换热器换热面积选型计算方法精品课件
换热器选型和计算ppt课件
三、流体流动方式:
a. 逆流:冷热流体沿传热面两侧流向相反。 b. 顺流:冷热流体沿传热面两侧流向相同。 c. 错流:两流体垂直交叉流动。 d. 折流:一侧流体只沿一个方向流动,另一
侧流体反复改变流向来回折返流动。
.
17
1、逆流和并流时的tm 逆流 T1
并流 T1
t2
t1
t1T1t2 T2
t2T2t1
.
2
一、换热理论
1. 换热概述 2. 热传导 3. 对流传热
二、管壳式换热器
三、两流体间传热过程计算
四、管壳式换热器选型步骤
.
3
一、换热理论
1、传热概述
热量的传递简称传热 。
生产中的应用: 物料的加热或冷却; 热量与冷量的回收利用; 设备或管路的保温。
传热的基本方式:
热传导; 对流; 热辐射。
.
总传热推动力 总热阻
式中,K─总传热系数,W/(m2·℃)或W/(m2·K); Q─总传热速率,W或J/s; A─总传热面积,m2; tm─两流体的平均温差,℃或K。
.
14
一、热量衡算
q 热流体 m 1
G1, T1,cp1,H1
t2 h2
列管换热器
q 冷流体 m 2
G2, t2,cp2,h1
T2 H2
.
23
5. 核算总传热系数K; 分别计算管程和壳程的,确定污垢热阻Rd,求
出K,与选取的K估比较,保证K在经验范围内,并 与K估相差不大。若相差很大,回到4改变管程流速 u1来调整总传热系数K。
6. 计算总传热面积A;
根据A=Q/ Ktm计算A,并与选定的换热器传热面 积A选比较,应有10%~25%的裕量。若不能达到裕量 要求,应回到3重新选取K估估算并选型。
物料换热操作—换热器换热面积的确定(化工单元操作课件)
(3)气体的热导率
气体的热导率很小,不利于传热,因此用来保温或隔热。
如工业上用玻璃棉作保温材料,就是因为其空隙率大而使里面有空气的缘故。
化工单元操作技术
一、热传导的基本定律
4、影响热导率的因素:
(1)物质的组成状态
金属的热导率最大,固体非金属的
次之,液体较小,气体最小。
(2)温度
温度升高,金属的热导率降低,非金属的升高,液体的降低(水、甘油除外),气体的升高。
八、传热平均温差
并流和逆流时传热平均温差的求算
注:一般规定热流体的进口端
为换热器的进口端
注:式中Δtm——冷热流体的平均温差,K
Δt1, Δt2——换热器两端冷、热流体的温度差,K
1
1+2
≤2时,可按算术平均值计算,即Δtm=
2
2
当
化工单元操作技术
【例2】 在套管换热器内,热流体温度由90℃冷却70℃,冷流体温度由20℃上升到
A—平壁的导热面积,m2
λ—各层平壁的热导率,W/m•K
δ—各层平壁的厚度m
t1,t4—最内侧喝最外侧的温度
t 3
b3
3 A 3
t2 t3
t4
x/
m
多层平壁稳态导热温度分
布
例1:有一工业炉,如图所示,其炉壁由以下三种材料由里向外组成:耐火砖,厚度为
240mm,热导率为1.2W/m•K;保温砖,厚度为120mm,热导率为0.2W/m•K;建筑转,
α液体>α气体
(2)对流形成的原因:
α强制对流>α自然对流
(3)流体相变情况:
α有相变>α无相变
(4)流体的流动状态:
α湍流>α层流
换热器的换热面积计算
换热器热量及面积【2 】盘算
一、热量盘算 1.
一般式
Q=Wh(Hh,1- Hh,2)= Wc(Hc,2- Hc,1)
式中:
Q为换热器的热负荷,kj/h或kw;
W为流体的质量流量,kg/h;
H为单位质量流体的焓,kj/kg;
下标c和h分离表示冷流体和热流体,下标1和2分离表示换热器的进口和出口.
