27.2.2相似三角形应用举例PPT课件

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-
11
一题多解 还可以有其他方法测量吗?
B E

平面镜
F
A
△ABO∽△AEF
OB OA EF = AF
-

O
OB
=
OA ·EF AF
12
抢答
怎样测量旗杆的高度?
-
13

O′
1.6 m
6m
1.2m

-B
A′
B′14
知识要点
测高的方法
测量不能到达顶部的物体的高度, 通常用“在同一时刻物高与影长成正比 例”的原理解决。
新课导入
乐山大佛
-
1
世界上最高的树 —— 红杉
-
2
怎样测量这些非常 高大物体的高度?
世界上最高的楼 ——台北101大楼
-
3
怎样测量河宽?
世界上最宽的河
——亚马孙河 -
4
利用三角形相似可以解决一些不能 直接测量的物体的长度的问题
-
5
-
6
教学目标
知识与能力
• 会应用相似三角形性质、判定解决实际 问题.
N
因为PN∥BC,所以△APN∽ △ABC
所以 AE
PN
=
AD
BC
B
C Q DM
因此 80–x = x ,得 x=48(毫米)。
80
120
-
21
4. 小明在打网球时,使球恰好能打过网, 而且落在离网5米的位置上,求球拍击球的高 度h.(设网球是直线运动)
2.4m
C
E
A
┏ 0.8m
? ┏
5m
D
10m
物1高 :物2高 = 影1长 :影2长
-
15
P
例题
求河宽?
45m
60m QR
b
90m
a
S
T
分析:∵∠PQR=∠PST= 90°
∠P=∠P
∴ △PQR ∽△PST
∴ PQ QR PQ QS ST

PQ 60 PQ 45 90
得 PQ=90
-
16
知识要点
测距的方法
测量不能到达两点间的距离,常构造 相似三角形求解。
-
9
例题
古希腊数学家、天文学 家泰勒斯利用相似三角形的 原理,测量金字塔的高度。
-
10
B
O 201m
E 2m
3m D A(F)
解:太阳光是平行线, 因此∠BAO= ∠EDF
又 ∠AOB= ∠DFE=90°
∴△ABO∽△DEF
BO OA
EF = FD
BO
=
OA· EF FD
=
201×2 3
= 134
(1)审题。 (2)构建图形。 (3)利用相似解决问题。
-
19
随堂练习
1. 铁道口的栏杆短臂长1m,长臂长16m,当短臂 端点下降0.5m时,长臂端点升高__8__B__m。
0.5m
16m
C ┛1m O A
? ┏
D
2.某一时刻树的影长为8米,同一时刻身高为
1.5米的人的影长为3米,则树高为4______。
-
17
课堂小结
1. 相似三角形的应用主要有两个方面:
(1) 测高(不能直接使用皮尺或刻度尺量的) 测量不能到达顶部的物体的高度,通常用
“在同一时刻物高与影长成比例”的原理解决。 (2) 测距(不能直接测量的两点间的距离)
测量不能到达两点间的距离,常构造相似三 角形求解。
-
18
2. 解相似三角形实际问题的一般步骤:
-
7
过程与方法
• 通过利用相似三角形解决实际问题中不能 直接测量的物体的长度的问题,让学生体会 数学转化的思想,并体会如何用已学习的数 学知识解决实际问题.
情感态度与价值观
• 让学生体会用数学知识解决实际问题的成 就感和快乐.
-
8
教学重难点
• 相似三角形性质与判定的应用. • 相似三角形性质与判定的应用. • 从识图能力入手,明确应用相似三角 形判定、 性质的前提是寻找和问题有 关的两块三角形.
-
20
3. △ABC是一块锐角三角形余料,边
BC=120毫米,高AD=80毫米,要把它加工成
正方形零件,使正方形的一边在BC上,其余
两个顶点分别在AB、AC上,这个正方形零
件的边长是多少?
A
解:设正方形PQMN是符合要求的△ABC
的高AD与PN相交于点E。设正方形PQMN 的边长为 x 毫米。
P
E
A
C
B
D
E
-
24
-
Hale Waihona Puke Baidu
25
B
-
22
5. 在同一时刻物体的高度与它的影长成正 比例,在某一时刻,有人测得一高为1.8米的竹 竿的影长为3米,某一高楼的影长为90米,那么 高楼的高度是多少米?
-
23
6. 为了估算河的宽度,我们可以在河对岸选定 一个目标作为点A,再在河的这一边选点B和C,使 AB⊥BC,然后,再选点E,使EC⊥BC,用视线确 定BC和AE的交点D.此时如果测得BD=120米, DC=60米,EC=50米,求两岸间的大致距离AB.
相关文档
最新文档