英文文献及翻译:计算机程序文件
(完整word版)英文文献及翻译:计算机程序
姓名:刘峻霖班级:通信143班学号:2014101108Computer Language and ProgrammingI. IntroductionProgramming languages, in computer science, are the artificial languages used to write a sequence of instructions (a computer program) that can be run by a computer. Simi lar to natural languages, such as English, programming languages have a vocabulary, grammar, and syntax. However, natural languages are not suited for programming computers because they are ambiguous, meaning that their vocabulary and grammatical structure may be interpreted in multiple ways. The languages used to program computers must have simple logical structures, and the rules for their grammar, spelling, and punctuation must be precise.Programming languages vary greatly in their sophistication and in their degree of versatility. Some programming languages are written to address a particular kind of computing problem or for use on a particular model of computer system. For instance, programming languages such as FORTRAN and COBOL were written to solve certain general types of programming problems—FORTRAN for scientific applications, and COBOL for business applications. Although these languages were designed to address specific categories of computer problems, they are highly portable, meaning that the y may be used to program many types of computers. Other languages, such as machine languages, are designed to be used by one specific model of computer system, or even by one specific computer in certain research applications. The most commonly used progra mming languages are highly portable and can be used to effectively solve diverse types of computing problems. Languages like C, PASCAL and BASIC fall into this category.II. Language TypesProgramming languages can be classified as either low-level languages or high-level languages. Low-level programming languages, or machine languages, are the most basic type of programming languages and can be understood directly by a computer. Machine languages differ depending on the manufacturer and model of computer. High-level languages are programming languages that must first be translated into a machine language before they can be understood and processed by a computer. Examples of high-levellanguages are C, C++, PASCAL, and FORTRAN. Assembly languages are intermediate languages that are very close to machine languages and do not have the level of linguistic sophistication exhibited by other high-level languages, but must still be translated into machine language.1. Machine LanguagesIn machine languages, instructions are written as sequences of 1s and 0s, called bits, that a computer can understand directly. An instruction in machine language generally tells the computer four things: (1) where to find one or two numbers or simple pieces of data in the main computer memory (Random Access Memory, or RAM), (2) a simple operation to perform, such as adding the two numbers together, (3) where in the main memory to put the result of this simple operation, and (4) where to find the next instruction to perform. While all executable programs are eventually read by the computer in machine language, they are not all programmed in machine language. It is extremely difficult to program directly in machine language because the instructions are sequences of 1s and 0s. A typical instruction in a machine language might read 10010 1100 1011 and mean add the contents of storage register A to the contents of storage register B.2. High-Level LanguagesHigh-level languages are relatively sophisticated sets of statements utilizing word s and syntax from human language. They are more similar to normal human languages than assembly or machine languages and are therefore easier to use for writing complicated programs. These programming languages allow larger and more complicated programs to be developed faster. However, high-level languages must be translated into machine language by another program called a compiler before a computer can understand them. For this reason, programs written in a high-level language may take longer to execute and use up more memory than programs written in an assembly language.3. Assembly LanguagesComputer programmers use assembly languages to make machine-language programs easier to write. In an assembly language, each statement corresponds roughly to one machine language instruction. An assembly language statement is composed with the aid of easy to remember commands. The command to add the contents of the storage register A to the contents of storage register B might be written ADD B, A in a typical assembl ylanguage statement. Assembly languages share certain features with machine languages. For instance, it is possible to manipulate specific bits in both assembly and machine languages. Programmers use assemblylanguages when it is important to minimize the time it takes to run a program, because the translation from assembly language to machine language is relatively simple. Assembly languages are also used when some part of the computer has to be controlled directly, such as individual dots on a monitor or the flow of individual characters to a printer.III. Classification of High-Level LanguagesHigh-level languages are commonly classified as procedure-oriented, functional, object-oriented, or logic languages. The most common high-level languages today are procedure-oriented languages. In these languages, one or more related blocks of statements that perform some complete function are grouped together into a program module, or procedure, and given a name such as “procedure A.” If the same sequence of oper ations is needed elsewhere in the program, a simple statement can be used to refer back to the procedure. In essence, a procedure is just amini- program. A large program can be constructed by grouping together procedures that perform different tasks. Procedural languages allow programs to be shorter and easier for the computer to read, but they require the programmer to design each procedure to be general enough to be usedin different situations. Functional languages treat procedures like mathematical functions and allow them to be processed like any other data in a program. This allows a much higher and more rigorous level of program construction. Functional languages also allow variables—symbols for data that can be specified and changed by the user as the program is running—to be given values only once. This simplifies programming by reducing the need to be concerned with the exact order of statement execution, since a variable does not have to be redeclared , or restated, each time it is used in a program statement. Many of the ideas from functional languages have become key parts of many modern procedural languages. Object-oriented languages are outgrowths of functional languages. In object-oriented languages, the code used to write the program and the data processed by the program are grouped together into units called objects. Objects are further grouped into classes, which define the attributes objects must have. A simpleexample of a class is the class Book. Objects within this class might be No vel and Short Story. Objects also have certain functions associated with them, called methods. The computer accesses an object through the use of one of the object’s methods. The method performs some action to the data in the object and returns this value to the computer. Classes of objects can also be further grouped into hierarchies, in which objects of one class can inherit methods from another class. The structure provided in object-oriented languages makes them very useful for complicated programming tasks. Logic languages use logic as their mathematical base. A logic program consists of sets of facts and if-then rules, which specify how one set of facts may be deduced from others, for example: If the statement X is true, then the statement Y is false. In the execution of such a program, an input statement can be logically deduced from other statements in the program. Many artificial intelligence programs are written in such languages.IV. Language Structure and ComponentsProgramming languages use specific types of statements, or instructions, to provide functional structure to the program. A statement in a program is a basic sentence that expresses a simple idea—its purpose is to give the computer a basic instruction. Statements define the types of data allowed, how data are to be manipulated, and the ways that procedures and functions work. Programmers use statements to manipulate common components of programming languages, such as variables and macros (mini-programs within a program). Statements known as data declarations give names and properties to elements of a program called variables. Variables can be assigned different values within the program. The properties variables can have are called types, and they include such things as what possible values might be saved in the variables, how much numerical accuracy is to be used in the values, and how one variable may represent a collection of simpler values in an organized fashion, such as a table or array. In many programming languages, a key data type is a pointer. Variables that are pointers do not themselves have values; instead, they have information that the computer can use to locate some other variable—that is, they point to another variable. An expression is a piece of a statement that describe s a series of computations to be performed on some of the program’s variables, such as X+Y/Z, in which the variables are X, Y, and Z and the computations are addition and division. An assignment statement assigns a variable a value derived fromsome expression, while conditional statements specify expressions to be tested and then used to select which other statements should be executed next.Procedure and function statements define certain blocks of code as procedures or functions that can then be returned to later in the program. These statements also define the kinds of variables and parameters the programmer can choose and the type of value that the code will return when an expression accesses the procedure or function. Many programming languages also permit mini translation programs called macros. Macros translate segments of code that have been written in a language structure defined by the programmer into statements that the programming language understands.V. HistoryProgramming languages date back almost to the invention of the digital computer in the 1940s. The first assembly languages emerged in the late 1950s with the introduction of commercial computers. The first procedural languages were developed in the late 1950s to early 1960s: FORTRAN, created by John Backus, and then COBOL, created by Grace Hopper The first functional language was LISP, written by John McCarthy4 in the late 1950s. Although heavily updated, all three languages are still widely used today. In the late 1960s, the first object-oriented languages, such as SIMULA, emerged. Logic languages became well known in the mid 1970swith the introduction of PROLOG6, a language used to program artificial intelligence software. During the 1970s, procedural languages continued to develop with ALGOL, BASIC, PASCAL, C, and A d a SMALLTALK was a highly influential object-oriented language that led to the merging ofobject- oriented and procedural languages in C++ and more recently in JAVA10. Although pure logic languages have declined in popularity, variations have become vitally important in the form of relational languages for modern databases, such as SQL.计算机程序一、引言计算机程序是指导计算机执行某个功能或功能组合的一套指令。
计算机专业外文文献及翻译
微软Visual Studio1微软Visual StudioVisual Studio 是微软公司推出的开发环境,Visual Studio可以用来创建Windows平台下的Windows应用程序和网络应用程序,也可以用来创建网络服务、智能设备应用程序和Office 插件。
Visual Studio是一个来自微软的集成开发环境IDE,它可以用来开发由微软视窗,视窗手机,Windows CE、.NET框架、.NET精简框架和微软的Silverlight支持的控制台和图形用户界面的应用程序以及Windows窗体应用程序,网站,Web应用程序和网络服务中的本地代码连同托管代码。
Visual Studio包含一个由智能感知和代码重构支持的代码编辑器。
集成的调试工作既作为一个源代码级调试器又可以作为一台机器级调试器。
其他内置工具包括一个窗体设计的GUI应用程序,网页设计师,类设计师,数据库架构设计师。
它有几乎各个层面的插件增强功能,包括增加对支持源代码控制系统(如Subversion和Visual SourceSafe)并添加新的工具集设计和可视化编辑器,如特定于域的语言或用于其他方面的软件开发生命周期的工具(例如Team Foundation Server的客户端:团队资源管理器)。
Visual Studio支持不同的编程语言的服务方式的语言,它允许代码编辑器和调试器(在不同程度上)支持几乎所有的编程语言,提供了一个语言特定服务的存在。
内置的语言中包括C/C + +中(通过Visual C++),(通过Visual ),C#中(通过Visual C#)和F#(作为Visual Studio 2010),为支持其他语言,如M,Python,和Ruby等,可通过安装单独的语言服务。
它也支持的XML/XSLT,HTML/XHTML,JavaScript和CSS.为特定用户提供服务的Visual Studio也是存在的:微软Visual Basic,Visual J#、Visual C#和Visual C++。
计算机类毕业设计英文文献及翻译
外貌在环境面板上的共同标签部分包括光,云,太阳和月亮的控制器。
启用灯光--当设置后,环境面板被点亮并且物体的场景会在全天不断变化。
当此复选框被清除,在场景中所有对象不亮也不随着一天时间的变化而变化。
(该对象将仍然被视为未点亮时,他们将使用为他们定制的颜色,材料和正常的价值观)。
启用云--当设置后,一个云层的场景便设置其中。
道路工具将定出海拔类型和云层类型。
默认情况下,此值未设置。
启用太阳/月亮--当设置,太阳和月球环境的效果显示并且月亮环境的效果有助于现场场景内的任何物体的照明。
当此复选框被清除,太阳和月亮不会被显示并且月亮助手停止现场照明。
默认情况下,太阳和月亮是没有设置。
注:太阳和月亮在天空的位置和绘制使用星历模型。
太阳和月亮的位置是根据一天中的时间,日期,纬度和经度绘制的。
月亮的月球阶段也以同样的方式计算。
天空颜色在环境面板上的共同标签部分包括天空的颜色,云的颜色,周围的颜色,天气的控制,和雾。
注:彩色按钮旁边的天空,云,和环境(背景)显示你当前的颜色。
单击每个按钮来改变颜色。
云的颜色--这个颜色的按钮显示您的云层的颜色。
点击就显示颜色对话框,然后选择一个新的颜色,然后点击确定。
环境光颜色--这个颜色的彩色按钮显示您当前的周围灯光组件的颜色。
点击就显示颜色对话框,然后选择一个新的颜色,然后点击确定。
环境光元件有助于场景和物体的亮度;默认设置是应用一个小环境光线。
环境光照亮了现场或对象,当一天的时间设置为晚,对象将仍然由于环境光而可见。
环境光可以用来照亮一个带有黑暗纹理或者用IRIX电脑做出纹理的物体。
(IRIX电脑相对于WINDOWS电脑使用了不同的GAMMA设置,他使Irix计算机处理的纹理总是看上去黑暗,直到图像编辑程序纠正才能恢复正常。
)天气--此选项不使用这种版本的路径工具。
在今后的版本中,天气列表将包含环境设置预设模拟不同时间的天气事件,如日出,上午,傍晚,夜间,多云,雨,雪等。
计算机外文文献及翻译(SSH)
附录AHistoryDuke, the Java mascotJames Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project in June 1991. Java was originally designed for interactive television, but it was too advanced for the digital cable television industry at the time. The language was initially called Oak after an oak tree that stood outside Gosling's office; it went by the name Green later, and was later renamed Java, from a list of random words.Gosling aimed to implement a virtual machine and a language that had a familiar C/C++ style of notation.Sun Microsystems released the first public implementation as Java 1.0 in 1995. It promised "Write Once, Run Anywhere" (WORA), providing no-cost run-times on popular platforms. Fairly secure and featuring configurable security, it allowed network- and file-access restrictions. Major web browsers soon incorporated the ability to run Java applets within web pages, and Java quickly became popular. With the advent of Java 2 (released initially as J2SE 1.2 in December 1998–1999), new versions had multiple configurations built for different types of platforms. For example, J2EE targeted enterprise applications and the greatly stripped-down version J2ME for mobile applications (Mobile Java). J2SE designated the Standard Edition. In 2006, for marketing purposes, Sun renamed new J2 versions as Java EE, Java ME, and Java SE, respectively.In 1997, Sun Microsystems approached the ISO/IEC JTC1 standards body and later the Ecma International to formalize Java, but it soon withdrew from the process. Java remains a de facto standard, controlled through the Java Community Process. At one time, Sun made most of its Java implementations available without charge, despite their proprietary software status. Sun generated revenue from Java through the selling of licenses for specialized products such as the Java Enterprise System. Sun distinguishes between its Software Development Kit (SDK) and Runtime Environment (JRE) (a subset of the SDK); the primary distinction involves the JRE's lack of the compiler, utility programs, and header files.On November 13, 2006, Sun released much of Java as open source software under the terms of the GNU General Public License (GPL). On May 8, 2007, Sun finished the process, making all of Java's core code available under free software/open-source distribution terms, aside from a small portion of code to which Sun did not hold the copyright.Sun's vice-president Rich Green has said that Sun's ideal role with regards to Java is as an "evangelist." Following Oracle Corporation's acquisition of Sun Microsystems in 2009–2010, Oracle has described itself as the "steward of Java technology with a relentless commitment to fostering a community of participation and transparency".PrinciplesThere were five primary goals in the creation of the Java language:1.It should be "simple, object oriented, and familiar"、2.It should be "robust and secure".3.It should be "architecture neutral and portable"、4.It should execute with "high performance"、5.It should be "interpreted, threaded, and dynamic".Java PlatformMain articles: Java (software platform) and Java Virtual Machine One characteristic of Java is portability, which means that computer programs written in the Java language must run similarly on any supported hardware/operating-system platform. This is achieved by compiling the Java language code to an intermediate representation called Java bytecode, instead of directly to platform-specific machine code. Java bytecode instructions are analogous to machine code, but are intended to be interpreted by a virtual machine (VM) written specifically for the host hardware. End-users commonly use a Java Runtime Environment (JRE) installed on their own machine for standalone Java applications, or in a Web browser for Java applets. Standardized libraries provide a generic way to access host-specific features such as graphics, threading, and networking.A major benefit of using bytecode is porting. However, the overhead of interpretation means that interpreted programs almost always run more slowly than programs compiled to native executables would. Just-in-Time compilers were introduced from an early stage that compile bytecodes to machine code during runtime.ImplementationsSun Microsystems officially licenses the Java Standard Edition platform for Linux, Mac OS X, and Solaris. Although in the past Sun has licensed Java to Microsoft, the license has expired and has not been renewed. Through a network of third-party vendors and licensees, alternative Java environments are available for these and other platforms.Sun's trademark license for usage of the Java brand insists that all implementations be "compatible". This resulted in a legal dispute with Microsoft after Sun claimed that the Microsoft implementation did not support RMI or JNI and had added platform-specific features of their own. Sun sued in 1997, and in 2001 won a settlement of US$20 million, as well as a court order enforcing the terms of the license from Sun. As a result, Microsoft no longer ships Java with Windows, and in recent versions of Windows, Internet Explorer cannot support Java applets without a third-party plugin. Sun, and others, have made available free Java run-time systems for those and other versions of Windows.Platform-independent Java is essential to the Java EE strategy, and an even more rigorous validation is required to certify an implementation. This environment enables portable server-side applications, such as Web services, Java Servlets, and Enterprise JavaBeans, as well as with embedded systems based on OSGi, using Embedded Java environments. Through the new GlassFish project, Sun is working to create a fully functional, unified open source implementation of the Java EE technologies.Sun also distributes a superset of the JRE called the Java Development Kit (commonly known as theJDK), which includes development tools such as the Java compiler, Javadoc, Jar, and debugger.Java performance and garbage collectorsPrograms written in Java have a reputation for being slower and requiring more memory than those written in C. However, Java programs' execution speed improved significantly with the introduction of Just-in-time compilation in 1997/1998 for Java1.1, the addition of language features supporting better code analysis (such as inner classes, StringBuffer class, optional assertions, etc.), and optimizations in the Java Virtual Machine itself, such as HotSpot becoming the default for Sun's JVM in 2000. Currently, Java code has approximately half the performance of C code.Some platforms offer direct hardware support for Java; there are microcontrollers that can run java in hardware instead of a software JVM, and ARM based processors can have hardware support for executing Java bytecode through its Jazelle option. Automatic memory managementJava uses an automatic garbage collector to manage memory in the object lifecycle. The programmer determines when objects are created, and the Java runtime is responsible for recovering the memory once objects are no longer in use. Once no references to an object remain, the unreachable memory becomes eligible to be freed automatically by the garbage collector. Something similar to a memory leak may still occur if a programmer's code holds a reference to an object that is no longer needed, typically when objects that are no longer needed are stored in containers that are still in use. If methods for a nonexistent object are called, a "null pointer exception" is thrown.One of the ideas behind Java's automatic memory management model is that programmers can be spared the burden of having to perform manual memory management. In some languages, memory for the creation of objects is implicitly allocated on the stack, or explicitly allocated and deallocated from the heap. In the latter case the responsibility of managing memory resides with the programmer. If the program does not deallocate an object, a memory leak occurs. If the program attempts to access or deallocate memory that has already been deallocated, the result is undefined and difficult to predict, and the program is likely to become unstable and/or crash. This can be partially remedied by the use of smart pointers, but these add overhead and complexity. Note that garbage collection does not prevent "logical" memory leaks, i.e. those where the memory is still referenced but never used.Garbage collection may happen at any time. Ideally, it will occur when a program is idle. It is guaranteed to be triggered if there is insufficient free memory on the heap to allocate a new object; this can cause a program to stall momentarily. Explicit memory management is not possible in Java.Java does not support C/C++ style pointer arithmetic, where object addresses and unsigned integers (usually long integers) can be used interchangeably. This allows the garbage collector to relocate referencedobjects and ensures type safety and security. As in C++ and some other object-oriented languages, variables of Java's primitive data types are not objects. Values of primitive