2.无相变化
Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)
式中
cp为流体平均定压比热容,kj/(kg.℃);
T为热流体的温度,℃;
T为冷流体的温度,℃
二、面积盘算
1、总传热系数K
管壳式换热器中的K值如下表
注:
1w=1J/s=3.6kj/h=0.86kcal/h
1kcal=4.18kj 2.
温差
(1)逆流
热流体温度T:T1→T2
冷流体温度t:t2←t1
温差△t:△t1→△t2
△tm=(△t2-△t1)/㏑(△t2/△t1)(2)并流
热流体温度T:T1→T2
冷流体温度t:t1→t2
温差△t:△t2→△t1
△tm=(△t2-△t1)/㏑(△t2/△t1)
3.面积盘算
S=Q/(K. △tm)
三、管壳式换热器面积盘算
S=3.14ndL
个中,S为传热面积m2.n为牵制的管数.d为管径,m;L为管长,m.
四、留意事项
冷凝段:潜热(依据汽化热盘算)
冷却段:显热(依据比热容盘算。
换热器换热面积是如何计算
换热器换热面积是如何计算以夹套式换热器换热面积计算,计算过程如下:1、加热器计算共9个参数1热流量、2传热系数与换热面积、3对数平均温差、4冷侧流体质量流量与比热容、5热侧流体质量流量与比热容、67热侧流体进出口温度、89冷侧流体进出口温度,需要知道其中5个就可以计算。
2、基本计算原理是热平衡。
假设你的水是常压,从20℃加热到100℃零界点就可以,无须汽化,温升控制1.3℃/min,需要时间=80℃÷1.3℃/min=62min,按1个小时处理,内胆水容积按1m3常压计算,即1小时要把1m3水从20℃加热到100℃。
热侧流体放热量×热效率(设计一般按100%考虑)=冷侧流体吸热量,从20℃加热到100℃,平均温度60℃,密度1000kg/m3,比热容4.2kJ/(kg.℃),则水的吸热量=1000kg/h*80℃*4.2kJ/(kg.℃)=336000kJ/h。
蒸汽假设为0.2MPa.g饱和水蒸气,温度133℃,焓值2726kJ/kg,冷凝水温度105℃,焓值440kJ/kg,需要蒸汽流量=336000kJ/h÷(2726-440)kJ/kg=147kg/h,可以取150kg/h。
现在有了换热量336000kJ/h,水进口温度20℃,水出口温度100℃,水流量1m3/h,蒸汽进口温度133℃,冷凝水出口温度105℃,蒸汽流量150kg/h。
5、蒸汽和水都从上面进,下面出,为顺流,对数平均温差= ((133-20)- (105-100))/ln((133-20)/(105-100))=34.6381℃304不锈钢材质,圆筒、水-水蒸气换热,总传热系数按2000W/(m2.℃)计算,换热面积=换热量÷对数平均温差÷传热系数= (336000kJ/h÷3600kJ/kW)÷(34.6381℃*2kW/(m2.℃))=1.35m2假设中这个热侧是水蒸气变为过冷水,存在相变和过冷,所以应该分段考虑,按上述流程原理,先计算冷凝段放热量及换热面积,再计算过冷段放热量及换热面积;若实际不过冷不必分段计算。
换热器的换热面积计算图文稿
换热器的换热面积计算集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)
换热器热量及面积计算
一、热量计算1、
一般式
Q=Wh(Hh,1-Hh,2)=Wc(Hc,2-Hc,1)
式中:
Q为换热器的热负荷,kj/h或kw;
W为流体的质量流量,kg/h;
H为单位质量流体的焓,kj/kg;
下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。
2、无相变化
Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)
式中
cp为流体平均定压比热容,kj/(kg.℃);
T为热流体的温度,℃;
T为冷流体的温度,℃
二、面积计算
三、
1、总传热系数K
管壳式换热器中的K值如下表
注:
1w=1J/s=3.6kj/h=0.86kcal/h 1kcal=4.18kj2、
温差
(1)逆流
热流体温度T:T1→T2
冷流体温度t:t2←t1
温差△t:△t1→△t2
△tm=(△t2-△t1)/㏑(△t2/△t1)
