4 线路及绕组中的波过程

合集下载

线路与绕组中的波过程

线路与绕组中的波过程

将(8-4)代入(8-1),得
at L 0 vta = vC 0
(8-4)
由此可得电磁波的传播速度v的表达式(v取正值): 1 v= (8-5) LC
0 0
对于架空线路,单位长度的电感L0和电容C0为
L0 =
µ 0 2h ln 2π r
H /m
(8-6)
2πε 0 C0 = 2h ln r
F /m
第八章 线路与绕组中的波过程
(4学时) 学时)
电力系统中的架空输电线路、母线、电缆、发电机和变压器 绕组等都属于具有分布参数的电路元件。无论发生雷电过电压 还是操作过电压,都会在这些线路和设备中产生过渡过程。分 布参数的过渡过程本质上是电磁波的传播过程,简称波过程。
8.1 波沿均匀无损单导线的传播
(8-7)
其中,µ 0 = 4π × 10 −7 H / m,为空气的导磁系数;ε 0= 10 −9 36π F / m,为空 气的介电系数;h为导线的对地高度,单位为m;r为导线半径,单位 为m。因此 1 1 v= = = 3 ×108 m/ s L0C0 µ 0ε 0 它等于光速,通常用c来表示。也就是说电流波或电压波是以光速 沿架空导线传播的,它与导线的几何尺寸和悬挂高度无关。 将 i = at 和(8-5)式代入(8-1)式,得到
为u1,因为
x1 + vdt x1 u q [( t 1 + dt ) − ] = u q (t1 − ) = u 1 v v x 由此可见, q (t − ) 是随着时间t的增加、以速度v向x增加的方向运 u v x 动的,是前行波电压,如图8-3所示。同样可以说明,u f (t+ ) 代表一
个以速度v向x负方向行进的波,是反行波电压。为了方便,式(8-13) 可以简洁地表示为

高电压课件第七章线路和绕组中的波过程

高电压课件第七章线路和绕组中的波过程

⾼电压课件第七章线路和绕组中的波过程第线路和绕组中的波过程7-1 ⽆损耗单导线线路中的波过程先讨论单导线-地的等值电路,将线路看成是由⽆数个长度为dx 的⼩段所组成。

若每单位长度导线的电感及电阻为L 0和r 0;每单位长度导线对地的电容及电导为C 0及g 0,则长度为dx 线段的参数应为L 0dx 、r 0dx 、C 0dx 和g 0dx ,线路的等值电路见图7-1-1。

实际上,L 0、r 0、C 0、g 0这些参数都和频率有关,当线路导线发⽣电晕时尚与电压有关,但在分析波过程的基本规律时,可以假定它们都是常数。

这样就可以有下了⽅程:7-1-1将此⽅程式经过拉式变换可以得到:7-1-2其中)(u v x t q -是⼀个以速度v 向x 正⽅向⾏进的电压波,)(u vxt f +代表⼀个以速度v 向x 负⽅向⾏进的波。

由式7-1-2可得OOC L z =。

z 具有阻抗的性质,其单位应为欧姆,通常称z 为波阻抗,其值取决于单位长度线路的电感L 0和对地电容C 0,波阻抗z 与线路长度⽆关,即z并⽆单位长度的含义。

综上所述,可以得到如下结论,⽆损单导线线路波过程的基本规律由下⾯四个⽅程所决定:7-1-3它们的含义可以概括如下:导线上任何⼀点的电压或电路,等于通过该点的前⾏波与反⾏波之和,前⾏波电压与电流之⽐为+z,反省波电压与电流之⽐为-z。

有这四个基本⽅程出发加上便捷条件和骑⼠条件就可以解决各种具体问题了。

注意:从功率的观点来看,波阻抗z与⼀数值相等的集中参数电阻相当,但在物理含义上不相同,电阻要消耗能量,⽽波阻抗并不消耗能量,当⾏波幅值⼀定时,波阻抗决定了单位时间内导线获得电磁能量的⼤⼩。

7-2 ⾏波的折射与反射⼀、⾏波的折射反射规律若具有不同波阻抗的两条线路相连接,如图7-2-1所⽰,连接点为A。

现将线路z1合闸于直流电源U,合闸后沿线路z1有⼀与电源电压相同的前⾏电压波u 1q ⾃电源向节点A传播,达到结点A遇到波阻抗为z2的线路,根据前节所述,在结点A前后都必须保持单位长度导线的电场能与磁场能相等的规律,但是由于线路z1和z2的单位长度电感与对地电容都不相同,因此当u1q到达A点时必然要发⽣电压、电流的变化,也就是说,在结点A出要发⽣薪风波的折射与反射过程,通过分析可以得到u1f 与u2q的表达式。

吉林大学《高电压技术》期末考试学习资料(五)

吉林大学《高电压技术》期末考试学习资料(五)

