初中数学轴对称题型练习题

合集下载

初二轴对称经典题目

初二轴对称经典题目

初二轴对称经典题目一、等腰三角形的性质与判定相关题目1. 已知:在△ABC中,AB = AC,∠A = 36°,BD平分∠ABC交AC于点D。

- 求证:AD = BD = BC。

- 解析:- 因为AB = AC,∠A = 36°,根据等腰三角形两底角相等,可得∠ABC=∠C=(180° - 36°)÷2 = 72°。

- 又因为BD平分∠ABC,所以∠ABD = ∠DBC=72°÷2 = 36°。

- 在△ABD中,∠A = ∠ABD = 36°,根据等角对等边,可得AD = BD。

- 在△BDC中,∠BDC = 180° - ∠DBC - ∠C=180° - 36° - 72° = 72°,所以∠BDC = ∠C,根据等角对等边,可得BD = BC。

- 综上,AD = BD = BC。

2. 如图,在△ABC中,AD是高,点E在AD上,且BE = AC,求证:△BDE≌△ADC。

- 解析:- 因为AD是高,所以∠ADB = ∠ADC = 90°。

- 在Rt△BDE和Rt△ADC中,已知BE = AC,又因为∠BDE = ∠ADC = 90°,且∠BED和∠C都是∠EBD的余角,根据同角的余角相等,可得∠BED = ∠C。

- 根据AAS(两角及其中一角的对边对应相等),可证得△BDE≌△ADC。

二、线段垂直平分线相关题目1. 如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC = 15cm,△BCE的周长等于25cm。

