度的乘积。
2、冲量是由力对物体作用的时间和力的大小决定的物理量。
七、角动量、矩、力矩1、角动量是描述物体旋转运动状态的物理量,是转动惯量和角速度的乘积。
2、矩是矢量的积,是力矩和时间的乘积。
3、力矩是力和力臂的乘积,是描述物体转动的物理量。
八、简谐振动1、简谐振动是指物体以最小摩擦情况下,在恢复力的作用下沿平衡位置来回振动的运动。
2、简谐振动的特点是周期性、正弦曲线和有固有频率。
以上是期末理论力学知识点总结,该总结涵盖了力学的基本概念、运动定律、能量、冲量、角动量和简谐振动等内容。
理论力学复习总结(知识点)
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。
理论力学总结知识点
理论力学总结知识点1. 牛顿力学牛顿力学是经典力学的基础,主要包括牛顿三定律、万有引力定律和动量定理等内容。
牛顿三定律是牛顿力学的基本定律,它分别描述了物体的运动状态、受力作用和反作用的关系。
动量定理则是描述了力对物体运动状态的影响,通过动量定理可以得到物体的运动规律。
而万有引力定律则描述了质点之间的引力作用,是描述天体运动和行星运动的基础。
2. 哈密顿力学哈密顿力学是经典力学的一种形式,它以哈密顿量为基础,通过哈密顿正则方程描述物体的运动规律。
哈密顿量是描述系统动能和势能的函数,通过对哈密顿量的推导和求解可以得到系统的运动规律。
哈密顿正则方程则是描述了对应于哈密顿量的广义动量和广义坐标的变化规律,通过它可以得到物体的运动轨迹。
3. 拉格朗日力学拉格朗日力学是经典力学的另一种形式,它以拉格朗日函数为基础,描述了物体在一定势场中的运动规律。
拉格朗日函数是描述系统动能和势能的函数,通过对拉格朗日函数的求导和求解可以得到系统的运动规律。
拉格朗日方程则是描述了对应于拉格朗日函数的广义坐标和时间的变化规律,通过它可以得到物体的运动轨迹。
4. 动力学动力学是研究物体在受力作用下的运动规律的一门学科,它主要包括质点动力学、刚体动力学和连续体动力学等内容。
质点动力学是研究质点在受力作用下的运动规律,通过牛顿三定律和动量定理可以得到质点的运动规律。
刚体动力学则是研究刚体在受力作用下的运动规律,它包括刚体的平动和转动运动规律。
而连续体动力学是研究连续体在受力作用下的变形和运动规律,它是弹性力学和流体力学的基础。
5. 卡诺周期卡诺周期是描述热力学循环过程的一个理论模型,它包括等温膨胀、绝热膨胀、等温压缩和绝热压缩四个基本过程。
在卡诺周期中,工质从高温热源吸热,然后做功,再放热到低温热源,最后再做功回到原始状态。
卡诺周期是理想热机的工作过程,它具有最高的热效率,是实际热机效率的理论上界。
总之,理论力学是研究物体在受力作用下的运动规律的一门基础学科,它包括牛顿力学、哈密顿力学和拉格朗日力学等内容。
理论力学重点总结
第一章:静力学的基本公理与物体的受力分析1.刚体:即在任何情况下永远不变形的物体。
这一特征表现为刚体内任意两点的距离永远保持不变。
2.质点:指具有一定质量而其形状与大小可以忽略不计的物体。
3.静力学——研究物体在力系作用下平衡的规律。
4.理论力学是研究物体机械运动一般规律的科学。
包括静力学,运动学,动力学。
5. 物体在空间的位置随时间的改变,称为机械运动。
6. 运动学——从几何角度研究物体的运动。
(如轨迹、速度、加速度等,不涉及作用于物体上的力)7. 动力学——研究受力物体的运动与作用力之间的关系。
8. 力的平行四边形法则----作用在物体上同一点的两个力,可以合成为一个合力,合力的作用点也在该点,合力的大小和方向,由这两个力为边构成的平行四边形的对角线确定,或者说,合力矢等于这两个力矢的几何和。
9. 公理2——二力平衡条件:作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是这两个力的大小相等,方向相反,且在同一直线上。
只适用于刚体,同一刚体对变形体是必要条件,并非充分条件。
例:链条或绳索,受拉平衡,受压不平衡。
10. 公理3——加减平衡力系公理:在已知力系上加上或减去任意的平衡力系,并不改变原力系对刚体的作用。
11. 推理1——力的可传性:作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力对刚体的作用。