吉大《高电压技术》(五)
第五章 线路和绕组中的波过程
1.波将以速度v 传播。

波速与导线周围媒质的性质有关,而与导线半径、对地高度、铅包半径等几何尺寸无关。

架空线路的波速8310/v m s =⨯,为光速;电缆线路的波速81.510/v m s =⨯,为光速一半。

0
0v L C =± 2.波阻抗Z (定义)表示电压波与电流波的比值,大小取决于导线单位长度的电感和电容。

架空线路的波阻抗约300~500Ω,电缆线路的波阻抗约10~100Ω。

00
L Z C =
3. 波阻抗与电阻的物理含义比较:
波阻抗:表示电压波与电流波的比值,大小取决于导线单位长度的电感和电容,与长度无关;表征导线周围介质获得或存储电磁能的大小,并不消耗;波阻抗具有正负号,表示不同方向的流动波。

电阻:表示电压与电流的比值,大小与导线长度和导线材质有关;吸收并转变为热能消耗掉;没有正负号。

4.前行波和反行波:
5.行波在均匀无损单根导线上传播的基本规律的物理意义是:
导线上任一点的电压或电流等于通过该点的前行波与反行波之和;前行波电压与电流之比等于+Z ;反行波电压与电流之比等于‐Z 。

6.折射系数和反射系数: 其中:电压波折射系数:21
22z z z α=÷;电压波反射系数:1212
z z z z β+=÷。

1αβ+= 7.彼德逊法则:
集中参数的等值电路:将入射波看成内阻为1z ,电压为入射波两倍12f u 电源,与波阻抗2z 相连,则2z 两端的压降即为折射电压1f u —彼得逊等值电路。

使用条件:。

线路与绕线中的波过程

线路与绕线中的波过程

单 击 此 处 添 加x小 标 题
电容C0dx上的电压和电流满足关系:
dx 单 击 此 处 添 加 小 标 题
l
两式联立,解得:
K x
单击此处添加小标题
其中
uA eB e 单 击 此 处 添 加 小 标 题 x B由初始条件决定
x
i K0 (du) dx t
diC0dxut
C0 K0
另外一种推导
U最大=U稳态+(U稳态-U初始)=2U稳态-U初始
2) 由于各点频率不同,因此各点到达峰值时刻不同。将各点峰值点连接,可得最大电位包 络线。无损耗时的包络线如曲线4所示。
3) 末端接地时,最大电位出现在约1/3处,1.4U0
末端开路时,最大电位出现在末端,为1.9U0.
起始电压分布时,最大电位梯度在首端,为U0
(a)
(b)
B A 连 续 式 绕 组 B 纠 结 式 绕 组
K 1,6 1
K 5,10 10
(c)
(a) 线饼排列次序 (b) 电气接线图 (c) 等值纵向电容电路图
高电压技术
单击此处添加您的正文
8.7 波的衰减与变形、冲击电晕的影响
前面讨论的导线是以无损线路 为例,但实际上,任何波在线 路上传播都会有损耗,损耗来 源:
导线电阻;
1
导线对地电 导;
2
大地的损耗; 电晕损耗;
3
4
R0dx L0dx C0dx
8播.7时.1的衰波减沿和线x变路形传
单R0根dx有损长线L0的dx单元等值电路
在电磁波的传播过程中,可能在某一时刻,
磁能消耗>电能消耗,这样,空间电磁场就
R L 会发生电能向磁能0 的转换0 。 这样,电压波 G C 幅值就会下降,而0 电流波0 幅值会上升。也

重庆大学清华大学高电压技术习题

重庆大学清华大学高电压技术习题

重庆大学清华大学高电压技术习题高电压技术课程习题第一章气体的绝缘强度1-1空气主要由氧和氮组成,其中氧分子(O2)的电离电位较低,为12.5V。

(1)若由电子碰撞使其电离,求电子的最小速度;(2)若由光子碰撞使其电离,求光子的最大波长,它属于哪种性质的射线;(3)若由气体分子自身的平均动能产生热电离,求气体的最低温度。

1-2气体放电的汤森德机理与流注机理主要的区别在哪里?它们各自的使用范围如何?1-3长气隙火花放电与短气隙火花放电的本质区别在哪里?形成先导过程的条件是什么?为什么长气隙击穿的平均场强远小于短气隙的?1-4正先导过程与负先导过程的发展机理有何区别?1-5雷电的破坏性是由哪几种效应造成的?各种效应与雷电的哪些参数有关?雷电的后续分量与第一分量在发展机理上和参数上有哪些不同?1-6为什么SF6气体绝缘大多只在较均匀的电场下应用?最经济适宜的压强范围是多少?1-7盘形悬式绝缘子在使用中的优缺点是什么?1-8超高压输电线路绝缘子上的保护金具有哪些功用?设计保护金具时应考虑什么问题?第二章液体、固体介质的绝缘强度2-1试比较电介质中各种极化的性质和特点?2-2极性液体和极性固体电介质的相对介电常数与温度和电压频率的关系如何?为什么2-3电介质导电与金属导电的本质区别为什么?2-4正弦交变电场作用下,电介质的等效电路是什么?为什么测量高压电气设备的绝缘电阻时,需要按标准规范的时间下录取,并同时记录温度?2-5某些电容量较大的设备经直流高电压试验后,其接地放电时间要求长达5~10min,为什么?2-6试了解各国标准试油杯的结构,并比较和评价。