(2)并流
热流体温度T:T1→T2
冷流体温度t:t1→t2
温差△t:△t2→△t1
△tm=(△t2-△t1)/㏑(△t2/△t1)
3、面积计算
S=Q/(K.△tm)
三、管壳式换热器面积计算
S=3.14ndL
其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。
四、注意事项
冷凝段:潜热(根据汽化热计算)
冷却段:显热(根据比热容计算。
换热器的换热面积计算
换热器热量及面积计算
一、热量计算1、
一般式
Q=Wh(Hh,1-Hh,2)=Wc(Hc,2-Hc,1)
式中:
Q为换热器的热负荷,kj/h或kw;
W为流体的质量流量,kg/h;
H为单位质量流体的焓,kj/kg;
下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。
2、无相变化
Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)
式中
cp为流体平均定压比热容,kj/(kg.℃);
T为热流体的温度,℃;
T为冷流体的温度,℃
二、面积计算
1、总传热系数K
管壳式换热器中的K值如下表
注:
1w=1J/s=3.6kj/h=0.86kcal/h
1kcal=4.18kj2、
温差
(1)逆流
热流体温度T:T1→T2
冷流体温度t:t2←t1
温差△t:△t1→△t2
△tm=(△t2-△t1)/㏑(△t2/△t1)(2)并流
热流体温度T:T1→T2
冷流体温度t:t1→t2
温差△t:△t2→△t1
△tm=(△t2-△t1)/㏑(△t2/△t1)
3、面积计算
S=Q/(K.△tm)
三、管壳式换热器面积计算
S=3.14ndL
其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。
四、注意事项
冷凝段:潜热(根据汽化热计算)
冷却段:显热(根据比热容计算
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。
板式换热器换热面积的计算
板式换热器选型计算的方法及公式(1)求热负荷 Q: Q=G.ρ.CP. tQ—换热量(取冷热流体换热量的均匀值),w;t—流体出入口温差,K。
(2) 求冷热流体出入口温度:t 2=t1+Q /G .ρ.CP(3)冷热流体流量:G= Q / .ρCP .(t2-t1 )(4)求均匀温度差 tmtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2或-t1)tm=(T1-t2)+(T2-t1)/2 (5)选择板型若全部的板型选择完,则进行结果剖析。
(6)由K值范围,计算板片数范围Nmin,NmaxNmin = Q / Kmax .tm.F P.βNmax = Q / Kmin .tm.F P.β(7)取板片数 N(Nmin≤N≤Nmax)若 N已达Nmax,做(5)。
(8)取 N的流程组合形式,若组合形式取完则做(7)。
(9)求 Re,NuRe = W .de /νNu =a1.Re a2.Pr a3(10)求 a,K传热面积Fa = Nu .λ/ deK= 1 / 1/a a γγδ / λh+1/ c+ c+ c+ 0F= Q /K .tm.β(11)由传热面积F求所需板片数NNNN=F/ Fp+ 2(12)若 N<NN,做(8)。
(13)求压降pEu = a4.Re a5p= Eu .ρ.W2.ф(14)若 p>允,做(8);若 p≤Δ允,记录结果,做(8)。
注: 1.(1)、(2)、(3)依据已知条件的状况进行计算。
2.当 T1-t 2=T2-t 1时采纳tm = (T1-t2)+(T2-t1)/23.修正系数β一般~。
4.压降修正系数ф,单流程ф度 =1~,二流程、三流程ф=~,四流程ф=~。
5.a1、a2、a3、a4、a5为常系数。