12. 刚体上的力的三要素是:力的大小,方向和作用线。
13. 推理2——三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中于两个力的作用线汇交于一点,则三个力必在同一平面内,且第三个力的作用线通过汇交点。
14. 公理4——作用和反作用定律:作用力和反作用力总是同时存在,两力的大小相等、方向相反,沿着同一直线,分别作用在两个相互作用的物体上。
15. 公理5——刚化原理:变形体--在某一力系作用下处于平衡,如将此变形体刚化为刚体,其平衡状态保持不变。
变形体平衡时,一定满足刚体平衡的条件注:①二力平衡条件中的两个力作用在同一物体上;作用力和反作用力分别作用在两个物体上。
理论力学(知识点概括)
第一章静力学公理和物体的受力分析静力学的基本概念、公理及物体的受力分析是研究静力学的基础。
本章将介绍刚体与力的概念及静力学公理,并阐述工程中常见的约束和约束反力的分析。
最后介绍物体的受力分析及受力图,它是解决力学问题的重要环节。
§1-1 刚体和力的概念1.刚体的概念所谓刚体是指这样的物体,在力的作用下,其内部任意两点之间的距离始终保持不变。
这是一个理想化的力学模型。
实际物体在力的作用下,都会产生程度不同的变形。
但是,这些微小的变形,对研究物体的平衡问题不起主要作用,可以略去不计,这样可使问题的研究大为简化。
但是不应该把刚体的概念绝对化。
例如,在研究飞机的平衡问题或飞行规律时,我们可以把飞机看作刚体;可是在研究飞机的颤振问题时,机翼等的变形虽然非常微小,但必须把飞机看作弹性体。
还有,在计算某些工程结构时,如果不考虑它们的变形,而仍使用刚体的概念,则问题将成为不可解的。
理论力学中,静力学研究的物体只限于刚体,故又称刚体静力学,它是研究变形体力学的基础。
2.力的概念力的概念是从劳动中产生的。
人们在生活和生产中,由于肌肉紧张收缩的感觉,逐渐产生了对力的感性认识。
随着生产的发展,又逐渐认识到:物体的机械运动状态的改变(包括变形),都是由于其它物体对该物体施加力的结果。
这样,逐步由感性到理性,建立了抽象的力的概念。
力是物体间相互的机械作用,这种作用使物体的机械运动状态发生变化。
物体之间的机械作用,大致可分为两类,一类是接触作用,例如:机车牵引车厢的拉力,物体之间的挤压力等。
另一类是"场"对物体的作用,例如:地球引力场对物体的引力,电场对电荷的引力或斥力等。
尽管各种物体间相互作用力的来源和性质不同,但在力学中将撇开力的物理本质,只研究各种力的共同表现,即力对物体产生的效应。
力对物体产生的效应一般可分为两个方面:一是物体运动状态的改变,另一个是物体形状的改变。
通常把前者称为力的运动效应,后者称为力的变形效应。
《理论力学》知识点复习总结
《理论力学》知识点复习总结1.物体的力学性质:力、质量、惯性、受力分析方法等。
-力是物体之间相互作用的结果,具有大小和方向。
-质量是物体所固有的特性,是描述物体所具有惯性的物理量。
-惯性是物体保持运动状态的性质。
-受力分析方法包括自由体图、受力分解和力的合成等。
2.静力学:物体在平衡状态下的力学性质。
-质点和刚体的平衡条件:质点处于平衡状态的条件是合外力为零;刚体处于平衡状态的条件包括合外力为零和合力矩为零。
-平衡条件的应用:包括静力平衡、摩擦力和弹簧力的分析。
3.动力学:物体在运动状态下的力学性质。
- 牛顿第二定律:力的大小与物体的加速度成正比,与物体的质量成反比。
F=ma。
-牛顿第三定律:相互作用的两个物体对彼此施加的力大小相等、方向相反且作用线共面。
-看似相矛盾的运动:如撞击问题、弹性碰撞和非弹性碰撞等。
-应用:包括运动学方程、加速度分析和力学功与功率。
4.系统动力学:多个物体组成的力学系统的运动性质。
-质心和运动质量:质心是体系质点整体运动的简化描述,质点与质心之间的相对运动。
-惯性张量:描述刚体旋转运动的物理量,与刚体的形状和质量分布有关。
- 牛顿第二运动定理的推广:F=ma,扩展到系统的质心运动和转动运动。
-平面运动:考虑力矩与角动量的关系,通过角动量守恒定律解决问题。
-空间运动:考虑转动动力学和刚体旋转平衡。
5.两体问题:描述两个物体之间的相互作用。
-地球质点模型:解析化描述地球和物体之间的万有引力相互作用。
-地球表面近似:解析化描述地球表面物体之间的重力相互作用。
