山东省烟台市2020学年高一数学下学期期末考试试题
2020-2021学年必修二高一数学下学期期末第八章 立体几何初步(章节专练解析版)
第八章 立体几何初步(章节复习专项训练)一、选择题1.如图,在棱长为1正方体ABCD 中,点E ,F 分别为边BC ,AD 的中点,将ABF ∆沿BF 所在的直线进行翻折,将CDE ∆沿DE 所在直线进行翻折,在翻折的过程中,下列说法错误..的是A .无论旋转到什么位置,A 、C 两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒【答案】D【详解】解:过A 点作AM⊥BF 于M ,过C 作CN⊥DE 于N 点在翻折过程中,AF 是以F 为顶点,AM 为底面半径的圆锥的母线,同理,AB ,EC ,DC 也可以看成圆锥的母线;在A 中,A 点轨迹为圆周,C 点轨迹为圆周,显然没有公共点,故A 正确;在B 中,能否使得直线AF 与直线CE 所成的角为60°,又AF ,EC 分别可看成是圆锥的母线,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B 正确;在C 中,能否使得直线AF 与直线CE 所成的角为90°,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故C 正确;在D 中,能否使得直线AB 与直线CD 所成的角为90︒,只需看以B 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故D 不成立;故选D .2.如图所示,多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,EF 到平面ABCD 的距离为2,则该多面体的体积V 为( )A .92B .5C .6D .152【答案】D【详解】解法一:如图,连接EB ,EC ,AC ,则213263E ABCD V -=⨯⨯=.2AB EF =,//EF AB2EAB BEF S S ∆∆∴=.12F EBC C EFB C ABE V V V ---=∴= 11132222E ABC E ABCD V V --==⨯=. E ABCDF EBC V V V --∴=+315622=+=. 解法二:如图,设G ,H 分别为AB ,DC 的中点,连接EG ,EH ,GH ,则//EG FB ,//EH FC ,//GH BC ,得三棱柱EGH FBC -,由题意得123E AGHD AGHD V S -=⨯ 1332332=⨯⨯⨯=, 133933332222GH FBC B EGH E BGH E GBCH E AGHD V V V V V -----===⨯==⨯=⨯, 915322E AGHD EGH FBC V V V --=+=+=∴. 解法三:如图,延长EF 至点M ,使3EM AB ==,连接BM ,CM ,AF ,DF ,则多面体BCM ADE -为斜三棱柱,其直截面面积3S =,则9BCM ADE V S AB -=⋅=.又平面BCM 与平面ADE 平行,F 为EM 的中点,F ADE F BCM V V --∴=,2F BCM F ABCD BCM ADE V V V ---∴+=, 即12933233F BCM V -=-⨯⨯⨯=, 32F BCM V -∴=,152BCM ADE F BCM V V V --=-=∴. 故选:D 3.下列命题中正确的是A .若a ,b 是两条直线,且a ⊥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ⊥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ⊥b ,a ⊥α,b 不在平面α内,则b ⊥α【答案】D【详解】解:如果a ,b 是两条直线,且//a b ,那么a 平行于经过b 但不经过a 的任何平面,故A 错误; 如果直线a 和平面α满足//a α,那么a 与α内的任何直线平行或异面,故B 错误;如果两条直线都平行于同一个平面,那么这两条直线可能平行,也可能相交,也可能异面,故C 错误; D 选项:过直线a 作平面β,设⋂=c αβ,又//a α//a c ∴又//a b//b c ∴又b α⊂/且c α⊂//b α∴.因此D 正确.故选:D .4.如图,正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,M 为棱BB 1的中点,则下列结论中错误的是( )A .D 1O⊥平面A 1BC 1B .MO⊥平面A 1BC 1C .二面角M -AC -B 等于90°D .异面直线BC 1与AC 所成的角等于60°【答案】C【详解】对于A ,连接11B D ,交11AC 于E ,则四边形1DOBE 为平行四边形 故1D O BE1D O ⊄平面11,A BC BE ⊂平面111,A BC DO ∴平面11A BC ,故正确对于B ,连接1B D ,因为O 为底面ABCD 的中心,M 为棱1BB 的中点,1MO B D ∴,易证1B D ⊥平面11A BC ,则MO ⊥平面11A BC ,故正确;对于C ,因为,BO AC MO AC ⊥⊥,则MOB ∠为二面角M AC B --的平面角,显然不等于90︒,故错误对于D ,1111,AC AC AC B ∴∠为异面直线1BC 与AC 所成的角,11AC B ∆为等边三角形,1160AC B ∴∠=︒,故正确故选C5.如图,在长方体1111ABCD A BC D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是A .平行B .相交C .异面D .平行或异面【答案】A【详解】 在长方体1111ABCD A BC D -中,11//AA BB ,E 、F 分别为1AA 、1BB 的中点,//AE BF ∴,∴四边形ABFE 为平行四边形,//EF AB ∴, EF ⊄平面ABCD ,AB 平面ABCD ,//EF ∴平面ABCD ,EF ⊂平面EFGH ,平面EFGH平面ABCD GH =,//EF GH ∴, 又//EF AB ,//GH AB ∴,故选A.6.如图所示,点S 在平面ABC 外,SB⊥AC ,SB=AC=2,E 、F 分别是SC 和AB 的中点,则EF 的长是A .1 BC .2D .12【答案】B【详解】取BC 的中点D ,连接ED 与FD⊥E 、F 分别是SC 和AB 的中点,点D 为BC 的中点⊥ED⊥SB ,FD⊥AC,而SB⊥AC ,SB=AC=2则三角形EDF 为等腰直角三角形,则ED=FD=1即故选B.7.