模拟退火算法的教程讲解
模拟退火算法介绍
解析模拟退火算法一.爬山算法(Hill Climbing)介绍模拟退火前,先介绍爬山算法。
爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。
爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。
如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。
二.模拟退火(SA,Simulated Annealing)思想爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。
模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。
模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。
以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。
也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。
模拟退火算法描述:若J(Y(i+1))>=J(Y(i))(即移动后得到更优解),则总是接受该移动若J(Y(i+1))<J(Y(i))(即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。
根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE)=exp(dE/(kT))其中k是一个常数,exp表示自然指数,且dE<0。
这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。
又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。
随着温度T的降低,P(dE)会逐渐降低。
模拟退火算法详解讲解共54页文档
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟4、 唯 书 籍 不 朽。——乔 特
模拟退火算法详解讲解
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
使用matlab实现模拟退火算法
使用matlab实现模拟退火算法标题:使用MATLAB实现模拟退火算法:优化问题的全局搜索方法引言:模拟退火算法(Simulated Annealing)是一种经典的全局优化算法,常用于解决各种实际问题,如组合优化、参数优化、图形分割等。
本文将详细介绍如何使用MATLAB实现模拟退火算法,并介绍其原理、步骤以及代码实现。
1. 模拟退火算法简介模拟退火算法借鉴了金属退火的物理过程,在解空间中进行随机搜索,用于找到全局最优解。
其核心思想是通过接受一定概率的劣解,避免陷入局部极小值,从而实现全局优化。
2. 模拟退火算法步骤2.1 初始参数设置在使用MATLAB实现模拟退火算法之前,我们需要配置一些初始参数,包括起始温度、终止温度、温度衰减系数等。
这些参数的合理设定对算法的效果至关重要。
2.2 初始解的生成在模拟退火算法中,我们需要随机生成一个初始解,作为搜索的起点。
这个初始解可以是随机生成的,也可以是根据问题本身的特性生成的。
2.3 判定条件模拟退火算法需要一个判定条件来决定是否接受新解。
通常我们使用目标函数值的差异来评估新解的优劣。
如果新解更优,则接受;否则,按照一定概率接受。
2.4 温度更新模拟退火算法中最重要的一步是对温度的更新。
温度越高,接受劣解的概率就越大,随着迭代的进行,温度逐渐降低,最终达到终止温度。
2.5 迭代过程在每次迭代中,我们通过随机生成邻近解,计算其目标函数值,并根据判定条件决定是否接受。
同时,根据温度更新的规则调整温度。
迭代过程中,不断更新当前的最优解。
3. MATLAB实现模拟退火算法在MATLAB中,我们可以通过编写函数或使用内置函数来实现模拟退火算法。
具体的实现方法取决于问题的复杂度和求解的要求。
我们需要确保代码的可读性和可复用性。
4. 示例案例:TSP问题求解为了演示模拟退火算法的实际应用,我们将以旅行商问题(Traveling Salesman Problem,TSP)为例进行求解。
模拟退火算法基本原理介绍(可编辑修改word版)
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis 准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E 为温度T 时的内能,ΔE 为其改变量,k 为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E 模拟为目标函数值f,温度T 演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i 和控制参数初值t 开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t 及其衰减因子Δt、每个t 值时的迭代次数L 和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T 值的迭代次数L(2) 对k=1,……,L 做第(3)至第6 步:(3)产生新解S′(4)计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5)若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6)如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7)T 逐渐减少,且T->0,然后转第2 步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火算法详解
车间调度问题求解
总结词
模拟退火算法在车间调度问题求解中具有较好的应用 效果,能够提高生产效率。
详细描述
车间调度问题是一个复杂的优化问题,旨在合理安排生 产任务和资源分配,以提高生产效率。模拟退火算法通 过随机搜索和接受不良解的概率,能够找到较为满意的 调度方案。在车间调度问题中,模拟退火算法可以与其 他启发式方法结合使用,以获得更好的性能。此外,模 拟退火算法还可以应用于其他生产调度问题,如作业车 间调度、装配线平衡等。
旅行商问题求解
总结词
模拟退火算法在旅行商问题求解中具有较好的性能, 能够找到高质量的解。
详细描述
旅行商问题是一个NP难问题,旨在寻找一条旅行路线 ,使得一个旅行商能够访问一系列城市并返回到起始 城市,且总旅行距离最短,同时满足每个城市恰好经 过一次。模拟退火算法通过随机搜索和接受不良解的 概率,能够探索更广阔的解空间,从而找到高质量的 解。在旅行商问题中,模拟退火算法可以与其他启发 式方法结合使用,以获得更好的性能。
迭代更新
重复产生新解、计算能量差和降低温度的 过程,直到满足终止条件。
终止条件
达到最大迭代次数
当达到预设的最大迭代次数时,算法终止。
温度低于阈值
当温度低于一个预设的阈值时,算法终止。
解的质量满足要求
当当前解的质量满足预设的要求或与最优解 的差距在可接受范围内时,算法终止。
03
模拟退火算法参数设置
温度衰减率
总结词
温度衰减率是模拟退火算法中温度变化的速率,它决定了算法的收敛速度和全局搜索能 力。
详细描述
温度衰减率决定了算法在迭代过程中温度下降的速度。较小的衰减率可以使算法在迭代 过程中有更多的时间来探索解空间,但可能会导致算法收敛速度较慢;而较大的衰减率 则可以使算法更快地收敛到最优解,但可能会牺牲一些全局搜索能力。因此,选择合适
《模拟退火算法》课件
03
可能陷入局部最优 解
在某些情况下,模拟退火算法可 能无法跳出局部最优解,导致无 法找到全局最优解。
未来研究的方向和挑战
要点一
算法改进
针对模拟退火算法的缺陷,研究改进算法以提高其性能和 适用性。
要点二
并行化与分布式实现
研究如何利用并行计算和分布式技术加速模拟退火算法的 执行。
未来研究的方向和挑战
总结词
优化分类和聚类
详细描述
模拟退火算法在机器学习中用于优化分类和聚类算法的性能,通过优化参数和搜索空间 ,提高分类和聚类的准确性和稳定性。
06
总结与展望
Chapter
模拟退火算法的优势与局限性
全局优化
模拟退火算法在搜索过程中能够跳出局部最 优解,寻找全局最优解。
适用范围广
模拟退火算法适用于解决连续和离散优化问 题,尤其在处理大规模、复杂问题时表现出 色。
模拟退火算法的优势与局限性
• 灵活性高:算法参数可根据具体 问题进行调整,以适应不同场景 的需求。
模拟退火算法的优势与局限性
01
计算量大
模拟退火算法需要大量的计算资 源,尤其在问题规模较大时更为 明显。
02
参数设置困难
算法参数如初始温度、降温速率 等对算法性能影响较大,但合理 设置这些参数较为困难。
算法的参数敏感性分析
初始温度
模拟退火算法的初始温度对算法的性能有很大影响。初始温度过高可能导致算法陷入局部最优解,而初始温度过低则 可能导致算法收敛速度过慢。因此,需要根据问题特性和需求合理设置初始温度。
冷却率
冷却率决定了算法在退火过程中的温度下降速度。冷却率过高可能导致算法在最优解附近“振荡”,而冷却率过低则 可能导致算法收敛速度过慢。因此,需要根据问题特性和需求合理设置冷却率。
模拟退火算法ppt课件
.
10
3) 如果ΔE <0,则xbest = xnew; 4) 如果ΔE >0,则p = exp(- ΔE /T(i));
1) 如果c = random[0,1] < p, xbest = xnew; 否则xbest = xbest。 5) End for 4) i = i + 1; 5) End Do 6) 输出当前最优点,计算结束。
.
7
SA算法的思想为: ➢ 由初始解i和控制参数初值t开始,对当前解重复
产生新解 →计算目标函数差 →接受或舍弃
的迭代, ➢ 并逐步衰减t值, ➢ 算法终止时的当前解即为所得近似最优解, ➢ 这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
.
8
SA算法与其它搜索方法相比,具有如下的特点: ➢ 以一定的概率接受恶化解; ➢ 引进算法控制参数; ➢使用对象函数值进行搜索; ➢ 隐含并行性; ➢搜索复杂区域。
.
4
2、SA算法的起源
SA算法起源于对固体退火过程的模拟。简单而言,在固体退火时, 先将固体加热使其温度充分高,再让其徐徐冷却,其物理退火过程由 以下三部分组成:加温过程、等温过程、冷却过程。
.
5
SA算法就是模仿上述物理系统徐徐退火过程的一种通用随机搜索技术。 模拟退火算法与物理退火过程的相似关系
.
13
5、SA算法应用范围与一般要求
冷却进度表是指从某一高温状态T0向低温状态冷却时的降温管理表。
假设时刻t的温度用T(t)来表示,则经典模拟退火算法的降温方式为: T(t) T0 lg(1t)
而快速模拟退火算法的降温方式为: T (t) T0 1 t
模拟退火算法基本原理介绍
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火算法的通俗解释
一. 爬山算法( Hill Climbing )' b2 m3 p" g. ]! u9 a* }2 ~' o% p$ l1 [8 n. D, q0 |" C介绍模拟退火前,先介绍爬山算法。
爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。
. K3 \$ @$ a$ V' {& \! k- c- m* U8 l8 J, R) j' a 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。
如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。
8 V: I9 Q7 h5 @3 j' K, s1 J& ^ H9 y4 ~3 M) {9 C/ D* Y# {0 E$ a$ }二. 模拟退火(SA,Simulated Annealing)思想$ Q$ Q: y7 N0 q9 w7 S$ M6 u% |- G) A" \) P1 V 爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。
模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。
模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。
以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。
也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。
7 `4 V! }4 U0 t1 h9 k0 ]) F* \4 S2 S' ]/ O7 d( e: }* W/ o) N0 v 模拟退火算法描述:! `. j) x$ t6 o' v7 S, O$ V3 ~' R1 f2 H% k$ |& n若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动. f6 S. R3 ?' ^ e! `/ c) E% J1 c" ^' m5 c若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)% }1 M# [8 }" Q* R+ ~7 O6 N8 W( L8 N8 k这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。
模拟退火算法的教程
5 模拟退火算法的具体步骤
影响优化结果的主要因素
给定初温t=t0,随机产生初始状态s=s0,令k=0; Repeat Repeat
产生新状态sj=Genete(s);
if min{1,exp[-(C(sj)-C(s))/tk]}>=randrom[0,1] s=sj; Until 抽样稳定准则满足;
根据Metropolis准则,粒子在温度T时趋于平衡的概率为 exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变量,k 为Boltzmann常数。用固体退火模拟组合优化问题,将内能 E模拟为目标函数值f,温度T演化成控制参数t,即得到解组 合优化问题的模拟退火算法:由初始解i和控制参数初值t开 始,对当前解重复“产生新解→计算目标函数差→接受或舍 弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得 近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随 机搜索过程。 退火过程由冷却进度表(Cooling Schedule)控制,包括控制 参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止 条件S。
6 模拟退火算法关键参数和操作的设计
外循环终止准则
常用方法
(1)设臵终止温度的阈值;
(2)设臵外循环迭代次数; (3)算法搜索到的最优值连续若干步保持不变; (4)概率分析方法。
7 模拟退火算法的改进
模拟退火算法的优缺点
模拟退火算法的优点
质量高;
初值鲁棒性强; 简单、通用、易实现。
模拟退火算法的缺点 由于要求较高的初始温度、较慢的降温速率、较低 的终止温度,以及各温度下足够多次的抽样,因此 优化过程较长。
p=exp[-(Ej-Ei)/kBT]
手把手教会你模拟退火算法
⼿把⼿教会你模拟退⽕算法 今天终于⽤模拟退⽕过了⼀道题:CodeVS: P1344。
有 N ( <=20 ) 台 PC 放在机房内,现在要求由你选定⼀台 PC,⽤共 N-1 条⽹线从这台机器开始⼀台接⼀台地依次连接他们,最后接到哪个以及连接的顺序也是由你选定的,为了节省材料,⽹线都拉直。
求最少需要⼀次性购买多长的⽹线。
(说⽩了,就是找出 N 的⼀个排列 P1 P2 P3 ..PN 然后 P1 -> P2 -> P3 -> ... -> PN 找出 |P1P2|+|P2P3|+...+|PN-1PN| 长度的最⼩值) 这种问题被称为最优组合问题。
传统的动态规划算法O(n22n)在n = 20的情况下空间、时间、精度都不能满⾜了。
这时应该使⽤⽐较另类的算法。
随机化算法在n⽐较⼩的最优化问题表现较好,我们尝试使⽤随机化算法。
1 #include<cstdio>2 #include<cstdlib>3 #include<ctime>4 #include<cmath>5 #include<algorithm>67const int maxn = 21;8double x[maxn], y[maxn];9double dist[maxn][maxn];10int path[maxn];11int n;12double path_dist(){13double ans = 0;14for(int i = 1; i < n; i++) {15 ans += dist[path[i - 1]][path[i]];16 }17return ans;18 }19int main(){20 srand(19260817U); // 使⽤确定的种⼦初始化随机函数是不错的选择21 scanf("%d", &n);22for(int i = 0; i < n; i++) scanf("%lf%lf", x + i, y + i);23for(int i = 0; i < n; i++) for(int j = i + 1; j < n; j++) dist[i][j] = dist[j][i] = hypot(x[i] - x[j], y[i] - y[j]);2425for(int i = 0; i < n; i++) path[i] = i; // 获取初始排列26double ans = path_dist(); // 初始答案27int T = 30000000 / n; // 单次计算的复杂度是O(n),这⾥的30000000是试出来的28while(T--){29 std::random_shuffle(path, path + n); // 随机打乱排列30 ans = std::min(ans, path_dist()); // 更新最⼩值31 }32 printf("%.2lf", ans);33 } 可惜的是,这个算法只能拿50分。
(完整版)模拟退火算法基本原理介绍
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火算法
模拟退⽕算法⼀、模拟退⽕ 模拟物理的⾦属退⽕,使某⼀个状态慢慢趋于稳定,与爬⼭算法相类似的⼀类求解近似解的问题。
⼆、算法⾥的公式 若迭代出的解⼀定优于当前解,则当前解被覆盖。
⽽当迭代的解不优于当前解得时候,我们⽤⼀个概率去接受它。
e^df/kT k为常数,编程中常常设置为1 T为温度 e为指数函数 df为负数,因为如果概率要保证0<e^df/kT < 1,那么df必定要为负数 T下降的系数为0.993-0.998三、代码模板1 #include "bits/stdc++.h"2using namespace std;3double n;4const double eps = 1e-14;5double T = 20000;6double dT = 0.985;7double k = 1;8double dx,dy;9double x,y;10double func(double z)11 {12return fabs(z * z - n);13 }14void SA()15 {16 srand(time(NULL));17 x = 0;18 y = func(x);19while(T > eps){20//随机偏移量21 dx = x + (rand() * 2 - RAND_MAX) * T;22while(dx < 0)23 dx = x + (rand() * 2 - RAND_MAX) * T;24 dy = func(dx);25if(dy < y)26 x = dx,y = dy;27//⼀定概率去接收⽬前较⼩的答案28else if(exp((y - dy) / (k * T)) * RAND_MAX > rand())29 x = dx,y = dy;30 T *= dT;31 }32 }33int main()34 {35 cin >> n;36 SA();37 cout << fixed << setprecision(14) << x;38return0;39 }。
模拟退火算法超详细教程,请收好!
模拟退⽕算法超详细教程,请收好!预计读完 5 分钟今天,⼩编将带⼤家学习⼀个经典算法——模拟退⽕算法。
前排提醒,本⽂全程⼲货,建议收藏。
以下为本⽂框架:⼀、什么是模拟退⽕算法?模拟退⽕算法(simulated annealing,SA)来源于固体退⽕原理,是⼀种基于概率的算法。
算法思想为:先从⼀个较⾼的初始温度出发,逐渐降低温度,直到温度降低到满⾜热平衡条件为⽌。
在每个温度下,进⾏n轮搜索,每轮搜索时对旧解添加随机扰动⽣成新解,并按⼀定规则接受新解。
打个⽐⽅:有⼀只兔⼦在⼭上,要去⼭脚下,但它喝醉了。
于是它就胡乱瞎蹦跶,有可能直接蹦跶到⼭脚下,有可能蹦跶到更⾼的另⼀座⼭,也可能跳到某个⼭⾕⾥。
等它醒酒后,它就慢慢地往低处⾛。
这就是模拟退⽕。
为更好理解模拟退⽕算法的具体步骤,我们来举个栗⼦。
假设初始温度为1000℃,温度衰减系数α = 0.98,热平衡条件为温度⼩于T℃。
模拟退⽕算法本质是双层循环,外层循环(上图左侧彩⾊模块)控制温度由⾼向低变化,温度计算公式,为取值在[0, 1]上的温度衰减系数,如0.95;内层循环(上图右侧⿊⾊模块)中,温度固定,对旧解添加随机扰动得到新解,并按⼀定规则接受新解。
内层循环的迭代次数称为马尔科夫链长度,如上图中的马尔科夫链的长度为1000.⼆、模拟退⽕算法有什么优点?模拟退⽕算法的优点在于:不管函数形式多复杂,模拟退⽕算法更有可能找到全局最优解。
举个栗⼦:寻找⽬标函数f = x + 10 sin(3x) + cos(x) 在[0, 9]范围内的最⼩值。
从函数图像可以看到,该函数在[0, 9]范围内有多个“坑”,也就是局部最⼩值,全局最⼩值位于[1, 2]范围上的“坑”内。
如果⽤梯度下降法来求解全局最⼩值,若学习率设置得不合理很容易掉进某个坑内出不来,⽐如这样↓⽽模拟退⽕算法相对来说不会那么容易陷⼊局部最优解。
我们把模拟退⽕算法求出的解看成是⼀个红⾊的⼩球,可以看到,随着温度的下降,这个⼩球⼀直反复横跳;直到温度较低时,这个⼩球才在最⼩值附近稳定下来。
模拟退火算法简介:原理+实例
模拟退火算法(Simulated Annealing)主要内容◆算法原理◆算法应用◆作业现代智能优化算法,主要用于求解较为复杂的优化问题。
与确定性算法相比,其特点如下:第一,目标函数与约束函数不需要连续、可微,只需提供计算点处的函数值即可;第二,约束变量可取离散值;第三,通常情况下,这些算法能求得全局最优解。
现代智能优化算法,包括禁忌搜索,模拟退火、遗传算法等,这些算法涉及生物进化、人工智能、数学和物理学、神经系统和统计力学等概念,都是以一定的直观基础构造的算法,统称为启发式算法。
启发式算法的兴起,与计算复杂性理论的形成有密切的联系,当人们不满足常规算法求解复杂问题时,现代智能优化算法开始起作用。
现代智能优化算法,自20世纪80年代初兴起,至今发展迅速,其与人工智能、计算机科学和运筹学融合,促进了复杂优化问题的分析和解决。
模拟退火算法(Simulated Annealing, SA)是一种通用的随机搜索算法,是局部搜索算法的扩展。
最早于1953年由Metropolis提出,K irkpatric等在1983年将其成功用于组合优化问题的求解。
算法的目的:解决NP复杂性问题;克服优化过程陷入局部极小;克服初值依赖性。
一、算法原理启发:物质总是趋于最低的能态。
如:水往低处流;电子向最低能级的轨道排布。
结论:最低能态是最稳定的状态。
物质会“自动”地趋于最低能态。
猜想:物质趋于最低能态与优化问题求最小值之间有相似性,能否设计一种用于求函数最小值的算法,就像物质“自动”地趋于最低能态?退火,俗称固体降温。
先把固体加热至足够高的温度,使固体中所有的粒子处于无序的状态(随机排列,此时具有最高的熵值);然后将温度缓缓降低,固体冷却,粒子渐渐有序(熵值下降,以低能状态排列)。
原则上,只要温度上升得足够高,冷却过程足够慢,则所有粒子最终会处于最低能态(此时具有最低的熵值)。
模拟退火算法就是将退火过程中系统熵值类比为优化问题的目标函数值来达到优化问题寻优的一种算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
p
2物理退火过程的数学表示
Metropolis准则(1953)——以概率接受新状态 p=exp[-(Ej-Ei)/kBT] 在高温下,可接受与当前状态能量差较大的新状态; 在低温下,只接受与当前状态能量差较小的新状态。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制 参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止 条件S。
2物理退火过程的数学表示
在温度T,分子停留在状态r满足Boltzmann概率分布
P{E
E(r)}
1 Z (T )
exp
E(r) kBT
E表示分子能量的一个随机变量,E(r)表示状态r的能量,
kB 0为Boltzmann常数。Z (T )为概率分布的标准化因子:
Z
(T
)
sD
exp
E(s) kBT
2物理退火过程的数学表示 在同一个温度T,选定两个能量E1<E2,有
P{E
E1}
P{E