- 求BC的长。

- 解析:- 因为MN是AB的垂直平分线,根据线段垂直平分线上的点到线段两端的距离相等,可得AE = BE。

- 因为△BCE的周长=BE + EC+BC = 25cm,又因为AE = BE,AC = AE+EC = 15cm。

初二轴对称习题以及答案

初二轴对称习题以及答案

一.选择题(共6小题)2.如图,等边△ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则∠FAE+∠AEF 的度数是()3.如图,等腰Rt△ABC中,AB=AC,∠A=90°,点D为BC边的中点,E、F分别在AB、AC上,且ED⊥FD,EG⊥BC于G点,FH⊥BC于H点,下列结论:①DE=DF;②AE+AF=AB;③S四边形AEDF=S△ABC;④EG+FH=BC.其中正确结论的序号是()4.如图所示,△ABC是等边三角形,AQ=PQ,PR⊥AB于R点,PS⊥AC于S点,PR=PS,则四个结论:①点P 在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP,正确的结论是()5.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正确的是()6.如图,∠ABC,∠ACB的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,连接AF,那么下列结论正确的是()①△BDF,△CEF都是等腰三角形;②∠BFC=90°+∠BAC;③△ADE的周长为AB+AC;④AF平分∠BAC.二.填空题(共2小题)7.如图,∠BAC=30°,AD平分∠BAC,DE⊥AB于E,DF∥AB,已知AF=4cm,则DE=_________.8.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=_________度.三.解答题(共10小题)9.如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,并交ST于点C.求证:.10.在△ABC中,点P为BC的中点.(1)如图1,求证:AP<(AB+AC);(2)延长AB到D,使得BD=AC,延长AC到E,使得CE=AB,连接DE.①如图2,连接BE,若∠BAC=60°,请你探究线段BE与线段AP之间的数量关系.写出你的结论,并加以证明;②请在图3中证明:BC≥DE.11.如图,在四边形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,对角线AC,BD交于点S,且DS=2SB,P为AC的中点.求证:(1)∠PBD=30°;(2)AD=DC.12.如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.13.如图,△ABC中,BD⊥AC于点D,点F为BC边上的中点,点E在AB边上,若EF=DF,判断CE与AB的位置关系,并说明理由.14.如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF(2)试证明△DFE是等腰直角三角形.15.如图,AB=AC,E在线段AC上,D在AB的延长线上,且有BD=CE,连DE交BC于F,过E作EG⊥BC于G,求证:FG=BF+CG.16.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.17.已知,在△ABC中,CA=CB,CA、CB的垂直平分线的交点O在AB上,M、N分别在直线AC、BC上,∠MON=∠A=45°(1)如图1,若点M、N分别在边AC、BC上,求证:CN+MN=AM;(2)如图2,若点M在边AC上,点N在BC边的延长线上,试猜想CN、MN、AM之间的数量关系,请写出你的结论(不要求证明).18.已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA.一.选择题(共6小题)2.如图,等边△ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则∠FAE+∠AEF 的度数是()3.如图,等腰Rt△ABC中,AB=AC,∠A=90°,点D为BC边的中点,E、F分别在AB、AC上,且ED⊥FD,EG⊥BC于G点,FH⊥BC于H点,下列结论:①DE=DF;②AE+AF=AB;③S四边形AEDF=S△ABC;④EG+FH=BC.其中正确结论的序号是()BC4.如图所示,△ABC是等边三角形,AQ=PQ,PR⊥AB于R点,PS⊥AC于S点,PR=PS,则四个结论:①点P 在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP,正确的结论是()5.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正确的是()6.如图,∠ABC,∠ACB的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,连接AF,那么下列结论正确的是()①△BDF,△CEF都是等腰三角形;②∠BFC=90°+∠BAC;③△ADE的周长为AB+AC;④AF平分∠BAC.∠ABC+∠∠二.填空题(共2小题)7.如图,∠BAC=30°,AD平分∠BAC,DE⊥AB于E,DF∥AB,已知AF=4cm,则DE=2cm.DG=DG=8.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=30度.三.解答题(共10小题)9.如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,并交ST于点C.求证:.10.在△ABC中,点P为BC的中点.(1)如图1,求证:AP<(AB+AC);(2)延长AB到D,使得BD=AC,延长AC到E,使得CE=AB,连接DE.①如图2,连接BE,若∠BAC=60°,请你探究线段BE与线段AP之间的数量关系.写出你的结论,并加以证明;②请在图3中证明:BC≥DE.中,,即11.如图,在四边形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,对角线AC,BD交于点S,且DS=2SB,P为AC的中点.求证:(1)∠PBD=30°;(2)AD=DC.SN=SB MS=PAB=BPM==,所以12.如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.,13.如图,△ABC中,BD⊥AC于点D,点F为BC边上的中点,点E在AB边上,若EF=DF,判断CE与AB的位置关系,并说明理由.14.如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF(2)试证明△DFE是等腰直角三角形.中,15.如图,AB=AC,E在线段AC上,D在AB的延长线上,且有BD=CE,连DE交BC于F,过E作EG⊥BC于G,求证:FG=BF+CG.16.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.=17.已知,在△ABC中,CA=CB,CA、CB的垂直平分线的交点O在AB上,M、N分别在直线AC、BC上,∠MON=∠A=45°(1)如图1,若点M、N分别在边AC、BC上,求证:CN+MN=AM;(2)如图2,若点M在边AC上,点N在BC边的延长线上,试猜想CN、MN、AM之间的数量关系,请写出你的结论(不要求证明).18.已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA..BDQ=(。