types are either stored directly in fields (for objects) or on the stack (for methods) rather than on the heap, as commonly true for objects (but see Escape analysis). This was a conscious decision by Java's designers for performance reasons. Because of this, Java was not considered to be a pure object-oriented programming language. However, as of Java 5.0, autoboxing enables programmers to proceed as if primitive types were instances of their wrapper class. Java contains multiple types of garbage collectors. By default, HotSpot uses the Concurrent Mark Sweep collector, also known as the CMS Garbage Collector. However, there are also several other garbage collectors that can be used to manage the Heap. For 90% of applications in Java, the CMS Garbage Collector is good enough.A class that is not declared public may be stored in any .java file. The compiler will generate a class file for each class defined in the source file. The name of the class file is the name of the class, with .class appended. For class file generation, anonymous classes are treated as if their name were the concatenation of the name of their enclosing class, a $, and an integer.The keyword public denotes that a method can be called from code in other classes, or that a class may be used by classes outside the class hierarchy. The class hierarchy is related to the name of the directory in which the .java file is located.The keyword static in front of a method indicates a static method, which is associated only with the class and not with any specific instance of that class. Only static methods can be invoked without a reference to an object. Static methods cannot access any method variables that are not static.The keyword void indicates that the main method does not return any value to the caller. If a Java program is to exit with an error code, it must call System.exit() explicitly.The method name "main" is not a keyword in the Java language. It is simply the name of the method the Java launcher calls to pass control to the program. Java classes that run in managed environments such as applets and Enterprise JavaBean do not use or need a main() method. A java program may contain multiple classes that have main methods, which means that the VM needs to be explicitly told which class to launch from.The main method must accept an array of String objects. By convention, it is referenced as args although any other legal identifier name can be used. Since Java 5, the main method can also use variable arguments, in the form of public static void main(String... args), allowing the main method to be invoked with an arbitrary number of String arguments. The effect of this alternate declaration is semantically identical (the args parameter is still an array of String objects), but allows an alternative syntax for creating and passing the array.The Java launcher launches Java by loading a given class (specified on the command line or as an attribute in a JAR) and starting its public static void main(String[]) method. Stand-alone programs must declare this method explicitly. The String[] args parameter is an array of String objects containing any arguments passed to the class. The parameters to main are often passed by means of a command line.Criticism of JavaA number of criticisms have been leveled at Java programming language for various design choices in the language and platform. Such criticisms include the implementation of generics, the handling of unsigned numbers, the implementation of floating-point arithmetic, and security vulnerabilities.Class librariesJava Platform and Class libraries diagramJava libraries are the compiled bytecodes of source code developed by the JRE implementor to support application development in Java. Examples of these libraries are: The core libraries, which include:Collection libraries that implement data structures such as lists, dictionaries, trees, sets, queues and double-ended queue, or stacksXML Processing (Parsing, Transforming, Validating) librariesSecurityInternationalization and localization librariesThe integration libraries, which allow the application writer to communicate with external systems. These libraries include:The Java Database Connectivity (JDBC) API for database accessJava Naming and Directory Interface (JNDI) for lookup and discoveryRMI and CORBA for distributed application developmentJMX for managing and monitoring applicationsUser interface libraries, which include:The (heavyweight, or native) Abstract Window Toolkit (AWT), which provides GUI components, the means for laying out those components and the means for handling events from those componentsThe (lightweight) Swing libraries, which are built on AWT but provide (non-native) implementations of the AWT widgetryAPIs for audio capture, processing, and playbackA platform dependent implementation of Java Virtual Machine (JVM) that is the means by which the byte codes of the Java libraries and third party applications are executedPlugins, which enable applets to be run in Web browsersJava Web Start, which allows Java applications to be efficiently distributed to end-users across the InternetLicensing and documentation.DocumentationMain article: JavadocJavadoc is a comprehensive documentation system, created by Sun Microsystems, used by many Java developers. It provides developers with anorganized system for documenting their code. Javadoc comments have an extra asterisk at the beginning, i.e. the tags are /** and */, whereas the normal multi-line comment tags comments in Java and C are set off with /* and */.Sun has defined and supports four editions of Java targeting different application environments and segmented many of its APIs so that they belong to one of the platforms. The platforms are:Java Card for smartcards.、Java Platform, Micro Edition(Java ME) —targeting environments with limited resources、Java Platform, Standard Edition (Java SE) — targeting workstation environments、Java Platform, Enterprise Edition (Java EE) — targeting large distributed enterprise or Internet environments. The classes in the Java APIs are organized into separate groups called packages. Each package contains a set of related interfaces, classes and exceptions. Refer to the separate platforms for a description of the packages available.The set of APIs is controlled by Sun Microsystems in cooperation with others through the Java Community Process program. Companies or individuals participating in this process can influence the design and development of the APIs. This process has been a subject of controversy. Sun also provided an edition called PersonalJava that has been superseded by later, standards-based Java ME configuration-profile pairings.JSP ProfileJSP (JavaServer Pages) is initiated by Sun Microsystems, Inc., with many companies to participate in the establishment of a dynamic web page technical standards. JSP technology somewhat similar to ASP technology, it is in the traditional HTML web page document (*. htm, *. html) to insert the Java programming paragraph (Scriptlet) and JSP tag (tag), thus JSP documents (*. jsp). Using JSP development of the Web application is cross-platform that can run on Linux, is also available for other operating systems.JSP technology to use the Java programming language prepared by the category of XML tags and scriptlets, to produce dynamic pages package processing logic. Page also visit by tags and scriptlets exist in the services side of the resources of logic. JSP page logic and web page design and display separation, support reusable component-based design, Web-based application development is rapid and easy.Web server in the face of visits JSP page request, the first implementation of the procedures of, and then together with the results of the implementation of JSP documents in HTML code with the return to the customer. Insert the Java programming operation of the database can be re-oriented websites, in order to achieve the establishment of dynamic pages needed to function.JSP and Java Servlet, is in the implementation of the server, usually returned to the client is an HTML text, as long as the client browser will be able to visit.JSP 1.0 specification of the final version is launched in September 1999, December has introduced 1.1 specifications. At present relatively new is JSP1.2 norms, JSP2.0 norms of the draft has also been introduced.JSP pages from HTML code and Java code embedded in one of the components.The server was in the pages of client requests after the Java code and then will generate the HTML pages to return to the client browser. Java Servlet JSP is the technical foundation and large-scale Web application development needs of Java Servlet and JSP support to complete. JSP with the Java technology easy to use, fully object-oriented, and a platform-independent and secure, mainly for all the characteristics of the Internet. JSP technology strength:(1) time to prepare, run everywhere. At this point Java better than PHP, in addition to systems, the code not to make any changes.(2) the multi-platform support. Basically on all platforms of any development environment, in any environment for deployment in any environment in the expansion. Compared ASP / PHP limitations are obvious. (3) a strong scalability. From only a small Jar documents can run Servlet / JSP, to the multiple servers clustering and load balancing, to multiple Application for transaction processing, information processing, a server to numerous servers, Java shows a tremendous Vitality. (4) diversification and powerful development tools support. This is similar to the ASP, Java already have many very good development tools, and many can be free, and many of them have been able to run on a variety of platforms under. JSP technology vulnerable:(1) and the same ASP, Java is the advantage of some of its fatal problem. It is precisely because in order to cross-platform functionality, in order to extreme stretching capacity, greatly increasing the complexity of the product. (2) Java's speed is class to complete the permanent memory, so in some cases by the use of memory compared to the number of users is indeed a "minimum cost performance." On the other hand, it also needs disk space to store a series of. Java documents and. Class, as well as the corresponding versions of documents.Spring:It all started with a bean.In 1996, the Java programming language was still a young, exciting, up-and- coming platform. Many developers flocked to the language because t hey’d seen how to create rich and dynamic web applications using applets. They soon learned that there was more to this strange new language than animated juggling cartoon characters. Unlike any language before it, Java made it possible to write complex applications made up of discrete parts. They came for the applets, but they stayed for the components. In December of that year, Sun Microsystems published the JavaBeans 1.00-A spec- ification. JavaBeans defined a software component model for Java. This specification defined a set of coding policies that enabled simple Java objects to be reusable and easily composed into more complex applications. Although JavaBeans were intended as a general-purpose means of defining reusable application components they were primarily used as a model for building user interface widgets. They seemed too simple to be capable of any “real” work.Enterprise developers wanted more. Sophisticated applications often require services such as transaction support, secu-rity, and distributed computing—services not directly provided by the JavaBeans spec- ification. So in March 1998, Sun published version 1.0 of the Enterprise JavaBeans (EJB) specification. This specification extended the notion of Java components to the server side, providing much-needed enterprise services, but failed to continue the simplicity of the original JavaBeans specification. Except in name, EJB bears little resemblance to the original JavaBeans specification.Despite the fact that many successful applications have been built based on EJB, EJB never achieved its intended purpose: to simplify enterprise application develop- ment. It’s true that EJB’s declarative programming model simplifies many infrastruc-tural aspects of development, such as transactions and security. But in a different way, EJBs complicate development by mandating deployment descriptors and plumbing code (home and remote/local interfaces). Over time, many developers became disen- chanted with EJB. As a result, its popularity has waned in recent years, leaving many developers looking for an easier way.Today, Java component development has returned to its roots. New programming techniques, including aspect-oriented programming (AOP) and dependency injection (DI), are giving JavaBeans much of the power previously reserved for EJBs. These tech- niques furnish plain-old Java objects (POJOs) with a declarative programming model reminiscent of EJB, but without all of EJB’s complexity. No longer must you resort to writing an unwieldy EJB component when a simple JavaBean will suffice. In fairness, even EJBs have evolved to promote a POJO-based programming model. Employing ideas such as DI and AOP, the latest EJB specification is significantly sim- pler than its predecessors. But for many developers, this move is too little, too late. By the time the EJB 3 specification had entered the scene, other POJO-based develop- ment frameworks had already established themselves as de facto standards in the Java community..Leading the charge for lightweight POJO-based development is the Spring Frame- work。
计算机类_外文文献_翻译
本科毕业论文外文文献及译文文献、资料题目:Core Java™ V olume II–AdvancedFeatures文献、资料来源:著作文献、资料发表(出版)日期:2008.12.1院(部):计算机科学与技术学院专业:网络工程班级:网络082姓名:刘治华学号:2008111242指导教师:许丽娜翻译日期:2012.5.10外文文献:Core Java™ Volume II–Advanced Features When Java technology first appeared on the scene, the excitement was not about a well-crafted programming language but about the possibility of safely executing applets that are delivered over the Internet (see V olume I, Chapter 10 for more information about applets). Obviously, delivering executable applets is practical only when the recipients are sure that the code can't wreak havoc on their machines. For this reason, security was and is a major concern of both the designers and the users of Java technology. This means that unlike other languages and systems, where security was implemented as an afterthought or a reaction to break-ins, security mechanisms are an integral part of Java technology.Three mechanisms help ensure safety:•Language design features (bounds checking on arrays, no unchecked type conversions, no pointer arithmetic, and so on).•An access control mechanism that controls what the code can do (such as file access, network access, and so on).•Code signing, whereby code authors can use standard cryptographic algorithms to authenticate Java code. Then, the users of the code can determine exactly who created the code and whether the code has been altered after it was signed.Below, you'll see the cryptographic algorithms supplied in the java.security package, which allow for code signing and user authentication.As we said earlier, applets were what started the craze over the Java platform. In practice, people discovered that although they could write animated applets like the famous "nervous text" applet, applets could not do a whole lot of useful stuff in the JDK 1.0 security model. For example, because applets under JDK 1.0 were so closely supervised, they couldn't do much good on a corporate intranet, even though relatively little risk attaches to executing an applet from your company's secure intranet. It quickly became clear to Sun that for applets to become truly useful, it was important for users to be able to assign different levels of security, depending on where the applet originated. If an applet comes from a trusted supplier and it has not been tampered with, the user of that applet can then decide whether to give the applet more privileges.To give more trust to an applet, we need to know two things:•Where did the applet come from?•Was the code corrupted in transit?In the past 50 years, mathematicians and computer scientists have developed sophisticated algorithms for ensuring the integrity of data and for electronic signatures. The java.security package contains implementations of many of these algorithms. Fortunately, you don't need to understand the underlying mathematics to use the algorithms in the java.security package. In the next sections, we show you how message digests can detect changes in data files and how digital signatures can prove the identity of the signer.A message digest is a digital fingerprint of a block of data. For example, the so-called SHA1 (secure hash algorithm #1) condenses any data block, no matter how long, into a sequence of 160 bits (20 bytes). As with real fingerprints, one hopes that no two messages have the same SHA1 fingerprint. Of course, that cannot be true—there are only 2160 SHA1 fingerprints, so there must be some messages with the same fingerprint. But 2160is so large that the probability of duplication occurring is negligible. How negligible? According to James Walsh in True Odds: How Risks Affect Your Everyday Life (Merritt Publishing 1996), the chance that you will die from being struck by lightning is about one in 30,000. Now, think of nine other people, for example, your nine least favorite managers or professors. The chance that you and all of them will die from lightning strikes is higher than that of a forged message having the same SHA1 fingerprint as the original. (Of course, more than ten people, none of whom you are likely to know, will die from lightning strikes. However, we are talking about the far slimmer chance that your particular choice of people will be wiped out.)A message digest has two essential properties:•If one bit or several bits of the data are changed, then the message digest also changes.• A forger who is in possession of a given message cannot construct a fake message that has the same message digest as the original.The second property is again a matter of probabilities, of course. Consider the following message by the billionaire father:"Upon my death, my property shall be divided equally among my children; however, my son George shall receive nothing."That message has an SHA1 fingerprint of2D 8B 35 F3 BF 49 CD B1 94 04 E0 66 21 2B 5E 57 70 49 E1 7EThe distrustful father has deposited the message with one attorney and the fingerprint with another. Now, suppose George can bribe the lawyer holding the message. He wants to change the message so that Bill gets nothing. Of course, that changes the fingerprint to a completely different bit pattern:2A 33 0B 4B B3 FE CC 1C 9D 5C 01 A7 09 51 0B 49 AC 8F 98 92Can George find some other wording that matches the fingerprint? If he had been the proud owner of a billion computers from the time the Earth was formed, each computing a million messages a second, he would not yet have found a message he could substitute.A number of algorithms have been designed to compute these message digests. The two best-known are SHA1, the secure hash algorithm developed by the National Institute of Standards and Technology, and MD5, an algorithm invented by Ronald Rivest of MIT. Both algorithms scramble the bits of a message in ingenious ways. For details about these algorithms, see, for example, Cryptography and Network Security, 4th ed., by William Stallings (Prentice Hall 2005). Note that recently, subtle regularities have been discovered in both algorithms. At this point, most cryptographers recommend avoiding MD5 and using SHA1 until a stronger alternative becomes available. (See /rsalabs/node.asp?id=2834 for more information.) The Java programming language implements both SHA1 and MD5. The MessageDigest class is a factory for creating objects that encapsulate the fingerprinting algorithms. It has a static method, called getInstance, that returns an object of a class that extends the MessageDigest class. This means the MessageDigest class serves double duty:•As a factory class•As the superclass for all message digest algorithmsFor example, here is how you obtain an object that can compute SHA fingerprints:MessageDigest alg = MessageDigest.getInstance("SHA-1");(To get an object that can compute MD5, use the string "MD5" as the argument to getInstance.)After you have obtained a MessageDigest object, you feed it all the bytes in the message by repeatedly calling the update method. For example, the following code passes all bytes in a file to the alg object just created to do the fingerprinting:InputStream in = . . .int ch;while ((ch = in.read()) != -1)alg.update((byte) ch);Alternatively, if you have the bytes in an array, you can update the entire array at once:byte[] bytes = . . .;alg.update(bytes);When you are done, call the digest method. This method pads the input—as required by the fingerprinting algorithm—does the computation, and returns the digest as an array of bytes.byte[] hash = alg.digest();The program in Listing 9-15 computes a message digest, using either SHA or MD5. You can load the data to be digested from a file, or you can type a message in the text area.Message SigningIn the last section, you saw how to compute a message digest, a fingerprint for the original message. If the message is altered, then the fingerprint of the altered message will not match the fingerprint of the original. If the message and its fingerprint are delivered separately, then the recipient can check whether the message has been tampered with. However, if both the message and the fingerprint were intercepted, it is an easy matter to modify the message and then recompute the fingerprint. After all, the message digest algorithms are publicly known, and they don't require secret keys. In that case, the recipient of the forged message and the recomputed fingerprint would never know that the message has been altered. Digital signatures solve this problem.To help you understand how digital signatures work, we explain a few concepts from the field called public key cryptography. Public key cryptography is based on the notion of a public key and private key. The idea is that you tell everyone in the world your public key. However, only you hold the private key, and it is important that you safeguard it and don't release it to anyone else. The keys are matched by mathematical relationships, but the exact nature of these relationships is not important for us. (If you are interested, you can look it up in The Handbook of Applied Cryptography at http://www.cacr.math.uwaterloo.ca/hac/.)The keys are quite long and complex. For example, here is a matching pair of public andprivate Digital Signature Algorithm (DSA) keys.Public key:Code View:p:fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df 63413c5e12ed0899bcd132acd50d99151bdc43ee737592e17q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5g:678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd7 3da179069b32e2935630e1c2062354d0da20a6c416e50be794ca4y:c0b6e67b4ac098eb1a32c5f8c4c1f0e7e6fb9d832532e27d0bdab9ca2d2a8123ce5a8018b8161 a760480fadd040b927281ddb22cb9bc4df596d7de4d1b977d50Private key:Code View:p:fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df 63413c5e12ed0899bcd132acd50d99151bdc43ee737592e17q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5g:678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd73 da179069b32e2935630e1c2062354d0da20a6c416e50be794ca4x: 146c09f881656cc6c51f27ea6c3a91b85ed1d70aIt is believed to be practically impossible to compute one key from the other. That is, even though everyone knows your public key, they can't compute your private key in your lifetime, no matter how many computing resources they have available.It might seem difficult to believe that nobody can compute the private key from the public keys, but nobody has ever found an algorithm to do this for the encryption algorithms that are in common use today. If the keys are sufficiently long, brute force—simply trying all possible keys—would require more computers than can be built from all the atoms in the solar system, crunching away for thousands of years. Of course, it is possible that someone could come up withalgorithms for computing keys that are much more clever than brute force. For example, the RSA algorithm (the encryption algorithm invented by Rivest, Shamir, and Adleman) depends on the difficulty of factoring large numbers. For the last 20 years, many of the best mathematicians have tried to come up with good factoring algorithms, but so far with no success. For that reason, most cryptographers believe that keys with a "modulus" of 2,000 bits or more are currently completely safe from any attack. DSA is believed to be similarly secure.Figure 9-12 illustrates how the process works in practice.Suppose Alice wants to send Bob a message, and Bob wants to know this message came from Alice and not an impostor. Alice writes the message and then signs the message digest with her private key. Bob gets a copy of her public key. Bob then applies the public key to verify the signature. If the verification passes, then Bob can be assured of two facts:•The original message has not been altered.