2-7高压电气设备在运行中发生绝缘破坏,从而引起跳闸或爆炸事故是很多的,请注意观察和分析原因。

第三章电气设备绝缘实验技术3-1总结比较各种检查性试验方法的功效(包括能检测出绝缘缺陷的种类、检测灵敏度、抗干扰能力等)。

3-2总结进行各种检查性试验时应注意的事项。

注电考试最新版教材-第71讲 第四十章:输电线路和绕组中的波过程

注电考试最新版教材-第71讲 第四十章:输电线路和绕组中的波过程

第40章 输电线路和绕组中的波过程40.1 波沿均匀无损单导线的传播架空线:单位长度对地电容 单位长度导体电感电缆: 单位长度对地电容 单位长度导体电感 电磁波的传播速度v架空线: 电缆:导线的波阻抗z :波阻抗Z 为同方向电压波与电流波之比架空线: 一般单根导线 z ≈500Ω 分裂导线z ≈300Ω电缆: 一般z=10-50Ω波阻抗Z 和集中参数电阻R 的比较相同点:(1)都是反映电压与电流之比(2)量纲相同都为Ω不同点:(1)R :电压u 为R 两端的电压,电流i 为流过R 的电流。

Z :电压u 为导线对地电压,电流i 为同方向导线电流。

(2)R :耗能Z :不耗能,将能量储存在导线周围的介质里。

(3)R :常常与导线长度有关。

Z :只与L 和C 有关,与导线长度无关。

40.2 行波的折射和反射波的折、反射:实际工程中波可能遇到线路参数突变的地方(节点)架空线--电缆 架空线--终端(开路、短路) 02(/)2ln r o pC F m h r πεε=)/(2ln 200m H rh L p r πμμ=)/(1031800s m v o⨯==εμ)/(105.1211800s m v v v r r ⨯===εμrh C L z p 2ln 6000==r h z pr r 2ln 60εμ=电压波折射系数要计算分布参数线路上节点的电压可用集中参数等值电路计算: a.线路波阻抗用数值相等的集中参数等值电阻代替b.把线路上的入射电压波的两倍作为等值电压源使用条件Z 2中无反行波40.3 实际输电线路的波过程问题40.3.1 行波的多次折、反射40.3.2 行波在无损平行多导线系统中的传播自电位系数互电位系数自波阻抗1q ==+22q u 1q 122z u u αu z z 221121111112122f q q q q q u q z z z u u u u u u u z z z z b -=-=-==++α2122Z Z Z +=α20≤≤α2112Z Z Z Z +-=β11≤≤-ββα+=101121=======+-=n k k q q q q q k k kk q u αk k r kk r h 2ln 210επεα=0121======-=n k q q q q n k kj q u αkj kj r kj d d 'ln 210επεα=k k kk r h Z 2ln 60=互波阻抗 kj kj kj d d Z 'ln 60=耦合系数k40.3.3 冲击电晕对波过程的影响电晕对导线上波过程的影响(1).使导线的耦合系数增大电晕校正系数3.1~1.11=k 几何耦合系数0k (2).使导线的波阻抗和波速减小(3).使波在传播过程中幅值衰减,波形畸变40.4 变压器绕组中的波过程1.简化等值电路40.4.1 绕组中的初始电压分布与稳态电压分布(1).绕组末端接地 2)绕组末端开路绕组首端处:u=U0 绕组末端处 112121Z Z k =-01k k k =0000'C L Z C C L Z =<∆+=00001)(1'C L v C C L v =<∆+=l sh x l sh U u αα)(0-=00==l x dx du k。

4输电线路和绕组中的波过程

4输电线路和绕组中的波过程

• 下面举两个最简单的例子: • (1)有限长直角波(幅值为U0,波长为lt):可用 两个幅值相同(均为U0、极性相反、在时间上相 差Tt或在空间上相距lt(=vTt)、并以同样的波速 v朝同一方向推进的无限长直角波叠加而成,如图 6-4所示。
• (2)平顶斜角波(幅值为U0,波前时间为Tf): 其组成方式如图6-5所示,如单元无限长直角波
合闸后,在导线周围空间建立起电场,形成电 压。靠近电源的电容立即充电,并向相邻的电容放 电,由于线路电感的作用,较远处的电容要间隔一 段时间才能充上一定数量的电荷,并向更远处的电 容放电。这样沿线路逐渐建立起电场,将电场能储 存于线路对地电容中,也就是说电压波以一定的速 度沿线路x方向传播。 随着线路的充放电将有电流流过导线的电感, 即在导线周围空间建立起磁场,因此和电压波相对 应,还有电流波以同样的速度沿x方向流动。综上所 述,电压波和电流波沿线路的传播过程实质上就是 电磁波沿线路传播的过程,电压波和电流波是在线 路中传播的伴随而行的统一体。
I I q I f 1.56 1.11 0.45kA
• 第二节 行波的折射和反射
折射系数和反射系数 几种特殊端接情况下的波过程 集中参数等值电路
• 线路中均匀性开始遭到破坏的点称为节点,当行 波投射到节点时,必然会出现电压、电流、能量 重新调整分配的过程,即在节点处将发生行波的 折射和反射现象。 • 通常采用最简单的无限长直角波来介绍线路波过 程的基本概念。任何其他波形都可以用一定数量 的单元无限长直角波叠加而得,所以无限长直角 波实际上是最简单和代表性最广泛的一种波形。
行波通过串联电感和并联电容
一、无穷长直角波通过串联电感
• 由彼德逊法则
2u1q ( Z1 Z 2 )i2 q L

8-线路和绕组中的波过程

8-线路和绕组中的波过程

高电压工程基础
8.1.2 波动方程及其解
令x为线路首端到线路上某点的距离,
线路微段dx具有电感L0dx和电容C0dx, 线路上电压u和电流i都是距离和时间
的函数。
du