选型计算各公式符号的意义及单位符号意义单位符号意义单位Q热负荷W Cp比热 KJ/kg℃ρ流体密度3tm均匀温差℃Kg/ mG体积流量3F传热面积2 m/s mK传统系数2W流速m/s W/ m℃T1、T2热介质出入口温度℃t 1、t 2热介质出入口温度℃m流程数n流道数α对流换热系数2f单通道截面积2 W/ m℃mν运动粘度2λ介质导热系数W/ m℃m/sp阻力损失Mpa Eu Eu =p / ρ. W2 无量纲Re雷诺数 Re = W .de / ν无量纲de当量直径mNu Nu =de.α / γ无量纲Pr普朗特数λ板片导热系数W/ m℃t板厚m 0β修正系数h、c热、冷介质角标γ热介质污垢热阻2γ冷介质污垢热阻m℃/WP c。
《换热器教学》课件
检查漏水
检查换热器是否存在漏水问 题,及时修复,避免温度、压力和 流量等参数,及时发现异常 情况。
换热器的前沿研究和发展趋势
新材料应用
研究新型材料在换热器中的应用,提高换热器的传热效率和耐久性。
智能控制技术
结合传感器和自动控制技术,实现换热器的智能化运行和优化控制。
《换热器教学》PPT课件
换热器是热力学和传热学中极为重要的设备之一。通过本课件,我们将深入 了解换热器的基本概念、分类、工作原理以及设计计算方法,展示换热器在 各个领域的应用和实例,并探讨换热器的维护和故障排除方法,以及前沿研 究和发展趋势。
换热器的基本概念
定义清晰
换热器是用于传输热量的设备,通过在不同流体之间传递热量来达到冷却或加热的目的。
节能与环保
研究节能和环保换热器技术,降低能源消耗和环境影响。
总结和展望
通过本课件的学习,我们深入了解了换热器的基本概念、分类、工作原理、设计计算、应用实例、维护 故障排除以及前沿研究和发展趋势。希望这些知识能够帮助您更好地理解和应用换热器技术。
管道式换热器
通过多个管道的连接和散热片 的设计,提高换热效率。
换热器的设计和计算
1 传热面积计算
根据需要传热的热量大小和流体特性计算换热器的传热面积。
2 流体流量计算
通过流体的质量和流速等参数计算流体流量。
3 换热器尺寸设计
根据换热器的传热面积、流体流量和其他参数,设计换热器的尺寸。
换热器的应用和实例
工作原理
换热器利用热量传导原理,在两个或更多流体之间建立热量交换,实现热量平衡。
关键组成
换热器由管束、壳体、传热表面和流体流道等组成。
换热器的分类和工作原理
板式换热器换热面积选型计算
板式换热器换热面积选型计算板式换热器是一种常用的换热设备,广泛应用于石油化工、化肥、冶金、医药、食品、造纸等行业中。
选用合适的换热面积对于保证换热器的正常工作和提高换热效果至关重要。
下面将详细介绍板式换热器换热面积的选型计算。
首先,我们需要明确一些基本概念和参数。
1.热传导方程热传导方程描述了热量传递的基本原理。
对于板式换热器而言,可以简化为以下形式:Q = U * A * ΔTlm其中,Q为换热器的换热量,U为整体换热系数,A为换热面积,ΔTlm为对数平均温差。
2.对数平均温差对数平均温差是计算换热器换热面积的重要参数。
对于共流、逆流和交叉流三种流体流向情况,计算公式如下:对于共流:ΔTlm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)对于逆流:ΔTlm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)对于交叉流:ΔTlm = (ΔT1 - ΔT2) / ΔT3 = (ΔT1 - ΔT2) / ln(ΔT1 /ΔT2)3.整体换热系数整体换热系数U是指在一定流量、温度条件下,单位换热面积上的热量传递量与平均温差之比。
换热器的整体换热系数由传热面的材料、换热介质、流体流速等因素决定。
一般在选型计算中,根据具体工艺要求和经验值确定整体换热系数。
4.温差温差指的是进出口流体的温度差,能够直观地展示换热器的换热效果。
温差越大,热传导速率越快,换热效果越好。
在进行板式换热器换热面积选型计算时,可以按照以下步骤进行:1.确定换热介质及其物性参数首先,需要明确换热的介质是什么,包括名称、流量、进出口温度等参数。
然后,根据介质的物性参数如比热容、导热系数等,计算出介质的换热特性。
2.确定换热方式和流体流向根据具体工艺要求和换热效果需求,确定换热方式是共流、逆流还是交叉流。
根据实际工艺条件,确定流体的流向。
3.确定整体换热系数根据具体工艺要求和经验值,确定整体换热系数。
4.计算对数平均温差根据确定的换热方式和流体流向,利用对数平均温差计算公式,计算出对数平均温差ΔTlm。
板式换热器选型计算课件