-行星运动:描述行星围绕太阳轨道运动和轨道素描和轨道周期的计算。
-卫星运动:描述人造卫星的轨道运动和发射速度的计算。
以上是对《理论力学》知识点的复习总结,需要注意的是理论力学是一个复杂的学科,其中涉及了静力学、动力学和系统动力学等多个方面的知识,所以复习时需要对每个知识点进行深入理解和掌握,并进行相关的计算和应用。
通过理论力学的学习,可以更好地理解和应用力学原理,提高分析和解决实际问题的能力。
理论力学知识点详细总结
理论力学知识点详细总结引言理论力学是物理学的一个重要分支,研究物体的运动规律和力学特性。
它是一门基础学科,也是物理学中最早发展的学科之一。
理论力学对于理解和解释自然界的很多现象都起着关键作用,广泛应用于航天、航空、土木工程、机械制造等领域。
本文将对理论力学的主要知识点进行详细总结,包括牛顿力学、拉格朗日力学和哈密顿力学等内容。
一、牛顿力学牛顿力学是经典力学的基础理论,是研究物体运动规律和力学现象的最基本方法。
牛顿力学建立在牛顿三大定律的基础上,主要包括运动学和动力学两大部分。
1. 运动学运动学是研究物体运动的几何学方法,包括位置、速度、加速度等概念。
基本知识点包括:① 位移:物体从一个位置移动到另一个位置的距离和方向称为位移。
位移可用位移矢量表示。
② 速度:物体单位时间内移动的位移称为速度。
平均速度可用位移除以时间计算,瞬时速度可用极限定义。
③ 加速度:物体单位时间内速度变化的量称为加速度。
平均加速度可用速度变化除以时间计算,瞬时加速度可用速度的导数定义。
2. 动力学动力学是研究物体受力运动的学科,主要包括牛顿运动定律和牛顿万有引力定律。
① 牛顿三大定律:第一定律指出,物体在不受外力作用时保持匀速直线运动或静止;第二定律指出,物体受到的力与其加速度成正比,与质量成反比;第三定律指出,相互作用的两个物体之间的作用力和反作用力大小相等、方向相反。
② 牛顿万有引力定律:物体间的引力与它们的质量和距离平方成反比。
万有引力定律可用来解释行星运动、天体引力等现象。
二、拉格朗日力学拉格朗日力学是研究自由度受限制的多体系统的运动方程和动力学的方法。
它是经典力学的重要分支,由拉格朗日于18世纪提出,是经典力学的另一种处理方法。
主要包括拉格朗日方程和哈密顿原理等内容。
1. 拉格朗日方程拉格朗日方程是描述多体系统的运动方程的方法,它由拉格朗日量和运动方程组成。
主要包括:① 拉格朗日量:拉格朗日力学的核心概念,它是系统动能和势能的差的函数。
理论力学知识点总结
理论力学知识点总结关键信息项:1、静力学受力分析力系简化平衡方程2、运动学点的运动学刚体的平动与转动点的合成运动3、动力学牛顿定律动量定理动量矩定理动能定理11 静力学111 受力分析受力分析是理论力学的基础,它的主要任务是确定研究对象所受的外力。
通过对物体的约束和接触情况进行分析,画出受力图。
常见的约束类型包括柔索约束、光滑面约束、铰链约束等。
112 力系简化力系简化的目的是将复杂的力系用一个简单的力系等效替代。
通过力的平移定理,可以将力系向一点简化,得到主矢和主矩。
113 平衡方程对于平衡的物体或系统,其合力和合力矩都为零。
根据不同的约束条件,可以列出相应的平衡方程,如平面力系的平衡方程、空间力系的平衡方程。
12 运动学121 点的运动学描述点在空间中的位置随时间的变化规律。
可以用直角坐标法、自然法和弧坐标法来表示点的运动方程。
122 刚体的平动与转动刚体的平动是指刚体上各点的运动轨迹相同,速度和加速度也相同。
刚体的转动则是围绕某一固定轴的旋转运动,其角速度和角加速度描述了转动的快慢和变化。
123 点的合成运动研究一个点相对于不同参考系的运动之间的关系。
通过牵连运动、相对运动和绝对运动的分析,运用速度合成定理和加速度合成定理求解问题。
13 动力学131 牛顿定律牛顿第一定律指出物体具有保持原有运动状态的惯性;牛顿第二定律阐明了力与加速度的关系;牛顿第三定律说明了作用力与反作用力的大小相等、方向相反且作用在同一直线上。
132 动量定理物体的动量变化等于作用在物体上的冲量。
通过动量定理可以解决涉及力的时间累积效应的问题。
133 动量矩定理对于绕定轴转动的刚体,其动量矩的变化等于作用于刚体上的外力矩的冲量矩。
134 动能定理合外力对物体做功等于物体动能的变化。
动能定理常用于分析物体的能量变化和运动状态的改变。
14 达朗贝尔原理引入惯性力,将动力学问题转化为静力学问题来求解。
15 虚位移原理利用虚功的概念,通过分析系统在虚位移上的功来确定系统的平衡条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即FR=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。
例2-8如图2.-17(a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩为500kN•m,求A、C两点的约束力。
解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17(b)所示。
由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB’构成一力偶与矩为M的力偶平衡(见图2-17(c))。
由平面力偶系的平衡方程∑Mi=0,得﹣Fad+M=0则有FA=FB’N=471.40N由于FA、FB’为正值,可知二力的实际方向正为图2-17(c)所示的方向。
根据作用力与反作用力的关系,可知FC=FB’=471.40N,方向如图2-17(b)所示。
第3章平面任意力系1.合力矩定理:若平面任意力系可合成为一合力。
则其合力对于作用面内任意一点之矩等于力系中各力对于同一点之矩的代数和。
2.平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q的主矩同时为零,即FR`=0,Mo=0.3.平面任意力系的平衡方程:∑Fx=0, ∑Fy=0, ∑Mo(F)=0.平面任意力系平衡的解析条件是,力系中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零.例3-1如图3-8(a)所示,在长方形平板的四个角点上分别作用着四个力,其中F1=4kN,F2=2kN,F3=F4=3kN,平板上还作用着一力偶矩为M=2kN·m的力偶。
试求以上四个力及一力偶构成的力系向O点简化的结果,以及该力系的最后合成结果。
解(1)求主矢FR’,建立如图3-8(a)所示的坐标系,有F’Rx=∑Fx=﹣F2cos60°+F3+F4cos30°=4.598kNF’Ry=∑Fy=F1-F2sin60°+F4sin30°=3.768kN 所以,主矢为F’R==5.945kN主矢的方向cos(F’R,i)==0.773, ∠(F’R,i)=39.3°cos(F’R,j)==0.634,∠(F’R,j)=50.7°(2)求主矩,有M0=∑M0(F)=M+2F2cos60°-2F2+3F4sin30°=2.5kN·m由于主矢和主矩都不为零,故最后的合成结果是一个合力FR,如图3-8(b)所示,FR=F’R,合力FR到O点的距离为d==0.421m例3-10连续梁由AC和CE两部分在C点用铰链连接而成,梁受载荷及约束情况如图3-18(a)所示,其中M=10kN·m,F=30kN,q=10kN/m,l=1m。
求固定端A和支座D的约束力。
解先以整体为研究对象,其受力如图3-18(a)所示。
其上除受主动力外,还受固定端A处的约束力Fax、Fay和矩为MA的约束力偶,支座D处的约束力FD作用。
列平衡方程有∑Fx=0,Fax-Fcos45°=0∑Fy=0,FAy-2ql+Fsin45°+FD=0∑MA(F)=0,MA+M-4ql ²+3FDl+4Flsin45°=0以上三个方程中包含四个未知量,需补充方程。
现选CE为研究对象,其受力如图3-(b)所示。
以C点为矩心,列力矩平衡方程有∑MC(F)=0,-ql ²+FDl+2Flsin45°=0联立求解得FAx=21.21kN,Fay=36.21kN,MA=57.43kN·m,FD=﹣37.43kN第4章考虑摩擦的平衡问题1.摩擦角:物体处于临界平衡状态时,全约束力和法线间的夹角。
tanψm=fs2.自锁现象:当主动力即合力Fa的方向、大小改变时,只要Fa的作用线在摩擦角内,C点总是在B点右侧,物体总是保持平衡,这种平衡现象称为摩擦自锁。
例4-3梯子AB靠在墙上,其重为W=200N,如图4-7所示。
梯长为l,梯子与水平面的夹角为θ=60°已知接触面间的摩擦因数为0.25。