中考数学复习《轴对称》专题训练-带含有参考答案

中考数学复习《轴对称》专题训练-带含有参考答案

中考数学复习《轴对称》专题训练-带含有参考答案一、选择题1.下列交通标志中,是轴对称图形的是()A.B.C.D.2.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,5)C.(﹣4,﹣5)D.(﹣5,4)3.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,线段AB 的顶点均在格点上.在图中画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N均为格点,这样的线段能画()条.A.2 B.3 C.5 D.64.如图,在△ABC中,DE是AC的垂直平分线AB=5cm,BC=8cm,则△ABD的周长为()A.10cm B.13cm C.15cm D.16cm5.等腰三角形的周长为11,其中一边长为3,则该等腰三角形的底边长为()A.3B.5C.4或5D.3或56.如图,在Rt△ABC中∠ACB=90°,∠B=15°,AB的垂直平分线交AB于点E,交BC于点D,且BD=12cm,则AC的长是()A.12cm B.6cm C.4cm D.6√3cm7.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G,F,若FG=3,ED=6,则EB+DC的值为()A.7 B.8 C.9 D.108.如图,已知ΔABC是正三角形,D是BC边上任意一点,过点D作DF⊥AC于点F,ED⊥BC交AB于点E,则∠EDF等于()A.50°B.65°C.60°D.75°二、填空题9.某车标是一个轴对称图形,有条对称轴.10.在平面直角坐标系中,点M(a,3)与点N(5,b)关于y轴对称,则a﹣b=.11.如图,在△ABC中,边AB的垂直平分线分别交BC于点D,交AB于点E.若AE=3,△ADC的周长为8,则△ABC的周长为.12.如图,在△ABC中,AB=AC,AD=BD,∠A=36°,则图中等腰三角形的个数是.13.如图,在△ABC中AB=AC,∠C=30°,AB⊥AD,AD=6,BC的长是.三、解答题14.图①、图②均是由边长为1的小正方形组成的网格,每个小正方形的顶点称为格点,点A、B、C均在格点上.请用无刻度的直尺按下列要求在网格中作图.(1)在图①中,连接AC,以线段AC为腰作一个等腰直角三角形ACD;(2)在图②中确定一个格点D,并画出以A、B、C、D为顶点的四边形.使其为轴对称图形.15.如图,在中,的垂直平分线分别交线段,于点M,P,的垂直平分线分别交线段,于点N,Q.(1)如图,当时,求的度数;(2)当时,求的度数.16.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点△A1B1C1的坐标.17.如图,在△ABC中,AB=AC,点D、E、F分别在△ABC的三条边上,且BF=CD,BD=CE.(1)求证:△DFE是等腰三角形;(2)若∠A=56°,求∠EDF的度数.18.如图,在△ABC中AB=AC,点D在△ABC内BD=BC,∠DBC=60°点E在△ABC外∠BCE=150°,∠ABE=60° .(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8求AD的长.参考答案1.B2.A3.C4.B5.D6.B7.C8.C9.310.﹣811.1412.313.1814.(1)解:如图①所示(2)解:如图②所示15.(1)解:∵、分别是的垂直平分线∴∵∴∵∴∴(2)解:∵分别是的垂直平分线∴∴∴当P点在Q点右侧时,如图:∵∴∵∴.当P点在Q点左侧时∵∴∵∴.综上或.16.(1)解:S△ABC= 12×5×3=152(或7.5)(平方单位)(2)解:如图.(3)解:A1(1,5),B1(1,0),C1(4,3). 17.(1)证明:∵AB=AC∴∠B=∠C在△FBD与△DCE中{BF=CD∠B=∠CBD=CE∴△FBD≌△DCE.∴DF=ED,即△DEF是等腰三角形(2)解:∵AB=AC,∠A=56°∴∠B=∠C= 12(180°−56°)=62°.∴∠EDF=∠B=62°.18.(1)解:∵BD=BC,∠DBC=60°∴△DBC是等边三角形,∴DB=DC,∠BDC=∠DBC=∠DCB=60°在△ADB和△ADC中{AB=ACAD=ADDB=DC∴△ADB≌△ADC,∴∠ADB=∠ADC,∴∠ADB= 12(360°﹣60°)=150°.(2)解:结论:△ABE是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE在△ABD和△EBC中{AB=EB∠ADB=∠BCE=150°∠ABD=∠CBE∴△ABD≌△EBC ∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形.(3)解:连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°∴∠EDC=30°,∴EC= 12DE=4,∵△ABD≌△EBC,∴AD=EC=4.。

(必考题)初中八年级数学上册第十三章《轴对称》经典习题(含答案解析)

(必考题)初中八年级数学上册第十三章《轴对称》经典习题(含答案解析)