如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上一点(不同于A ,B 两点),且PA AC =,则二面角P BC A --的大小为A .60°B .30°C .45°D .15°【答案】C【详解】 解:由条件得,PA BC AC BC ⊥⊥.又PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以BC ⊥平面PAC .又因为PC ⊂平面PAC , 所以BC PC ⊥.所以PCA ∠为二面角P BC A --的平面角.在Rt PAC ∆中,由PA AC =得45PCA ︒∠=. 故选:C .8.在空间四边形ABCD 中,若AD BC BD AD ⊥⊥,,则有A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADBC .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC【答案】D【详解】 由题意,知AD BC BD AD ⊥⊥,,又由BC BD B =,可得AD ⊥平面DBC ,又由AD ⊂平面ADC ,根据面面垂直的判定定理,可得平面ADC ⊥平面DBC9.直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于 A .30°B .45°C .60°D .90°【答案】C【详解】本试题主要考查异面直线所成的角问题,考查空间想象与计算能力.延长B 1A 1到E ,使A 1E =A 1B 1,连结AE ,EC 1,则AE ⊥A 1B ,⊥EAC 1或其补角即为所求,由已知条件可得⊥AEC 1为正三角形,⊥⊥EC 1B 为60,故选C .10.已知两个平面相互垂直,下列命题⊥一个平面内已知直线必垂直于另一个平面内的任意一条直线⊥一个平面内已知直线必垂直于另一个平面内的无数条直线⊥一个平面内任意一条直线必垂直于另一个平面⊥过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面其中正确命题个数是( )A .1B .2C .3D .4 【答案】A【详解】由题意,对于⊥,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故⊥错误;对于⊥,设平面α∩平面β=m ,n⊥α,l⊥β,⊥平面α⊥平面β, ⊥当l⊥m 时,必有l⊥α,而n⊥α, ⊥l⊥n ,而在平面β内与l 平行的直线有无数条,这些直线均与n 垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即⊥正确;对于⊥,当两个平面垂直时,一个平面内的任一条直线不不一定垂直于另一个平面,故⊥错误;对于⊥,当两个平面垂直时,过一个平面内任意一点作交线的垂线,若该直线不在第一个平面内,则此直线不一定垂直于另一个平面,故⊥错误;故选A .11.在空间中,给出下列说法:⊥平行于同一个平面的两条直线是平行直线;⊥垂直于同一条直线的两个平面是平行平面;⊥若平面α内有不共线的三点到平面β的距离相等,则//αβ;⊥过平面α的一条斜线,有且只有一个平面与平面α垂直.其中正确的是( )A .⊥⊥B .⊥⊥C .⊥⊥D .⊥⊥ 【答案】B【详解】⊥平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知⊥正确;⊥若平面α内有不共线的三点到平面β的距离相等,则α与β可能平行,也可能相交,不正确;易知⊥正确.故选B.12.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l⊥αD .如果两个平面有三个公共点,则这两个平面重合.【答案】A【详解】因梯形的上下底边平行,根据公理3的推论可知A 正确.两条直线和第三条直线所成的角相等,这两条直线相交、平行或异面,故B 错.当直线和平面相交时,该直线上有无数个点不在平面内,故C 错.如果两个平面有三个公共点且它们共线,这两个平面可以相交,故D 错.综上,选A .13.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为A .27πB .36πC .54πD .81π 【答案】B【详解】设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ⨯=π.14.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为A .8π3B .32π3C .8πD 【答案】C【详解】设球的半径为R ,则截面圆的半径为,⊥截面圆的面积为S =π2=(R 2-1)π=π,⊥R 2=2,⊥球的表面积S =4πR 2=8π.故选C. 15.已知圆柱的侧面展开图是一个边长为2的正方形,那么这个圆柱的体积是A .2πB .1πC .22πD .21π【答案】A【详解】由题意可知,圆柱的高为2,底面周长为2,故半径为1π,所以底面积为1π,所以体积为2π,故选A . 16.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法不正确的是( )A .原来相交的仍相交B .原来垂直的仍垂直C .原来平行的仍平行D .原来共点的仍共点【答案】B【详解】解:根据斜二测画法作水平放置的平面图形的直观图的规则,与x 轴平行的线段长度不变,与y 轴平行的线段长度变为原来的一半,且倾斜45︒,故原来垂直线段不一定垂直了;故选:B .17.如图所示为一个水平放置的平面图形的直观图,它是底角为45︒,腰和上底长均为1的等腰梯形,则原平面图形为 ( )A .下底长为1B .下底长为1+C .下底长为1D .下底长为1+【答案】C【详解】45A B C '''∠=,1A B ''= 2cos451B C A B A D ''''''∴=+=∴原平面图形下底长为1由直观图还原平面图形如下图所示:可知原平面图形为下底长为1故选:C18.半径为R 的半圆卷成一个圆锥,则它的体积是( )A 3RB 3RC 3RD 3R 【答案】C【详解】设底面半径为r ,则2r R ππ=,所以2R r =.所以圆锥的高2h R ==.所以体积22311332R V r h R ππ⎛⎫=⨯== ⎪⎝⎭.故选:C .19.下列说法中正确的是A .圆锥的轴截面是等边三角形B .用一个平面去截棱锥,一定会得到一个棱锥和一个棱台C .