•The message was signed by Alice, the holder of the private key that matches the public key that Bob used for verification.You can see why security for private keys is all-important. If someone steals Alice's private key or if a government can require her to turn it over, then she is in trouble. The thief or a government agent can impersonate her by sending messages, money transfer instructions, and so on, that others will believe came from Alice.The X.509 Certificate FormatTo take advantage of public key cryptography, the public keys must be distributed. One of the most common distribution formats is called X.509. Certificates in the X.509 format are widely used by VeriSign, Microsoft, Netscape, and many other companies, for signing e-mail messages, authenticating program code, and certifying many other kinds of data. The X.509 standard is part of the X.500 series of recommendations for a directory service by the international telephone standards body, the CCITT.The precise structure of X.509 certificates is described in a formal notation, called "abstract syntax notation #1" or ASN.1. Figure 9-13 shows the ASN.1 definition of version 3 of the X.509 format. The exact syntax is not important for us, but, as you can see, ASN.1 gives a precise definition of the structure of a certificate file. The basic encoding rules, or BER, and a variation, called distinguished encoding rules (DER) describe precisely how to save this structure in abinary file. That is, BER and DER describe how to encode integers, character strings, bit strings, and constructs such as SEQUENCE, CHOICE, and OPTIONAL.中文译文:Java核心技术卷Ⅱ高级特性当Java技术刚刚问世时,令人激动的并不是因为它是一个设计完美的编程语言,而是因为它能够安全地运行通过因特网传播的各种applet。
计算机java外文翻译外文文献英文文献
英文原文:Title: Business Applications of Java. Author: Erbschloe, Michael, Business Applications of Java -- Research Starters Business, 2008DataBase: Research Starters - BusinessBusiness Applications of JavaThis article examines the growing use of Java technology in business applications. The history of Java is briefly reviewed along with the impact of open standards on the growth of the World Wide Web. Key components and concepts of the Java programming language are explained including the Java Virtual Machine. Examples of how Java is being used bye-commerce leaders is provided along with an explanation of how Java is used to develop data warehousing, data mining, and industrial automation applications. The concept of metadata modeling and the use of Extendable Markup Language (XML) are also explained.Keywords Application Programming Interfaces (API's); Enterprise JavaBeans (EJB); Extendable Markup Language (XML); HyperText Markup Language (HTML); HyperText Transfer Protocol (HTTP); Java Authentication and Authorization Service (JAAS); Java Cryptography Architecture (JCA); Java Cryptography Extension (JCE); Java Programming Language; Java Virtual Machine (JVM); Java2 Platform, Enterprise Edition (J2EE); Metadata Business Information Systems > Business Applications of JavaOverviewOpen standards have driven the e-business revolution. Networking protocol standards, such as Transmission Control Protocol/Internet Protocol (TCP/IP), HyperText Transfer Protocol (HTTP), and the HyperText Markup Language (HTML) Web standards have enabled universal communication via the Internet and the World Wide Web. As e-business continues to develop, various computing technologies help to drive its evolution.The Java programming language and platform have emerged as major technologies for performing e-business functions. Java programming standards have enabled portability of applications and the reuse of application components across computing platforms. Sun Microsystems' Java Community Process continues to be a strong base for the growth of the Java infrastructure and language standards. This growth of open standards creates new opportunities for designers and developers of applications and services (Smith, 2001).Creation of Java TechnologyJava technology was created as a computer programming tool in a small, secret effort called "the Green Project" at Sun Microsystems in 1991. The Green Team, fully staffed at 13 people and led by James Gosling, locked themselves away in an anonymous office on Sand Hill Road in Menlo Park, cut off from all regular communications with Sun, and worked around the clock for18 months. Their initial conclusion was that at least one significant trend would be the convergence of digitally controlled consumer devices and computers. A device-independent programming language code-named "Oak" was the result.To demonstrate how this new language could power the future of digital devices, the Green Team developed an interactive, handheld home-entertainment device controller targeted at the digital cable television industry. But the idea was too far ahead of its time, and the digital cable television industry wasn't ready for the leap forward that Java technology offered them. As it turns out, the Internet was ready for Java technology, and just in time for its initial public introduction in 1995, the team was able to announce that the Netscape Navigator Internet browser would incorporate Java technology ("Learn about Java," 2007).Applications of JavaJava uses many familiar programming concepts and constructs and allows portability by providing a common interface through an external Java Virtual Machine (JVM). A virtual machine is a self-contained operating environment, created by a software layer that behaves as if it were a separate computer. Benefits of creating virtual machines include better exploitation of powerful computing resources and isolation of applications to prevent cross-corruption and improve security (Matlis, 2006).The JVM allows computing devices with limited processors or memory to handle more advanced applications by calling up software instructions inside the JVM to perform most of the work. This also reduces the size and complexity of Java applications because many of the core functions and processing instructions were built into the JVM. As a result, software developersno longer need to re-create the same application for every operating system. Java also provides security by instructing the application to interact with the virtual machine, which served as a barrier between applications and the core system, effectively protecting systems from malicious code.Among other things, Java is tailor-made for the growing Internet because it makes it easy to develop new, dynamic applications that could make the most of the Internet's power and capabilities. Java is now an open standard, meaning that no single entity controls its development and the tools for writing programs in the language are available to everyone. The power of open standards like Java is the ability to break down barriers and speed up progress.Today, you can find Java technology in networks and devices that range from the Internet and scientific supercomputers to laptops and cell phones, from Wall Street market simulators to home game players and credit cards. There are over 3 million Java developers and now there are several versions of the code. Most large corporations have in-house Java developers. In addition, the majority of key software vendors use Java in their commercial applications (Lazaridis, 2003).ApplicationsJava on the World Wide WebJava has found a place on some of the most popular websites in the world and the uses of Java continues to grow. Java applications not only provide unique user interfaces, they also help to power the backend of websites. Two e-commerce giants that everybody is probably familiar with (eBay and Amazon) have been Java pioneers on the World Wide Web.eBayFounded in 1995, eBay enables e-commerce on a local, national and international basis with an array of Web sites-including the eBay marketplaces, PayPal, Skype, and -that bring together millions of buyers and sellers every day. You can find it on eBay, even if you didn't know it existed. On a typical day, more than 100 million items are listed on eBay in tens of thousands of categories. Recent listings have included a tunnel boring machine from the Chunnel project, a cup of water that once belonged to Elvis, and the Volkswagen that Pope Benedict XVI owned before he moved up to the Popemobile. More than one hundred million items are available at any given time, from the massive to the miniature, the magical to the mundane, on eBay; the world's largest online marketplace.eBay uses Java almost everywhere. To address some security issues, eBay chose Sun Microsystems' Java System Identity Manager as the platform for revamping its identity management system. The task at hand was to provide identity management for more than 12,000 eBay employees and contractors.Now more than a thousand eBay software developers work daily with Java applications. Java's inherent portability allows eBay to move to new hardware to take advantage of new technology, packaging, or pricing, without having to rewrite Java code ("eBay drives explosive growth," 2007).Amazon (a large seller of books, CDs, and other products) has created a Web Service application that enables users to browse their product catalog and place orders. uses a Java application that searches the Amazon catalog for books whose subject matches a user-selected topic. The application displays ten books that match the chosen topic, and shows the author name, book title, list price, Amazon discount price, and the cover icon. The user may optionally view one review per displayed title and make a buying decision (Stearns & Garishakurthi, 2003).Java in Data Warehousing & MiningAlthough many companies currently benefit from data warehousing to support corporate decision making, new business intelligence approaches continue to emerge that can be powered by Java technology. Applications such as data warehousing, data mining, Enterprise Information Portals (EIP's), and Knowledge Management Systems (which can all comprise a businessintelligence application) are able to provide insight into customer retention, purchasing patterns, and even future buying behavior.These applications can not only tell what has happened but why and what may happen given certain business conditions; allowing for "what if" scenarios to be explored. As a result of this information growth, people at all levels inside the enterprise, as well as suppliers, customers, and others in the value chain, are clamoring for subsets of the vast stores of information such as billing, shipping, and inventory information, to help them make business decisions. While collecting and storing vast amounts of data is one thing, utilizing and deploying that data throughout the organization is another.The technical challenges inherent in integrating disparate data formats, platforms, and applications are significant. However, emerging standards such as the Application Programming Interfaces (API's) that comprise the Java platform, as well as Extendable Markup Language (XML) technologies can facilitate the interchange of data and the development of next generation data warehousing and business intelligence applications. While Java technology has been used extensively for client side access and to presentation layer challenges, it is rapidly emerging as a significant tool for developing scaleable server side programs. The Java2 Platform, Enterprise Edition (J2EE) provides the object, transaction, and security support for building such systems.Metadata IssuesOne of the key issues that business intelligence developers must solve is that of incompatible metadata formats. Metadata can be defined as information about data or simply "data about data." In practice, metadata is what most tools, databases, applications, and other information processes use to define, relate, and manipulate data objects within their own environments. It defines the structure and meaning of data objects managed by an application so that the application knows how to process requests or jobs involving those data objects. Developers can use this schema to create views for users. Also, users can browse the schema to better understand the structure and function of the database tables before launching a query.To address the metadata issue, a group of companies (including Unisys, Oracle, IBM, SAS Institute, Hyperion, Inline Software and Sun) have joined to develop the Java Metadata Interface (JMI) API. The JMI API permits the access and manipulation of metadata in Java with standard metadata services. JMI is based on the Meta Object Facility (MOF) specification from the Object Management Group (OMG). The MOF provides a model and a set of interfaces for the creation, storage, access, and interchange of metadata and metamodels (higher-level abstractions of metadata). Metamodel and metadata interchange is done via XML and uses the XML Metadata Interchange (XMI) specification, also from the OMG. JMI leverages Java technology to create an end-to-end data warehousing and business intelligence solutions framework.Enterprise JavaBeansA key tool provided by J2EE is Enterprise JavaBeans (EJB), an architecture for the development of component-based distributed business applications. Applications written using the EJB architecture are scalable, transactional, secure, and multi-user aware. These applications may be written once and then deployed on any server platform that supports J2EE. The EJB architecture makes it easy for developers to write components, since they do not need to understand or deal with complex, system-level details such as thread management, resource pooling, and transaction and security management. This allows for role-based development where component assemblers, platform providers and application assemblers can focus on their area of responsibility further simplifying application development.EJB's in the Travel IndustryA case study from the travel industry helps to illustrate how such applications could function. A travel company amasses a great deal of information about its operations in various applications distributed throughout multiple departments. Flight, hotel, and automobile reservation information is located in a database being accessed by travel agents worldwide. Another application contains information that must be updated with credit and billing historyfrom a financial services company. Data is periodically extracted from the travel reservation system databases to spreadsheets for use in future sales and marketing analysis.Utilizing J2EE, the company could consolidate application development within an EJB container, which can run on a variety of hardware and software platforms allowing existing databases and applications to coexist with newly developed ones. EJBs can be developed to model various data sets important to the travel reservation business including information about customer, hotel, car rental agency, and other attributes.Data Storage & AccessData stored in existing applications can be accessed with specialized connectors. Integration and interoperability of these data sources is further enabled by the metadata repository that contains metamodels of the data contained in the sources, which then can be accessed and interchanged uniformly via the JMI API. These metamodels capture the essential structure and semantics of business components, allowing them to be accessed and queried via the JMI API or to be interchanged via XML. Through all of these processes, the J2EE infrastructure ensures the security and integrity of the data through transaction management and propagation and the underlying security architecture.To consolidate historical information for analysis of sales and marketing trends, a data warehouse is often the best solution. In this example, data can be extracted from the operational systems with a variety of Extract, Transform and Load tools (ETL). The metamodels allow EJBsdesigned for filtering, transformation, and consolidation of data to operate uniformly on datafrom diverse data sources as the bean is able to query the metamodel to identify and extract the pertinent fields. Queries and reports can be run against the data warehouse that contains information from numerous sources in a consistent, enterprise-wide fashion through the use of the JMI API (Mosher & Oh, 2007).Java in Industrial SettingsMany people know Java only as a tool on the World Wide Web that enables sites to perform some of their fancier functions such as interactivity and animation. However, the actual uses for Java are much more widespread. Since Java is an object-oriented language like C++, the time needed for application development is minimal. Java also encourages good software engineering practices with clear separation of interfaces and implementations as well as easy exception handling.In addition, Java's automatic memory management and lack of pointers remove some leading causes of programming errors. Most importantly, application developers do not need to create different versions of the software for different platforms. The advantages available through Java have even found their way into hardware. The emerging new Java devices are streamlined systems that exploit network servers for much of their processing power, storage, content, and administration.Benefits of JavaThe benefits of Java translate across many industries, and some are specific to the control and automation environment. For example, many plant-floor applications use relatively simple equipment; upgrading to PCs would be expensive and undesirable. Java's ability to run on any platform enables the organization to make use of the existing equipment while enhancing the application.IntegrationWith few exceptions, applications running on the factory floor were never intended to exchange information with systems in the executive office, but managers have recently discovered the need for that type of information. Before Java, that often meant bringing together data from systems written on different platforms in different languages at different times. Integration was usually done on a piecemeal basis, resulting in a system that, once it worked, was unique to the two applications it was tying together. Additional integration required developing a brand new system from scratch, raising the cost of integration.Java makes system integration relatively easy. Foxboro Controls Inc., for example, used Java to make its dynamic-performance-monitor software package Internet-ready. This software provides senior executives with strategic information about a plant's operation. The dynamic performance monitor takes data from instruments throughout the plant and performs variousmathematical and statistical calculations on them, resulting in information (usually financial) that a manager can more readily absorb and use.ScalabilityAnother benefit of Java in the industrial environment is its scalability. In a plant, embedded applications such as automated data collection and machine diagnostics provide critical data regarding production-line readiness or operation efficiency. These data form a critical ingredient for applications that examine the health of a production line or run. Users of these devices can take advantage of the benefits of Java without changing or upgrading hardware. For example, operations and maintenance personnel could carry a handheld, wireless, embedded-Java device anywhere in the plant to monitor production status or problems.Even when internal compatibility is not an issue, companies often face difficulties when suppliers with whom they share information have incompatible systems. This becomes more of a problem as supply-chain management takes on a more critical role which requires