(u

u x
dx)

u

L0dx
i t
di

(i

i x
dx)

i

C0dx
u t
2u x 2

L0C0
2u t 2
2hp r
C0

2 0 r
ln 2hp
r
式中 μ0 — 真空的磁导率; μr — 介质的相对磁导率;
ε0 — 真空的介电常数;εr — 介质相对介电常数;
hp— 导线的对地高度; r — 导线半径。
v 1
1
3 108
L0C0
0 r 0 r
r r
波速与导线周围介质有关,与导线的几何尺寸及悬 挂高度无关。对架空线路v≈3×108 m/s,接近光速; 对于电缆,v≈1.5×108 m/s,为光速的一半。
8.2.1 折射系数和反射系数
高电压工程基础
通常采用最简单的无限长直角波来分析线路波过程的基本概念。 任何其他波形都可以用一定数量的单位无限长直角波叠加而得, 所以无限长直角波是最简单和代表性最广泛的一种波形。
u1f
u2f
A
Z1
u1b
Z2
u1f 入射电压波 i1f 入射电流波 u2f 折射电压波 i2f 折射电流波 u1b 反射电压波 i1b 反射电压波
u1f
u2f
A
Z1
u1b
Z2
高电压工程基础

第七章 线路和绕组中的波过程

第七章 线路和绕组中的波过程

对于电缆线路:因C0大和L0小,故波阻抗要不架空线路小 得多,且变化范围较大,约在 10 ~ 50Ω。
L0 ∵ 2 = iq C0
1 1 2 2 ∴ C0uq = L0iq 2 2 波阻抗Z是电压波与电流波之间的一个比例常数,电压波 与电流波之所以有这样一种比例关系,是因为波在传播过程中 必须遵循储存在单位长度线路周围媒质中的电场能量和磁场能 量一定相等的规律。
行波的折、 一、行波的折、反射规律
将线路Z1合闸于直流电源U0,合闸后线路Z1有一与电源电 Z U Z 压相同的前行电压波u1q自电源向节点A传播,达到节点A遇到 波阻抗为Z2的线路,在节点A前后必须保持单位长度导线的电 场能与磁场能相等的规律,但是由于线路Z1与Z2的单位长度电 感与对地电容不相同,因此当u1q到达A点是必然要发生电压、 电流的变化,即在节点A处要发生行波的折射与反射,反射电 压波u1f自节点A沿线路Z1返回传播,折射电压波u2q自节点A沿 线路Z2继续向前传播。
2Z 2 2 Z1 αu = ;αi = Z1 + Z 2 Z1 + Z 2
βu =
Z 2 − Z1 Z − Z2 ; βi = 1 Z1 + Z 2 Z1 + Z 2
α α u 称为电压折射系数; i 称为电流折射系数; βu 称为电压 反射系数;βi 称为电流反射系数;
0 ≤ α u ≤ 2;0 ≤ α i ≤ 2 −1 ≤ β u ≤ 1; −1 ≤ βi ≤ 1
√过电压下的输电线路 以标准的雷电冲击电压波(1.2/50µs)为例,其波前时间 为1.2µs,电压从零变化到最大值只需1.2µs,所以冲击电压波 前在输电线路上占用的长度:3×105 ×1.2×10-6 =360m,因此 输电线路上各点的电压和电流都是不同的,不能将线路各点的 电路参数合并成集中参数来处理。 考虑电路元件参数的分布性的电路称为分布参数电路。参 数的分布性指电路中同一瞬间相邻两点的电位和电流都不相同, 即电路中电压和电流不仅是时间的函数,还是空间位置的函数, 即: u = f ( x, t ) i = f ′( x, t ) 研究和分析输电线路过电压下的波过程,必须用分布参数 电路。

高电压技术_第4章_输电线路和绕组的波过程57精选全文

高电压技术_第4章_输电线路和绕组的波过程57精选全文
Z1
u1 u1 A
结论:所到之处电压均为0
② 电流变化
i
i
2Z1 Z1 Z2 Z1 Z2 Z1 Z2
2 1
i1 i2
i i1 i i1
i1 2i1
i1 i1
i1
Z1
A
结论:所到之处电流均入射电流的2倍
19/57
高电压技术
第四章 输电线路和绕组中的波过程
第二节 行波的折射和反射
电压互感器、电容器 、避雷器等等
彼德逊法则”能利用一个统一的集中参数等值电路来解决波 的折、反射问题。
21/57
高电压技术
第四章 输电线路和绕组中的波过程
第二节 行波的折射和反射
1. 彼德逊法则的等值电路
① 无论A节点后面电路形式如何,下 面两等式永远成立
u2
u1
u1
i2
i1
i1
u1 Z
对于长达几十乃至上百公里的输电线路,同一时间内,线路 各点的电压和电流都将是不同的。
线路中的电压、电流与时间、地点均有关系,所以不能将线 路各点的电路参数合并成集中参数来处理问题。而要采用分 布参数处理。
分布参数的过渡过程,实质上是能量沿着导线传播的过程, 即在导线周围空间储存电磁能的过程。简称波过程
Z2
边界条件:在节点A只能有一个电压和电流,则有:
u1A i1A
u2A i2A
u1 u1 u2 i1 i1 i2
16/57
高电压技术
第四章 输电线路和绕组中的波过程
第二节 行波的折射和反射
又已知 : i1
u1 Z1
,i1
u1 Z1
,i2
u2 Z2
代入方程
:Leabharlann u1 u1 u2 i1 i1 i2