一、选择题1.如图,在△ABD 中,分别以点A 和点D 为圆心,大于12AD 的长为半径画弧,两弧相交于点M 、N ,作直线MN 分别交BD 、AD 于点C 、E .若AE=5cm ,△ABC 的周长=15cm ,则△ABD 的周长是( )A .35cmB .30cmC .25cmD .20cm2.如图,已知30MON ︒∠=,点123,,...A A A 在射线ON 上,点123,,B B B …在射线OM 上,112223334,,...A B A A B A A B A ∆∆∆1n n n A B A +∆均为等边三角形,若11OA =,则778A B A ∆的边长为( )A .16B .32C .64D .128 3.如图,已知等腰ABC 的底角15C ︒∠=,顶点B 到边AC 的距离是3cm ,则AC 的长为( )A .3cmB .4cmC .5cmD .6cm 4.若实数a ,b 满足a 2-4a +4+(b -4)2=0,且a ,b 恰好是等腰△ABC 两条边的长,则△ABC 周长为( ) A .8 B .8或10 C .12 D .105.如图,在平面直角坐标系xOy 中,点A 的坐标为()4,3-,点P 在x 轴上,且使AOP 为等腰三角形,符合题意的点P 的个数为( ).A .2B .3C .4D .56.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .5 7.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .8.已知点(),3M a ,点()2,N b 关于x 轴对称,则2020()a b +的值( ) A .3- B .1- C .1 D .39.下列推理中,不能判断ABC 是等边三角形的是( )A .ABC ∠=∠=∠B .,60AB AC B =∠=︒ C .60,60A B ∠=︒∠=︒D .AB AC =,且B C ∠=∠10.如图,在△ABC 中,∠C =84°,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别交于点M ,N ,作直线MN 交AC 于点D ;以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点P .若此时射线BP 恰好经过点D ,则∠A 的大小是( )A .30°B .32°C .36°D .42°11.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .10312.如图,AEC BED △△≌,点D 在AC 边上,AE 和BD 相交于点O ,若30AED ∠=︒,120∠=︒BEC ,则ADB ∠的度数为( )A .45°B .40°C .35°D .30°13.如图,在ABC ∆中,5AC =,线段AB 的垂直平分线交AC 于点,D BCD ∆的周长是9,则BC 的长为( )A .3B .4C .5D .6 14.如果等腰三角形两边长分别是8cm 和4cm ,那么它的周长( ) A .8cmB .20cmC .16cm 或20cmD .16cm 15.已知等腰三角形的一个内角为50°,则它的顶角为( )A .50°B .80°C .65°或80°D .50°或80°二、填空题16.如图,在ABC 中,90ACB ︒∠=,30B ,6AC =,P 为BC 边的垂直平分线DE 上一个动点,则ACP △周长的最小值为________.17.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.18.如图,在ABC ∆中,90,BAC ∠=︒点D 在BC 上,BD BA =,点E 在BC 的延长线上,CA CE =,连接AE ,则DAE ∠的度数为_____________.19.