manufacturers to interact more with offshore suppliers and clients. The greatest efficiency comes when all systems can communicate with each other and share information seamlessly. Since Java is so ubiquitous, it often solves these problems (Paula, 1997).Dynamic Web Page DevelopmentJava has been used by both large and small organizations for a wide variety of applications beyond consumer oriented websites. Sandia, a multiprogram laboratory of the U.S. Department of Energy's National Nuclear Security Administration, has developed a unique Java application. The lab was tasked with developing an enterprise-wide inventory tracking and equipment maintenance system that provides dynamic Web pages. The developers selected Java Studio Enterprise 7 for the project because of its Application Framework technology and Web Graphical User Interface (GUI) components, which allow the system to be indexed by an expandable catalog. The flexibility, scalability, and portability of Java helped to reduce development timeand costs (Garcia, 2004)IssueJava Security for E-Business ApplicationsTo support the expansion of their computing boundaries, businesses have deployed Web application servers (WAS). A WAS differs from a traditional Web server because it provides a more flexible foundation for dynamic transactions and objects, partly through the exploitation of Java technology. Traditional Web servers remain constrained to servicing standard HTTP requests, returning the contents of static HTML pages and images or the output from executed Common Gateway Interface (CGI ) scripts.An administrator can configure a WAS with policies based on security specifications for Java servlets and manage authentication and authorization with Java Authentication andAuthorization Service (JAAS) modules. An authentication and authorization service can bewritten in Java code or interface to an existing authentication or authorization infrastructure. Fora cryptography-based security infrastructure, the security server may exploit the Java Cryptography Architecture (JCA) and Java Cryptography Extension (JCE). To present the user with a usable interaction with the WAS environment, the Web server can readily employ a formof "single sign-on" to avoid redundant authentication requests. A single sign-on preserves user authentication across multiple HTTP requests so that the user is not prompted many times for authentication data (i.e., user ID and password).Based on the security policies, JAAS can be employed to handle the authentication process with the identity of the Java client. After successful authentication, the WAS securitycollaborator consults with the security server. The WAS environment authentication requirements can be fairly complex. In a given deployment environment, all applications or solutions may not originate from the same vendor. In addition, these applications may be running on different operating systems. Although Java is often the language of choice for portability between platforms, it needs to marry its security features with those of the containing environment.Authentication & AuthorizationAuthentication and authorization are key elements in any secure information handling system. Since the inception of Java technology, much of the authentication and authorization issues have been with respect to downloadable code running in Web browsers. In many ways, this had been the correct set of issues to address, since the client's system needs to be protected from mobile code obtained from arbitrary sites on the Internet. As Java technology moved from a client-centric Web technology to a server-side scripting and integration technology, it required additional authentication and authorization technologies.The kind of proof required for authentication may depend on the security requirements of a particular computing resource or specific enterprise security policies. To provide such flexibility, the JAAS authentication framework is based on the concept of configurable authenticators. This architecture allows system administrators to configure, or plug in, the appropriate authenticatorsto meet the security requirements of the deployed application. The JAAS architecture also allows applications to remain independent from underlying authentication mechanisms. So, as new authenticators become available or as current authentication services are updated, system administrators can easily replace authenticators without having to modify or recompile existing applications.At the end of a successful authentication, a request is associated with a user in the WAS user registry. After a successful authentication, the WAS consults security policies to determine if the user has the required permissions to complete the requested action on the servlet. This policy canbe enforced using the WAS configuration (declarative security) or by the servlet itself (programmatic security), or a combination of both.The WAS environment pulls together many different technologies to service the enterprise. Because of the heterogeneous nature of the client and server entities, Java technology is a good choice for both administrators and developers. However, to service the diverse security needs of these entities and their tasks, many Java security technologies must be used, not only at a primary level between client and server entities, but also at a secondary level, from served objects. By using a synergistic mix of the various Java security technologies, administrators and developers can make not only their Web application servers secure, but their WAS environments secure as well (Koved, 2001).ConclusionOpen standards have driven the e-business revolution. As e-business continues to develop, various computing technologies help to drive its evolution. The Java programming language and platform have emerged as major technologies for performing e-business functions. Java programming standards have enabled portability of applications and the reuse of application components. Java uses many familiar concepts and constructs and allows portability by providing a common interface through an external Java Virtual Machine (JVM). Today, you can find Java technology in networks and devices that range from the Internet and scientific supercomputers to laptops and cell phones, from Wall Street market simulators to home game players and credit cards.Java has found a place on some of the most popular websites in the world. Java applications not only provide unique user interfaces, they also help to power the backend of websites. While Java technology has been used extensively for client side access and in the presentation layer, it is also emerging as a significant tool for developing scaleable server side programs.Since Java is an object-oriented language like C++, the time needed for application development is minimal. Java also encourages good software engineering practices with clear separation of interfaces and implementations as well as easy exception handling. Java's automatic memory management and lack of pointers remove some leading causes of programming errors. The advantages available through Java have also found their way into hardware. The emerging new Java devices are streamlined systems that exploit network servers for much of their processing power, storage, content, and administration.中文翻译:标题:Java的商业应用。
计算机专业英文文献
What Is an Object?Objects are key to understanding object-oriented technology. You can look around you now and see many examples of real-world objects: your dog, your desk, your television set, your bicycle.Real-world objects share two characteristics: They all have state and behavior. For example, dogs have state (name, color, breed, hungry) and behavior (barking, fetching, wagging tail). Bicycles have state (current gear, current pedal cadence, two wheels, number of gears) and behavior (braking, accelerating, slowing down, changing gears).Software objects are modeled after real-world objects in that they too have state and behavior. A software object maintains its state in one or more variables.A variable is an item of data named by an identifier. A software object implements its behavior with methods. A method is a function (subroutine) associated with an object.Definition:An object is a software bundle of variables and related methods. You can represent real-world objects by using software objects. You might want to represent real-world dogs as software objects in an animation program or a real-world bicycle as a software object in the program that controls an electronic exercise bike. You can also use software objects to model abstract concepts. For example, an event is a common object used in window systems to represent the action of a user pressing a mouse button or a key on the keyboard. The following illustration is a common visual representation of a software object.A software object.Everything the software object knows (state) and can do (behavior) is expressed by the variables and the methods within that object. A software object that modelsyour real-world bicycle would have variables that indicate the bicycle's current state: Its speed is 18 mph, its pedal cadence is 90 rpm, and its current gear is 5th. These variables are formally known as instance variables because they contain the state for a particular bicycle object; in object-oriented terminology, a particular object is called an instance. The following figure illustrates a bicycle modeled as a software object.A bicycle modeled as a softwareobject.In addition to its variables, the software bicycle would also have methods to brake, change the pedal cadence, and change gears. (It would not have a method for changing its speed because the bike's speed is just a side effect of which gear it's in and how fast the rider is pedaling.) These methods are known formally as instance methods because they inspect or change the state of a particular bicycle instance.Object diagrams show that an object's variables make up the center, or nucleus, of the object. Methods surround and hide the object's nucleus from other objects in the program. Packaging an object's variables within the protective custody of its methods is called encapsulation. This conceptual picture of an object —a nucleus of variables packaged within a protective membrane of methods — is an ideal representation of an object and is the ideal that designers of object-oriented systems strive for. However, it's not the whole story.Often, for practical reasons, an object may expose some of its variables or hide some of its methods. In the Java programming language, an object can specify one of four access levels for each of its variables and methods. The access level determines which other objects and classes can access that variable or method. Refer to the Controlling Access to Members of a Class section for details.Encapsulating related variables and methods into a neat software bundle is a simple yet powerful idea that provides two primary benefits to software developers:Modularity:The source code for an object can be written and maintainedindependently of the source code for other objects. Also, an objectcan be easily passed around in the system. You can give your bicycleto someone else, and it will still work.Information-hiding: An object has a public interface that otherobjects can use to communicate with it. The object can maintain privateinformation and methods that can be changed at any time withoutaffecting other objects that depend on it. You don't need to understanda bike's gear mechanism to use it.What Is a Message?A single object alone generally is not very useful. Instead, an object usually appears as a component of a larger program or application that contains many other objects. Through the interaction of these objects, programmers achieve higher-order functionality and more complex behavior. Your bicycle hanging from a hook in the garage is just a bunch of metal and rubber; by itself, it is incapable of any activity; the bicycle is useful only when another object (you) interacts with it (by pedaling).Software objects interact and communicate with each other by sending messages to each other. When object A wants object B to perform one of B's methods, object A sends a message to object B (see the following figure).Objects interact by sending each other messages.Sometimes, the receiving object needs more information so that it knows exactly what to do; for example, when you want to change gears on your bicycle, you have to indicate which gear you want. This information is passed along with the message as parameters.Messages use parameters to pass alongextra information that the objectneeds —in this case, which gear thebicycle should be in.These three parts are enough information for the receiving object to perform the desired method. No other information or context is required.Messages provide two important benefits:An object's behavior is expressed through its methods, so (aside fromdirect variable access) message passing supports all possibleinteractions between objects.Objects don't need to be in the same process or even on the same machineto send messages back and forth and receive messages from each other. What Is a Class?In the real world, you often have many objects of the same kind. For example, your bicycle is just one of many bicycles in the world. Using object-orientedterminology, we say that your bicycle object is an instanceof the class of objects known as bicycles. Bicycles have some state (current gear, current cadence, two wheels) and behavior (change gears, brake) in common. However, each bicycle's state is independent of and can be different from that of other bicycles.When building them, manufacturers take advantage of the fact that bicycles share characteristics, building many bicycles from the same blueprint. It would be very inefficient to produce a new blueprint for every bicycle manufactured.In object-oriented software, it's also possible to have many objects of the same kind that share characteristics: rectangles, employee records, video clips, and so on. Like bicycle manufacturers, you can take advantage of the fact that objects of the same kind are similar and you can create a blueprint for those objects.A software blueprint for objects is called a class (see the following figure).A visual representation of a class.Definition: A class is a blueprint that defines the variables and the methods common to all objects of a certain kind.The class for our bicycle example would declare the instance variables necessary to contain the current gear, the current cadence, and so on for each bicycle object. The class would also declare and provide implementations for the instance methods that allow the rider to change gears, brake, and change the pedaling cadence, as shown in the next figure.The bicycle class.After you've created the bicycle class, you can create any number of bicycleobjects from that class. When you create an instance of a class, the system allocates enough memory for the object and all its instance variables. Each instance gets its own copy of all the instance variables defined in the class, as the next figure shows.MyBike and YourBike are two different instances of the Bike class. Each instance has its own copy of the instance variables defined in the Bike class but has different values for these variables.In addition to instance variables, classes can define class variables. A class wariable contains information that is shared by all instances of the class. For example, suppose that all bicycles had the same number of gears. In this case, defining an instance variable to hold the number of gears is inefficient; each instance would have its own copy of the variable, but the value would be the same for every instance. In such situations, you can define a class variable that contains the number of gears (see the following figure); all instances share this variable. If one object changes the variable, it changes for all other objects of that type.YourBike, an instance of Bike, has access to the numberOfGears variable in the Bike class; however, the YourBike instance does not have a copy of this class variable.A class can also declare class methods You can invoke a class method directly from the class, whereas you must invoke instance methods on a particular instance.The Understanding Instance and Class Members section discusses instance variables and methods and class variables and methods in detail.Objects provide the benefit of modularity and information-hiding. Classes provide the benefit of reusability. Bicycle manufacturers use the same blueprint over and over again to build lots of bicycles. Software programmers use the same class, and thus the same code, over and over again to create many objects.Objects versus ClassesYou've probably noticed that the illustrations of objects and classes look very similar. And indeed, the difference between classes and objects is often the source of some confusion. In the real world, it's obvious that classes are not themselves the objects they describe; that is, a blueprint of a bicycle is not a bicycle. However, it's a little more difficult to differentiate classes and objects in software. This is partially because software objects are merelyelectronic models of real-world objects or abstract concepts in the first place. But it's also because the term object is sometimes used to refer to both classes and instances.In illustrations such as the top part of the preceding figure, the class is not shaded because it represents a blueprint of an object rather than the object itself. In comparison, an object is shaded, indicating that the object exists and that you can use it.What Is Inheritance?Generally speaking, objects are defined in terms of classes. You know a lot about an object by knowing its class. Even if you don't know what a penny-farthing is, if I told you it was a bicycle, you would know that it had two wheels, handlebars, and pedals.Object-oriented systems take this a step further and allow classes to be defined in terms of other classes. For example, mountain bikes, road bikes, and tandems are all types of bicycles. In object-oriented terminology, mountain bikes, road bikes, and tandems are all subclasses of the bicycle class. Similarly, the bicycle class is the supclasses of mountain bikes, road bikes, and tandems. This relationship is shown in the following figure.The hierarchy of bicycle classes.Each subclass inherits state (in the form of variable declarations) from the superclass. Mountain bikes, road bikes, and tandems share some states: cadence, speed, and the like. Also, each subclass inherits methods from the superclass. Mountain bikes, road bikes, and tandems share some behaviors — braking and changing pedaling speed, for example.However, subclasses are not limited to the states and behaviors provided to them by their superclass. Subclasses can add variables and methods to the ones they inherit from the superclass. Tandem bicycles have two seats and two sets of handlebars; some mountain bikes have an additional chain ring, giving them a lower gear ratio.Subclasses can also override inherited methods and provide specialized implementations for those methods. For example, if you had a mountain bike with an additional chain ring, you could override the "change gears" method so that the rider could shift into those lower gears.You are not limited to just one layer of inheritance. The inheritance tree, or class hierardry, can be as deep as needed. Methods and variables are inherited down through the levels. In general, the farther down in the hierarchy a class appears, the more specialized its behavior.Note:Class hierarchies should reflect what the classes are, not how they're implemented. When implementing a tricycle class, it might be convenient to make it a subclass of the bicycle class —after all, both tricycles and bicycles have a current speed and cadence. However, because a tricycle is not a bicycle, it's unwise to publicly tie the two classes together. It could confuse users, make the tricycle class have methods (for example, to change gears) that it doesn't need, and make updating or improving the tricycle class difficult.The Object class is at the top of class hierarchy, and each class is its descendant (directly or indirectly). A variable of type Object can hold a reference to any object, such as an instance of a class or an array. Object provides behaviors that are shared by all objects running in the Java Virtual Machine. For example, all classes inherit Object's toString method, which returns a string representation of the object. The Managing Inheritance section covers the Object class in detail.Inheritance offers the following benefits:Subclasses provide specialized behaviors from the basis of commonelements provided by the superclass. Through the use of inheritance,programmers can reuse the code in the superclass many times.Programmers can implement superclasses called abstract classes thatdefine common behaviors. The abstract superclass defines and maypartially implement the behavior, but much of the class is undefinedand unimplemented. Other programmers fill in the details withspecialized subclasses.What Is an Interface?In general, an interface is a device or a system that unrelated entities use to interact. According to this definition, a remote control is an interface between you and a television set, the English language is an interface between two people, and the protocol of behavior enforced in the military is the interface between individuals of different ranks.Within the Java programming language, an interface is a type, just as a class is a type. Like a class, an interface defines methods. Unlike a class, an interface never implements methods; instead, classes that implement the interface implement the methods defined by the interface. A class can implement multiple interfaces.The bicycle class and its class hierarchy define what a bicycle can and cannot do in terms of its "bicycleness." But bicycles interact with the world on other terms. For example, a bicycle in a store could be managed by an inventory program. An inventory program doesn't care what class of items it manages as long as each item provides certain information, such as price and tracking number. Instead of forcing class relationships on otherwise unrelated items, the inventory program sets up a communication protocol. This protocol comes in the form of a set of method definitions contained within an interface. The inventory interface would define, but not implement, methods that set and get the retail price, assign a tracking number, and so on.计算机专业中英文文献翻译To work in the inventory program, the bicycle class must agree to this protocol by implementing the interface. When a class implements an interface, the class agrees to implement all the methods defined in the interface. Thus, the bicycle class would provide the implementations for the methods that set and get retail price, assign a tracking number, and so on.You use an interface to define a protocol of behavior that can be implemented by any class anywhere in the class hierarchy. Interfaces are useful for the following:Capturing similarities among unrelated classes without artificiallyforcing a class relationshipDeclaring methods that one or more classes are expected to implementRevealing an object's programming interface without revealing itsclassModeling multiple inheritance, a feature of some object-orientedlanguages that allows a class to have more than one superclass。