线路和绕组中的波过程

线路和绕组中的波过程

线路和绕组中的波过程
波是指一种能够传递能量的扰动或振动。

在线路和绕组中,波的传播
是电磁波或电磁场的传播过程。

在线路中,通常存在两种类型的波传播:行波和驻波。

行波是指波沿着线路传播的过程。

行波可以是平面波或波列,其中平
面波是指波的振动方向垂直于波的传播方向并且波前是平行的,而波列是
指波的波前是曲线的。

行波的传播速度取决于介质的特性,例如电磁波在
真空中的传播速度为光速。

驻波是指波在线路中的反射和干涉形成的波。

驻波形成时,波前和波
峰或波谷之间存在固定的空间间隔,这些区域被称为节点和腹部。

驻波的
形成与波的反射和干涉有关。

在驻波的波过程中,能量来回传播并在节点
处相互抵消,因此没有能量的传输。

驻波常见于终端开路或短路的线路中。

绕组是指由导线组成的线圈或线圈的一部分。

波在绕组中的传播也可
以是行波或驻波。

在绕组中,波的传播速度取决于绕组的各种参数,如线圈的自感和电容。

当频率较低时,波在绕组中的传播基本上是行波。

然而,当频率很高时,波在绕组中的传播会变得复杂,包括电磁波辐射和引入许多附加参数,如互感和电阻。

此时,驻波的形成也是可能的。

总结而言,线路和绕组中的波过程可以是行波或驻波。

行波是波沿着
线路传播的过程,而驻波是波的反射和干涉形成的波。

波的传播速度取决
于介质的特性和绕组的参数。

通过研究波的传播和行为,可以更好地理解
电磁波在线路和绕组中的特性和性能,从而应用于电路和电磁设备的设计
和分析中。

国家电网 第四章 线路和绕组中的波过程

国家电网  第四章 线路和绕组中的波过程

二、行波的折射和反射

当波沿传输线传播,遇到波阻抗发生突变的节点时,都 会在节点上产生折射和反射。
[例1-1]

有幅值u1q=lOOkV的无限长直角电压波由架空线路 (Z1=500Ω )进入电缆(Z2=50Ω ),如图所示,求折射波 电压、电流和反射波电压、电流。
二、行波的折射和反射

当波沿传输线传播,遇到波阻抗发生突变的节点时,都 会在节点上产生折射和反射。 1.末端开路时的折反射
四、变压器绕组中的波过程
四、变压器绕组中的波过程

当绕组末端接地时,最高对地电压出现于离绕组首端 附近不到1/3的部位,其值可达(1.2~1.3) U0;

当绕组末端不接地时,最高对地电压出现于绕组末端,
其值可达1.5~1.8U0(理论值为2U0)。

因此,变压器绕组的主绝缘,在。同时末端电流为零。
2.末端短路时的折反射
末端电压为零。同时末端接地电流达到入射波电流的两倍。
3.线路末端接有与线路波阻抗值相同的电阻R 4.从一条线路向若干条线路折射
三、行波通过串联电感和并联电容

行波通过串联电感或并联电容后,波的陡度降低。波 头拉长变平缓。
四、变压器绕组中的波过程
五、电机绕组中的波过程

匝间绝缘?中性点绝缘? 与波的陡度有关

第四章 线路和绕组中的波过程

在输电线路和绕组中,过电压是以波的形式出现的,
其过渡过程也就是波传播或变化的过程。
波过程→导线中电压的变化规律→确定过电压的最大值
一、均匀无损单导线中的波过程

1.一条导线,在某点加上雷电以后,导线各点的电压、 电流随着它与电源距离的不同,是依次建立的。波过

线路和绕组中的波过程-高电压技术考点复习讲义和题库

线路和绕组中的波过程-高电压技术考点复习讲义和题库

考点4:线路和绕组中的波过程4.1 无损耗单导线线路中的波过程实际的输电线路,一般由多根平行架设的导线组成,各导线之间有电磁耦合,电磁过程也较为复杂。

通常从单根导线着手研究输电线路波过程比较的方便,进一步可推广到多根导线系统的波过程。

当输电线路较短时,线路电阻很0R 小,对波过程的影响可忽略不计,一般线路对地电导参数0G 也很小,也可忽略不计,这时的线路为单根无损线路。

当雷击输电线路时,将有大量的电荷沿雷电通道倾注到雷击点,并向线路两侧迅速流动,即电磁波的传播过程称之为行波的传播.在此过程中会产生瞬间的高幅值的过电压,下面分析无损耗单导线线路中行波的传播规律。

一、均匀无损长线及其等值电路单根无损线路,设首端是坐标原点,确定X 轴正方向。

在这条均匀分布的无损线路上、电压、电流是空间和时间的函数,即⎩⎨⎧==),(),(t x i i t x u u其参考方向如图所示。

线路单位长度的电感、电容分别是00,C L ,而电阻和电导分别为零。

均匀无损单根导线的方程为这组偏微分方程可由拉普拉斯变换,或者分离变量法等多种方法来求解,线路上的电流,电压可表示为⎪⎪⎩⎪⎪⎨⎧+--=++-=)](([1)()(v x t u v x t u z i vx t u v x t u u f q f q式中001C L v =为输电线路上的电磁波传输速度,00C L Z =为线路的波阻抗。