将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所围成的几何体是由一个圆台和两个圆锥组合而成D .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱【答案】D【详解】圆锥的轴截面是两腰等于母线长的等腰三角形,A 错误;只有用一个平行于底面的平面去截棱锥,才能得到一个棱锥和一个棱台,B 错误;等腰梯形绕着它的较长的底边所在的直线旋转一周的几何体,是由一个圆柱和两个圆锥组合而成,故C 错误;由棱柱的定义得,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,故D 正确.20.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+> 【答案】A【详解】如图,过A '作A H '⊥平面BCD ,垂足为H ,过A '作A G EF '⊥,垂足为G ,设,,A G d A H h A EG γ'''==∠=,因为A H '⊥平面BCD ,EF ⊂平面BCD ,故A H EF '⊥,而A G A H A '''⋂=,故EF ⊥平面A GH ',而GH ⊂平面A GH ',所以EF GH ⊥,故A GH θ'∠=,又A EH α'∠=,A FH β'∠=.在直角三角形A GE '中,sin d A E γ'=,同理cos d A F γ'=, 故sin sin sin sin sin h h d dαγθγγ===,同理sin sin cos βθγ=, 故222sin sin sin αβθ+=,故2cos 2cos 21sin 22αβθ--=, 整理得到2cos 2cos 2cos 22αβθ+=, 故()()2cos cos cos 22αβαβαβαβθ+--⎡⎤++-⎣⎦+=, 整理得到()()2cos cos cos αβαβθ+-=即()()cos cos cos cos αβθθαβ+=-, 若αβθ+≤,由04πθ<< 可得()cos cos αβθ+≥即()cos 1cos αβθ+≥, 但αβαβθ-<+≤,故cos cos αβθ->,即()cos 1cos θαβ<-,矛盾, 故αβθ+>.故A 正确,B 错误. 由222sin sin sin αβθ+=可得sin sin ,sin sin αθβθ<<,而,,αβθ均为锐角,故,αθβθ<<,22παβθ+<<,故CD 错误.故选:D.二、填空题 21.如图,已知六棱锥P ﹣ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =AB ,则下列结论正确的是_____.(填序号)⊥PB ⊥AD ;⊥平面P AB ⊥平面PBC ;⊥直线BC ⊥平面P AE ;⊥sin⊥PDA =.【答案】⊥【详解】⊥P A ⊥平面ABC ,如果PB ⊥AD ,可得AD ⊥AB ,但是AD 与AB 成60°,⊥⊥不成立,过A 作AG ⊥PB 于G ,如果平面P AB ⊥平面PBC ,可得AG ⊥BC ,⊥P A ⊥BC ,⊥BC ⊥平面P AB ,⊥BC ⊥AB ,矛盾,所以⊥不正确;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,所以⊥不正确;在R t⊥P AD 中,由于AD =2AB =2P A ,⊥sin⊥PDA =,所以⊥正确;故答案为: ⊥22.如图,已知边长为4的菱形ABCD 中,,60AC BD O ABC ⋂=∠=︒.将菱形ABCD 沿对角线AC 折起得到三棱锥D ABC -,二面角D AC B --的大小为60°,则直线BC 与平面DAB 所成角的正弦值为______.【详解】⊥四边形ABCD 是菱形,60ABC ∠=︒,,,AC OD AC OB OB OD ∴⊥⊥==,DOB ∴∠为二面角D AC B --的平面角,60DOB ∠=︒∴,OBD ∴△是等边三角形.取OB 的中点H ,连接DH ,则,3DH OB DH ⊥=.,,AC OD AC OB OD OB O ⊥⊥⋂=,AC ∴⊥平面,OBD AC DH ∴⊥,又,AC OB O AC ⋂=⊂平面ABC ,OB ⊂平面ABC ,DH ∴⊥平面ABC ,2114333D ABC ABC V S DH -∴=⋅=⨯=△4,AD AB BD OB ====ABD ∴∆的边BD 上的高h =1122ABD S BD h ∴=⋅=⨯=△设点C 到平面ABD 的距离为d ,则13C ABD ABD V S d -=⋅=△.D ABC C ABD V V --=,d ∴=∴=⊥直线BC 与平面DAB 所成角的正弦值为d BC = 23.球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为_______. 【答案】932或332【解析】设圆锥的底面半径为r,高为h,球的半径为R .由立体几何知识可得,连接圆锥的顶点和底面的圆心,必垂直于底面,且球心在连线所成的直线上.分两种情况分析:(1)球心在连线成构成的线段内因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为(2)球心在连线成构成的线段以外因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为24.如图,四棱台''''ABCD A B C D -的底面为菱形,P 、Q 分别为''''B C C D ,的中点.若'AA ⊥平面BPQD ,则此棱台上下底面边长的比值为___________.【答案】2 3【详解】连接AC,A′C′,则AC⊥A′C′,即A,C,A′,C′四点共面,设平面ACA′C′与PQ和QB分别均于M,N点,连接MN,如图所示:若AA′⊥平面BPQD,则AA′⊥MN,则AA'NM为平行四边形,即A'M=AN,即31''42A C=AC,''23A BAB∴=,即棱台上下底面边长的比值为23.故答案为23.三、解答题25.如图,在直四棱柱ABCD–A1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.(1)求证:AC 1⊥平面PBD ;(2)求证:BD ⊥A 1P .【答案】(1)见解析;(2)见解析【详解】(1)连接AC 交BD 于O 点,连接OP ,因为四边形ABCD 是正方形,对角线AC 交BD 于点O ,所以O 点是AC 的中点,所以AO =OC .