如图,在Rt ABC 中,BAC 90︒∠=,AB 2=,M 为边BC 上的点,连接AM .如果将ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是________.20.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________21.如图,等边△ABC 的边长为4,点D 在边AC 上,AD =1.(1)△ABC 的周长等于_____;(2)线段PQ 在边BA 上运动,PQ =1,BQ >BP ,连接QD ,PC ,当四边形PCDQ 的周长取得最小值时,请在如图所示的矩形区域内,用无刻度的直尺和圆规,画出线段PC ,QD ,并简要说明点P 和点Q 的位置是如何找到的(保留作图痕迹,不要求证明)_____.22.如图30AOB ∠=︒,OC 平分AOB ∠,P 为OC 上一点,//PD OA 交OB 于点D ,PE OA ⊥于E ,6cm OD =,则PE =________.23.嘉嘉和淇淇下棋,嘉嘉执圆形棋子,淇淇执方形棋子,如图,棋盘中心的圆形棋子的位置用()1,1-表示,右下角的圆形棋子用()0,0表示,淇淇将第4枚方形棋子放入棋盘后,所有棋子构成的图形是轴对称图形.则淇淇放的方形棋子的位置是__________.24.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.25.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.26.如图,∠ABC 的平分线BF 与△ABC 中∠ACB 的相邻外角∠ACG 的平分线CF 相交于点F ,过F 作DF ∥BC ,交AB 于D ,交AC 于E ,若BD =8cm ,DE =3cm ,AE =2,求AC 的长为_____cm .三、解答题27.如图1,△ABC 中AB =AC ,DE 垂直平分AB 分别交AB ,AC 于点D ,E .(1)若∠C =70°,则∠A 的大小为 ;(2)若AE =BC ,求∠A 的度数;(3)如图2,点M 是边BC 上的一个定点,若点N 在直线DE 上,当BN +MN 最小时,点N 在何处?请用无刻度直尺作出点N 的位置.(不需要说明理由,保留作图痕迹)28.如图,ABC 中,,90,AB AC BAC =∠=︒点D 是直线AB 上的一动点(不和A B 、重合),BE CD ⊥交CD 所在的直线于点,E 交直线AC 于F .()1点D 在边AB 上时,证明:AB FA BD =+;()2点D 在AB 的延长线或反向延长线上时,()1中的结论是否成立?若成立,请给出证明;若不成立,请画出图形,并直接写出,,AB FA BD 三者之间数量关系.29.小红发现,任意一个直角三角形都可以分割成两个等腰三角形.已知:在ABC 中,90ACB ∠=︒.求作:直线CD ,使得直线CD 将ABC 分割成两个等腰三角形.下面是小红设计的尺规作图过程.作法:如图,①作直角边CB 的垂直平分线MN ,与斜边AB 相交于点D ;②作直线CD .所以直线CD 就是所求作的直线.根据小红设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵直线MN 是线段CB 的垂直平分线,点D 在直线MN 上,∴DC DB =.(_______)(填推理的依据)∴∠_______=∠__________.∵90ACB ∠=︒,∴90ACD DCB ∠=︒-∠,90A ∠=︒-∠_________.∴ACD A ∠=∠..(_______)(填推理的依据)∴DC DA△都是等腰三角形.∴DCB和DCA30.如图,在△ABC中,AD垂直平分BC,E是AB边上一点,连接ED,F是ED延长线上一点,连接CF,若BC平分∠ACF,求证:BE=CF.。