板式换热器选型计算板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个工程设计人员都是非常重要的。
目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。
一、手工简易算法计算公式:F=Wq/(K*△T)式中 F —换热面积m2Wq—换热量WK —传热系数W/m2·℃△T—平均对数温差℃根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。
选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。
若实际传热系数小于设定传热系数,则应降低设定传热系数,重新计算。
若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。
经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。
这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确,应用范围窄。
造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。
此外样本所提供的传热特性曲线及流阻特性曲线仅为水―水换热系统,在使用中有很大的局限性。
以下给出佛山显像管厂总装厂房低温冷却水及40℃热水两套换热系统实例加以说明采用手工简易算法得出的计算结果与实测结果的差别:普朗特数Prh Prc(三)平均对数温差(逆流)△T=((Th1-Tc2)-(Th2-Tc1))/ln((Th1-Tc2)/(Th2-Tc1))或△T=((Th1-Tc2)+(Th2-Tc1))/2 (分子等于零)(四)计算换热量Wq=Qh*γh*Cph*(Th1-Th2)=Qc*γc*Cpc*(Tc2-Tc1) W(五)设备选型根据样本提供的型号结合流量定型号,主要依据于角孔流速。
板式换热器换热面积的计算
Re=W.de /ν
Nu=a1.Rea2.Pra3
(10)求a,K传热面积F
a=Nu.λ /de
K=1/1/ah+1/ac+γc+γc+δ/λ0
F=Q/K.Δtm.β
(11)由传热面积F求所需板片数NN
NN=F/Fp+2
(12)若N<NN,做(8)。
(13)求压降Δp
Eu=a4.Rea5
对流换热系数
W/m2℃
f
单通道截面积
m2
ν
运动粘度
m2/s
λ
介质导热系数
W/m℃
Δp
阻力损失
Mpa
Eu
Eu=Δp/ρ.W2
无量纲
Re
雷诺数Re=W.de/ν
无量纲
de
当量直径
m
Nu
Nu=de.α/γ
无量纲
Pr
普朗特数
λ0
板片导热系数
W/m℃
t
板厚
m
β
修正系数
h、c
热、冷介质角标
γP
热介质污垢热阻
m2℃/W
γc
冷介质污垢热阻
(5)选择板型
若所有的板型选择完,则进行结果分析。
(6)由K值范围,计算板片数范围Nmin,Nmax
Nmin=Q/Kmax.Δtm.FP.β
Nmax=Q/Kmin.Δtm.FP.β
(7)取板片数N(Nmin≤N≤Nmax)
若N已达Nmax,做(5)。
(8)取N的流程组合形式,若组合形式取完则做(7)。
板式换热器选型计算的方法及公式
(1)求热负荷Q:Q=G.ρ.CP.Δt
Q—换热量(取冷热流体换热量的平均值),w;
演示文档换热器的换热面积计算.doc
换热器热量及面积计算
一、热量计算 1、
一般式
Q=Wh(Hh,1- Hh,2)= Wc(Hc,2- Hc,1)
式中:
Q为换热器的热负荷,kj/h或kw;
W为流体的质量流量,kg/h;
H为单位质量流体的焓,kj/kg;
下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。
2、无相变化
Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)
式中
cp为流体平均定压比热容,kj/(kg.℃);
T为热流体的温度,℃;
T为冷流体的温度,℃
二、面积计算
1、总传热系数K
管壳式换热器中的K值如下表
注:
1w=1J/s=3.6kj/h=0.86kcal/h
1kcal=4.18kj 2、
温差