又因为点P 是侧棱C 1C 的中点,所以CP =PC 1,在⊥ACC 1中,11C P AO OC PC==,所以AC 1⊥OP , 又因为OP ⊥面PBD ,AC 1⊥面PBD ,所以AC 1⊥平面PBD .(2)连接A 1C 1.因为ABCD –A 1B 1C 1D 1为直四棱柱,所以侧棱C 1C 垂直于底面ABCD ,又BD ⊥平面ABCD ,所以CC 1⊥BD ,因为底面ABCD 是菱形,所以AC ⊥BD ,又AC ∩CC 1=C ,AC ⊥面AC 1,CC 1⊥面AC 1,所以BD ⊥面AC 1,又因为P ⊥CC 1,CC 1⊥面ACC 1A 1,所以P ⊥面ACC 1A 1,因为A 1⊥面ACC 1A 1,所以A 1P ⊥面AC 1,所以BD ⊥A 1P .26.如图,在直三棱柱111ABC A B C -中,1BC BB =,12BAC BCA ABC ∠=∠=∠,点E 是1A B 与1AB 的交点,D 为AC 的中点.(1)求证:1BC 平面1A BD ;(2)求证:1AB ⊥平面1A BC .【答案】(1)见解析(2)见解析【解析】分析:(1)连结ED ,E 为1A B 与1AB 的交点,E 为1AB 中点,D 为AC 中点,根据三角形中位线定理可得1//ED B C ,由线面平行的判定定理可得结果;(2)由等腰三角形的性质可得AB BC ⊥,由菱形的性质可得11AB A B ⊥,1BB ⊥平面ABC ,可得1BC BB ⊥,可证明1BC AB ⊥,由线面垂直的判定定理可得结果.详解:(1)连结ED ,⊥直棱柱111ABC A B C -中,E 为1A B 与1AB 的交点,⊥E 为1AB 中点,D 为AC 中点,⊥1//ED B C又⊥ED ⊂平面1A BD ,1B C ⊄平面1A BD⊥1//B C 平面1A BD .(2)由12BAC BCA ABC ∠=∠=∠知,AB BC AB BC =⊥ ⊥1BB BC =,⊥四边形11ABB A 是菱形,⊥11AB A B ⊥. ⊥1BB ⊥平面ABC ,BC ⊂平面ABC⊥1BC BB ⊥⊥1AB BB B ⋂=,1,AB BB ⊂平面11ABB A ,⊥BC ⊥平面11ABB A⊥1AB ⊂平面11ABB A ,⊥1BC AB ⊥⊥1BC A B B ⋂=,1,BC A B ⊂平面1A BC ,⊥1AB ⊥平面1A BC27.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,平面PBC ⊥平面ABCD ,⊥BCD 4π=,BC ⊥PD ,PE ⊥BC .(1)求证:PC =PD ;(2)若底面ABCD 是边长为2的菱形,四棱锥P ﹣ABCD 的体积为43,求点B 到平面PCD 的距离.【答案】(1)证明见解析 (2)3. 【详解】 (1)证明:由题意,BC ⊥PD ,BC ⊥PE ,⊥BC ⊥平面PDE ,⊥DE ⊥平面PDE ,⊥BC ⊥DE .⊥⊥BCD 4π=,⊥DEC 2π=,⊥ED =EC ,⊥Rt⊥PED ⊥Rt⊥PEC ,⊥PC =PD .(2)解:由题意,底面ABCD 是边长为2的菱形,则ED =EC =⊥平面PBC ⊥平面ABCD ,PE ⊥BC ,平面PBC ∩平面ABCD =BC ,⊥PE ⊥平面ABCD ,即PE 是四棱锥P ﹣ABCD 的高.⊥V P ﹣ABCD 13=⨯2PE 43=,解得PE = ⊥PC =PD =2.设点B 到平面PCD 的距离为h ,⊥V B ﹣PCD =V P ﹣BCD 12=V P ﹣ABCD 23=, ⊥1132⨯⨯2×2×sin60°×h 23=,⊥h 3=.⊥点B 到平面PCD 的距离是3. 28.如图,在以A 、B 、C 、D 、E 、F 为顶点的五面体中,面ABCD 是等腰梯形,//AB CD ,面ABFE 是矩形,平面ABFE ⊥平面ABCD ,BC CD AE a ===,60DAB ∠=.(1)求证:平面⊥BDF 平面ADE ;(2)若三棱锥B DCF -a 的值. 【答案】(1)证明见解析;(2)1.【详解】(1)因为四边形ABFE 是矩形,故EA AB ⊥,又平面ABFE ⊥平面ABCD ,平面ABFE 平面ABCD AB =,AE ⊂平面ABFE , 所以AE ⊥平面ABCD ,又BD ⊂面ABCD ,所以AE BD ⊥,在等腰梯形ABCD 中,60DAB ∠=,120ADC BCD ︒∴∠=∠=,因BC CD =,故30BDC ∠=,1203090ADB ∠=-=,即AD BD ⊥, 又AE AD A =,故BD ⊥平面ADE ,BD ⊂平面BDF ,所以平面⊥BDF 平面ADE ;(2)BCD 的面积为2213sin12024BCD S a ==, //AE FB ,AE ⊥平面ABCD ,所以,BF ⊥平面ABCD ,2313D BCF F BCD V V a --∴==⋅==,故1a =.。
山东省烟台市高一数学上学期期末试题(含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.32.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值X围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<16.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alog m x中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可).12.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,当底面四边形A1B1C1D1满足条件时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).13.若直线m被两条平行直线l1:x﹣y+1=0与l2:2x﹣2y+5=0所截得的线段长为,则直线m的倾斜角等于.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值X围是.