计算机专业中英文文献翻译
1In the past decade the business environment has changed dramatically. The world has become a small and very dynamic marketplace. Organizations today confront new markets, new competition and increasing customer expectations. This has put a tremendous demand on manufacturers to; 1) Lower total costs in the complete supply chain 2) Shorten throughput times 3) Reduce stock to a minimum 4) Enlarge product assortment 5) Improve product quality 6) Provide more reliable delivery dates and higher service to the customer 7) Efficiently coordinate global demand, supply and production. Thus today's organization have to constantly re-engineer their business practices and procedures to be more and more responsive to customers and competition. In the 1990's information technology and business process re-engineering, used in conjunction with each other, have emerged as important tools which give organizations the leading edge.ERP Systems EvolutionThe focus of manufacturing systems in the 1960's was on inventory control. Most of the software packages then (usually customized) were designed to handle inventory based on traditional inventory concepts. In the 1970's the focus shifted to MRP (Material Requirement Planning) systems which translatedthe Master Schedule built for the end items into time-phased net requirements for the sub-assemblies, components and raw materials planning and procurement,In the 1980's the concept of MRP-II (Manufacturing Resources Planning) evolved which was an extension of MRP to shop floor and distribution management activities. In the early 1990's, MRP-II was further extended to cover areas like Engineering, Finance, Human Resources, Projects Management etc i.e. the complete gamut of activities within any business enterprise. Hence, the term ERP (Enterprise Resource Planning) was coined.In addition to system requirements, ERP addresses technology aspects like client/server distributedarchitecture, RDBMS, object oriented programming etc. ERP Systems-Bandwidth ERP solutions address broad areas within any business like Manufacturing, Distribution, Finance, Project Management, Service and Maintenance, Transportation etc. A seamless integration is essential to provide visibility and consistency across the enterprise.An ERP system should be sufficiently versatile to support different manufacturing environments like make-to-stock, assemble-to-order and engineer-to-order. The customer order decoupling point (CODP) should be flexible enough to allow the co-existence of these manufacturing environments within the same system. It is also very likely that the same product may migrate from one manufacturing environment to another during its produce life cycle.The system should be complete enough to support both Discrete as well as Process manufacturing scenario's. The efficiency of an enterprise depends on the quick flow of information across the complete supply chain i.e. from the customer to manufacturers to supplier. This places demands on the ERP system to have rich functionality across all areas like sales, accounts receivable, engineering, planning, inventory management, production, purchase, accounts payable, quality management, distribution planning and external transportation. EDI (Electronic Data Interchange) is an important tool in speeding up communications with trading partners.More and more companies are becoming global and focusing on down-sizing and decentralizing their business. ABB and Northern Telecom are examples of companies which have business spread around the globe. For these companies to manage their business efficiently, ERP systems need to have extensive multi-site management capabilities. The complete financial accounting and management accounting requirementsof the organization should be addressed. It is necessary to have centralized or de-centralized accounting functions with complete flexibility to consolidate corporate information.After-sales service should be streamlined and managed efficiently. A strong EIS (Enterprise Information System) with extensive drill down capabilities should be available for the top management to get a birds eye view of the health of their organization and help them to analyze performance in key areas.Evaluation CriteriaSome important points to be kept in mind while evaluating an ERP software include: 1) Functional fit with the Company's business processes 2) Degree of integration between the various components of the ERP system 3) Flexibility and scalability 4) Complexity; user friendliness 5) Quick implementation; shortened ROI period 6) Ability to support multi-site planning and control 7) Technology; client/server capabilities, database independence, security 8)Availability of regular upgrades 9) Amount of customization required 10) Local support infrastructure II) Availability of reference sites 12) Total costs,including cost of license, training, implementation, maintenance, customization and hardware requirements.ERP Systems-ImplementationThe success of an ERP solution depends on how quick the benefits can be reaped from it. This necessitates rapid implementations which lead to shortened ROI periods. Traditional approach to implementation has been to carry out a Business Process Re-engineering exercise and define a "TO BE"model before the ERP system implementation. This led to mismatches between the proposed model and the ERP functionality, the consequence of which was customizations, extended implementation time frames, higher costs and loss of user confidence.ERP Systems-The FutureThe Internet represents the next major technology enabler which allows rapid supply chain management between multiple operations and trading partners. Most ERP systems are enhancing their products to become "Internet Enabled" so that customers worldwide can have direct to the supplier's ERP system. ERP systems are building in the Workflow Management functionally which provides a mechanism to manage and controlthe flow of work by monitoring logistic aspects like workload, capacity, throughout times, work queue lengths and processing times.译文1在过去十年中,商业环境发生了巨大的变化。
计算机专业毕业设计论文外文文献中英文翻译——java对象
1 . Introduction To Objects1.1The progress of abstractionAll programming languages provide abstractions. It can be argued that the complexity of the problems you’re able to solve is directly related to the kind and quality of abstraction。
By “kind” I mean,“What is it that you are abstracting?” Assembly language is a small abstraction of the underlying machine. Many so—called “imperative” languages that followed (such as FORTRAN,BASIC, and C) were abstractions of assembly language。
These languages are big improvements over assembly language,but their primary abstraction still requires you to think in terms of the structure of the computer rather than the structure of the problem you are trying to solve。
The programmer must establish the association between the machine model (in the “solution space,” which is the place where you’re modeling that problem, such as a computer) and the model of the problem that is actually being solved (in the “problem space,” which is the place where the problem exists). The effort required to perform this mapping, and the fact that it is extrinsic to the programming language,produces programs that are difficult to write and expensive to maintain,and as a side effect created the entire “programming methods” industry.The alter native to modeling the machine is to model the problem you’re trying to solve。
计算机英文文献译文
[原文]COMPUTER VIRUSESWhat are computer viruses?According to Fred Cohen’s well-known definition, a computer virus is a computer program that can infect other computer programs by modifying them in such a way as to include a (possibly evolved) copy of itself. Note that a program does not have to perform outright damage (such as deleting or corrupting files) in order to be called a “virus”. However, Cohen uses the terms within his definition (e.g. “program” and “modify”) a bit differently from the way most anti-virus researchers use them, and classifies as viruses some things which most of us would not consider viruses.Computer viruses are bits of code that damage or erase information, files, or software programs in your computer, much like viruses that infect humans, computer viruses can spread, and your computer can catch a virus when you download an infected file from the Internet or copy an infected file from a diskette. Once the viruses is embedded into your computer’s files, it can immediately start to damage or destroy information, or it can wait for a particular date or event to trigger its activity.What are the main types of viruses?Generally, there are two main classes of viruses. The first class consists of the file Infectors which attach themselves to ordinary program files. These usually infect arbitrary .COM and/or .EXE programs, though some can infect any program for which execution is requested, such as .SYS,.OVL,.PRG,&.MNU files.File infectors can be either direct action or resident. A direct-action virus selects one or more other programs to infect each other time the program which contains it is executed ,and thereafter infects other programs when “they” are executed (as in the case of the Jerusalem) or when certain other conditions are fulfilled. The Vienna is an example of a direct-action virus. Most other viruses are resident.The second class is system or boot-record infectors: those viruses, which infect executable code, found in certain system areas on a disk that are not ordinary files. On DOS systems, there are ordinary boot-sector viruses, which infect only the DOS boot sector on diskettes. Examples include Brain, Stoned, Empire, Azusa, and Michelangelo. Such viruses are always resident viruses.Finally, a few viruses are able to infect both (the Tequila virus is one example). There are often called “multipartite” viruses, though there has been criticism of this name; another name is “boot-and -file” virus.File system or cluster viruses (e.g. Dir-II) are those that modify directory table entries so that the virus is loaded and executed before the desired program is. Note that the program itself is not physically altered; only the directory entry is. Some consider these infectors to be a third category of viruses, while others consider them to be a sub-category of the file infectors.What are macro viruses?Many applications provide the functionality to create macros. A macro is a series of commands to perform some application-specific task. Macros are designed to make life easier, for example, to perform some everyday tasks like text-formatting or spreadsheet calculations.Macros can be saved as a series of keystrokes (the application record what keys you press); or they can be written in special macro languages (usually based on real programming languages like C and BASIC). Modern applications combine both approaches; and their advanced macro languages are as complex as general purpose programming languages. When the macro language allows files to be modified, it becomes possible to create macros that copy themselves from one file to another. Such self-replicating macros are called macro viruses.Most macro viruses run under Word for Windows. Since this is a very popular word processor, it provides an effective means for viruses to spread. Most macro viruses are written using the macro language WordBasic. WordBasic is based on the good old BASIC programming language. However, it has many (hundreds of) extensions (for example, to deal with documents: edit, replace string, obtain the name of the current document, open new window, move cursor, etc.).What is a Trojan horse program?A type of program that is often confused with viruses is a ‘Trojan horse’ program. This is not a virus, but simply a program (often harmful) that pretends to be something else.For example, you might download what you think is a new game; but when you run it, it deletes files on your hard drive. Or the third time you start the game, the program E-mail your saved passwords to another person.Note: simply download a file to your computer won’t activate a virus or Trojan horse; you have to execute the code in the file to trigger it. This could mean running a program file, or opening a Word/Excel document in a program (such as Word or Excel) that can execute any macros in the document.What kind of files can spread viruses?Viruses have the potential to infect any type of executable code, not just the files that are commonly called “program files”. For example, some viruses infect executable code in the boot sector of floppy disk or in system areas of hard drives. Another type of virus, known as a “macro” virus, can infect word processing and spreadsheet documents that use macros. And it’s possible for HTML documents containing JavaScript or other types of executable code to spread viruses or other malicious code.Since viruses code must be executed to have any effect, files that the computer treats as pure data are safe. This includes graphics and sound files such as .gif, .jpg, .mp3, .wav, .etc., as well as plain text i n .txt files. For example, just viewing picture files won’t infect your computer with a virus. The virus code has to be in a form, such as an .exe program file or a Word .doc file which the computer will actually try to execute.How do viruses spread?The methodology of virus infection was pretty straightforward when first computer viruses such as Lehigh and Jerusalem started appearing. A virus is a small piece of computer code, usually form several bytes to a few tens of bytes, that can do, well, something unexpected. Such viruses attach themselves to executable files—programs, so that the infected program, before proceeding with whatever tasks it is supposed to do, calls the virus code. One of the simplest ways to accomplish that is to append the virus code to the end of the file, and insert a command to the beginning of the program file that would jump right to the beginning of the virus code. After the virus is finished, it jumps back to the point of origination in the program. Such viruses were very popular in the late eighties. The earlier ones only knew how to attach themselves to .Com files, since structure of a .COM file is much simpler than that of an .EXE file—yetanother executable file format invented for MS-DOS operating system. The first virus to be closely studied was the Lehigh virus. It attached itself to the file that was loaded by the system at boot time—. the virus did a lot of damage to its host, so after three-four replications it was no longer usable. For that reason, the virus never managed to escape the university network.When you execute program code that’s infected by a virus, the virus code will also run and try to infect other programs, either on the same computer or on other computers connected to it over a network. And the newly infected programs will try to infect yet more programs.When you share a copy of an infected file with other computer users, running the file may also infect their computer; and files from those computers may spread the infection to yet more computers.If your computer if infected with a boot sector virus, the virus tries to write copies of itself to the system areas of floppy disks and hard disks. Then the infected floppy disks may infect other computers that boot from them, and the virus copy on the hard disk will try to infect still more floppies.Some viruses, known as ‘multipartite’ viruses, and spread both by infecting files and by infecting the boot areas of floppy disks.What do viruses do to computers?Viruses are software programs, and they can do the same things as any other program running on a computer. The accrual effect of any particular virus depends on how it was programmed by the person who wrote the virus.Some viruses are deliberately designed to damage files or otherwise interfere with your computer’s operation, while other don’t do anything but try to spread themselves around. But even the ones that just spread themselves are harmful, since they damage files and may cause other problems in the process of spreading.Note that v iruses can’t do any damage to hardware: they won’t melt down your CPU, burn out your hard drive, cause your monitor to explode, etc. warnings about viruses that will physically destroy your computer are usually hoaxes, not legitimate virus warnings.Modern viruses can exist on any system form MS DOS and Window 3.1 to MacOS, UNIX, OS/2, Windows NT. Some are harmless, though hard to catch. They can play a jingle on Christmas or reboot your computer occasionally. Other are more dangerous. They can delete or corrupt your files, format hard drives, or do something of that sort. There are some deadly ones that can spread over networks with or without a host, transmit sensitive information over the network to a third party, or even mess with financial data on-line.What’s the story on viruses and E-mail?You can’t get a virus just by reading a plain-text E-mail message or Usenet post. What you have to watch out for are encoded message containing embedded executable code (i.e., JavaScript in HTML message) or message that include an executable file attachment (i.e., an encoded program file or a Word document containing macros).In order to activate a virus or Trojan horse program, you computer has to execute some type of code .This could be a program attached to an E-mail, a Word document you downloaded from the Internet, or something received on a floppy disk. There’s no special hazard in files attached to Usenet posts or E-mail messages: they’re no more dangerous than any other file.What can I do to reduce the chance of getting viruses from E-mail?Treat any file attachments that might contain executable code as carefully as you would anyother new files: save the attachment to disk and then check it with an up-to-date virus scanner before opening the file.If you E-mail or news software has the ability to automatically execute JavaScript, Word macros, or other executable code contained in or attached to a message, I strongly recommend that you disable this feature.My personal feeling is that if an executable file shows up unexpectedly attached to an E-mail, you should delete it unless you can positively verify what it is, Who it came from, and why it was sent to you.The recent outbreak of the Melissa virus was a vivid demonstration of the need to be extremely careful when you receive E-mail with attached files or documents. Just because an E-mail appears to come from someone you trust, this does NOT mean the file is safe or that the supposed sender had anything to do with it.Some General Tips on Avoiding Virus InfectionsInstall anti-virus software from a well-known, reputable company. UPDATE it regularly, and USE it regularly.New viruses come out every single day; an a-v program that hasn’t been updated for several months will not provide much protection against current viruses.In addition to scanning for viruses on a regular basis, install an ‘on access’ scanner (included in most good a-v software packages) and configure it to start automatically each time you boot your system. This will protect your system by checking for viruses each time your computer accesses an executable file.Virus scans any new programs or other files that may contain executable code before you run or open them, no matter where they come from. There have been cases of commercially distributed floppy disks and CD-ROMs spreading virus infections.Anti-virus programs aren’t very good at detecting Trojan horse programs, so be extremely careful about opening binary files and Word/Excel documents from unknown or ‘dubious’ sources. This includes po sts in binary newsgroups, downloads from web/ftp sites that aren’t well-known or don’t have a good reputation, and executable files unexpectedly received as attachments to E-mail.Be extremely careful about accepting programs or other flies during on-line chat sessions: this seems to be one of the more common means that people wind up with virus or Trojan horse problems. And if any other family members (especially younger ones) use the computer, make sure they know not to accept any files while using chat.Do regular backups. Some viruses and Trojan horse programs will erase or corrupt files on your hard drive and a recent backup may be the only way to recover your data.Ideally, you should back up your entire system on a regular basis. If this isn’t practic al, at least backup files you can’t afford to lose or that would be difficult to replace: documents, bookmark files, address books, important E-mail, etc.Dealing with Virus InfectionsFirst, keep in mind “Nick’s First Law of Computer Virus Complaints”:“Just because your computer is acting strangely or one of your programs doesn’t work right, this does not mean that your computer has a virus.”If you haven’t used a good, up-to-date anti-virus program on your computer, do that first. Many problems blamed on viruses are actually caused by software configuration errors or other problems that have nothing to do with a virus.If you do get infected by a virus, follow the direction in your anti-virus program for cleaning it. If you have backup copies of the infected files, use those to restore the files. Check the files you restore to make sure your backups weren’t infected.for assistance, check the web site and support service for your anti-virus software.Note: in general, drastic measures such as formatting your hard drive or using FDISK should be avoided. They are frequently useless at cleaning a virus infection, and may do more harm than good unless you’ re very knowledgeable about the effects of the particular virus you’re dealing with.[译文]计算机病毒什么是计算机病毒?按照Fred Cohen的广为流传的定义,计算机病毒是一种侵入其他计算机程序中的计算机程序,他通过修改其他的程序从而将(也可能是自身的变形)的复制品嵌入其中。