轴对称测试题及答案初二

轴对称测试题及答案初二

轴对称测试题及答案初二一、选择题(每题3分,共30分)1. 轴对称图形的定义是什么?A. 能被一条直线分成两个完全相同的图形B. 能被一个点分成两个完全相同的图形C. 能被一个面分成两个完全相同的图形D. 能被一条曲线分成两个完全相同的图形答案:A2. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 菱形D. 圆答案:D3. 轴对称图形的对称轴是什么?A. 任意一条直线B. 任意一条曲线C. 经过图形中心的直线D. 经过图形中心的曲线答案:C4. 一个图形关于某条直线对称,那么这条直线是该图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:A5. 一个图形关于某点对称,那么这个点是该图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:B6. 两个图形关于某条直线对称,那么这条直线是两个图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:A7. 两个图形关于某点对称,那么这个点是两个图形的什么?A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:B8. 一个图形的对称轴有几条?A. 一条B. 两条C. 无数条D. 没有答案:C9. 一个图形的对称中心有几个?A. 一个B. 两个C. 无数个D. 没有答案:A10. 一个图形的对称点有多少个?A. 一个B. 两个C. 无数个D. 没有答案:C二、填空题(每题3分,共30分)1. 轴对称图形的对称轴是________。

答案:经过图形中心的直线2. 一个图形的对称中心是________。

答案:图形上所有对称点的集合3. 一个图形的对称点是________。

答案:关于对称轴或对称中心对称的点4. 一个图形的对称轴可以是________。

答案:直线或曲线5. 一个图形的对称中心可以是________。

答案:点或线段6. 一个图形的对称点可以是________。

答案:图形上的任意点7. 一个图形的对称轴数量可以是________。

八年级轴对称经典题型

八年级轴对称经典题型

八年级轴对称经典题型一、选择题(每题3分,共15分)1. 下列图形中,是轴对称图形的是()A. 平行四边形。

B. 三角形。

C. 圆。

D. 梯形。

解析:- 圆沿着任意一条直径所在的直线折叠,直线两旁的部分都能完全重合,所以圆是轴对称图形。

- 平行四边形无论沿哪条直线折叠,直线两旁的部分都不能完全重合,不是轴对称图形。

- 三角形不一定是轴对称图形,只有等腰三角形和等边三角形是轴对称图形。

- 梯形不一定是轴对称图形,只有等腰梯形是轴对称图形。

所以答案是C。

2. 点P(3, - 2)关于x轴对称的点的坐标是()A. (3,2)B. (-3, - 2)C. (-3,2)D. (2, - 3)- 关于x轴对称的点,横坐标相同,纵坐标互为相反数。

- 点P(3, - 2)关于x轴对称的点的坐标是(3,2)。

所以答案是A。

3. 等腰三角形的一个内角为50^∘,则这个等腰三角形的顶角为()A. 50^∘B. 80^∘C. 50^∘或80^∘D. 40^∘或65^∘解析:- 当50^∘的角为顶角时,答案就是50^∘。

- 当50^∘的角为底角时,因为等腰三角形两底角相等,根据三角形内角和为180^∘,则顶角为180^∘-50^∘×2 = 80^∘。

所以这个等腰三角形的顶角为50^∘或80^∘,答案是C。

4. 如图,在ABC中,AB = AC,∠ A = 30^∘,DE垂直平分AC,则∠ BCD的度数为()A. 80^∘B. 75^∘C. 65^∘D. 45^∘- 因为AB = AC,∠ A=30^∘,所以∠ B=∠ ACB=(1)/(2)(180^∘-∠A)=(1)/(2)(180^∘ - 30^∘) = 75^∘。

- 因为DE垂直平分AC,所以AD = CD,∠ A=∠ ACD = 30^∘。

- 则∠ BCD=∠ ACB-∠ ACD=75^∘-30^∘=45^∘。

所以答案是D。

5. 下列说法正确的是()A. 两个全等的三角形一定关于某条直线对称。

初中数学轴对称练习题

初中数学轴对称练习题

初中数学轴对称练习题一、选择题1. 下列图形中,哪个是轴对称图形?A. 正方形B. 圆形C. 三角形D. 长方形2. 如果一个图形关于直线L对称,那么它的对称图形与原图形:A. 完全重合B. 部分重合C. 不重合D. 无法确定二、填空题1. 轴对称图形的对称轴是一条________。