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的X围;(3)工厂生产多少台产品时,可使盈利最多?19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,某某数a的取值X围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.2015-2016学年某某省某某市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.3【分析】根据空间中的平行与垂直关系,得出命题A、B、C正确,命题D错误【解答】解:对于(1),空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,∴命题(1)错误;对于(2),若直线l与平面α平行,则直线l与平面α内的直线平行或异面,根据线面平行的性质得到命题(2)正确;对于(3),夹在两个平行平面间的平行线段相等;命题(3)正确;对于(4),垂直于同一条直线的两个直线平行、相交或异面,∴命题(4)错误.故正确的命题有2个;故选:C.【点评】本题考查了空间中的平行与垂直关系的应用问题,是基础题目.2.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.【分析】两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,利用两条直线相互平行的充要条件即可得出.【解答】解:∵两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,分别化为:y=﹣x﹣3,y=﹣,∴,﹣3≠﹣,解得a=﹣1.故选:A.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于中档题.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()【分析】将选项中各区间两端点值代入f(x),满足f(a)f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为f()=<0,f(1)=e﹣1>0,所以零点在区间()上,故选C.【点评】本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.【分析】根据三视图知几何体为一直四棱锥,结合图中数据求出该四棱锥的体积.【解答】解:由三视图知几何体为一直四棱锥,其直观图如图所示;∵正视图和侧视图是腰长为1的两个全等的等腰直角三角形,∴四棱锥的底面是正方形,且边长为1,其中一条侧棱垂直于底面且侧棱长也为1,∴该四棱锥的体积为×12×1=.故选:B.【点评】本题考查了由三视图求几何体体积的应用问题,解题的关键是判断几何体的形状,是基础题.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值X围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<1【分析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值X 围.【解答】解:函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1.故选:C.【点评】本题主要考查函数的零点的判定定理的应用,属于基础题.6.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.【分析】由题意设出球的半径,圆M的半径,二者与OM构成直角三角形,求出圆M的半径,然后可求球的表面积,截面面积,再求二者之比.【解答】解:设球的半径为R,圆M的半径r,由图可知,R2=R2+r2,∴R2=r2,∴S球=4πR2,截面圆M的面积为:πr2=πR2,则所得截面的面积与球的表面积的比为:.故选A.【点评】本题是基础题,考查球的体积、表面积的计算,仔细体会,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条【分析】先求出线段AB的长度为10,等于5的2倍,故满足条件的直线有3条,其中有2条和线段AB平行,另一条是线段AB的中垂线.【解答】解:线段AB的长度为=10,故在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有3条,其中有2条在线段AB的两侧,且都和线段AB平行,另一条是线段AB的中垂线,故选 C.【点评】本题考查两点间的距离公式的应用,线段的中垂线的性质,体现了分类讨论的数学思想.8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.【分析】根据扇形的弧长等于圆锥底面周长求出圆锥底面半径.【解答】解:圆锥的侧面积为,侧面展开图的弧长为=,设圆锥的底面半径为r′,则2πr′=,∴r′=.∴圆锥的全面积S=+=.故选:D.【点评】本题考查了圆锥的结构特征,面积计算,属于基础题.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③【分析】利用线面平行,面面平行的判定定理即可.【解答】解:点M,N分别为线段PB,BC的中点,o为AB的中点,∴MO∥PA,ON∥AC,OM∩ON=O,∴MO∥平面PAC;平面PAC∥平面MON,②③故正确;故选:C.【点评】考查了线面平行,面面平行的判断,属于基础题型,应熟练掌握.10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1【分析】函数F(x)=f(x)﹣a(0<a<1)的零点转化为:在同一坐标系内y=f(x),y=a 的图象交点的横坐标.作出两函数图象,考查交点个数,结合方程思想,及零点的对称性,根据奇函数f(x)在x ≥0时的解析式,作出函数的图象,结合图象及其对称性,求出答案.【解答】解:∵当x≥0时,f(x)=;即x∈[0,1)时,f(x)=(x+1)∈(﹣1,0];x∈[1,3]时,f(x)=x﹣2∈[﹣1,1];x∈(3,+∞)时,f(x)=4﹣x∈(﹣∞,﹣1);画出x≥0时f(x)的图象,再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;则直线y=a,与y=f(x)的图象有5个交点,则方程f(x)﹣a=0共有五个实根,最左边两根之和为﹣6,最右边两根之和为6,∵x∈(﹣1,0)时,﹣x∈(0,1),∴f(﹣x)=(﹣x+1),又f(﹣x)=﹣f(x),∴f(x)=﹣(﹣x+1)=(1﹣x)﹣1=log2(1﹣x),∴中间的一个根满足log2(1﹣x)=a,即1﹣x=2a,解得x=1﹣2a,∴所有根的和为1﹣2a.故选:A.