这两式中)(v xt u q -相当于线路上沿X 轴正方向传播的行波,叫行波电压,)(vxt u q +相当于X 轴上反向传播的行波,叫反行波电压,显然波传播速度为v 。

同理)(1v xt u z i q q -=称为前行波)(1vxt u z i f f +=称为反行波上述各式可简化为a)行波概念说明:前行电压波uq 和前行电流波iq 表示电压和电流在导线上的坐标是以速度v 沿x 的正方向移动;反行电压波uf 和前行电流波if 表示电压和电流在导线上的坐标是以速度v 沿x 的负方向移动。

4 线路及绕组中的波过程

4 线路及绕组中的波过程
C0 = µ0 2h 2h L0 = ln ln ) 2π r (H/m) ) r (F/m)
Z=
L0 1 = C0 2π
µ0 2h ln ε0 r
波阻抗: 波阻抗: • 是表征分布参数电路特点的最重要的参数,它是储能元件, 是表征分布参数电路特点的最重要的参数,它是储能元件, 表示导线周围介质获得电磁能的大小,具有电阻的量纲, 表示导线周围介质获得电磁能的大小, 具有电阻的量纲, 其值决定于单位长度导线的电感和电容,与线路长度无关。 其值决定于单位长度导线的电感和电容, 与线路长度无关。 • 对单导线架空线,Z=500 左右,考虑电晕影响取 对单导线架空线, 左右,考虑电晕影响取400 左 分裂导线Z=300 左右,电缆的波阻抗约为十几欧姆至 左右, 右,分裂导线 几十不等。 几十不等。
大约300m
电压沿线路分布图 电压沿线路分布图 因此对于过电压波, 因此对于过电压波 , 输电线路必须采用分布 参数模型, 参数模型 , 导线上的电压和电流既是时间的 函数又是空间的函数。 函数又是空间的函数。
u = f ( x, t ) i = f ( x, t )
雷电波沿输电线路传播
无损单导线波过程的基本规律由下面四个方程决定: 无损单导线波过程的基本规律由下面四个方程决定:
u = uq + u i = iq + i f u q = z ⋅ iq u
f f
= − z ⋅if
从这四个基本方程出发,加上初始条件和边 从这四个基本方程出发, 界条件,就可以算出导线上的电压和电流。 界条件,就可以算出导线上的电压和电流。
主要内容
4.1 均匀无损单导线波过程 4.2 波的折射和反射 4.3 行波通过串联电感和并联电容 4.4 行波的多次折反射 4.5 无损耗平行多导线系统中的波过程 4.6 冲击电晕对线路波过程的影响 4.7 变压器绕组中的波过程 4.8 旋转电机绕组的波过程

【优】高压教材输电线路和绕组中的波过程第六节变压器绕组中的波过程最全PPT资料

【优】高压教材输电线路和绕组中的波过程第六节变压器绕组中的波过程最全PPT资料

感应雷击过电压
第六章 输电线路和绕组中的波过程
➢ 波过程实质上是能量沿着导线传播的过 程 ,即在导线周围空间储存电磁能的过程。
➢ 从电磁场方程组出发来展示这一过程将比 较繁复,为方便起见,一般都采用以积分 量u和i表示的关系式,而且采用分布参数 电路和行波理论来进行分析。
第六节 变压器绕组中的波过程
• 只需研究单相绕组中波过程的两种情况: 1) 采用Y接法的高压绕组的中性点直接接地 (任何一相进来的过电压都在中性点入地, 对其他几相没有影响); 2) 中性点不接地,但三相同时进波(各相 完全对称)。
为了便于分析,通常作如下简化: 1) 假定电气参数在绕组各处均相同(即绕组均匀); 2) 忽略电阻和电导; 3) 不单独计及各种互感,而把它们的作用归并到自感中去。
适应
设计和制造“非共振变压器”的基本原理是使 电压的初始分布尽可能接近稳态分布,因而从根本 上消除或削弱振荡的根源,其措施包括:
(一)补偿对地电容电流(横向补偿) (二)增大纵向电容(纵向补偿)
三、三相绕组中的波过程
三相绕组中性点接地方式、绕组的连接方式和进波过程
不同,则波的振荡过程也不同:
2) 忽略电阻和电导;
(一) Y 接线方式 三相间影响小,可看作三个独立的末端 (一)补偿对地电容电流(横向补偿) (二)增大纵向电容(纵向补偿)
三相绕组中性点接地方式、绕组的连接方0 式和进波过程 不同,则波的振荡过程也不同:
接地的单相绕组。 • 过电压的概念:指电力系统中出现的对绝缘有危 险的电压升高和电位差升高。
• 在由电感、电容构成的复杂回路中,从电压的初始 分布到达最终稳态分布,必然经过一个过渡过程, 会出现一系列电磁振荡,这个振荡有一定的阻尼制 约