(1)逆流
热流体温度T:T1→T2
冷流体温度t:t2←t1
温差△t:△t1→△t2
△tm=(△t2-△t1)/㏑(△t2/△t1)(2)并流
热流体温度T:T1→T2
冷流体温度t:t1→t2
温差△t:△t2→△t1
△tm=(△t2-△t1)/㏑(△t2/△t1) 3、面积计算
S=Q/(K. △tm)
三、管壳式换热器面积计算。
换热器的换热面积计算
换热器热量及面积计算(一)
一、热量计算 1、
一般式
Q=Wh(Hh,1- Hh,2)= Wc(Hc,2- Hc,1)
式中:
Q为换热器的热负荷,kj/h或kw;
W为流体的质量流量,kg/h;
H为单位质量流体的焓,kj/kg;
下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。
2、无相变化
Q=Whcp,h(T1-T2)=Wccp,c(t2-t1)
式中
cp为流体平均定压比热容,kj/(kg.℃);
T为热流体的温度,℃;
T为冷流体的温度,℃
二、面积计算
1、总传热系数K
管壳式换热器中的K值如下表
注:
1w=1J/s=3.6kj/h=0.86kcal/h
1kcal=4.18kj 2、
温差
(1)逆流
热流体温度T:T1→T2
冷流体温度t:t2←t1
温差△t:△t1→△t2
△tm=(△t2-△t1)/㏑(△t2/△t1)(2)并流
热流体温度T:T1→T2
冷流体温度t:t1→t2
温差△t:△t2→△t1
△tm=(△t2-△t1)/㏑(△t2/△t1) 3、面积计算
S=Q/(K. △tm)
三、管壳式换热器面积计算
S=3.14ndL
其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。
四、注意事项
冷凝段:潜热(根据汽化热计算)
冷却段:显热(根据比热容计算。
换热机组换热面积
换热机组换热面积
换热面积的计算涉及到许多参数,包括传热介质的物性参数、传热系数、被传热介质的流量及物性参数、流体状态参数等。
具体来说,不同的换热设备有不同的计算方法。
1. 管壳式换热器:换热面积A可以通过公式A=Q/(U×ΔT)来计算,其中A为换热面积,Q为热量,U为传热系数,ΔT为传热介质的温度差。
2. 换热管式换热器:换热面积A可以通过公式A=(π×d×l×n)/(e×N)来计算,其中d为管子外径,l为管长,n为管数,e为管子壁厚度,N为管板孔数。
3. 板式换热器:换热面积A可以通过公式A=Q/(U×ΔT)来计算,其中Q为传热量,U为传热系数,ΔT为介质温差。
以上是几种常见的换热设备的换热面积计算方法,更多类型的换热设备的换热面积计算方法需要参照具体的专业资料和手册。
另外,在计算换热面积时,需要注意确定传热系数及被传热介质的物性参数、确定传热介质流量、采用比较简单的计算方法以及根据实际工艺数据进行检验和验证。
换热器换热面积选型计算方法精品课件
12
五、管程和壳程数的确定
1.管程数
当流体的流量较小或传热面积较大而需管数很多时, 有时会使管内流速较低,对流系数较小。
为提高管内流速,可采用多管程。
但管程数过多,管程流动阻力加大,增加动力费用;多程 会使平均温度差下降;多程隔板使管板上可利用面积减少
标准中管程数有:1、2、4和6程,多程时应使每程管子数 大致相等。
<1
精品 PPT 欢迎下载 可修改
2.4
7
三、流体两端温度的确定
若冷、热流体的温度都由工艺条件所规定,就不存在确 定两端温度的问题。
若其中一个流体已知进口温度,则出口温度应由设计者 来确定。
例如:用冷水冷却某热流体,冷却水进口温度可根据当地 气温条件作出估计,出口温度需根据经济衡算来决定。
➢为节省水量,出口温度提高,则传热面积要大些; ➢为减少传热面积,出口温度降低,则要增加水量。
N ——排列管子数目;t—管心距
——管板利用率
正三角形排列 ——2管程:0.7-0.85; >4管程:0.6-0.8
正方形排列 —— 2管程:0.55-0.7 ; >4管程:0.45-0.65
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D t(nc 1) 2b' 式中: t—管心距,m;nc —横过管束中心线的管数; b’—管束中心线上最外层管的中心至壳体内壁的距离.