【点评】本题考查分段函数的图象与性质的应用问题,也考查了利用函数零点与方程的应用问题,是综合性题目.二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alog m x中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可)②.【分析】随着时间x的增加,y的值先减后增,结合函数的单调性即可得出结论【解答】解:∵随着时间x的增加,y的值先减后增,而所给的三个函数中y=ax+k和y=alog m x 显然都是单调函数,不满足题意,∴y=ax2+bx+c.故答案为:②.【点评】本题考查函数模型的选择,考查学生利用数学知识解决实际问题的能力,确定函数模型是关键.12.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,当底面四边形A1B1C1D1满足条件AC⊥BD或四边形ABCD为菱形时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).【分析】由假设A1C⊥B1D1,结合直四棱柱的性质及线面垂直的判定和性质定理,我们易得到A1C1⊥B1D1,即AC⊥BD,又由菱形的几何特征可判断出四边形ABCD为菱形,又由本题为开放型题目上,故答案可以不唯一.【解答】解:若A1C⊥B1D1,由四棱柱ABCD﹣A1B1C1D1为直四棱柱,AA1⊥B1D1,易得B1D1⊥平面AA1BB1,则A1C1⊥B1D1,即AC⊥BD,则四边形ABCD为菱形,故答案为:AC⊥BD或四边形ABCD为菱形.【点评】本题主要考查了空间中直线与直线之间的位置关系,属于知识的考查,属于中档题.13.若直线m被两条平行直线l1:x﹣y+1=0与l2:2x﹣2y+5=0所截得的线段长为,则直线m的倾斜角等于135°.【分析】由两平行线间的距离,得直线m和两平行线的夹角为90°.再根据两条平行线的倾斜角为45°,可得直线m的倾斜角的值.【解答】解:由两平行线间的距离为=,直线m被平行线截得线段的长为,可得直线m 和两平行线的夹角为90°.由于两条平行线的倾斜角为45°,故直线m的倾斜角为135°,故答案为:135°.【点评】本题考查两平行线间的距离公式,两条直线的夹角公式,本题属于基础题.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值X围是(4,+∞).【分析】根据条件可判断函数为偶函数,则要使(x)有4个零点,只需当x≥0时,f(x)=x2﹣x+1=0有两不等正根,根据二次方程的根的判定求解.【解答】解:对任意的x∈R满足f(﹣x)=f(x),∴函数为偶函数,若f(x)有4个零点,∴当x≥0时,f(x)=x2﹣x+1=0有两不等正根,∴△=a﹣4>0,∴a>4.【点评】考查了偶函数的应用和二次方程根的性质.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为②③.【分析】①根据线面垂直性质可判断;②根据公式cosθ=cosθ1cosθ2求解即可;③找出二面角的平面角,利用余弦定理求解.【解答】解:①取AB中点M,易证AB垂直平面SMC,可得AB垂直SC,故错误;②易知BC在平面上的射影为∠ABC的角平分线,∴cos60°=cosθcos30°,∴cosθ=,故正确;③取BC中点N,∴二面角为∠ANC,不妨设棱长为1,∴cos∠ANC==,故正确,故答案为:②③.【点评】考查了线面垂直,线面角,二面角的求法.属于基础题型.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.【分析】(1)证明BC⊥平面AA1C,即可证明平面AA1C⊥平面BA1C;(2)求出AC,直接利用体积公式求解即可.【解答】(1)证明:因为C是底面圆周上异于A,B的一点,AB是底面圆的直径,所以AC⊥BC.因为AA1⊥平面ABC,BC⊂平面ABC,所以AA1⊥BC,而AC∩AA1=A,所以BC⊥平面AA1C.又BC⊂平面BA1C,所以平面AA1C⊥平面BA1C.…(6分)(2)解:在Rt△ABC中,AB=2,则由AB2=AC2+BC2且AC=BC,得,所以.…(12分)【点评】本题考查线面垂直的判定,考查平面与平面垂直,考查几何体A1﹣ABC的体积,考查学生分析解决问题的能力,属于中档题.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.【分析】(1)连AC,设AC与BD交于点O,连EO,则A1C∥EO,由此能证明A1C∥平面BDE.(2)由BD⊥AC,BD⊥EO,得∠AOE是二面角E﹣BD﹣A的平面角,由此能求出二面角E﹣BD ﹣A的正切值.【解答】证明:(1)连AC,设AC与BD交于点O,连EO,∵E是AA1的中点,O是BD的中点,∴A1C∥EO,又EO⊂面BDE,AA1⊄面BDE,所以A1C∥平面BDE.…(6分)解:(2)由(1)知,BD⊥AC,BD⊥EO,∴∠AOE是二面角E﹣BD﹣A的平面角,在Rt△AOE中,tan∠AOE==.∴二面角E﹣BD﹣A的正切值为.…(12分)【点评】本题考查线面平行的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的X围;(3)工厂生产多少台产品时,可使盈利最多?【分析】(1)由题意得G(x)=2.8+x.由,f(x)=R (x)﹣G(x),能写出利润函数y=f(x)的解析式.(2)当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.由此能求出要使工厂有盈利,产量x的X围.(3)当x>5时,由函数f(x)递减,知f(x)<f(5)=3.2(万元).当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).由此能求出工厂生产多少台产品时,可使盈利最多.【解答】解:(1)由题意得G(x)=2.8+x.…(2分)∵,…(4分)∴f(x)=R(x)﹣G(x)=.…(6分)(2)∵f(x)=,∴当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;.…(7分)当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.∴要使工厂有盈利,求产量x的X围是(1,8.2)..…(8分)(3)∵f(x)=,∴当x>5时,函数f(x)递减,∴f(x)<f(5)=3.2(万元).