线路和绕线中波过程

线路和绕线中波过程

3
上感应的电压
解:避雷线1、2与导线3的
线段、从而使波头陡度下降了
12
(2) Z1<Z0、Z2<Z0
例如在两电缆之间插接一段架空线
1 1

Z
2Z 0
0
Z1

2
Z 1Z 0 Z0 Z1

2

2Z 2 Z0 Z2 Z2 Z0 Z0 Z2

β 1<0、β 2<0、1>1、2<1
若Z0远大于Z1及Z2,表示中间线段的对地电容较小、电感较大(架 空线就是这种情况),就可以忽略电容而用一只串联电感来代替中
16
8.6.1 波在平行多导体系统中的传播
如果大地是理想导体,忽略电阻和电导,则平行多 导体系统中波的传播将仍为平面电磁波,且只有 一个速度(即光速)。
在平面波的情况下,导线中的电流可以看成是单位 长度上的电荷q的运动形成。
各导线的电荷相对而言是静止的,所以,可将麦克 斯维静电方程运用到波过程的分析中。
10
网格法
12为波从波阻抗Z1 的线路直接向波阻抗Z2 的线路传播时
的折射系数 可见:1) 中间线路的存在而不会影响到它的最终值。
2) 但中间线段的存在及其波阻抗的大小决定了折射 波的波形 如果1与2同号,则1 2>0,uB(t)的波形是逐步递增的; 如果1与2异号,则1 2<0,uB(t)的波形是振荡的
自电位系数:
u 1 k
k k
Q C k Q1 Q2 Qk1 Qk1 Qn 0
k
互电位系数:
uk
k m
Qm Q1 Q2 Qm1 Qm1 Qn 0
18
用镜像法可以算出:
kk
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是过电压?
过电压:指电力系统中出现的对绝缘有危险的电压 升高和电位差升高。 电压高 过电压分类: 持续时间短
等值频率高
电力系统过电压
雷电(大气)过电压
直击雷过电压 感应雷过电压
内部过电压
暂态过电压 操作过电压
工频电压升高
谐振过电压
第六章
传输线的波过程
石河子大学机电学院 张执超
架空线、电缆线、变压器及电机的绕组,在冲击电压 (雷电及操作过电压 ) 下都应按分布参数电路来分析, 分布参数电路中的电磁暂态过程属于电磁波的传播过 程,简称波过程。
u1 f u1q u 2q
u1q u1 f u2 q i1q i1 f i2 q
其中,
u1q u0
u1 f Z1
i1q
u1q Z1 u2 q Z2
电压的折反射
i1q i2 q
i1 f
i2 q
i1 f
电流的折反射
代入得
u0 u1 f u2 q u0 u1 f u2 q Z Z1 Z2 1
具有电阻的量纲
v
dx 1 dt L0C0
波速
对于架空线路,单位长度的电感L0和电容C0为: 2 0
0 2h C0 2h L0 ln ln 2 r (H/m) r (F/m)
L0 1 Z C0 2
0 2h ln 0 r
Ω
波阻抗: • 是表征分布参数电路特点的最重要的参数,它是储能元件,
无损单导线波过程的基本规律由下面四个方程决定:
u uq u f i iq i f u q z iq u f z i f
从这四个基本方程出发,加上初始条件和边 界条件,就可以算出导线上的电压和电流。
必须注意:
分布参数线路的波阻抗与集中参数电路的电阻虽然有相同的量纲,但 在物理意义上有着本质的不同:
波阻抗的大小只与导线单位长度的电感和电容有关,而与 线路的长度无关。
6.2 波的折射和反射
6.2.1 折射波和反射波的计算
波沿线传播时,遇到线路参数(波阻抗)发生突变的节点时, 如从架空线到电缆,或从传输线到终端的集中参数元件时, 都会在波阻抗发生突变的节点上产生折射与反射。
Z1 < Z2
连接点A处只能有一个电压电流值 必然有:
u f ( x, t ) i f ( x, t )
雷电波沿输电线路传播
主要内容
6.1 均匀无损单导线波过程
6.2 波的折射和反射
6.3 行波通过串联电感和并联电容 6.4 行波的多次折反射
6.5 无损耗平行多导线系统中的波过程
6.6 冲击电晕对线路波过程的影响 6.7 变压器绕组中的波过程 6.8 旋转电机绕组的波过程
C0 xu it
1Байду номын сангаас
另一方面,这段导线上的总电感为L0△x,在同一时间△t内,电流波i 在导 线周围建立起磁链L0△xi,这些磁链是在t时间内建立的,因此导线上的 感应电势为
L xi u 0 t
2
从1、2中消去△x、 △t,可以得到同一时刻同一地点同一方向电 压波和电流波的关系
L0 u Z i C0 波阻抗
过电压波在线路上传播其本质是电磁场能量沿线路传 播的过程,即在导线周围逐步建立起电场和磁场的过 程。 这一电磁暂态过程若从电磁场方程组出发来研究比较 复杂,为方便起见,用输电线路上的电压、电流波过 程代替电磁场波过程,用分布参数电路和行波理论来 分析。
什么是分布参数电路?
什么情况下应作为分布参数电路处理? 分布参数与集中参数电路的不同
这就是电磁场传播过程的基本规律; • 这也是说:电压波和电流波沿导线传播的过程就是电磁能量 的传播过程;
• 导线单位长度的总能量为 C0u 2 或 L0i 2
6.1.2 波动方程的解
求电压和电流的解
电压、电流是空间和时间的函数
u u( x, t )
i i ( x, t )
由线路单元电路的回 路电压关系和节点电 流关系有:
• u1q(t)可以为任意波形,Z2可以是线路、电阻、电 感、电容组成的任意网络 使用彼德逊法则求解节点电压时的先决条件:
(1)入射波必需是沿分布参数线路传来 (2)线路Z2上没有反行波或Z2中的反行波尚未到达节点A
应用举例----线路末端接有电阻R时的波过程
当R=Z1时,
2U 0 2U 0 uA R R U0 Z1 R RR
6.3 行波通过串联电感和并联电容
6.3 行波通过串联电感和并联电容
问题的提 出
实际应用中,我们常常会遇到波传播时经过与
导线串联的电感,或者经过联接在导线与地之
间的电容,如电容式电压互感器等。本节将应
用彼德逊法则分析串联电感和并联电容对波过
程的影响。
6.3.1、无穷长直角波通过串联电感
由彼德逊法则
2Z 2 u2 q U 0 U 0 u1q Z1 Z 2 Z Z1 u1 f 2 U 0 U 0 u1q Z1 Z 2
α、β分别是节点A的电压折射系数和反射系数
2Z 2 Z1 Z 2 Z Z1 2 Z1 Z 2
α、β之间满足
1
折射系数永远是正值,说明入射波电压与折射波电压同极性:
0 2 反射系数可正可负,要由边界点A两侧线路或电气元件参数确定。
1 1
无穷长直角波通过节点A,Z1 < Z2
例一
线路末端开路
Z 2 , 2, 1
末端电压
末端反射波 末端电流 电流反射波