计算机英文文献加翻译
Management Information System OverviewManagement Information System is that we often say that the MIS, is a human, computers and other information can be composed of the collection, transmission, storage, maintenance and use of the system, emphasizing the management, stressed that the modern information society In the increasingly popular. MIS is a new subject, it across a number of areas, such as scientific management and system science, operations research, statistics and computer science. In these subjects on the basis of formation of information-gathering and processing methods, thereby forming a vertical and horizontal weaving, and systems.The 20th century, along with the vigorous development of the global economy, many economists have proposed a new management theory. In the 1950s, Simon made dependent on information management and decision-making ideas. Wiener published the same period of the control theory, that he is a management control process. 1958, Gail wrote: "The management will lower the cost of timely and accurate information to better control." During this period, accounting for the beginning of the computer, data processing in the term.1970, Walter T. Kenova just to the management information system under a definition of the term: "verbal or written form, at the right time to managers, staff and outside staff for the past, present, the projection of future Enterprise and its environment-related information 原文请找腾讯3249114六,维^论~文.网 no application model, no mention of computer applications.1985, management information systems, the founder of the University of Minnesota professor of management at the Gordon B. Davis to a management information system a more complete definition of "management information system is a computer hardware and software resources, manual operations, analysis, planning , Control and decision-making model and the database - System. It provides information to support enterprises or organizations of the operation, management and decision-making function. "Comprehensive definition of thisExplained that the goal of management information system, functions and composition, but also reflects the management information system at the time of level.With the continuous improvement of science and technology, computer science increasingly mature, the computer has to be our study and work on the run along. Today, computers are already very low price, performance, but great progress, and it was used in many areas, the computer was so popular mainly because of the following aspects: First, the computer can substitute for many of the complex Labor. Second, the computer can greatly enhance people's work efficiency. Third, the computer can save a lot of resources. Fourth, the computer can make sensitive documents more secure.Computer application and popularization of economic and social life in various fields. So that the original old management methods are not suited now more and social development. Many people still remain in the previous manual. This greatly hindered the economic development of mankind. In recent years, with the University of sponsoring scale is growing, the number of students in the school also have increased, resulting in educational administration is the growing complexity of the heavy work, to spend a lot of manpower, material resources, and the existing management of student achievement levels are not high, People have been usin g the traditional method of document management student achievement, the management there are many shortcomings, such as: low efficiency, confidentiality of the poor, and Shijianyichang, will have a large number of documents and data, which is useful for finding, updating andmaintaining Have brought a lot of difficulties. Such a mechanism has been unable to meet the development of the times, schools have become more and more day-to-day management of a bottleneck. In the information age this traditional management methods will inevitably be computer-based information management replaced.As part of the computer application, the use of computers to students student performance information for management, with a manual management of the incomparable advantages for example: rapid retrieval, to find convenient, high reliability and large capacity storage, the confidentiality of good, long life, cost Low. These advantages can greatly improve student performance management students the efficiency of enterprises is also a scientific, standardized management, and an important condition for connecting the world. Therefore, the development of such a set of management software as it is very necessary thing.Design ideas are all for the sake of users, the interface nice, clear and simple operation as far as possible, but also as a practical operating system a good fault-tolerant, the user can misuse a timely manner as possible are given a warning, so that users timely correction . T o take full advantage of the functions of visual FoxPro, design powerful software at the same time, as much as possible to reduce the occupiers system resources.Visual FoxPro the command structure and working methods:Visual FoxPro was originally called FoxBASE, the U.S. Fox Software has introduced a database products, in the run on DOS, compatible with the abase family. Fox Software Microsoft acquisition, to be developed so that it can run on Windows, and changed its name to Visual FoxPro. Visual FoxPro is a powerful relational database rapid application development tool, the use of Visual FoxPro can create a desktop database applications, client / server applications and Web services component-based procedures, while also can use ActiveX controls or API function, and so on Ways to expand the functions of Visual FoxPro.1651First, work methods1. Interactive mode of operation(1) order operationVF in the order window, through an order from the keyboard input of all kinds of ways to complete the operation order.(2) menu operationVF use menus, windows, dialog to achieve the graphical interface features an interactive operation. (3) aid operationVF in the system provides a wide range of user-friendly operation of tools, such as the wizard, design, production, etc..2. Procedure means of implementationVF in the implementation of the procedures is to form a group of orders and programming language, an extension to save. PRG procedures in the document, and then run through the automatic implementation of this order documents and award results are displayed.Second, the structure of command1. Command structure2. VF orders are usually composed of two parts: The first part is the verb order, also known as keywords, for the operation of the designated order functions; second part of the order clause, for an order that the operation targets, operating conditions and other information . VF order form are as follows:3. <Order verb> "<order clause>"4. Order in the format agreed symbols5. VF in the order form and function of the use of the symbol of the unity agreement, the meaning of these symbols are as follows:6. Than that option, angle brackets within the parameters must be based on their format input parameters.7. That may be options, put in brackets the parameters under specific requ ests from users choose to enter its parameters.8. Third, the project manager9. Create a method10. command window: CREA T PROJECT <file name>11. Project Manager12. tab13. All - can display and project management applications of all types of docume nts, "All" tab contains five of its right of the tab in its entirety.14. Data - management application projects in various types of data files, databases, free form, view, query documents.15. Documentation - display 原文请找腾讯3249114六,维^论~文.网 , statements, documents, labels and other documents.16. Category - the tab display and project management applications used in the class library documents, including VF's class library system and the user's own design of the library.17. Code - used in the project management procedures code documents, such as: program files (. PRG), API library and the use of project management for generation of applications (. APP).18. (2) the work area19. The project management work area is displayed and management of all types of document window.20. (3) order button21. Project Manager button to the right of the order of the work area of the document window to provide command.22. 4, project management for the use of23. 1. Order button function24. New - in the work area window selected certain documents, with new orders button on the new document added to the project management window.25. Add - can be used VF "file" menu under the "new" order and the "T ools" menu under the "Wizard" order to create the various independent paper added to the project manager, unified organization with management.26. Laws - may amend the project has been in existence in the various documents, is still to use such documents to modify the design interface.27. Sports - in the work area window to highlight a specific document, will run the paper.28. Mobile - to check the documents removed from the project.29. Even the series - put the item in the relevant documents and even into the application executable file.Database System Design :Database design is the logical database design, according to a forthcoming data classification system and the logic of division-level organizations, is user-oriented. Database design needsof various departments of the integrated enterprise archive data and data needs analysis of the relationship between the various data, in accordance with the DBMS.管理信息系统概要管理信息系统就是我们常说的MIS(Management Information System),是一个由人、计算机等组成的能进行信息的收集、传送、储存、维护和使用的系统,在强调管理,强调信息的现代社会中它越来越得到普及。
英文文献及翻译(计算机专业)
英文文献及翻译(计算机专业)The increasing complexity of design resources in a net-based collaborative XXX common systems。
design resources can be organized in n with design activities。
A task is formed by a set of activities and resources linked by logical ns。
XXX managementof all design resources and activities via a Task Management System (TMS)。
which is designed to break down tasks and assign resources to task nodes。
This XXX。
2 Task Management System (TMS)TMS is a system designed to manage the tasks and resources involved in a design project。
It poses tasks into smaller subtasks。
XXX management of all design resources and activities。
TMS assigns resources to task nodes。
XXX。
3 Collaborative DesignCollaborative design is a process that XXX a common goal。
In a net-based collaborative design environment。
n XXX n for all design resources and activities。
计算机专业毕业设计--英文文献(含译文)
外文文献原文THE TECHNIQUE DEVELOPMENT HISTORY OF JSPThe Java Server Pages( JSP) is a kind of according to web of the script plait distance technique, similar carries the script language of Java in the server of the Netscape company of server- side JavaScript( SSJS) and the Active Server Pages(ASP) of the Microsoft. JSP compares the SSJS and ASP to have better can expand sex, and it is no more exclusive than any factory or some one particular server of Web. Though the norm of JSP is to be draw up by the Sun company of, any factory can carry out the JSP on own system.The After Sun release the JSP( the Java Server Pages) formally, the this kind of new Web application development technique very quickly caused the people's concern. JSP provided a special development environment for the Web application that establishes the high dynamic state. According to the Sun parlance, the JSP can adapt to include the Apache WebServer, IIS4.0 on the market at inside of 85% server product.This chapter will introduce the related knowledge of JSP and Databases, and JavaBean related contents, is all certainly rougher introduction among them basic contents, say perhaps to is a Guide only, if the reader needs the more detailed information, pleasing the book of consult the homologous JSP.1.1 GENERALIZEThe JSP(Java Server Pages) is from the company of Sun Microsystems initiate, the many companies the participate to the build up the together of the a kind the of dynamic the state web the page technique standard, the it have the it in the construction the of the dynamic state the web page the strong but the do not the especially of the function. JSP and the technique of ASP of the Microsoft is very alike. Both all provide the ability that mixes with a certain procedure code and is explain by the language engine to carry out the procedure code in the code of HTML. Underneath we are simple of carry on the introduction to it.JSP pages are translated into servlets. So, fundamentally, any task JSP pages can perform could also be accomplished by servlets. However, this underlying equivalence does not mean that servlets and JSP pages are equally appropriate in all scenarios. The issue is not the power of the technology, it is the convenience, productivity, and maintainability of one or the other. After all, anything you can do on a particular computer platform in the Java programming language you could also do in assembly language. But it still matters which you choose.JSP provides the following benefits over servlets alone:• It is easier to write and maintain the HTML. Your static code is ordinary HTML: no extra backslashes, no double quotes, and no lurking Java syntax.• You can use standard Web-site development tools. Even HTML tools that know nothing about JSP can be used because they simply ignore the JSP tags.• You can divide up your development team. The Java programmers can work on the dynamic code. The Web developers can concentrate on the presentation layer. On large projects, this division is very important. Depending on the size of your team and the complexity of your project, you can enforce a weaker or stronger separation between the static HTML and the dynamic content.Now, this discussion is not to say that you should stop using servlets and use only JSP instead. By no means. Almost all projects will use both. For some requests in your project, you will use servlets. For others, you will use JSP. For still others, you will combine them with the MVC architecture . You want the appropriate tool for the job, and servlets, by themselves, do not complete your toolkit.1.2 SOURCE OF JSPThe technique of JSP of the company of Sun, making the page of Web develop the personnel can use the HTML perhaps marking of XML to design to turn the end page with format. Use the perhaps small script future life of marking of JSP becomes the dynamic state on the page contents.( the contents changes according to the claim of)The Java Servlet is a technical foundation of JSP, and the large Web applies the development of the procedure to need the Java Servlet to match with with the JSP and then can complete, this name of Servlet comes from the Applet, the local translation method of now is a lot of, this book in order not to misconstruction, decide the direct adoption Servlet but don't do any translation, if reader would like to, can call it as" small service procedure". The Servlet is similar to traditional CGI, ISAPI, NSAPI etc. Web procedure development the function of the tool in fact, at use the Java Servlet hereafter, the customer need not use again the lowly method of CGI of efficiency, also need not use only the ability come to born page of Web of dynamic state in the method of API that a certain fixed Web server terrace circulate. Many servers of Web all support the Servlet, even not support the Servlet server of Web directly and can also pass the additional applied server and the mold pieces to support the Servlet. Receive benefit in the characteristic of the Java cross-platform, the Servlet is also a terrace irrelevant, actually, as long as match the norm of Java Servlet, the Servlet is complete to have nothing to do with terrace and is to have nothing to do with server of Web. Because the Java Servlet is internal to provide the service by the line distance, need not start a progress to the each claimses, and make use of the multi-threadingmechanism can at the same time for several claim service, therefore the efficiency of Java Servlet is very high.But the Java Servlet also is not to has no weakness, similar to traditional CGI, ISAPI, the NSAPI method, the Java Servlet is to make use of to output the HTML language sentence to carry out the dynamic state web page of, if develop the whole website with the Java Servlet, the integration process of the dynamic state part and the static state page is an evil-foreboding dream simply. For solving this kind of weakness of the Java Servlet, the SUN released the JSP.A number of years ago, Marty was invited to attend a small 20-person industry roundtable discussion on software technology. Sitting in the seat next to Marty was James Gosling, inventor of the Java programming language. Sitting several seats away was a high-level manager from a very large software company in Redmond, Washington. During the discussion, the moderator brought up the subject of Jini, which at that time was a new Java technology. The moderator asked the manager what he thought of it, and the manager responded that it was too early to tell, but that it seemed to be an excellent idea. He went on to say that they would keep an eye on it, and if it seemed to be catching on, they would follow his company's usual "embrace and extend" strategy. At this point, Gosling lightheartedly interjected "You mean disgrace and distend."Now, the grievance that Gosling was airing was that he felt that this company would take technology from other companies and suborn it for their own purposes. But guess what? The shoe is on the other foot here. The Java community did not invent the idea of designing pages as a mixture of static HTML and dynamic code marked with special tags. For example, Cold Fusion did it years earlier. Even ASP (a product from the very software company of the aforementioned manager) popularized this approach before JSP came along and decided to jump on the bandwagon. In fact, JSP not only adopted the general idea, it even used many of the same special tags as ASP did.The JSP is an establishment at the model of Java servlets on of the expression layer technique, it makes the plait write the HTML to become more simple.Be like the SSJS, it also allows you carry the static state HTML contents and servers the script mix to put together the born dynamic state exportation. JSP the script language that the Java is the tacit approval, however, be like the ASP and can use other languages( such as JavaScript and VBScript), the norm of JSP also allows to use other languages.1.3 JSP CHARACTERISTICSIs a service according to the script language in some one language of the statures system this kind of discuss, the JSP should be see make is a kind of script language.However, be a kind of script language, the JSP seemed to be too strong again, almost can use all Javas in the JSP.Be a kind of according to text originally of, take manifestation as the central development technique, the JSP provided all advantages of the Java Servlet, and, when combine with a JavaBeans together, providing a kind of make contents and manifestation that simple way that logic separate. Separate the contents and advantage of logical manifestations is, the personnel who renews the page external appearance need not know the code of Java, and renew the JavaBeans personnel also need not be design the web page of expert in hand, can use to take the page of JavaBeans JSP to define the template of Web, to build up a from have the alike external appearance of the website that page constitute. JavaBeans completes the data to provide, having no code of Java in the template thus, this means that these templates can be written the personnel by a HTML plait to support. Certainly, can also make use of the Java Servlet to control the logic of the website, adjust through the Java Servlet to use the way of the document of JSP to separate website of logic and contents.Generally speaking, in actual engine of JSP, the page of JSP is the edit and translate type while carry out, not explain the type of. Explain the dynamic state web page development tool of the type, such as ASP, PHP3 etc., because speed etc. reason, have already can't satisfy current the large electronic commerce needs appliedly, traditional development techniques are all at to edit and translate the executive way change, such as the ASP → ASP+;PHP3 → PHP4.In the JSP norm book, did not request the procedure in the JSP code part( be called the Scriptlet) and must write with the Java definitely. Actually, have some engines of JSP are adoptive other script languages such as the EMAC- Script, etc., but actually this a few script languages also are to set up on the Java, edit and translate for the Servlet to carry out of. Write according to the norm of JSP, have no Scriptlet of relation with Java also is can of, however, mainly lie in the ability and JavaBeans, the Enterprise JavaBeanses because of the JSP strong function to work together, so even is the Scriptlet part not to use the Java, edit and translate of performance code also should is related with Java.1.4 JSP MECHANISMTo comprehend the JSP how unite the technical advantage that above various speak of, come to carry out various result easily, the customer must understand the differentiation of" the module develops for the web page of the center" and" the page develops for the web page of the center" first.The SSJS and ASP are all in several year ago to release, the network of that time is still very young, no one knows to still have in addition to making all business, datas and the expression logic enter the original web page entirely heap what better solvethe method. This kind of model that take page as the center studies and gets the very fast development easily. However, along with change of time, the people know that this kind of method is unwell in set up large, the Web that can upgrade applies the procedure. The expression logic write in the script environment was lock in the page, only passing to shear to slice and