…(10分)当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).…(14分)所以当工厂生产4百台时,可使赢利最大为3.6万元.…(15分)【点评】本题考查函数知识在生产实际中的具体应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.【分析】(1)设B(x0,y0),利用中点坐标公式可得:AB的中点M,代入直线CM.又点B在直线BT上,联立即可得出.(2)设点A(2,﹣1)关于直线BT的对称点的坐标为A′(a,b),则点A′在直线BC上,利用对称的性质即可得出.【解答】解:(1)设B(x0,y0),则AB的中点M在直线CM上,所以+1=0,即3x0+2y0+6=0 ①…(2分)又点B在直线BT上,所以x0﹣y0+2=0 ②…(4分)由①②得:x0=﹣2,y0=0,即顶点B(﹣2,0).…(6分)(2)设点A(2,﹣1)关于直线BT的对称点的坐标为A′(a,b),则点A′在直线BC上,由题意知,,解得a=﹣3,b=4,即A′(﹣3,4).…(9分)因为k BC===﹣4,…(11分)所以直线BC的方程为y=﹣4(x+2),即4x+y+8=0.…(12分)【点评】本题考查了角平分线的性质、相互垂直的直线斜率之间的关系、中点坐标公式,考查了推理能力与计算能力,属于中档题.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.【分析】(1)先证明OM∥AN,根据线面平行的判定定理即可证明OM∥面DAF;(2)由题意可先证明AF⊥CB,由AB为圆O的直径,可证明AF⊥BF,根据线面垂直的判定定理或面面垂直的性质定理即可证明AF⊥面CBF.【解答】解:(1)设DF的中点为N,连接MN,则MN∥CD,MN=CD,又∵AO∥CD,AO=CD,∴MN∥AO,MN=AO,∴MNAO为平行四边形,∴OM∥AN.又∵AN⊂面DAF,OM⊄面DAF,∴OM∥面DAF.(2)∵面ABCD⊥面ABEF,CB⊥AB,CB⊂面ABCD,面ABCD∩面ABEF=AB,∴CB⊥面ABEF.∵AF⊂面ABEF,∴AF⊥CB.又∵AB为圆O的直径,∴AF⊥BF,又∵CB∩BF=B,CB,BF⊂面CBF.∴AF⊥面CBF.【点评】本题主要考查了平面与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和转化思想,属于中档题.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,某某数a的取值X围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.【分析】(1)对a分类讨论,利用截距式即可得出;(2)y=﹣(a+1)x+a﹣2,由于l不经过第二象限,可得,解出即可得出.(3)令x=0,解得y=a﹣2<0,解得aX围;令y=0,解得x=>0,解得aX围.求交集可得:a<﹣1.利用S△AOB= [﹣(a﹣2)]×,变形利用基本不等式的性质即可得出.【解答】解:(1)若2﹣a=0,解得a=2,化为3x+y=0.若a+1=0,解得a=﹣1,化为y+3=0,舍去.若a≠﹣1,2,化为: +=1,令=a﹣2,化为a+1=1,解得a=0,可得直线l的方程为:x+y+2=0.(2)y=﹣(a+1)x+a﹣2,∵l不经过第二象限,∴,解得:a≤﹣1.∴实数a的取值X围是(﹣∞,﹣1].(3)令x=0,解得y=a﹣2<0,解得a<2;令y=0,解得x=>0,解得a>2或a<﹣1.因此,解得a<﹣1.∴S△AOB=|a﹣2|||==3+≥3+=6,当且仅当a=﹣4时取等号.∴△AOB(O为坐标原点)面积的最小值是6.【点评】本题考查了直线的方程、不等式的性质、三角形的面积计算公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.。
山东省烟台市2021-2022学年高一上学期期末考试数学试卷
2021~2022学年度第一学期期末学业水平诊断高一数学注意事项:1.本试题满分150分,考试时间为120分钟。
2.答卷前,务必将姓名和准考证号填涂在答题纸上。
3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰;超出答题区书写的答案无效;在草稿纸、试题卷上答题无效。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.sin 210=A.12−B.12C.2−2.函数ln(4)y x =−的定义域为A.(0,4)B.(0,4]C.[0,4)D.[0,4]3.下列选项中不能用二分法求图中函数零点近似值的是DB4.下列函数中,既是奇函数又在区间(0,)+∞上单调递增的是 A.2xy = B.sin y x = C.3y x=D.ln y x =5.已知 1.13a =,0.23b =,2log 0.3c =,则,,a b c 的大小关系为 A.b a c << B.b c a <<C.c a b<< D.c b a <<6.已知函数(1),1()1(),1ex f x x f x x +<⎧⎪=⎨≥⎪⎩ ,则(1ln 5)f −+的值为A.15B.5C.e 5D.5e7.水车是一种利用水流的动力进行灌溉的工具,其工作示意图如图所示.设水车的直径为8m ,其中心O 到水面的距离为2m ,水车逆时针匀速旋转,旋转一周的时间是120s .当水车上的一个水筒A 从水中(0A 处)浮现时开始计时,经过t (单位:s )后水筒A 距离水面的高度为()f t (在水面下高度为负数),则(140)f = A.3mB.4mC.5mD.6m8.设,a b ∈R ,定义运算,,a a ba b b a b ≥⎧⊗=⎨<⎩,则函数()sin cos f x x x =⊗的最小值为 A.1−B.2−C.12−D.0二、选择题:本题共4小题,每小题5分,共20分。
2020-2021学年山东省烟台市高二下学期期末考试数学试题
