数学建模2016A题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用标准文档
承诺书
参赛队员 (打印并签名) :
题目系泊系统的设计问题分析
摘要
本文主要研究在风力和海水的作用下,钢管与浮标的受力平衡问题。根据钢桶和钢管分段受力分析,对于锚链结合悬链线法进行求解,进一步可推知其他解。
对于问题一:该题通过对整个系统的各部分进行受力分析并结合悬链线模型来进行解答,首先是假设锚链没有被拉起甚至当风速较小的时候有部分拖地,然后求解锚链与海床的夹角刚好开始从零增大的情况得到临界值为26.47m/s,证明假设成立即可建立悬链线锚角为零的特殊模型求解。
对于问题二:在第一问的基础上使用模型列出方程组进行求解得到第一小问结果,再通过改变重球的重量比较各倾角的变化来得到一个重球重量的范围。
对于问题三:由于从静态的海水转化为有水流速度的动态海水系统,所以在问题1和问题2所建立的模型中要附加一个近海水流力。通过对浮标、钢管、钢桶的受力分析及递推原理和锚链的悬链式方程,得到锚链型号Ⅰ-Ⅴ在临界条件为1.5928下重物球2887.107、2794.959、2661.586、2491.84、2282.809及形状。
关键词受力分析、悬链线、线性规划、非线性方程组、近海水流力
系泊系统的设计问题分析
一.问题重述
近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成。某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。锚的质量为600kg,锚链选用无档普通链环,钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。钢桶上接第4节钢管,下接电焊锚链。钢桶竖直时,水声通讯设备的工作效果最佳。若钢桶倾斜,则影响设备的工作效果。钢桶的倾斜角度超过5度时,设备的工作效果较差。为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。
综上所述,我们需要解决以下问题:
1.某型传输节点选用II型电焊锚链2
2.05m,选用的重物球的质量为1200kg。现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
2.在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。
3.由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。布放点的海水速度最大可达到1.5m/s、风速最大可达到36m/s。请给出考虑风力、水流力和水深情况下的系泊系统设计,分析不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
二.问题背景与分析
2.1背景分析
系泊系统由浮标、钢管、钢桶、重物球、锚链、以及特制抗拖移的锚组成,其测量系统安放在钢桶里面。测量设备需要正常工作,钢桶的倾斜角度这一个条件首先要满足,然后要确保吃水深度和浮标的游动区域要尽可能的小。浮标的吃水深度与潜在海水中的重物球、钢管、钢桶、锚链、以及特制的锚对锚链向下的拉力直接相关。
图一
2.2问题一的分析
由题设可知,对浮标的作用力最终会使浮标到达稳态(静止状态),钢桶、钢管的倾斜角度与各个部分的相互作用力有关,因此,本问只研究二维平面上(水平、竖直)的受力。本问要求风速为12m/s 和24m/s 时整个系泊系统各参数的情况,这里对整个系统的各部分进行受力分析并结合悬链线模型[1]进行解答。首先假设锚链没有被拉起甚至当风速较小的时候有部分拖地,求解得到结果后进行验证,这里的验证方法可以通过求拖地锚链的长度来判断锚链是否全部被拉起,或者通过锚链全部被拉起时风速的大小来计算这个临界值从而证明假设成立。 2.3问题二的分析
本问在问题一的假设下,增大风速为36m/s 求各倾斜角的的变化情况,由第一题求出锚角0>α的临界风速为27m/s ,而36>27,因此悬链线方程必须选定为一般形式[2],可列方程组来进行问题的求解;通过改变重球的重量来改变钢桶倾角和锚链与海床的夹角使其减小,可以在前面基础上改变重球的重量使其从1200kg 以1为步长增加到5700kg ,观察各倾斜角的变化,同时注意他们的限制,得到一个重球的重量范围。 2.4问题三的分析
由于从静态的海水转化为有水流速度的动态海水系统,因此在问题1和问题2所建立的模型中要附加一个近海水流力,通过物理平衡法则递推。在水流与风速取极限的情况下,和h=1.5928的临界条件下,求不同型号的锚链锚角临界点所需对应的重物球的重量和锚链的形状。
三. 模型假设
1、假设组成钢管的物质均匀分布;
2、假设在固体内任何部分力学性能完全一样;
3、假设材料沿各个不同方向力学性能均相同;
4、假设海水密度均匀分布;
5、假设游标不会发生倾斜;
6、假设不考虑锚链的浮力影响;
7、假设重力加速度为kg N /9.8;
8、假设重球的密度为33/1011.3m kg ⨯;
9、假设锚链各部分材料质量一致,可以忽略其内力,将其看成一个整体; 10、风的方向与水流的方向一致,且风速恒定、风向水平; 11、不考虑对重物球和锚链的水流力;
12、在计算钢管、钢桶在水流方向的平面投影面积时,由于它们的倾斜角度较小,因此可以认为其投影高度不变;
四.符号说明
1M 浮标质量 2M
钢桶和设备的质量 3M 锚链的质量 m
钢管质量 i a
各钢管或钢桶的倾角 α
各钢管或钢桶的倾角
L 锚链的长度 β 钢桶与垂直方向夹角
θ 锚链的锚角
五. 模型的建立与求解
5.1模型一的建立与求解
在整个系泊系统中都处于平衡状态,且不考虑近海水流的影响,对浮标进行受力分析,如图二所示: