生物脱氮技术

合集下载

Feammox_一种新型自养生物脱氮技术

Feammox_一种新型自养生物脱氮技术

Feammox:一种新型自养生物脱氮技术Feammox:一种新型自养生物脱氮技术引言氮是生命体所需的关键元素之一,然而过量的氮排放却对环境产生了严重影响。

传统的氮脱氮技术往往需要高能耗和高维护成本,因此寻找一种低成本高效的氮脱氮技术迫在眉睫。

近年来,一种名为Feammox的自养生物脱氮技术受到了广泛关注,其被认为是一种具有巨大潜力的新型氮脱氮技术。

一、Feammox的特点和原理Feammox是铁氧化异化亚硝酸盐自养生物脱氮技术的简称,其最大的特点是能够在无需硝化作用的情况下直接将氨氮转化为氮气。

Feammox菌根据最新的研究成果被发现存在于不同环境中,例如淡水河流、湖泊、沿海海域等。

Feammox菌具有多种功能基因,包括异化亚硝酸还原酶(Hydroxylamine oxidoreductase)和亚硝态氮转肽酶(Nitrite converting enzyme),它们的相互协作使得Feammox菌能够直接将氨氮转化为氮气。

Feammox是自养生物脱氮技术的一种变体,它不依赖于硝化细菌进行氨氮转化为亚硝酸盐和硝酸盐的除氮过程,而是通过Feammox菌直接将氨氮转化为氮气。

此外,Feammox菌还能直接氧化异化亚硝酸盐(NH2NO2)为硝酸盐(NO3-),这为解决自养生物脱氮过程中的亚硝酸盐积累问题提供了一种新途径。

因此,Feammox既避免了传统脱氮技术中硝化和反硝化两个步骤的需要,也减少了对化学药剂的依赖,为氮脱氮技术带来了更高的效率和低成本。

二、Feammox的应用1. 城市污水处理厂城市污水处理厂是一个大量涉及氮排放的场所,因此在这类场所应用Feammox技术能够显著提高脱氮效率。

传统的污水处理厂中一般需要采用硝化和反硝化工艺来完成脱氮过程,而Feammox技术不仅避免了这两个步骤的需要,还能更高效地将氨氮转化为氮气。

此外,城市污水处理厂一般具有较高的硝酸盐浓度,而Feammox技术还能够将亚硝酸盐高效转化为硝酸盐,进一步降低水体中亚硝酸盐的积累。

污水处理工艺脱氮

污水处理工艺脱氮

诊断方法
实验室检查
通过检测血液中的钙、磷、PTH 等指标,评估SHPT的严重程度。
影像学检查
通过超声、X线等影像学检查,观 察甲状旁腺增生和骨骼病变的情况 。
诊断标准
结合患者的病史、症状、实验室和 影像学检查结果,综合评估并确诊 SHPT。
02
CATALOGUE
药物治疗
钙剂控制
总结词
钙剂是治疗继发性甲状旁腺功能亢进症的基础药物,主要用于降低血钙水平,缓 解症状。
保持均衡饮食,摄入足够 的钙、磷和维生素D,以 维持骨骼健康。
日常护理和注意事项
定期监测
定期监测血钙、磷、甲状 旁腺激素等指标,以便及 时发现异常情况。
避免过度劳累
适当休息,避免过度劳累 ,以免加重病情。
保持良好心态
保持乐观、积极的心态, 增强战胜疾病的信心。
患者教育
疾病知识教育
向患者及其家属介绍继发性甲状 旁腺功能亢进症的病因、症状、 治疗方法及日常护理等方面的知
03
CATALOGUE
手术治疗
甲状旁腺切除术
总结词
甲状旁腺切除术是治疗继发性甲状旁腺功能亢进症的有效方法,通过完全切除病变的甲状旁腺组织, 可以显著降低患者体内甲状旁腺激素水平,改善临床症状。
详细描述
甲状旁腺切除术通常适用于药物治疗无效或病情严重的患者。手术过程中,医生会切除病变的甲状旁 腺组织,以降低甲状旁腺激素的分泌。手术后,患者的血钙水平可能会下降,需要密切监测并及时调 整治疗方案。
基因治疗仍处于研究阶段,尚未广泛 应用于临床。
05
CATALOGUE
预防和日常护理
预防措施
01
02
03
早期筛查

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加速,城市污水处理问题日益突出。

在众多的污水处理技术中,生物脱氮除磷技术因其高效、经济、环保等优点而备受关注。

本文旨在探讨城市污水处理中新型生物脱氮除磷技术的研究进展,分析其技术特点、应用现状及未来发展趋势。

二、生物脱氮除磷技术概述生物脱氮除磷技术是一种利用微生物的新陈代谢活动,通过生物膜法或活性污泥法等工艺,将污水中的氮、磷等营养物质去除的技术。

该技术具有处理效率高、运行成本低、污泥产量少等优点,是当前城市污水处理领域的研究热点。

三、新型生物脱氮技术研究进展(一)A2/O工艺及其改进型技术A2/O(厌氧-缺氧-好氧)工艺是一种典型的生物脱氮技术。

近年来,研究者们针对A2/O工艺的不足,开发了多种改进型技术,如MBBR(移动床生物膜反应器)、SBR(序批式活性污泥法)等。

这些技术通过优化反应器结构、调整运行参数等手段,提高了脱氮效率,降低了能耗。

(二)新型厌氧氨氧化技术厌氧氨氧化技术是一种利用厌氧氨氧化菌将氨氮转化为氮气的生物脱氮技术。

近年来,研究者们通过优化反应条件、提高菌种活性等手段,推动了厌氧氨氧化技术的发展。

该技术具有脱氮效率高、能耗低等优点,是未来生物脱氮技术的重要发展方向。

四、新型生物除磷技术研究进展(一)PAOs(聚磷菌)强化除磷技术PAOs强化除磷技术是一种利用聚磷菌在厌氧-好氧条件下实现高效除磷的技术。

近年来,研究者们通过优化反应条件、提高聚磷菌活性等手段,提高了PAOs强化除磷技术的除磷效率。

该技术具有除磷效果好、污泥产量少等优点。

(二)化学与生物联合除磷技术化学与生物联合除磷技术是一种结合化学沉淀与生物吸附的除磷技术。

该技术通过投加化学药剂与生物反应相结合的方式,实现高效除磷。

近年来,研究者们针对不同水质条件,优化了药剂种类和投加量,提高了除磷效果。

五、新型生物脱氮除磷技术应用及发展趋势(一)应用现状新型生物脱氮除磷技术在城市污水处理中已得到广泛应用。

工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。

2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。

通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。

3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。

近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。

与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。

分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。

分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。

二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。

生物脱氮机理、影响因素及应用工艺详解

生物脱氮机理、影响因素及应用工艺详解

生物脱氮机理、影响因素及应用工艺详解生物脱氮是指在微生物的联合作用下,污水中的有机氮及氨氮经过氨化作用、硝化反应、反硝化反应,最后转化为氮气的过程。

其具有经济、有效、易操作、无二次污染等特,被公认为具有发展前途的方法,关于这方面的技术研究不断有新的成果报道。

一、机理详解1、氨化反应氨化反应是指含氮有机物在氨化功能菌的代谢下,经分解转化为 NH4+的过程。

含氮有机物在有分子氧和无氧的条件下都能被相应的微生物所分解,释放出氨。

2、硝化反应硝化反应由好氧自养型微生物完成,在有氧状态下,利用无机氮为氮源将NH4+化成NO2-,然后再氧化成NO3-的过程。

硝化过程可以分成两个阶段。

第一阶段是由亚硝化菌将氨氮转化为亚硝酸盐(NO2-),第二阶段由硝化菌将亚硝酸盐转化为硝酸盐(NO3-)。

3、反硝化反应反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮(N2)的过程。

反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物(污水中的BOD成分)作为电子供体,提供能量并被氧化稳定。

二、生物脱氮主要影响因素1、温度生物硝化反应的适宜温度范围为20~30℃,15℃以下硝化反应速率下降,5℃时基本停止。

反硝化适宜的温度范围为20~40℃,15℃以下反硝化反应速率下降。

实际中观察到,生物膜反硝化过程受温度的影响比悬浮污泥法小,此外,流化床反硝化温度的敏感性比生物转盘和悬浮污泥的小得多。

2、溶解氧硝化反应过程是以分子氧作为电子终受体的,因此,只有当分子氧(溶解氧)存在时才能发生硝化反应。

为满足正常的硝化效果,在活性污泥工艺运行过程中,DO值至少要保持在2mg/L以上,一般为2~3mg/L。

当DO值较低时,硝化反应过程将受到限制,甚至停止。

反硝化与硝化在溶解氧的需求方面是一个对立的过程。

传统的反硝化过程需要在严格意义上的缺氧环境下才能发生,这是因为DO与NO3-都能作为电子受体,存在竞争行为。

短程硝化反硝化生物脱氮技术概述短程硝化反硝化脱氮工艺

短程硝化反硝化生物脱氮技术概述短程硝化反硝化脱氮工艺

短程硝化反硝化生物脱氮技术概述短程硝化反硝化脱氮工艺随着水体受到氮素污染越来越严重,废水脱氮日益受到人们的重视。

其中生物脱氮技术将有机氮和氨氮通过硝化反硝化过程去除具有无可比拟的发展前景。

其中传统的生物脱氮技术认为要完全去除水中的氨态氮就必须要经过完整的硝化与反硝化过程,即以硝酸盐作为硝化的终点和反硝化的起点,这主要是基于要防止对环境危害较大的亚硝酸盐的积累以及对好氧硝化菌和兼性厌氧反硝化菌不能在同一个反应器里同时大量存在的认识导致的。

而现在的大量研究表明,好氧硝化菌和兼性厌氧反硝化菌是可以在同一个反应器里共同起作用的。

因为在整体和每一单元填料表面所附着的生物膜上都存在基质和溶解氧的浓度梯度分布,这就为各种生态类型的微生物在生物膜内不同部位占据优势生态位提供了条件。

由于短程硝化反硝化脱氮比传统的脱氮技术具有很多的优点,因此引起了国内外研究者的广泛关注,对影响短程硝化反硝化的因素以及实现和维持短程硝化反硝化的工艺控制进行了大量的研究。

1.传统硝化反硝化脱氮机理1.1 硝化反应硝化反应是由一类自养耗氧微生物完成的,包括两个步骤:第一步为亚硝化过程,是由亚硝酸菌将氨氮转化为亚硝酸盐;第二步为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐,亚硝酸菌和硝酸菌统称为硝化菌,都利用无机碳化合物如CO32-、HCO3-和CO2作为碳源,从NH3、NH4+或NO2-的氧化反应中获取能量。

亚硝酸菌和硝酸菌的特性大致相似,但前者的世代期较短,生长率较快,因此较能适应冲击负荷和不利的环境条件,当硝酸菌受到抑制时,有可能出现NO2-积累的情况。

1.2反硝化反应反硝化反应是由一群异养性微生物完成的生物化学过程,它的主要过程是在缺氧的条件下,将硝化过程中产生的亚硝酸盐和硝酸盐还原成气态氮。

反硝化细菌多数是兼性细菌,有分子态氧存在时,反硝化氧化分解有机物,利用分子氧作为最终电子受体。

在无分子态氧条件下,反硝化菌利用硝酸盐和亚硝酸盐中的N5+和N3-作为电子受体,O2-作为受氢体生成H2O和OH-碱度,有机物则作为碳源和电子供体提供能量,并得到氧化稳定。

简述生物脱氮和生物除磷的基本原理和过程

简述生物脱氮和生物除磷的基本原理和过程

生物脱氮和生物除磷是水环境治理中常见的技术手段,其基本原理和过程对于水质净化具有重要意义。

下文将分别对生物脱氮和生物除磷的基本原理和过程进行简要阐述,以便更好地理解和应用这两种技术手段。

一、生物脱氮的基本原理和过程1. 基本原理:生物脱氮是指利用生物的作用将水体中的氮气态化合物转化为氮气排放出去的过程。

其主要包括硝化和反硝化两个过程。

2. 过程:1)硝化作用:首先是硝化细菌将水体中的氨氮转化为亚硝酸盐,然后再将亚硝酸盐转化为硝酸盐的过程。

这一过程主要发生在水中砷、锰等微生物和有机物贪婪性好氧微生物的作用下。

2)反硝化作用:反硝化细菌将水中的硝酸盐还原成氮气气体,从而实现氮的脱除。

这一过程主要发生在水中缺氧或厌氧条件下,反硝化细菌在有机物的作用下进行。

二、生物除磷的基本原理和过程1. 基本原理:生物除磷是指利用生物的作用将水体中的磷物质转化为无机磷沉积或有机磷的过程。

其主要包括磷的吸附和磷的沉淀两个过程。

2. 过程:1)磷的吸附:指微生物在生长过程中,通过细胞活性或胞外聚合物等结合机制,将水体中的磷物质吸附到微生物体表面或细胞内,从而减少水体中的磷含量。

这一过程主要发生在水中的底泥、生物膜等介质上。

2)磷的沉淀:指在适当的环境条件下,微生物可以促进水中磷物质的沉淀作用,将磷固定到底泥中,从而减少水体中的可溶性磷含量。

这一过程主要发生在水中的缺氧或厌氧条件下。

生物脱氮和生物除磷是通过利用微生物的作用,将水体中的氮和磷物质转化为氮气或无机磷沉积的技术手段。

其基本原理和过程涉及硝化、反硝化、微生物吸附和微生物沉淀等生物学过程,在水环境治理中具有重要的应用价值。

希望通过本文的介绍,读者对生物脱氮和生物除磷技术有更深入的了解,并能更好地应用于实际的水质净化工作中。

生物脱氮和生物除磷作为水环境治理的重要手段,对于改善水体质量、保护生态环境具有重要意义。

在实际应用中,为了更好地发挥生物脱氮和生物除磷技术的效果,需要结合具体的水体特点和环境条件,采取相应的措施和管理方式,以确保技术的有效运行和水体的稳定净化。

污水处理中的生物脱氮技术应用

污水处理中的生物脱氮技术应用

城市污水处理
总结词
城市污水处理是生物脱氮技术应用的重 要领域之一,通过生物脱氮技术可以有 效处理城市污水中含有的氮污染物,提 高水质并降低水体富营养化的风险。
VS
详细描述
城市污水中含有一定量的氮污染物,如生 活污水、雨水等。生物脱氮技术通过硝化 和反硝化作用,可以有效去除这些污染物 ,降低水体富营养化的风险,提高水质并 保障城市居民的用水安全。
02
CATALOGUE
生物脱氮技术应用场景
生活污水处理
总结词
生活污水处理是生物脱氮技术的重要应用领域,通过生物脱氮技术可以有效去 除生活污水中含有的氮污染物,达到净化水质的目的。
详细描述
生活污水中含有大量的氮污染物,如氨氮、硝态氮等,这些污染物对人体健康 和生态环境造成危害。生物脱氮技术通过微生物的硝化和反硝化作用,将氮污 染物转化为无害的氮气排出,从而达到净化水质的效果。
03
CATALOGUE
生物脱氮技术应用案例
某生活污水处理厂生物脱氮技术应用
总结词
成功应用、高效去除
详细描述
某生活污水处理厂采用生物脱氮技术,通过合理设计缺氧、好氧反应器,成功实现了对总氮的高效去 除。经过处理后的出水总氮浓度低于排放标准,满足了环保要求。
某工业废水处理厂生物脱氮技术应用
总结词
针对性强、效果显著
04
CATALOGUE
生物脱氮技术的发展趋势和挑战
生物脱氮技术的发展趋势
高效低耗
随着环保要求的提高,生物脱氮 技术正朝着高效、低能耗的方向 发展,以提高脱氮效率并降低运
行成本。
智能化控制
利用现代信息技术和人工智能技术 ,实现生物脱氮过程的智能化控制 ,提高处理效果和稳定性。

4.3生物脱氮除磷技术

4.3生物脱氮除磷技术

NO3-一类的化合态氧也不允许存在,但在聚磷菌吸氧的好氧反
应器内却应保持充足的氧 (2)污泥龄 生物除磷主要是通过排除剩余污泥而去除磷的,因此剩 余活泥多少将对脱磷效果产生影响,一般污泥龄短的系统产 生的剩余污泥量较多,可以取得较高的除磷效果。有报导称 :当污泥龄为30d时,除磷率为40%,污泥龄为17d时,除磷 率为50%,而当污泥龄降至5d时,除磷率高达87%。
(3) 后置缺氧-好氧生物脱氮工艺
可以补充外来碳源,也可以利用活性污泥的 内源呼吸提供电子供体还原硝酸盐,反硝化速率 仅是前置缺氧反硝化速率的1/3-1/8,需较长停留 时间。
进水 二沉池 出水
好氧/ 硝化
缺氧
回流污泥 污泥
二、生物除磷工艺
1.概述 来源:人体排泄物以及合成洗涤剂、牲畜饲养场 及含磷工业废水 危害:促进藻类等浮游生物的繁殖,破坏水体耗 氧和复氧平衡;水质恶化,危害水资源。 包括:有机磷(磷酸甘油酸、磷肌酸)和无机磷( 磷酸盐,聚合磷酸盐) 去除方法: 常规活性污泥法的微生物同化和吸附; 生物强化除磷; 投加化学药剂除磷。
二、生物除磷工艺
72年开创,生物除磷和化学 曝气池:含磷污水进入,还有由除 沉淀池(I):泥水分离, 4.生物除磷工艺 磷池回流的已经释放磷但含有聚磷 除磷相结合,除磷效果好. 含磷污泥沉淀,已除磷的 (2)弗斯特利普除磷工艺(Phostrip): 菌的污泥。使聚磷菌过量摄取磷, 上清液作为处理水排放。 去除有机物(BOD和COD), 可能还 有一定的硝化作用。
聚磷分解形成的无机磷释放回污水中—厌氧释磷。
好氧环境:进入好氧状态后,聚磷菌将贮存于体
内的PHB进行好氧分解并释放出大量能量供聚磷菌增
殖等生理活动,部分供其主动吸收污水中的磷酸盐,

生物脱氮除磷技术

生物脱氮除磷技术

生物脱氮除磷技术简介生物脱氮技术污水中氮的存在形式,城市污水中氮的主要存在形式是有机氮和氨氮。

其中的有机氮一部分被微生物利用分解合成自身能量,一部分被转化成无机氮进行生物脱氮。

生物脱氮机理:脱氮的过程就是把各种形态的氮转化成氮气从水中逸入大气的过程。

生物脱氮分为三步,第一是把有机氮转化成无机氮。

第二是把非硝态氮转化成硝态氮,第三就是把硝态氮转化成氮气,逸入大气。

在生物脱氮机理下,这三步都是通过微生物来实现的,每一步有一种或一类微生物参与反应。

第一,氨化作用,就是将有机氮转化成氨氮。

这过程中参与的微生物为异养型微生物。

在异养微生物分泌的水解酶的催化作用之下,有机氮化合物的肽键会被破坏,在经过一系列的反应形成氨氮。

氨化作用主要在好氧池内发生,厌氧池只有部分有机物氨化。

氨化菌 总氮有机氮无机氮 氨氮 亚硝酸氮 硝酸氮有机氮+ O2羧酸+CO2 +NH3 第二,硝化作用,在有氧条件下,将氨氮转化成硝酸盐的过程。

在这个过程中参与的微生物是化能自养微生物其中包含亚硝酸菌和硝酸菌,首先在亚硝酸菌的作用下,利用水中的溶解氧,水中的氨氮被氧化成亚硝酸盐,由于亚硝酸不稳定,继而被硝酸菌继续氧化成硝酸盐。

至此,硝化作用完成。

在这个过程中需要消耗大量的氧气(氨氮是水中主要的耗氧污染物)亚硝酸菌NH4++1.5O2 NO2-+H2O+2H++能量硝酸菌NO2-+1.5O2 NO3-+H2O+2H++能量第三,反硝化作用,在缺氧条件下,把硝酸盐和亚硝酸盐还原成氮气的过程。

在这个过程中参与的微生物是反硝化细菌。

为兼性异养菌。

反硝化细菌2NO2-+6H+ N2+2H2O+2OH-反硝化细菌2NO3-+10H+ N2+4H2O+2OH- 以上就是生物脱氮的机理,要保证每一步的反应能顺利高效的运行就必须保证其合适的外部条件,在这三步的反应中主要有三类微生物参与,要调节各反应环境,使其在特定区域或者时间段内形成优势菌群,让其优先吸收养分提供自身繁殖和新陈代谢所需要的能量。

生物接触氧化法脱氮的原理

生物接触氧化法脱氮的原理

生物接触氧化法脱氮的原理生物接触氧化法是一种常用的脱氮方法,其原理是通过生物作用将废水中的氨氮转化为硝态氮,再利用硝态氮的物理、化学方法进行除氮处理。

生物接触氧化法的主要步骤包括:接触氧化池的建设、填料的选取、好氧微生物的培养与固定、好氧微生物的自然衰亡、高浓度氨氮废水生物接触氧化等。

首先,接触氧化池的建设是生物接触氧化法脱氮的基础。

接触氧化池是一个密封的容器,通常由不锈钢或塑料制成,内部设置了填料。

填料的选取至关重要,它既要有一定的表面积,便于微生物的生长附着,又要有足够的空隙,保证废水可以充分与微生物接触。

常用的填料有塑料环、聚酯棉球等。

其次,好氧微生物的培养与固定是实现脱氮的关键。

好氧微生物附着在填料表面,通过氧气和废水中的有机物进行共同代谢,产生能量供自身生长。

在这个过程中,微生物将废水中的氨氮转化为亚硝酸盐,再进一步氧化为硝酸盐。

脱氮的关键步骤是将亚硝酸盐进一步氧化为硝酸盐,这需要好氧微生物固定在填料上,形成好氧微生物膜。

然而,好氧微生物的自然衰亡也是一个不可忽视的因素。

填料表面附着的好氧微生物会随着时间的推移,由于种群竞争、环境变化等原因逐渐死亡,导致脱氮效果下降。

因此,需要定期进行好氧微生物的补充和更新,以维持良好的脱氮效果。

最后,对于高浓度氨氮废水的处理,可以采用生物接触氧化法进行处理。

由于高浓度氨氮废水中氨氮的浓度较高,一般情况下无法直接进入生物接触氧化池进行氧化处理,需要通过稀释的方式降低氨氮浓度,然后进入接触氧化池进行脱氮。

在接触氧化池中,好氧微生物将废水中的氨氮转化为硝态氮,从而达到脱氮的目的。

总之,生物接触氧化法通过好氧微生物的作用将废水中的氨氮转化为硝态氮,是一种有效的脱氮方法。

它能够广泛应用于污水处理、环境保护等领域,对氮污染的治理起到了重要的作用。

随着科学技术的不断进步,生物接触氧化法在脱氮领域的研究和应用也将得到进一步的发展。

生物脱氮新技术研究进展

生物脱氮新技术研究进展

生物脱氮新技术研究进展随着环境保护意识的不断提高,生物脱氮技术作为一种环保节能的新型污水处理技术,越来越受到人们的。

本文将介绍生物脱氮新技术的研究背景和意义、研究进展、优缺点和发展前景,以期为相关领域的研究提供参考。

生物脱氮是指利用微生物或植物等生物手段,通过硝化和反硝化作用将废水中的氨氮和硝酸盐等含氮化合物转化为无害的氮气,从而达到废水治理和资源化的目的。

生物脱氮技术主要包括活性污泥法、生物膜法、反硝化菌法等。

这些技术均利用微生物菌群进行硝化和反硝化作用,将废水中的氨氮转化为氮气。

近年来,随着生物技术的不断发展,生物脱氮新技术也层出不穷。

下面介绍几种生物脱氮新技术的研究进展。

短程硝化反硝化技术是指在同一个反应器内,通过控制反应条件,使硝化作用和反硝化作用相继进行。

该技术可以大幅度减少反应器体积,提高反应效率,同时还可以降低能耗。

研究结果表明,短程硝化反硝化技术对氨氮和总氮的去除率均高于传统的活性污泥法。

厌氧氨氧化技术是指利用厌氧微生物将氨氮和亚硝酸盐转化为氮气的过程。

该技术的反应条件温和,无需曝气供氧,具有较高的氮去除率和能源利用率。

研究结果表明,厌氧氨氧化技术对高浓度氨氮废水的处理效果较好,但在低浓度氨氮废水处理中可能受到抑制。

悬浮生长植物脱氮技术是指利用水生植物如荷花、水葫芦等吸收废水中的氨氮,并通过植物体内的转化作用将其转化为氮气。

该技术具有投资少、操作简单、无需外加能源等优点,在低浓度氨氮废水中具有较好的处理效果。

研究结果表明,悬浮生长植物脱氮技术可以降低废水中的氨氮浓度,同时还可以改善水体生态环境。

生物脱氮新技术在氨氮和总氮的去除率、反应效率、能源利用率等方面均优于传统活性污泥法等生物脱氮技术。

但是,这些新技术尚存在一些缺点,如短程硝化反硝化技术需要控制精确的反应条件,厌氧氨氧化技术对废水的预处理要求较高,悬浮生长植物脱氮技术仅适用于低浓度氨氮废水的处理。

因此,在实际应用中,需要根据具体情况选择适合的生物脱氮技术。

生物脱氮新技术

生物脱氮新技术

生物脱氮新技术★废水物化脱氮技术1.空气吹脱法:利用废水中所含氨氮的实际浓度和平衡浓度之间存在的差异,在碱性条件下用空气吹脱,使废水中的氨氮不断地由液相转移到气相中,达到从废水中去除氨氮目的。

2.折点氯化法:将氯气或次氯酸钠投入污水,将废水中的氨氮氧化成N2的化学脱氮工艺。

可作单独工艺,也可对生物脱氮工艺的出水进行深度处理。

出水可控制氨氮在0.1mg/L。

3.选择性离子交换法:离子交换中固相交换剂和废水中NH4+间进行化学置换反应。

设备简单、易于操作,效率高;离子交换剂用量大,需频繁再生。

对废水预处理要求高,运行成本高。

4.化学沉淀法:投加Mg2+和PO43+,使之与氨氮生成难溶复盐MgNH4PO4·6H2O沉淀物,从而达到脱氮目的。

可以处理各种浓度的氨氮废水,特别是高浓度氨氮废水。

5.化学中和法:浓度大于2%-3%的氨的碱性废水要先考虑回收利用,制成硫铵。

不易回收的可与酸性水或废气(CO、CO2、SO2)中和,若中和后达不到要求,补加化学药剂再中和。

6.乳化液膜分离法:含氨废水以选择透过液膜为分离介质,在液膜两侧通过被选择透过物质(NH3)浓度差和扩散传递为推动力,使透过物质(NH3)进入膜内,达到分离的目的。

第一部分★传统废水生物脱氮过程和原理1.2.3.素矿化。

微生物:细菌、各种霉菌。

硝化作用指微生物将NH4+氧化成NO2-,再进一步氧化成NO3-的过程。

微生物:亚硝化菌:亚硝化单胞菌(Nitrosomonas),将NH4+氧化成NO2-;硝化菌:硝化杆菌(Nitrobacter),将NO2-氧化成NO3-。

(自养型微生物)反硝化作用将NO3-或NO2-还原成N2或N2O的过程。

微生物:硝化菌(异养型微生物)二、影响因素⑴ pH:通常把硝化段运行的pH控制在7.2-8.2,反硝化段pH控制在7.5-9.2 。

⑵温度:硝化反应适宜温度为30~35℃,在此范围反应速率随温度升高而加快。

生物脱氮技术

生物脱氮技术

污水中的氮一般以有机氮、氨氮、亚硝酸盐氰和硝酸盐氮四种形式存在.生活污水中氮的主要存在形态是有机氮和氨氮.通常采用的二级生化处理技术对氮的去除率是比较低的,一般将有机氮化合转化为氨氮,却不能有效地去除氮.污水脱氮,从原理看,可以分为物理法、化学法和生物法三大类.由于生物脱氮一般能够满足有关方面对污水净化的要求,而且价格低廉,产生的二次污染物较易处理,因此生物脱氮方法是当前最活跃的研究与投资开发领域.一、生物脱氮技术生物脱氮技术主要是利用污水中某些细菌的生物氧化与还原作用实现的.生物脱氮工艺从碳源的来源分,可分为外碳源工艺和内碳源工艺;从硝化和反硝化过程在工艺流程中的位置来分,可分为传统工艺和前置反硝化工艺;按照细菌的存在状态不同,可以分为活性污泥法和生物膜法生物脱氮工艺.前者的硝化菌、反硝化菌等微生物处于悬浮态,而后者的各种微生物却附着在生物膜上.1.活性污泥法活性污泥法是一种历史悠久、目前应用最广泛的生物脱氮技术,它有许多种形忒.1活性污泥法传统流程这是一种传统的三级生物脱氮工艺,即有机物的氧化、硝化和反硝化作用分别在不同的构筑物中完成,如下图所示:由于有机物去除、氨氧化和硝酸盐还原依次进行,彼此之间相对独立,并分别设置污泥沉淀及回流系统,系统运行的灵活性比较强,有机物降解菌、硝化菌和反硝化菌的生长环境均较佳,因而反应速度快,脱氮效果也比较好.但是,三级活性污泥法的流程长、构筑物多、附属设备多,因此基建费用高、管理难度大.此外,为了保持硝化所需的稳定pH 值, 往往两要向硝化池加碱,为了保证反硝化阶段有足够的电子受体,需要外加甲醇等碳源,为了除去尾水中剩余的有毒物质甲醇,又必须增设后曝气池,所以运行费用也很高.可以看出,这种工艺的确具有很大的局限性.如果将有机物去除和硝化放在同一个反应器中进行,而将反硝化作用放在另一个反应器中进行,则可以将三级生物脱氮系统简化为两级生物脱氮系统.如下图:与三级生物脱氮流程相比,两级生物脱氮流程的基建费用和占地面积均有所降低,但是仍然需要外加甲醇和碱源.2前置反硝化生物脱氮系统又称缺氧-好氧活性污泥脱氮系统、A/0生物脱氮流程、改良LudMck-Euinger工艺等.前置反硝化是目前使用比较广泛的一种脱氮工艺分建式缺氧好氧活性污泥脱氮系统如下图:.除分建式系统外,本工艺还可以建成合建式装置,即将缺氧和好氧环境放在-个构筑物内,中间以挡板隔开,挡板下端与池内壁之间以一定的缝隙相通,如下图所示:采用合建式装置,对于现有推流式曝气池的改造来说更加方便.与传统的生物脱氰流程相比较,该流程具有如下优势.①由于构筑物数量减少,因而流程得以简化,占地面积减少,且缺氧段消耗原污水中的部分有机物,能够降低好氧段的有机物污泥负荷,不仅容易使硝化菌取得竞争优势,而且降低了曝气充氧的电耗,因而基建费用和运行费用均比较低.②将缺氧段放在好氧段前边,可以起到生物选择器的作用,有利于防止污泥膨胀,改善活性污泥的沉降性能.③反硝化过程能够充分利用原污水中有机物和内源代谢产物作为电子受体,既可以减少或取消外加碳源,从面省去后曝气池,提高处理水水质,又可以保证较高的碳比,有利于反硝化的充分进行.④由于存在内循环,缺氧反硝化产生的碱度能够补偿硝化反应所造成的pH值下降,大大降低了碱投加量.前置反硝化生物脱氮系统也有自己的不足之处.一是处理出水中含有一定浓度的硝酸盐,可能污染受纳水体.第二,由于内回流比限制本工艺的脱氮率一般为70%~80%, 很难达到90%.而且,该工艺对运行管理人员的素质要求比较高.例如,如果系统运行不当,沉淀池内将发生反硝化反应,造成污泥上浮,使处理水恶化.3氧化沟工艺从工艺、流态和构造方面看,氧化沟也非常适合于生物脱氮.①氧化沟的污泥龄通常很长,一般可达15~30d,非常适合于世代时间长、增值缓慢的硝化菌存活与繁殖.②氧化沟往往做成总长达几十米甚至上百米的环行构筑物.由于循环次数多达72次其至360次,混合液沿沟道方向近似于完全混合式.然而由于工艺状况不同,混合液中溶解氧的浓度在不同位置也存在很大差异:在曝气器的附近非常容易出现DO比较高的富氧区,而在远离曝气装置的地方,容易出现DO比较低的缺氧区,使硝化和反硝化能够在同一装置中顺利进行,从而达到生物脱氮的目的.据报道,Carrousel氧化沟、交替工作氧化沟、二次沉淀池交替运行氧化沟、Orbal型氧化沟、曝气-沉淀一体化氧化沟和刺渠型一体化氧化沟等均可以用于脱氮,其脱氮效率可以达到60%-90%,例如,Carrousel氧化沟的脱氮率为90%, Orbal型氧化沟的总氮去除率也以达到85%~90%.氧化沟工艺构造简单,运行稳定,易于管理维护,出水水质好,基建费用和处理成本均较低,对原水水质水量的变化也有很强的适应性,是一种非常有竞争力的生物脱氮技术.2.生物膜法生物膜法是与活性污泥法并列的一种污水处理技术.由于生物污泥的生物固体平均停留时间与污水的水力停留时间无关,世代时间比较长、比增殖速度较小的硝化菌和亚硝化菌都能够很好的繁殖和增殖,因此各种生物膜处理工艺都具有一定的硝化功能,采用适当的运行方式,还能够达到反硝化脱氮的要求.而且,与活性污泥法相比,生物膜法还具有下列优点.①微生物浓度高,处理效率高.据实测,如果折算成曝气池的MLVSS,珥以达到 4060g/L,远远高于活性污泥处理系统.②污泥龄长,产泥量少.由于生物膜上存在的食物链较因此产泥量少,剩余污泥的处理量仅为活性污泥法的一半左右.在生物转盘上还可以生长世代时间较长的硝化菌,因此如果得当,除有效去除有机物外,还能够具有硝化和反硝化脱氮的作用,其工艺流程如下图:该工艺的脱氮原理是:由于降解有机物的好氧氧化菌的生长繁殖优先于硝化菌与亚硝化菌,因此,在前两级转盘上去除有机物的能力较强,而后两级能够产生比较充分的硝化反应,形成硝酸盐氮和亚硝酸盐氮.由于转盘低速旋转的传质作用.这些硝态氮随污水进人处于厌氧状态的淹没式转盘时,与外加甲醇充分接触,进行反硝化脱氮反应.而残留下来的甲醇再经过好氧生物转盘的处理后得到去除.。

新型生物脱氮技术

新型生物脱氮技术

2 NO3- + 10H+ + 10e-
N2 + 2OH+ + 4H2O
2 NO2- + 6H+ + 6e-
N2 + 2OH+ + 4H2O
4
2、传统脱氮工艺
1932年,Wuhrmann利用内源反硝化建立了后置反硝化工艺。 1962年,Ludzack和Ettinger提出前置反硝化工艺。 1973年,Barnard结合前两种工艺提出A/O工艺。 后来出现的各种改进工艺,Bardenpho、A/A/O等等
4、臭氧湿式氧化 一种处理含氨氮废水比较有效的技术。碱性条件下,通过O3的湿式氧化过程产 生一些氧化能力很强的OH自由基,氧化水中氨氮。 可作为含有机物又含无机污染物废水的预处理; 也可作为废水深度处理后处理进一步降解废水中污染物。
18
5、生物电极脱氮技术
生物法和电化学结合起来的一种处理硝酸态氮污染水的生物电极法。 污水中的硝酸态氮在生物和电化学双重作用下降解,而微电流又可以刺激微生 物代谢活动。 把脱氮菌作为生物膜固定在一炭为材料的电极上,称为固定化微生物电极。 通过电极间通电产生的电解氢作为电子供体。
2、固定化催化氧化技术 将 Nitrosomonas ,Nitrosospira,Nitrosococcus和Nitrosolobus 等亚硝化细菌混 合固定在一起。 选择合适的无机催化剂(如含铁化合物)。
废水中的NH4+ 首先被微生物氧化成NO2-、NO3-, 再在无机催化剂下分解为N2和 N2O。
以下是两种传统生物脱氮工艺:
a 、传统三级生物脱氮工艺:将含碳有机物的去除和氨化、硝化及反硝化
在三个池中独立进行。

污水生物法脱氮除磷技术及应用

污水生物法脱氮除磷技术及应用

3.同时生物脱氮除磷典型工艺
混合液回流 Ri 出水 进水 厌氧池 好氧池 沉淀池
缺氧池
回流污泥 R 剩余污泥
图2-23 典型的 好氧池 二沉池 出水
剩余污泥 污泥回流 (a)流程1
混合液回流 进水 前置缺氧池 出水 厌氧池 缺氧池 好氧池 二沉池
⑥有毒物质 硝化与反硝化过程都受有毒物质的影响,硝化菌 更易受到影响。对硝化菌有抑制作用的有毒物质有 Zn、Cu、Hg、Cr、Ni、Pb、CN-、HCN等。
3)生物脱氮的典型工艺
混合液回流
进水
缺氧池
好氧池
二沉池
出水
污泥回流
空气
剩余污泥
图2-20 A/O生物脱氮工艺流程
2.污水生物除磷
1)生物除磷基本原理
③ pH值 硝化菌对pH值变化十分敏感,pH值在7.0~7.8时, 亚硝酸菌的活性最好;而硝酸菌在pH值为7.7~8.1时 活性最好。反硝化最适宜的pH值在7.0~7.5。 ④碳氮比 对于硝化过程,碳氮比影响活性污泥中硝化细菌所 占的比例,过高的碳氮比将降低污泥中硝化细菌的比 例。
⑤泥龄 硝化过程的泥龄一般为硝化菌最小世代时间的2 倍以上。当冬季温度低于10℃,应适当提高泥龄。
剩余污泥 污泥回流
(b)流程2
同时生物脱氮除磷A2/O的变形工艺
4、Bardenpho同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要功 能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。
5、UCT工艺
—含NO3-N的污泥直接回流到厌氧池,会引起反硝化作用, 反硝化菌将争夺除磷菌的有机物而影响除磷效果,因此 提出UCT(Univercity of Cape Town)工艺。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近年来, 工业废水和城市污水处理的生物脱 氮的技 术 研 究 、开 发 和 应 用 , 已 在 全 世 界 范 围 内 得到了长足进步, 并出现了许多新型工艺。生物 脱氮工艺有的已在国内外实际过程中得到了良 好的应用, 有的已显示出其良好的应用前景, 得 到广大研究者和工程技术人员的关注, 并在进行 不断深入研究。 参考文献
生物脱氮过程中, 通常把硝化段运行的 pH 值控制在 7.2~8.0 之间, 反硝化段 pH 控制在 7.5~ 9.2 之间。 3.2 温度硝化反应速度受温度影响很大, 其原因 在于温度对硝化细菌的增殖速度和活性影响很 大。两类硝化细菌的最宜温度为 30℃左右。
研究表明温度对反硝化速度的影响大小与反 硝化设备的类型(微生物悬浮生长型或固着型)、硝 酸盐负荷率等因素有关。流化床反硝化对温度的 敏感性比生物转盘和悬浮污泥的小得多。填料床 反硝化的反应速度受温度的影响比悬浮污泥法 小。不同硝酸盐负荷下, 温度对反硝化反应速率的 影响, 结果表明负荷低, 温度影响小; 反之亦然。 3.3 溶解氧: 溶解氧浓度影响硝化反应速度和硝化 细菌的生长速度, 硝化过程的溶解氧浓度, 一般建 议应维持在 1.0~2.0mg /L。
细菌分别在 7.0~7.8 和 7.7~8.1 时活性最强, pH 值 在这个范围以外, 其活性便急剧下降, 由此可见, pH 是影响硝化速度的重要因素。
在生物反应构筑物中, 硝化反应适宜的 pH 范围相对要宽一些。一些研究表明, 硝化细菌经过 一段时间驯化后, 低 pH 值比突然降低 pH 值的影 响小得多。经过驯化, 硝化反应可在低 pH 值(如 5.5)条件下进行。要使硝化反应的 pH 值从 7.0 降 到 6.0, 约需要驯化 10d。但突然降低 pH 值(如由 7.2 降到 5.8), 会使硝化反应速度骤降。当 pH 值升 高后, 硝化反应速度又会很快地恢复。
1 基本原因
图 1 氮在水中的存在形态与分类 生物脱氮的原理主要是经过硝化作用和反硝 化作用来完成的。 1.1 硝化作用 硝化作用是指 NH3 氧化成 NO2- , 然 后用氧化成 NO3- 的过程。
—32—
硝化细菌虽然几乎存在于所有的污水生物处 理系统中, 但是一般情况下, 其含量很少。除温度、 酸碱度等对硝化细菌的生长有影响外, 另有两个 主要原因: ( 1) 硝化细菌的比增长速度比生物处理 中( 如活性污泥) 的异养型细菌的比增长速度要小 一个数量级。对于活性污泥系统来说, 如果泥龄较 短, 排放剩余污泥量大, 将使硝化细菌来不及大量 繁殖。欲得到较好的硝化结果, 就需有较长的泥 龄。( 2) BOD5 与总氮( TKN) 的比例也影响活性污 泥中硝化细菌所占的比例。所以, 在微生物脱氮系 统中硝化作用的稳定和硝化速度的提高是影响整 个系统脱氮效率的一个关键。 1.2 反硝化作用
发酵科技通讯
第 36 卷
生物脱氮技术
杨俊杰 张秋 ( 莲花天安食业有限公司水处理 项城 466200)
摘 要: 本文论述了生物脱氮技术的发展历程, 生物脱氮工艺, 以及对生物脱氮的影响因素。 关键词: 生物脱氮 硝化 反硝化 影响因素
一般的活性污泥法以去除污水中可降解有机 物和悬浮物为主要目的, 对污水中氮、磷的去除没 有特殊要求, 但随着对水体环境质量要求的提高, 对 污 水 处 理 出 厂 的 氮 、磷 有 控 制 要 求 。 而 对 污 水 中氮、磷的处理有物化法和生物法, 但生物脱氮方 面的研究进展很快, 最早出现了三种用以去除 BOD和氮的生物脱氮系统: 即去碳、硝化、反硝化 各自分开的三级生物脱氮系统; 去碳、硝化同时进 行, 沉淀后再进行反硝化的二级生物脱氮系统以 及 去 碳 、硝 化 、反 硝 化 相 结 合 的 单 级 生 物 脱 氮 系 统。这三种系统都需要在硝化阶段加碱, 在反硝 化阶段投加有机物, 这使生物脱氮系统的运行费 用较高。为改进这些缺点, 20 世纪 80 年代初期, 又产生了将反硝化设备放置在处理系统最前面的 前置反硝化生物脱氮法, 又称缺氧、好氧生物脱氮 法, 这种 A/O 废水处理工艺为代表的生物脱氮技 术, 是目前最广泛采用的生物脱氮工艺。