E2}
1 Z (T )
1 模拟退火算法的思想
缓慢降温(退火,annealing)时,可达到最低能量 状态,较为柔韧;但如果快速降温(淬火, quenching),会导致不是最低能态的非晶形,较硬 易断。
大自然知道慢工出细活: 缓缓降温,使得物体分子在每一温度时,能够有足 够时间找到安顿位置,则逐渐地,到最后可得到最 低能态,系统最稳定。
3模拟退火算法的原理
根据Metropolis准则,粒子在温度T时趋于平衡的概率为 exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变量,k 为Boltzmann常数。用固体退火模拟组合优化问题,将内能 E模拟为目标函数值f,温度T演化成控制参数t,即得到解组 合优化问题的模拟退火算法:由初始解i和控制参数初值t开 始,对当前解重复“产生新解→计算目标函数差→接受或舍 弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得 近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随 机搜索过程。
模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于MonteCarlo迭代求解策略的一种随机寻优算法,其出发点是基于 物理中固体物质的退火过程与一般组合优化问题之间的相似 性。模拟退火算法从某一较高初温出发,伴随温度参数的不 断下降,结合概率突跳特性在解空间中随机寻找目标函数的 全局最优解,即在局部最优解能概率性地跳出并最终趋于全 局最优。 模拟退火算法是通过赋予搜索过程一种时变且最 终趋于零的概率突跳性,从而可有效避免陷入局部 极小并最终趋于全局最优的串行结构的优化算法。 模拟退火算法是一种通用的优化算法,理论上算 法具有概率的全局优化性能,目前已在工程中得到了 广泛应用。
均值1/|D|;
状态空间存在超过两个不同能量时,具有最低能
量状态的概率超出平均值1/|D| ;
当温度趋于0时,分子停留在最低能量状态的概 率趋于1。
2物理退火过程的数学表示 Metropolis准则(1953)——以概率接受新状态
固体在恒定温度下达到热平衡的过程可以用Monte Carlo方 法(计算机随机模拟方法)加以模拟,虽然该方法简单, 但必须大量采样才能得到比较精确的结果,计算量很大。 Metropolis准则(1953)——以概率接受新状态
组合优化与物理退火的相似性比较
组合优化问题
金属物体
解 最优解 设定初温 Metropolis抽样过程 控制参数的下降 目标函数
粒子状态 能量最低的状态
熔解过程 等温过程
冷却 能量
从某一初始温度开始,伴随温度的不断下降,结合 概率突跳特性在解空间中随机寻找全局最优解
2模拟退火算法的原理
根据Metropolis准则,粒子在温度T时趋于平衡的概率为 exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变量,k 为Boltzmann常数。用固体退火模拟组合优化问题,将内能 E模拟为目标函数值f,温度T演化成控制参数t,即得到解组 合优化问题的模拟退火算法:由初始解i和控制参数初值t开 始,对当前解重复“产生新解→计算目标函数差→接受或舍 弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得 近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随 机搜索过程。
越大;温度趋于0时,其状态趋于1
模拟退火算法基本思想:在一定温度下,搜索从一个状态
随机地变化到另一个状态;随着温度的不断下降直到最低温度, 搜索过程以概率1停留在最优解
2物理退火过程的数学表示
能量最低状态
非能量最低状态
若|D|为状态空间D中状态的个数,D0是具有最低能
量的状态集合: 当温度很高时,每个状态概率基本相同,接近平
模拟退火算法
Simulated Annealing Algorithm
信息与计算科学
卿铭
1 模拟退火算法的思想
模拟退火算法来源于固体退火原理,将固体加温至 充分高,再让其徐徐冷却;加温时,固体内部粒子 随温升变为无序状,内能增大,而徐徐冷却时粒子 渐趋有序,在每个温度都达到平衡态,最后在常温 时达到某种稳定状态,基态,内能减为最小。
1 模拟退火算法的思想
物理退火过程
加温过程——增强粒子的热运动,消除系统原先可能存在 的非均匀态;
等温过程——对于与环境换热而温度不变的封闭系统, 系统状态的自发变化总是朝自由能减少的方向进行,当自 由能达到最小时,系统达到平衡态;
冷却过程——使粒子热运动减弱并渐趋有序,系统能量 逐渐下降,从而得到低能的晶体结构。
exp
E1 BT
1 exp
E2 E1 kBT
可知: >0
<1
(1)在同一个温度,分子停留在能量小状态的概率
大于停留在能量大状态的概率
(2)温度越高,不同能量状态对应的概率相差越小;
温度足够高时,各状态对应概率基本相同。
(3)随着温度的下降,能量最低状态对应概率越来