今有一重650N的人沿梯上爬,问人所能达到的最高点C到A点的距离s为多少?解整体受力如图4-7所示,设C点为人所能达到的极限位置,此时FsA=fsFNA,FsB=fsFNB∑Fx=0,FNB-FsA=0∑Fy=0,FNA+FsB-W-W1=0∑MA(F)=0,-FNBsinθ-FsBlcosθ+W cosθ+W1scosθ=0联立求解得S=0.456l第5章空间力系1.空间汇交力系平衡的必要与充分条件是:该力系的合力等于零,即FR=∑Fi=02.空间汇交力系平衡的解析条件是:力系中各力在三条坐标轴上投影的代数和分别等于零.3.要使刚体平衡,则主失和主矩均要为零,即空间任意力系平衡的必要和充分条件是:该力系的主失和对于任一点的主矩都等于零,即FR`=∑Fi=0,Mo=∑Mo(Fi)=04.均质物体的重力位置完全取决于物体的几何形状,而与物体的重量无关.若物体是均质薄板,略去Zc,坐标为xc=∑Ai*xi/A,yc=∑Ai*yi/A5.确定物体重心的方法(1)查表法(2)组合法:①分割法;②负面积(体积)法(3)实验法例5-7试求图5-21所示截面重心的位置。
解将截面看成由三部分组成:半径为10mm的半圆、50mm×20mm 的矩形、半径为5mm的圆,最后一部分是去掉的部分,其面积应为负值。
取坐标系Oxy,x轴为对称轴,则截面重心C必在x轴上,所以yc=0.这三部分的面积和重心坐标分别为A1=mm ²=157mm ²,x1=-=-4.246mm,y1=0A2=50×20mm ²=1000mm ²,x2=25mm,y2=0A3=-π×5 ²mm ²=-78.5mm ²,x3=40mm,y3=0用负面积法,可求得Xc==第二篇运动学第6章点的运动学6.2直角坐标法运动方程x=f(t)y=g(t) z=h(t) 消去t可得到轨迹方程f (x,y,z)=0 其中例题6 -1 椭圆规机构如图6-4(a)所示,曲柄oc以等角速度w绕O转动,通过连杆AB带动滑块A、B在水平和竖直槽内运动,OC=BC=AC=L 。
求:(1)连杆上M点(AM=r)的运动方程;(2)M点的速度与加速度。
解:(1)列写点的运动方程由于M点在平面内运动轨迹未知,故建立坐标系。
点M是BA 杆上的一点,该杆两端分别被限制在水平和竖直方向运动。
曲柄做等角速转动,Φ=wt 。
由这些约束条件写出M点运动方程x=(2L-r)coswt y=rsinwt 消去t 得轨迹方程:(x/2L-r)²+(y/x)²=1(2)求速度和加速度对运动方程求导,得dx/dt=-(2L-r)wsinwt dy/dt=rsinwt 再求导a1=-(2L-r)w²coswt a2=-rw²sinwt 由式子可知a=a1i+a2j=-w²r6.3自然法2.自然坐标系:b=t×n其中b为副法线n为主法线t3.点的速度v=ds/dt 切向加速度at=dv/dt 法向加速度an=v²/p习题6-10 滑道连杆机构如图所示,曲柄OA长r,按规律θ=θ’+wt 转动(θ以rad计,t以s计),w为一常量。
求滑道上C点运动、速度及加速度方程。
解:第七章刚体的基本运动7.1刚体的平行运动:刚体平移时,其内所有各点的轨迹的形状相同。
在同一瞬时,所有各点具有相同的速度和相同的加速度。
刚体的平移问题可归结为点的运动问题。
7.2刚体的定轴转动:瞬时角速度w=lim△θ∕△t=dθ/dt瞬时角加速度a=lim△w∕△t=dw/dt=d²θ/dt²转动刚体内任一点速度的代数值等于该点至转轴的距离与刚体角速度的乘积a=√(a²+b²)=R√(α²+w²) θ=arctan|a|/b =arctan|α|/w²转动刚体内任一点速度和加速度的大小都与该点至转轴的距离成正比。
例题7-1如图所示平行四连杆机构中,O1A=O2B=0.2m ,O1O2=AB=0.6m ,AM=0.2m ,如O1A按φ=15πt的规律转动,其中φ以rad计,t以s计。
试求t=0.8s时,M点的速度与加速度。
解:在运动过程中,杆AB始终与O1O2平行。
因此,杆AB为平移,O1A为定轴转动。
根据平移的特点,在同一瞬时M、A两点具有相同的速度和加速度。
A点做圆周运动,它的运动规律为s=O1A·φ=3πt m所以V A=ds/dt=3πm/s atA=dv/dt=0 anA= (V A) ²/O1A=45 m/s为了表示Vm 、am 的2,需确定t=0.8s时,AB杆的瞬时位置。