管程数m计算: m u u'
u——管程内流体的适精品宜P流PT速欢;迎u下’载——可修管改程内流体的实际流体。 13
2.壳程数
当温差校正系数 t 低于0.8,可采用壳方多程。
如:在壳体内安装一块与管束平行的隔板,流体在壳体 内流经两次,称为两壳程。
但由于隔板在制造、安装和检修等方面都有困难,故一 般不采用壳方多程的换热器,而是几个换热器串联使用
管间距:两相邻换热管中心的距离。其值的确定需要考虑 以下几个因素:
① 管板强度; ② 清洗管子外表面时所需要的空隙; ③ 换热管在管板上的固定方法。
通常,胀管法取t =(1.3~1.5)d0,且相邻两管外壁间距不 应小于6mm,即t≥6+d0
焊接法取t =1.25d0。
精品 PPT 欢迎下载 可修改
精品 PPT 欢迎下载 可修改
14
六、折流挡板
作用: ①提高壳程内流体的流速;
②加强湍流强度; ③提高传热效率; ④支撑换热管。
形式:
圆缺形
圆盘形
精品 PPT 欢迎下载 可修改
15
最常用的为圆缺形挡板,切去的弓形高度约为外壳内
径的10%~40%,一般取20%~25%。
两相邻挡板的距离(板间距)h为外壳内径D的(0.2~1)倍。
目前列管式换热器系列标准中管径具有: Φ25mm × 2.5mm、 Φ 19mm × 2mm
精品 PPT 欢迎下载 可修改
9
2.管长
以清洗方便及合理使用管材为原则
合理的换热器管长:1.5m、2m、3m、6m等 管子长度与公称直径之比,一般为4~6 ,对直径小 的换热器可取大些。
精品 PPT 欢迎下载 可修改
先流体的压强、防腐蚀和精清品 洗PPT等欢要迎求下,载 再可修校改核对流传热系数和压强降。5
二、流体流速的选择
•增加流速
对流传热系数↑ ,污垢热阻↓→总传热系数↑ → 传热面积↓ 流动阻力↑和动力消一耗定传↑热面积
还需考虑结构上:
高流速→管子数目↓→较长管子或增加程数
管子太长不易清洗,且管长都有一定标准;
12
五、管程和壳程数的确定
1.管程数
当流体的流量较小或传热面积较大而需管数很多时, 有时会使管内流速较低,对流系数较小。
为提高管内流速,可采用多管程。
但管程数过多,管程流动阻力加大,增加动力费用;多程 会使平均温度差下降;多程隔板使管板上可利用面积减少
标准中管程数有:1、2、4和6程,多程时应使每程管子数 大致相等。
程数增加使平均温度差下降
精品 PPT 欢பைடு நூலகம்下载 可修改
6
常用的流速范围
流体种类 一般流体 易结垢流体
气体
流速 管程 壳程
0.5~3 0.2~1.5
>1 5~30
>0.5
不同粘度液体的流速
3~15
液体粘度
最大流速
>1500
0.6
1500~500
0.75
500~100
1.1
100~35
1.5
35~1
1.8
换热器课程设计
第三节 换热器计算方法
精品 PPT 欢迎下载 可修改
1
换热器:在不同温度的流体间传递热能的装置
称为换热器。
在化工、石油、动力、制冷、食品等行业中 广泛使用各种换热器,且它们是上述行业的通用 设备,占有十分重要的地位。
精品 PPT 欢迎下载 可修改
2
1、热力设计
根据使用单位提出的基本要求,合理地选择运 行参数,并进行传热计算。
• 板间距过小,不便于制造和维修,阻力较大; • 板间距过大,流体难于垂直地流过管束,使对流传热系
数下降。
系列标准中,采用的h(mm)值为: • 固定管板式:150,300,600; • 浮头式:150,200,300,480和600.