glue to stick then can drive heavy use. Express the logic to usually mix together with business and the data logics, when this makes be the procedure member to try to change an external appearance that applies the procedure but do not want to break with its llied business logic, apply the procedure of maintenance be like to walk the similar difficulty on the eggshell. In fact in the business enterprise, heavy use the application of the module already through very mature, no one would like to rewrite those logics for their applied procedure.HTML and sketch the designer handed over to the implement work of their design the Web plait the one who write, make they have to double work-Usually is the handicraft plait to write, because have no fit tool and can carry the script and the HTML contents knot to the server to put together. Chien but speech, apply the complexity of the procedure along with the Web to promote continuously, the development method that take page as the center limits sex to become to get up obviously.At the same time, the people always at look for the better method of build up the Web application procedure, the module spreads in customer's machine/ server the realm. JavaBeans and ActiveX were published the company to expand to apply the procedure developer for Java and Windows to use to come to develop the complicated procedure quickly by" the fast application procedure development"( RAD) tool. These techniques make the expert in the some realm be able to write the module for the perpendicular application plait in the skill area, but the developer can go fetch the usage directly but need not control the expertise of this realm.Be a kind of take module as the central development terrace, the JSP appeared. It with the JavaBeans and Enterprise JavaBeans( EJB) module includes the model of the business and the data logic for foundation, provide a great deal of label and a script terraces to use to come to show in the HTML page from the contents of JavaBeans creation or send a present in return. Because of the property that regards the module as the center of the JSP, it can drive Java and not the developer of Java uses equally. Not the developer of Java can pass the JSP label( Tags) to use the JavaBeans that the deluxe developer of Java establish. The developer of Java not only can establish and use the JavaBeans, but also can use the language of Java to come to control more accurately in the JSP page according to the expression logic of the first floor JavaBeans.See now how JSP is handle claim of HTTP. In basic claim model, a claimdirectly was send to JSP page in. The code of JSP controls to carry on hour of the logic processing and module of JavaBeanses' hand over with each other, and the manifestation result in dynamic state bornly, mixing with the HTML page of the static state HTML code. The Beans can be JavaBeans or module of EJBs. Moreover, the more complicated claim model can see make from is request other JSP pages of the page call sign or Java Servlets.The engine of JSP wants to chase the code of Java that the label of JSP, code of Java in the JSP page even all converts into the big piece together with the static state HTML contents actually. These codes piece was organized the Java Servlet that customer can not see to go to by the engine of JSP, then the Servlet edits and translate them automatically byte code of Java.Thus, the visitant that is the website requests a JSP page, under the condition of it is not knowing, an already born, the Servlet actual full general that prepared to edit and translate completes all works, very concealment but again and efficiently. The Servlet is to edit and translate of, so the code of JSP in the web page does not need when the every time requests that page is explain. The engine of JSP need to be edit and translate after Servlet the code end is modify only once, then this Servlet that editted and translate can be carry out. The in view of the fact JSP engine auto is born to edit and translate the Servlet also, need not procedure member begins to edit and translate the code, so the JSP can bring vivid sex that function and fast developments need that you are efficiently.Compared with the traditional CGI, the JSP has the equal advantage. First, on the speed, the traditional procedure of CGI needs to use the standard importation of the system to output the equipments to carry out the dynamic state web page born, but the JSP is direct is mutually the connection with server. And say for the CGI, each interview needs to add to add a progress to handle, the progress build up and destroy by burning constantly and will be a not small burden for calculator of be the server of Web. The next in order, the JSP is specialized to develop but design for the Web of, its purpose is for building up according to the Web applied procedure, included the norm and the tool of a the whole set. Use the technique of JSP can combine a lot of JSP pages to become a Web application procedure very expediently.JSP six built-in objectsrequest for:The object of the package of information submitted by users, by calling the object corresponding way to access the information package, namely the use of the target users can access the information.response object:The customer's request dynamic response to the client sent the data.session object1. What is the session: session object is a built-in objects JSP, it in the first JSP pages loaded automatically create, complete the conversation of management.From a customer to open a browser and connect to the server, to close the browser, leaving the end of this server, known as a conversation.When a customer visits a server, the server may be a few pages link between repeatedly, repeatedly refresh a page, the server should bethrough some kind of way to know this is the same client, which requires session object.2. session object ID: When a customer's first visit to a server on the JSP pages, JSP engines produce a session object, and assigned aString type of ID number, JSP engine at the same time, the ID number sent to the client, stored in Cookie, this session objects, and customers on the establishment of a one-to-one relationship. When a customer to connect to the server of the other pages, customers no longer allocated to the new session object, until, close your browser, the client-server object to cancel the session, and the conversation, and customer relationship disappeared. When a customer re-open the browser to connect to the server, the server for the customer to create a new session object.aplication target1. What is the application:Servers have launched after the application object, when a customer to visit the site between the various pages here, this application objects are the same, until the server is down. But with the session difference is that all customers of the application objects are the same, that is, all customers share this built-in application objects.2. application objects commonly used methods:(1) public void setAttribute (String key, Object obj): Object specified parameters will be the object obj added to the application object, and to add the subject of the designation of a keyword index.(2) public Object getAttribute (String key): access to application objects containing keywords for.out targetsout as a target output flow, used to client output data. out targets for the output data.Cookie1. What is Cookie:Cookie is stored in Web server on the user's hard drive section of the text. Cookie allow a Web site on the user's computer to store information on and then get back to it.For example, a Web site may be generated for each visitor a unique ID, and then to Cookie in the form of documents stored in each user's machine.If you use IE browser to visit Web, you will see all stored on your hard drive on the Cookie. They are most often stored in places: c: \ windows \ cookies (in Window2000 is in the C: \ Documents and Settings \ your user name \ Cookies).Cookie is "keyword key = value value" to preserve the format of the record.2. Targets the creation of a Cookie, Cookie object called the constructor can create a Cookie. Cookie object constructor has two string .parameters: Cookie Cookie name and value.Cookie c = new Cookie ( "username", "john");3. If the JSP in the package good Cookie object to send to the client, the use of the response addCookie () method.Format: response.addCookie (c)4. Save to read the client's Cookie, the use of the object request getCookies () method will be implemented in all client came to an array of Cookie objects in the form of order, to meet the need to remove the Cookie object, it is necessary to compare an array cycle Each target keywords.JSP的技术发展历史Java Server Pages(JSP)是一种基于web的脚本编程技术,类似于网景公司的服务器端Java脚本语言—— server-side JavaScript(SSJS)和微软的Active Server Pages(ASP)。
英文文献及翻译(计算机专业)
NET-BASED TASK MANAGEMENT SYSTEMHector Garcia-Molina, Jeffrey D. Ullman, Jennifer WisdomABSTRACTIn net-based collaborative design environment, design resources become more and more varied and complex. Besides common information management systems, design resources can be organized in connection with design activities.A set of activities and resources linked by logic relations can form a task. A task has at least one objective and can be broken down into smaller ones. So a design project can be separated into many subtasks forming a hierarchical structure.Task Management System (TMS) is designed to break down these tasks and assign certain resources to its task nodes.As a result of design resources and activities could be managed via this system.KEY WORDS:Collaborative Design, Task Management System (TMS), Task Decomposition, Information Management System1 IntroductionAlong with the rapid upgrade of request for advanced design methods, more and more design tool appeared to support new design methods and forms. Design in a web environment with multi-partners being involved requires a more powerful and efficient management system .Design partners can be located everywhere over the net with their own organizations. They could be mutually independent experts or teams of tens of employees. This article discusses a task management system (TMS) which manages design activities and resources by breaking down design objectives and re-organizing design resources in connection with the activities. Comparing with common information management systems (IMS) like product data management systemand document management system, TMS can manage the whole design process. It has two tiers which make it much more f1exible in structure.The 1ower tier consists of traditional common IMSS and the upper one fulfills logic activity management through controlling a tree-like structure, allocating design resources and making decisions about how to carry out a design project. Its functioning paradigm varies in different projects depen ding on the project’s scale and purpose. As a result of this structure, TMS can separate its data model from its logic could bring about structure optimization and efficiency improvement, especially in a large scale project.2 Task Management in Net-Based Collaborative Design EnvironmentEvolution of the Design EnvironmentDuring a net-based collaborative design process, designers transform their working environment from a single PC desktop to LAN, and even extend to WAN. Each design partner can be a single expert or a combination of many teams of several subjects, even if they are far away from each other geographically. In the net-based collaborative design environment, people from every terminal of the net can exchange their information interactively with each other and send data to authorized roles via their design tools. The Co Design Space is such an environment which provides a set of these tools to help design partners communicate and obtain design information. Code sign Space aims at improving the efficiency of collaborative work, making enterprises increase its sensitivity to markets and optimize the configuration of resource.Management of Resources and Activities in Net-Based Collaborative EnvironmentThe expansion of design environment also caused a new problem of how to organize the resources and design activities in that environment. As the number of design partners increases, resources also increase in direct proportion. But relations between resources increase in square ratio. To organize these resources and their relations needs an integrated management system which can recognize them and provide to designers in case of they are needed.One solution is to use special information management system (IMS).An IMS can provide database, file systems and in/out interfaces to manage a given resource. For example there are several IMS tools in Co Design Space such as Product Data Management System, Document Management System and so on. These systems can provide its special information which design users want.But the structure of design activities is much more complicated than these IM S could manage, because even a simple design project may involve different design resources such as documents, drafts and equipments. Not only product data or documents, design activities also need the support of organizations in design processes. This article puts forward a new design system which attempts to integrate different resources into the related design activities. That is task management system (TMS).3 Task Breakdown ModelBasis of Task BreakdownWhen people set out to accomplish a project, they usually separate it into a sequence of tasks and finish them one by one. Each design project can be regarded as an aggregate of activities, roles and data. Here we define a task as a set of activities and resources and also having at least one objective. Because large tasks can be separated into small ones, if we separate a project target into several lower—level objectives, we define that the project is broken down into subtasks and each objective maps to a subtask. Obviously if each subtask is accomplished, the projectis surely finished. So TMS integrates design activities and resources through planning these tasks.Net-based collaborative design mostly aims at products development. Project managers (PM) assign subtasks to designers or design teams who may locate in other cities. The designers and teams execute their own tasks under the constraints which are defined by the PM and negotiated with each other via the collaborative design environment. So the designers and teams are independent collaborative partners and have incompact coupling relationships. They are driven together only by theft design tasks. After the PM have finished decomposing the project, each designer or team leader who has been assigned with a subtask become a 1ow-class PM of his own task. And he can do the same thing as his PM done to him, re-breaking down and re-assigning tasks.So we put forward two rules for Task Breakdown in a net-based environment, incompact coupling and object-driven. Incompact coupling means the less relationship between two tasks. When two subtasks were coupled too tightly, the requirement for communication between their designers will increase a lot. Too much communication wil1 not only waste time and reduce efficiency, but also bring errors. It will become much more difficult to manage project process than usually in this situation. On the other hand every task has its own objective. From the view point of PM of a superior task each subtask could be a black box and how to execute these subtasks is unknown. The PM concerns only the results and constraints of these subtasks, and may never concern what will happen inside it.Task Breakdown MethodAccording to the above basis, a project can be separated into several subtasks. And when this separating continues, it will finally be decomposed into a task tree. Except the root of the tree is a project, all eaves and branches are subtasks. Since a design project can be separated into a task tree, all its resources can be added to it depending on their relationship. For example, a Small-Sized-Satellite.Design (3SD) project can be broken down into two design objectives as Satellite Hardware. Design (SHD) and Satellite-Software-Exploit (SSE). And it also has two teams. Design team A and design team B which we regard as design resources. When A is assigned to SSE and B to SHD. We break down the project as shown in Fig 1.It is alike to manage other resources in a project in this way. So when we define a collaborative design project’s task model, we should first claim the project’s targets. These targets include functional goals, performance goals, and quality goals and so on. Then we could confirm how to execute this project. Next we can go on to break down it. The project can be separated into two or more subtasks since there are at 1east two partners in a collaborative project. Either we could separate the project into stepwise tasks, which have time sequence relationships in case of some more complex projects and then break down the stepwise tasks according to their phase-to-phase goals.There is also another trouble in executing a task breakdown. When a task is broken into severa1 subtasks; it is not merely “a simple sum motion” of other tasks. In most cases their subtasks could have more complex relations.To solve this problem we use constraints. There are time sequence constraint (TSC) and logic constraint (LC). The time sequence constraint defines the time relationships among subtasks. The TSC has four different types, FF, FS, SF and SS. F means finish and S presents start. If we say Tabb is FS and lag four days, it means Tb should start no later than four days after Ta is finished.The logic constraint is much more complicated. It defines logic relationship among multiple tasks.Here is given an example:“Task TA is separated into three subtasks, Ta, T b and Tc. But there are two more rules.Tb and Tc can not be executed until Ta is finished.Tb and Tc can not be executed both,that means if Tb was executed, Tc should not be executed, and vice versa. This depends on the result of Ta.”So we say Tb and Tc have a logic constraint. After finishing breaking down the tasks, we can get a task tree as Fig, 2 illustrates.4 TMS RealizationTMS StructureAccording to our discussion about task tree model and task breakdown basis, we can develop a Task Management System (TMS) based on Co Design Space using Java language, JSP technology and Microsoft SQL 2000. The task management system’s structure is shown in Fig. 3.TMS has four main modules namely Task Breakdown, Role Management, Statistics and Query and Data Integration. The Task Breakdown module helps users to work out task tree. Role Management module performs authentication and authorization of access control. Statistics and Query module is an extra tool for users to find more information about their task. The last Data Integration Module provides in/out interface for TMS with its peripheral environment.Key Points in System RealizationIntegration with Co Design SpaceCo Design Space is an integrated information management system which stores, shares and processes design data and provides a series of tools to support users. These tools can share all information in the database because they have a universal Data Mode1. Which is defined in an XML (extensible Markup Language) file, and has a hierarchical structure. Based on this XML structure the TMS h data mode1 definition is organized as following.<xml version= encoding= UTF-8’><!--comment:Common Resource Definitions Above.The Followingare Task Design--><!ELEMENT ProductProcessResource (Prcses, History,AsBuiltProduct*,ItemsObj, Changes, ManufacturerParts, SupplierParts,AttachmentsObj ,Contacts, PartLibrary,AdditionalAttributes*)><!ELEMENT Prcses (Prcs+) ><!ELEMENT Prcs (Prcses,PrcsNotes,PrcsArc*,Contacts,AdditionalAttributes*,Attachments)><!ELEM ENT PrcsArc EMPTY><!ELEMENT PrcsNotes(PrcsNote*)><!ELEMENT PrcsNote EMPTY>Notes: Element “Pros” is a task node object, and “Process” is a task set object which contains subtask objects and is belongs to a higher class task object. One task object can have no more than one “Presses” objects. According to this definition, “Prcs” objects are organized in a tree-formation process. The other objects are resources, such as task link object (“Presage”), task notes (“Pros Notes”), and task documents (“Attachments”) .These resources are shared in Co Design database.文章出处:计算机智能研究[J],47卷,2007:647-703基于网络的任务管理系统摘要在网络与设计协同化的环境下,设计资源变得越来越多样化和复杂化。
计算机 软件工程 外文翻译 外文文献 英文文献
一、外文资料译文:Java开发2.0:使用Hibernate Shards 进行切分横向扩展的关系数据库Andrew Glover,作者兼开发人员,Beacon50摘要:Sharding并不适合所有网站,但它是一种能够满足大数据的需求方法。
对于一些商店来说,切分意味着可以保持一个受信任的RDBMS,同时不牺牲数据可伸缩性和系统性能。
在Java 开发 2.0系列的这一部分中,您可以了解到切分何时起作用,以及何时不起作用,然后开始着手对一个可以处理数TB 数据的简单应用程序进行切分。
日期:2010年8月31日级别:中级PDF格式:A4和信(64KB的15页)取得Adobe®Reader®软件当关系数据库试图在一个单一表中存储数TB 的数据时,总体性能通常会降低。
索引所有的数据读取,显然是很耗时的,而且其中有可能是写入,也可能是读出。
因为NoSQL 数据商店尤其适合存储大型数据,但是NoSQL 是一种非关系数据库方法。
对于倾向于使用ACID-ity 和实体结构关系数据库的开发人员及需要这种结构的项目来说,切分是一个令人振奋的选方法。
切分一个数据库分区的分支,不是在本机上的数据库技术,它发生在应用场面上。
在各种切分实现,Hibernate Shards 可能是Java™ 技术世界中最流行的。
这个漂亮的项目可以让您使用映射至逻辑数据库的POJO 对切分数据集进行几乎无缝操作。
当你使用Hibernate Shards 时,您不需要将你的POJO 特别映射至切分。
您可以像使用Hibernate 方法对任何常见关系数据库进行映射时一样对其进行映射。
Hibernate Shards 可以为您管理低级别的切分任务。
迄今为止,在这个系列,我用一个比赛和参赛者类推关系的简单域表现出不同的数据存储技术比喻为基础。
这个月,我将使用这个熟悉的例子,介绍一个实际的切分策略,然后在Hibernate实现它的碎片。
计算机专业中英文翻译外文翻译文献翻译