2. 如果一个点P(3,4)关于直线x=1对称,那么它的对称点的坐标是________。

三、解答题1. 给定一个三角形ABC,其中A(-1,2),B(2,-3),C(-3,-1)。

请找出点A关于直线y=0的对称点A'的坐标。

2. 假设有一个矩形,其对角线相交于点O,且矩形的一边与x轴平行。

如果矩形的顶点坐标分别为P1(1,2),P2(1,6),P3(5,6),P4(5,2),请找出点P1关于x轴的对称点P1'的坐标。

四、应用题1. 一个长方形的长为10厘米,宽为6厘米,它的中心点关于x轴对称。

求出长方形中心点的坐标。

2. 某建筑物的平面图是一个等腰梯形,上底长为8米,下底长为10米,高为6米。

如果这个等腰梯形关于y轴对称,求出它的对称轴的方程。

五、拓展题1. 考虑一个点集,其中每个点都关于x轴对称。

如果这个点集的中心点是(0,5),请证明这个点集的对称中心也是(0,5)。

2. 给定一个圆心在原点,半径为5的圆。

如果这个圆关于直线y=3对称,求出圆上任意一点P(x,y)关于这条直线的对称点P'的坐标。

结束语通过这些练习题,学生可以加深对轴对称概念的理解,并提高解决实际问题的能力。

希望这些题目能够帮助学生在数学学习中取得更好的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


对称题型举例
【知识框架】
【教学建议】
一、关于轴对称、轴对称图形的概念:
讲清、讲透轴对称、轴对称图形的概念,区别和联系: 1、轴对称:两个图形→关于直线(成轴)对称 2、轴对称图形:一个图形→左右两部分→重合 3、对称轴问题:图形上讲是一条直线(细扣概念类题) 4、辩证看概念:分、合思想
二、注重动手操作:(画图,保留作图痕迹) 1、轴对称、轴对称图形的画法:
2、线段垂直平分线的作法:作图步骤→作图痕迹→理论依据
3、线段和最短问题:理论依据→几何证明 3、等腰三角形、等边三角形的画法: 三、注重符号语言的使用的规范教学: 如等腰三角形的三线合一性质运用时的书写。

运用
判定
性质
画法
逆定理定理
四:三条教学主线:
一是边方面:等角对等边→垂直平分线的性质→转化→求三角形的周长; 二是角方面:等边对等角→三角形内角和→求角的度数; 三是实践操作:尺规作图→定理、公理运用。

五:多归纳、多强化:
比如:x 轴、y 轴对称点问题,可以归纳为:关于什么轴对称,什么坐标不变,另一坐标互为相反数。

帮助学生理解,当然,最好的方法,就是引导学生画出草图分析。

【题型举例】
1
相等。

2.已知:如图,在△ABC 中,AB =AC ,O 是△ABC 内一点,且
OB =OC ,求证:AO ⊥B C.
3、(1)在图1中画出?ABC 的轴对称图形;(2)如图2,在直线l 上确定一个点P ,使得PA +PB 的值最小;(3)如图3,在直线l 上确定一个点P ,使得
PA =PB 。

图1 图2 图3
4、如图:某地有两所大学和两条相交叉的公路,(点M ,N 表示大学,AO ,BO 表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。

你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案。

(用尺规作图)
5、某班举行文艺晚会,桌子摆成两直条(如图中的AO ,BO ),AO 桌面上摆满了桔子,BO 桌面上摆满了唐果,坐在C 处的学生小明先拿桔子再拿唐果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?(要求:尺规作图,并写出作法)
6、如图,EFGH 是一个长方形的弹子球台面,有黑白两球分别位于A 、B 两点的位置. (1)试问:怎样撞击黑球A ,使黑球A 先碰撞台边EF 反弹后再撞击白球B ? (2)怎样撞击黑球A ,使黑球先碰撞台边GH 反弹后再击台边EF ,最后击白球B ?
7、如图1,∠BAC =110°若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( ) ° B . 40° C . 50° D . 60°
8、如图2,ABC △中,∠ACB =o
100,AC =AE ,BC =BD ,则∠DCE 的度数为( )
A . o 20
B . o 25
C . o 30
D . o
40 9、如图3,已知AB =AC =BC =AD ,求∠BDC 的度数。

图1 图2 图3
10、在ABC ∆中,AB =AC ,∠A =120°,BC =6 cm ,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F ,求证:BM =MN =NC . 11、已知:DE 是BC 的垂直平分线,?BDE 的周长为24,?ABC 与四边形ADEC 的周长差是12,求DE 的长。

12、在ABC △中,12cm 6cm AB AC BC D =
==,,为
BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿
B A
C →→的方向运动.设运动时间为t ,那么当t 是多
少秒时,
过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍
备用图
13、如图,在?ABC 中,AB =AC ,∠A =360
,CD 、BE 分别是∠ABC 、∠ACB 的平分
线,CD 、BE 相交于点O ,则图中共有等腰三角形______________个
14、如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,
则△ABC 的周长为____________
13 14
15、已知:如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,AE 、BD 交于点H ,连接CH 。

(1)求证:CM =CN ;(2)求∠EHB 的度数;(3)求证:平分∠AHB
16、如图,点P 是等边三角形ABC 内一点,∠APB =1100
,∠BPC =ɑ,?ACD ≅?BCP 。

(1)求证:?PCD 为等边三角形;若ɑ=1500
时,试判断?APD 的形状,并说明理由; (2)若?APD 为等腰三角形,求ɑ的度数。

相关文档
最新文档