精品 PPT 欢迎下载 可修改
16
七、外壳直径的确定
要求:壳体内径等于或稍大于管板的直径。
计算出总传热系数、传热面积
2、流动设计
计算压降,为换热器的辅助设备提供选择参数
3、结构设计
根据传热面积的大小计算其主要零部件的尺寸
4、强度设计
应力计算。考虑换热器的受力情况,特别是在
高温高压下换热器的受压部件应按照国家压力容
器的标准设计。 精品 PPT 欢迎下载 可修改
3
管壳式换热器结构
• 管箱(封头) • 壳体 • 内部结构(包括管束等)
10
3.管子排列方法
正三角形、转角正三角形、正方形、转角正方形等
管板强度高;流体走短路 机会少,且扰动较大,因 而对流传热系数较高;相 同壳程内排更多管子。
便于清洗,适 于壳程流体易 结垢的场合; 但对流传热系 数较正三角形 的低。
精品 PPT 欢迎下载 可修改
介于正三角 形和正方形 之间。
11
4. 管间距t
<1
精品 PPT 欢迎下载 可修改
2.4
7
三、流体两端温度的确定
若冷、热流体的温度都由工艺条件所规定,就不存在确 定两端温度的问题。
若其中一个流体已知进口温度,则出口温度应由设计者 来确定。
例如:用冷水冷却某热流体,冷却水进口温度可根据当地 气温条件作出估计,出口温度需根据经济衡算来决定。
➢为节省水量,出口温度提高,则传热面积要大些; ➢为减少传热面积,出口温度降低,则要增加水量。
接管 壳体
壳程
折流挡板
管程 封头( 端盖、管箱)
管束
单管精程品 固PPT定欢管迎板下换载 热可修器改
管板
4
一、流体流径的选择-冷、热流体走管程或壳程
① 不洁净和易结垢的液体宜在管内-清洗比较方便 ② 腐蚀性流体宜在管内-避免壳体和管子同时腐蚀,便于清
洗 ③ 压强高的流体宜在管内-免壳体受压,节省壳程金属消耗
量 ④ 饱和蒸汽宜走管间-便于及时排除冷凝液 ⑤ 有毒流体宜走管内,使泄露机会较少 ⑥ 被冷却的流体宜走管间-可利用外壳向外的散热作用 ⑦ 流量小或粘度大的液体,宜走管间-提高对流传热系数 ⑧ 若两流体的温差较大,对流传热系数较大者宜走管间-减
少热应力 上述各点若不能同时兼顾,应视具体情况抓主要矛盾。
一般,设计时冷却水两端温度差可取为5~10℃。
精品 PPT 欢迎下载 可修改
8
四、管子的规格和排列方法
1.管径
应尽可能使流速高些,但一般不应超过前面 的流速范围
a. 小直径管子单位传热面积的金属消耗量小,传热系数 稍高,但容易结垢,不易清洗,用于较清洁的流体;
b. 大直径管子用于粘性大或易结垢的流体。