英文参考文献及翻译Linux - Operating system of cybertimes Though for a lot of people , regard Linux as the main operating system to make up huge work station group, finish special effects of " Titanic " make , already can be regarded as and show talent fully. But for Linux, this only numerous news one of. Recently, the manufacturers concerned have announced that support the news of Linux to increase day by day, users' enthusiasm to Linux runs high unprecedentedly too. Then, Linux only have operating system not free more than on earth on 7 year this piece what glamour, get the favors of such numerous important software and hardware manufacturers as the masses of users and Orac le , Informix , HP , Sybase , Corel , Intel , Netscape , Dell ,etc. , OK?1.The background of Linux and characteristicLinux is a kind of " free (Free ) software ": What is called free,mean users can obtain the procedure and source code freely , and can use them freely , including revise or copy etc.. It is a result of cybertimes, numerous technical staff finish its research and development together through Inte rnet, countless user is it test and except fault , can add user expansion function that oneself make conveniently to participate in. As the most outstanding one in free software, Linux has characteristic of the following:(1)Totally follow POSLX standard, expand the network operatingsystem of supporting all AT&T and BSD Unix characteristic. Because of inheritting Unix outstanding design philosophy , and there are clean , stalwart , high-efficient and steady kernels, their all key codes are finished by Li nus Torvalds and other outstanding programmers, without any Unix code of AT&T or Berkeley, so Linu x is not Unix, but Linux and Unix are totally compatible.(2)Real many tasks, multi-user's system, the built-in networksupports, can be with such seamless links as NetWare , Windows NT , OS/2 ,Unix ,etc.. Network in various kinds of Unix it tests to be fastest in comparing and assess efficiency. Support such many kinds of files systems as FAT16 , FAT32 , NTFS , Ex t2FS , ISO9600 ,etc. at the same time .(3) Can operate it in many kinds of hardwares platform , including such processors as Alpha , SunSparc , PowerPC , MIPS ,etc., to various kinds of new-type peripheral hardwares, can from distribute on global numerous programmer there getting support rapidly too.(4) To that the hardware requires lower, can obtain very good performance on more low-grade machine , what deserves particular mention is Linux outstanding stability , permitted " year " count often its running times.2.Main application of Linux At present,Now, the application of Linux mainly includes:(1) Internet/Intranet: This is one that Linux was used most at present, it can offer and include Web server , all such Inter net services as Ftp server , Gopher server , SMTP/POP3 mail server , Proxy/Cache server , DNS server ,etc.. Linux kernel supports IPalias , PPP and IPtunneling, these functions can be used for setting up fictitious host computer , fictitious service , VPN (fictitious special-purpose network ) ,etc.. Operating Apache Web server on Linux mainly, the occupation rate of market in 1998 is 49%, far exceeds the sum of such several big companies as Microsoft , Netscape ,etc..(2) Because Linux has outstanding networking ability , it can be usedin calculating distributedly large-scaly, for instance cartoon making , scientific caculation , database and file server ,etc..(3) As realization that is can under low platform fullness of Unix that operate , apply at all levels teaching and research work of universities and colleges extensively, if Mexico government announce middle and primary schools in the whole country dispose Linux and offer Internet service for student already.(4) Tabletop and handling official business appliedly. Application number of people of in this respect at present not so good as Windows of Microsoft far also, reason its lie in Lin ux quantity , desk-top of application software not so good as Windows application far not merely, because the characteristic of the freedom software makes it not almost have advertisement thatsupport (though the function of Star Office is not second to MS Office at the same time, but there are actually few people knowing).3.Can Linux become a kind of major operating system?In the face of the pressure of coming from users that is strengthened day by day, more and more commercial companies transplant its application to Linux platform, comparatively important incident was as follows, in 1998 ①Compaq and HP determine to put forward user of requirement truss up Linux at their servers , IBM and Dell promise to offer customized Linux system to user too. ②Lotus announce, Notes the next edition include one special-purpose edition in Linux. ③Corel Company transplants its famous WordPerfect to on Linux, and free issue. Corel also plans to move the other figure pattern process products to Linux platform completely.④Main database producer: Sybase , Informix , Oracle , CA , IBM have already been transplanted one's own database products to on Linux, or has finished Beta edition, among them Oracle and Informix also offer technical support to their products.4.The gratifying one is, some farsighted domestic corporations have begun to try hard to change this kind of current situation already. Stone Co. not long ago is it invest a huge sum of money to claim , regard Linux as platform develop a Internet/Intranet solution, regard this as the core and launch Stone's system integration business , plan to set up nationwide Linux technical support organization at the same time , take the lead to promote the freedom software application and development in China. In addition domestic computer Company , person who win of China , devoted to Linux relevant software and hardware application of system popularize too. Is it to intensification that Linux know , will have more and more enterprises accede to the ranks that Linux will be used with domestic every enterprise to believe, more software will be planted in Linux platform. Meanwhile, the domestic university should regard Linux as the original version and upgrade already existing Unix content of courses , start with analysing the source code and revising the kernel and train a large number of senior Linux talents, improve our country's own operating system. Having only really grasped the operating system, the software industry of our country could be got rid of and aped sedulously at present, the passive state led by the nose by others, create conditions for revitalizing the software industry of our country fundamentally.中文翻译Linux—网络时代的操作系统虽然对许多人来说,以Linux作为主要的操作系统组成庞大的工作站群,完成了《泰坦尼克号》的特技制作,已经算是出尽了风头。
计算机专业外文文献翻译
毕业设计(论文)外文文献翻译(本科学生用)题目:Plc based control system for the music fountain 学生姓名:_ ___学号:060108011117 学部(系): 信息学部专业年级: _06自动化(1)班_指导教师: ___职称或学位:助教__20 年月日外文文献翻译(译成中文1000字左右):【主要阅读文献不少于5篇,译文后附注文献信息,包括:作者、书名(或论文题目)、出版社(或刊物名称)、出版时间(或刊号)、页码。
提供所译外文资料附件(印刷类含封面、封底、目录、翻译部分的复印件等,网站类的请附网址及原文】英文节选原文:Central Processing Unit (CPU) is the brain of a PLC controller. CPU itself is usually one of the microcontrollers. Aforetime these were 8-bit microcontrollers such as 8051, and now these are 16-and 32-bit microcontrollers. Unspoken rule is that you’ll find mostly Hitachi and Fujicu microcontrollers in PLC controllers by Japanese makers, Siemens in European controllers, and Motorola microcontrollers in American ones. CPU also takes care of communication, interconnectedness among other parts of PLC controllers, program execution, memory operation, overseeing input and setting up of an output. PLC controllers have complex routines for memory checkup in order to ensure that PLC memory was not damaged (memory checkup is done for safety reasons).Generally speaking, CPU unit makes a great number of check-ups of the PLC controller itself so eventual errors would be discovered early. You can simply look at any PLC controller and see that there are several indicators in the form. of light diodes for error signalization.System memory (today mostly implemented in FLASH technology) is used by a PLC for a process control system. Aside form. this operating system it also contains a user program translated forma ladder diagram to a binary form. FLASH memory contents can be changed only in case where user program is being changed. PLC controllers were used earlier instead of PLASH memory and have had EPROM memory instead of FLASH memory which had to be erased with UV lamp and programmed on programmers. With the use of FLASH technology this process was greatly shortened. Reprogramming a program memory is done through a serial cable in a program for application development.User memory is divided into blocks having special functions. Some parts of a memory are used for storing input and output status. The real status of an input is stored either as “1”or as “0”in a specific memory bit/ each input or output has one corresponding bit in memory. Other parts of memory are used to store variable contents for variables used in used program. For example, time value, or counter value would be stored in this part of the memory.PLC controller can be reprogrammed through a computer (usual way), but also through manual programmers (consoles). This practically means that each PLC controller can programmed through a computer if you have the software needed for programming. Today’s transmission computers are ideal for reprogramming a PLC controller in factory itself. This is of great importance to industry. Once the system is corrected, it is also important to read the right program into a PLC again. It is also good to check from time to time whether program in a PLC has not changed. This helps to avoid hazardous situations in factory rooms (some automakers have established communication networks which regularly check programs in PLC controllers to ensure execution only of good programs). Almost every program for programming a PLC controller possesses various useful options such as: forced switching on and off of the system input/outputs (I/O lines),program follow up in real time as well as documenting a diagram. This documenting is necessary to understand and define failures and malfunctions. Programmer can add remarks, names of input or output devices, and comments that can be useful when finding errors, or with system maintenance. Adding comments and remarks enables any technician (and not just a person who developed the system) to understand a ladder diagram right away. Comments and remarks can even quote precisely part numbers if replacements would be needed. This would speed up a repair of any problems that come up due to bad parts. The old way was such that a person who developed a system had protection on the program, so nobody aside from this person could understand how it was done. Correctly documented ladder diagram allows any technician to understand thoroughly how system functions.Electrical supply is used in bringing electrical energy to central processing unit. Most PLC controllers work either at 24 VDC or 220 VAC. On some PLC controllers you’ll find electrical supply as a separate module. Those are usually bigger PLC controllers, while small and medium series already contain the supply module. User has to determine how much current to take from I/O module to ensure that electrical supply provides appropriate amount of current. Different types of modules use different amounts of electrical current. This electrical supply is usually not used to start external input or output. User has to provide separate supplies in starting PLC controller inputs because then you can ensure so called “pure” supply for the PLC controller. With pure supply we mean supply where industrial environment can not affect it damagingly. Some of the smaller PLC controllers supply their inputs with voltage from a small supply source already incorporated into a PLC.中文翻译:从结构上分,PLC分为固定式和组合式(模块式)两种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
:峻霖班级:通信143班学号:2014101108Computer Language and ProgrammingI. IntroductionProgramming languages, in computer science, are the artificial languages used to write a sequence of instructions (a computer program) that can be run by a computer. Similar to natural languages, such as English, programming languages have a vocabulary, grammar, and syntax. However, natural languages are not suited for programming computers because they are ambiguous, meaning that their vocabulary and grammatical structure may be interpreted in multiple ways. The languages used to program computers must have simple logical structures, and the rules for their grammar, spelling, and punctuation must be precise.Programming languages vary greatly in their sophistication and in their degree of versatility. Some programming languages are written to address a particular kind of computing problem or for use on a particular model of computer system. For instance, programming languages such as FORTRAN and COBOL were written to solve certain general types of programming problems—FORTRAN for scientific applications, and COBOL for business applications. Although these languages were designed to address specific categories of computer problems, they are highly portable, meaning that they may be used to program many types of computers. Other languages, such as machine languages, are designed to be used by one specific model of computer system, or even by one specific computer in certain research applications. The most commonly used programmi ng languages are highly portable and can be used to effectively solve diverse types of computing problems. Languages like C, PASCAL and BASIC fall into this category. II. Language TypesProgramming languages can be classified as either low-level languages or high-level languages. Low-level programming languages, or machine languages, are the most basic type of programming languages and can be understood directlyby a computer. Machine languages differ depending on the manufacturer and model of computer. High-level languages are programming languages that must first be translated into a machine language before they can be understood and processed by a computer. Examples of high-level languages are C, C++, PASCAL, and FORTRAN. Assembly languages are intermediate languages that are very close to machine languages and do not have the level of linguistic sophistication exhibited by other high-level languages, but must still be translated into machine language.1. Machine LanguagesIn machine languages, instructions are written as sequences of 1s and 0s, called bits, that a computer can understand directly. An instruction in machine language generally tells the computer four things: (1) where to find one or two numbers or simple pieces of data in the main computer memory (Random Access Memory, or RAM), (2) a simple operation to perform, such as adding the two numbers together, (3) where in the main memory to put the result of this simple operation, and (4) where to find the next instruction to perform. While all executable programs are eventually read by the computer in machine language, they are not all programmed in machine language. It is extremely difficult to program directly in machine language because the instructions are sequences of 1s and 0s. A typical instruction in a machine language might read 10010 1100 1011 and mean add the contents of storage register A to the contents of storage register B.2. High-Level LanguagesHigh-level languages are relatively sophisticated sets of statements utilizing words and syntax from human language. They are more similar to normal human languages than assembly or machine languages and are therefore easier to use for writing complicated programs. These programming languages allow larger and more complicated programs to be developed faster. However, high-level languages must be translated into machine language by another program called a compiler before a computer can understand them. For this reason, programswritten in a high-level language may take longer to execute and use up more memory than programs written in an assembly language.3. Assembly LanguagesComputer programmers use assembly languages to make machine-language programs easier to write. In an assembly language, each statement corresponds roughly to one machine language instruction. An assembly language statement is composed with the aid of easy to remember commands. The command to add the contents of the storage register A to the contents of storage register B might be written ADD B, A in a typical assembly language statement. Assembly languages share certain features with machine languages. For instance, it is possible to manipulate specific bits in both assembly and machine languages. Programmers use assemblylanguages when it is important to minimize the time it takes to run a program, because the translation from assembly language to machine language is relatively simple. Assembly languages are also used when some part of the computer has to be controlled directly, such as individual dots on a monitor or the flow of individual characters to a printer.III. Classification of High-Level LanguagesHigh-level languages are commonly classified as procedure-oriented, functional, object-oriented, or logic languages. The most common high-level languages today are procedure-oriented languages. In these languages, one or more related blocks of statements that perform some complete function are grouped together into a program module, or procedure, and given a name such as “procedure A.” If the same sequence of operati ons is needed elsewhere in the program, a simple statement can be used to refer back to the procedure. In essence, a procedure is just amini- program. A large program can be constructed by grouping together procedures that perform different tasks. Procedural languages allow programs to be shorter and easier for the computer to read, but they require the programmer to design each procedure to be general enough to be usedin different situations. Functional languages treat procedures like mathematical functions and allow them to be processed like any other data in a program. This allows a much higher and more rigorous level of program construction. Functional languages also allow variables—symbols for data that can be specified and changed by the user as the program is running—to be given values only once. This simplifies programming by reducing the need to be concerned with the exact order of statement execution, since a variable does not have to be redeclared , or restated, each time it is used in a program statement. Many of the ideas from functional languages have become key parts of many modern procedural languages. Object-oriented languages are outgrowths of functional languages. In object-oriented languages, the code used to write the program and the data processed by the program are grouped together into units called objects. Objects are further grouped into classes, which define the attributes objects must have. A simple example of a class is the class Book. Objects within this class might be Novel and Short Story. Objects also have certain functions associated with them, called methods. The computer accesses an object through the use of one of the object’s methods. The method performs some action to the data in the object and returns this value to the computer. Classes of objects can also be further grouped into hierarchies, in which objects of one class can inherit methods from another class. The structure provided in object-oriented languages makes them very useful for complicated programming tasks. Logic languages use logic as their mathematical base. A logic program consists of sets of facts and if-then rules, which specify how one set of facts may be deduced from others, for example: If the statement X is true, then the statement Y is false. In the execution of such a program, an input statement can be logically deduced from other statements in the program. Many artificial intelligence programs are written in such languages.IV. Language Structure and ComponentsProgramming languages use specific types of statements, or instructions, to provide functional structure to the program. A statement in a program is a basicsentence that expresses a simple idea—its purpose is to give the computer a basic instruction. Statements define the types of data allowed, how data are to be manipulated, and the ways that procedures and functions work. Programmers use statements to manipulate common components of programming languages, such as variables and macros (mini-programs within a program). Statements known as data declarations give names and properties to elements of a program called variables. Variables can be assigned different values within the program. The properties variables can have are called types, and they include such things as what possible values might be saved in the variables, how much numerical accuracy is to be used in the values, and how one variable may represent a collection of simpler values in an organized fashion, such as a table or array. In many programming languages, a key data type is a pointer. Variables that are pointers do not themselves have values; instead, they have information that the computer can use to locate some other variable—that is, they point to another variable. An expression is a piece of a statement that describes a series of computations to be performed on some of the program’s variables, such as X+Y/Z, in which the variables are X, Y, and Z and the computations are addition and division. An assignment statement assigns a variable a value derived from some expression, while conditional statements specify expressions to be tested and then used to select which other statements should be executed next.Procedure and function statements define certain blocks of code as procedures or functions that can then be returned to later in the program. These statements also define the kinds of variables and parameters the programmer can choose and the type of value that the code will return when an expression accesses the procedure or function. Many programming languages also permit mini translation programs called macros. Macros translate segments of code that have been written in a language structure defined by the programmer into statements that the programming language understands.V. HistoryProgramming languages date back almost to the invention of the digital computer in the 1940s. The first assembly languages emerged in the late 1950s with the introduction of commercial computers. The first procedural languages were developed in the late 1950s to early 1960s: FORTRAN, created by John Backus, and then COBOL, created by Grace Hopper The first functional language was LISP, written by John McCarthy4 in the late 1950s. Although heavily updated, all three languages are still widely used today. In the late 1960s, the first object-oriented languages, such as SIMULA, emerged. Logic languages became well known in the mid 1970swith the introduction of PROLOG6, a language used to program artificial intelligence software. During the 1970s, procedural languages continued to develop with ALGOL, BASIC, PASCAL, C, and A d a SMALLTALK was a highly influential object-oriented language that led to the merging ofobject- oriented and procedural languages in C++ and more recently in JAVA10. Although pure logic languages have declined in popularity, variations have become vitally important in the form of relational languages for modern databases, such as SQL.计算机程序一、引言计算机程序是指导计算机执行某个功能或功能组合的一套指令。