所研究的过电压波变化速度很快,其等值频率很高(例 如雷电波的等值频率在106 Hz以上); 电磁波在架空输电线路上传播速度为光速c=300m/µs, 线路上各点在同一时刻的电压(电流)将不相等。
大约300m
电压沿线路分布图 因此对于过电压波,输电线路必须采用分布参 数模型,导线上的电压和电流既是时间的函数又 是空间的函数。
i u u L0 dx u dx t x
u i i C0 dx i dx t x
单根无损长线的单元等值电路
建立以下一阶偏微分方程
3 磁场:磁通变化→导线自感压降,用参数L →L0dx表征 4 电场:电场变化→导线对地电容电流,用参数C →C0dx表征
i u x L0 t i u C0 t x
标是以速度v沿x的正方向移动。
' ' i u 反行电压波 f 和反行电流波 f 表示电压和电流在导线上的坐
标是以速度v沿x的负方向移动。
• 电压波和电流波的关系:
x 1 x iq t uq (t ) v z v x 1 x i f t u f (t ) v z v
u1q u1 f U0 u1 f 0
此时线路上无反射波电压,反射系数 β = 0 ,入射波能量 到达电阻时全部变成热能而无反射; 当 R≠Z1 时,仍然可用彼德逊法则计算线路的反射波电压 电流,电阻把一部分电磁能变成热能,另一部分折射回去成 为反射波; 反射系数为:
R Z1 Z1 R
波阻抗表示同一方向传播的电压波和电流波之间比值的大 小,电磁波通过波阻抗为 Z的无损线时,其能量以电磁能 的形式储存于周围介质中,而不像通过电阻时被消耗掉; 为了区别不同方向的行波,Z的前面有正负号;
如果线路上有前行波,又有反行波,导线上的总电压和总 电流的比值不再等于波阻抗,即
uq u f u uq u f Z Z i iq i f uq u f
u2 u2q 2u1q
u1 f u1q
i2 0
i1 f u1 f Z1 u1q Z1 i1q
在线路末端由于电压波正的全反射,在反射波所到之处,导线 上的电压比电压入射波提高1倍; 线路磁场能量全部转化为电场能量。
例二
线路末端接地
Z 2 0, 0, 1
波动方程所描述的暂 态电压和暂态电流不 仅是时间 t 的函数也 是距离x 的函数。 线路上的电压波和电 流波,一般情况下都 由前行波和反行波两 个分量叠加而成。
解得
' uq u 'f 为前行电压波和前行电流波;
' iq i 'f 为反行电压波和反行电流波。
' ' 前行电压波 uq 和前行电流波 iq 表示电压和电流在导线上的坐
2u1q (t ) u A (t ) Z1iA (t )
彼德逊法则 • 要计算节点 A 的电流电
A
压,可把线路 1 等值成
一个电压源,其电动势 是入射电压的2倍2u1q(t), 线路1等值电压源
线路2等值阻抗
其波形不限,电源内阻
抗是Z1。
• 彼德逊法则将分布参数问题变成集中参数等值电 路,简化计算。
末端电压 电流反射波
u1 f u1q
i1 f u1 f Z1 u1q Z1
u2 q 0
i1q
反射波到达范围内导线上总电流 2u1q i1 i1q i1 f 2i1q Z1 线路末端短路接地时,电流加倍,电压为0 线路全部能量转换成磁场能
例三 线路末端接有负载(两条不同波阻抗线路连接)
随着线路电容的充放电,将有电流流 过导线电感,即在周围建立起磁场。
有一电流波以同样的速度沿线路x方向流动
电压波和电流波沿线路的流动,实质上就是电磁波沿线路传播 的过程。
电压与电流的关系
设沿 x 方向传播的电压波和电流波,在 开关合闸后,经△t 时间传播 △ x。 在这段时间内,△x的导线上电容C0△x 充电到u,这些电荷通过电流波输送。
相关文档
最新文档