水作为反硝化外加碳源。国内在硝化废水的生物 脱氮方面已成功地采用副产品粗酚作为外加碳 源。采用污水处理厂内厌氧消化污泥上清液作为 城市废水生物脱氮的碳源, 经测试发现它的组分 中 80%以上是挥发性脂肪酸, 因此它作碳源时反 硝化速 率 比 甲 醇 、乙 醇 作 碳 源 还 要 快 , 但 缺 点 是 将大量的氮带入到处理系统中, 增加了系统氮的 负荷。 3.4.3 内碳源: 内碳源主要指活性污泥微生物死亡、 自溶后释放出来的有机碳。为了利用内碳源来进 行反硝 化 脱 氮, 要 求 反 应 器 的 泥 龄 长 、污 泥 负 荷 低, 使微生物处于生长曲线稳定期的后部或衰亡 期。这样, 反应器的容积相应增大, 负荷率低。经 测定, 内碳源的反硝化速率极低, 约为上述两种 方法的十分之一左右。它的优点是在废水碳氮比 低时不必外加碳源也可达到脱氮目的, 此外由于 污泥产率低而减少了污泥处置的费用。 3.5 有毒物质: 某些重金属、络合阴离子和有毒有 机物对硝化细菌有毒害作用。另外, 氨态氮和亚 硝态氮对硝化细菌也有影响, 据研究, 当污水中 氨 氮 浓 度 小 于 200mg /L, 亚 硝 态 氮 浓 度 小 于 100mg /L 时, 对硝化作用没有影响。
第 36 卷第 2 期 2007 年 4 月
发酵科技通讯
的制糖废水) 。 2.1 悬 浮 污 泥 系 统 以 A/O 工 艺 为 代 表 作 简 单 介 绍:
图 2 A/O 工艺流程图 在 A/O 工艺中, 原废水中的 TKN 和 BOD 在 反硝化反应池中同时去除。反硝化池内不需要 O2, 所以比普通活性污泥法减少了动力。硝化池中 的硝化液( 含有硝态氮的活性污泥) 一部分回流到 反硝化池, 池内的反硝化脱氮菌以原污水中的有 机物作碳源, 以硝化液中 NOX- 中的氧作为电子受 体, 将 NOX-- N 还原成 N2, 不需外加碳源。为解决 剩余的 NOX-- N 进入沉淀池因脱氮反应而产生污 泥上浮, 可以在硝化反应器后再加一个反硝化反 应池和硝化池, 形成一个多级的反硝化生物脱氮 系统。此外还有 A2/O( 厌氧—缺氧—好氧生物脱 氮降磷工艺) , 氧化沟、桥本工艺等。 2.2 生物膜系统 与悬浮污泥系统相比, 生物膜系统的主要优 点是无需回流污泥, 且构筑物内可维持较高的生 物量, 因此, 水力停留时间较悬浮污染系统短, 负 荷率高, 脱氮效率高, 是一种较为经济适用的脱氮 工艺。 生物膜法脱氮系统中通常使反硝化过程和硝 化过程分别在两个处理构筑物内进行, 并使反硝 化设备内微生物处于缺氧状态。反硝化处理设备 可采用淹没式生物滤池、淹没式生物转盘和生物 流化床;硝化处理构筑物除上述三种外, 还可以用 生物滤池。同悬浮污泥系统—样, 生物膜脱氮系统 也可以分为内碳源系统和外加碳源系统。
3 影响因素
由于微生物脱氮系统对氮的去除主要是通过 硝化作用和反硝化作用实现的, 因而影响这两个 过程的一些环境因子都将对整个系统的氮去除产 生影响, 研究表明, 影响微生物脱氮的主要因素有 以下几个方面: 3.1 pH 硝化反应要消耗碱, 因此, 如果污水中没有 足够的碱度, 则随着硝化的进行, pH 会急剧下降。 而硝化细菌对 pH 十分敏感, 亚硝酸细菌和硝酸
在悬浮污泥反硝化系统中, 缺氧段溶解氧应 控制在 0.5mg /L 以下, 由于污泥絮凝物内部仍呈 厌氧状态, 同样可进行反硝化作用, 故而脱氮反 应并不要求溶解氧保持在零的状态。在膜法反硝 化系统中, 菌周围微环境的氧分压与大环境的氧 分压不同, 即使滤池内有一定的溶解氧, 生物膜 内层仍呈缺氧状态, 因此, 当缺氧段溶解氧控制 在 l ̄2mg /L 以下时也不影响反硝化的进行。 3.4 碳源 碳源物质主要是通过影响反硝化细菌 的活性来影响处理系统的脱氮效率。能为反硝化 细菌所利用的碳源是多种多样的, 但从废水生化 处理生物脱氮的角度来看可分成三类: 3.4.1 废 水 中 所 含 的 有 机 碳 源 废 水 中 各 种 有 机 基 质 , 例 如 有 机 酸 类 、醇 类 、碳 水 化 合 物 或 烷 烃 类、苯 酸 盐 类 、酚 类 和 其 他 的 苯 衍 生 物 都 可 以 作 为反硝化过程中的电子供体(碳源)。一般认为, 当 废水中所含碳(BOD5)与总氮的比值大于 3: 1 时 , 无需外加碳源, 即可达到脱氮目的。这类碳源最 经济, 因而为大多数微生物脱氮系统所采用。 3.4.2 外加碳源 当废水的 BOD5 与总氮比值小于 3: 1 时, 需另外投加碳源才能达到理想的去氮效 果。外加碳源大多采用甲醇, 因为它氧化分解产 物为二氧化碳和水, 不留任何难分解的中间产 物, 价格也较低廉。欧美各国在饮用水的反硝化 中采用乙醇, 避免残余的甲醇对人体的毒性作 用, 但费用比甲醇略贵。为了降低成本, 目前已利 用淀粉 厂 、酿 造 厂 、豆 制 品 厂 等 的 高 浓 度 有 机 废
反硝化包括异化反硝化和同化反硝化, 在生 物脱氮技术中以异化反硝化为主:反硝化菌在 DO 浓 度 很 低 的 环 境 中 , 一 般 情 况 下 DO 值 在 低 于 0.5mg/L 时, 反硝化才能正常运行。利用硝酸盐中 的氧( NOx-- O) 作为电子受体, 有机物作为碳源及 电子供体而得到降解。
2 生物脱氮的工艺流程
生物脱氮的工艺流程, 根据细菌在系统中存 在的状态可分为悬浮物污泥系统和生物膜法系统 两大类, 每一大类又可分为去碳、硝化、反硝化结 合的单级污泥系统以及去碳、硝化、反硝化相分隔 的多级污泥系统。此外, 根据脱氮时所用的碳源, 还可将其细分为两类: 内碳源即利用原水中的碳 和内源性碳和外加碳源即另外投加甲醇或含碳丰 富的其他工业废水 ( 如一些含 N 较低 BOD 较高
溶解氧对反硝化脱氮有抑制作用, 其机制为 阻抑硝酸盐还原酶的形成或者充当电子受体从而 竞争性地阻碍了硝酸盐的还原。虽然氧对反硝化
—33—
发酵科技通讯
相关文档
最新文档