烟台市2020-2021学年度第二学期期末学业水平诊断高二数学注意事项:1.本试题满分150分,考试时间为120分钟. 2.答卷前,务必将姓名和准考证号填涂在答题卡上.3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰;超出答题区书写的答案无效;在草稿纸、试题卷上答题无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1A x x =<,{}13B x x =-<<,则()RA B ⋂=()A .{}3x x < B .{}13x x <<C .{}1x x ≥D .{}13x x ≤<2.“11x<”是“1x >”的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知()()21,11,1x x f x f x x ⎧+≤⎪=⎨->⎪⎩,则()2021f =()A .2B .1C .0D .不确定4.函数()2221x xf x x --=+的图象可能为() A . B . C . D .5.若函数()21f x ax x=-在[)1,+∞上单调递减,则实数a 的取值范围是() A .[)0,+∞ B .()0,+∞C .1,2⎛⎤-∞- ⎥⎝⎦D .1,2⎛⎫-∞-⎪⎝⎭6.某种放射性物质在其衰变过程中,每经过一年,剩余质量约是原来的23.若该物质的剩余质量变为原来的14,则经过的时间大约为()(lg 20.301≈,lg30.477≈) A .2.74年B .3.42年C .3.76年D .4.56年7.已知函数()ln ,02,0x x f x x x >⎧=⎨+≤⎩,若()()f m f n =且n m <,则m n -的最小值为()A .2B .3C .21e -D .2e8.已知奇函数()f x 的定义域为()(),00,-∞⋃+∞,()10f -=,且()f x 在(),0-∞上单调递增,则不等式()()210xf x ->的解集为()A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()()1,00,1-⋃D .()(),11,-∞-⋃+∞二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列说法正确的有()A .“()0,x ∀∈+∞,21x>”的否定为“()0,x ∃∈+∞,21x≤”B .“()0,x ∀∈+∞,21x>”的否定为“(],0x ∃∈-∞,21x≤”C .“0x ∃>,210x x -->”的否定为“0x ∀>,210x x --≤”D .“0x ∃>,210x x -->”的否定为“0x ∀≤,210x x --≤”10.已知函数()1212xxf x -=+,())lg g x x =,则()A .函数()f x 为偶函数B .函数()g x 为奇函数C .函数()()()F x f x g x =+在区间[]1,1-上的最大值与最小值之和为0D .设()()()F x f x g x =+,则()()210F a F a +--<的解集为()1,+∞ 11.已知函数()1xf x x =-,()()g x x a a R =-∈,则() A .()f x 在()1,+∞单调递减 B .()f x 的图象关于点()1,0对称C .若方程()()f x g x =仅有1个实数根,则04a <<D .当0a <或4a >时,方程()()f x g x =有3个实数根12.若函数()g x 在区间D 上有定义,且对,,a b c D ∀∈,()g a ,()g b ,()g c 均可作为一个三角形的三边长,则称()g x 在区间D 上为“M 函数”.已知函数()1ln x f x x k x-=-+在区间1,e e ⎡⎤⎢⎥⎣⎦为“M 函数”,则实数k 的值可能为() A .4e -B .1e -C .25e -D .214e三、填空题,本题共4小题,每小题5分,共20分. 13.函数()f x =的定义域为______.14.已知()272,11,1x a x f x x ax x -+≥⎧=⎨-+<⎩是R 上的减函数,则实数a 的取值范围为______.15.若函数23x y e =-在0x =处的切线与ln y x ax =+的图象相切,则实数a 的值为______. 16.已知函数()(20f x a xx =-<<在其图象上任意一点()(),P t f t 处的切线,与x 轴、y 轴的正半轴分别交于M ,N 两点,设OMN △(O 处坐标原点)的面积为()S t ,当0t t =时,()S t取得最小值,则t 的值为______.四、解答题,本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知()f x 是定义在R 上的偶函数,当0x ≥时,()sin f x x x =-. (1)当0x <时,求函数()f x 的解析式; (2)解关于m 的不等式()()21f m f m >-. 18.(12分)已知函数()31413f x x x =-+. (1)求函数()f x 的极值;(2)讨论方程()()f x a R =∈实数解的个数.19.(12分)已知函数()()()ln 421x xf x k k R =+⋅+∈,()ln2g x x =.(1)若()f x 的定义域为R ,求k 的取值范围; (2)若不等式()()f x g x <有解,求k 的取值范围.20.(12分)如图,将一张长为a ,宽为58a 的矩形铁皮的四角分别截去一个大小相同的小正方形,然后折起,可以做成一个无盖长方体容器.设截去的小正方形的边长为x ,所得容器的体积为V .(1)将V 表示为x 的函数()V x(2)x 为何值时,容积V 最大?求出最大容积. 21.(12分)已知函数()()ln f x x x x m m R =-+∈. (1)若()y f x =的图象恒在x 轴上方,求m 的取值范围;(2)若存在正数1x ,2x ()12x x <,满足()()12f x f x =,证明:122x x +>. 22.(12分)已知函数()xf x xe -=.(1)求()f x 的单调区间; (2)令()()()()ln ag x f x a R f x =+∈,对任意1x ≥,()1g x ≥-.求a 的取值范围. 2020-2021学年度第二学期期末学业水平诊断 高二数学参考答案 一、单选题 DBAA CBBD二、多选题 9.AC 10.BCD11.ACD12.BD三、填空题13.(]0,2 14.[]2,315.116四、解答题17.解:(1)当0x <时,0x ->,()()()sin sin f x x x x x -=---=-+, 又()f x 为偶函数,所以()()sin f x f x x x =-=-+. (2)当0x ≥时,()()sin 1cos 0f x x x x ''=-=-≥, 所以()f x 在[)0,+∞单调递增.又()f x 为偶函数,所以()()()()2121f m f m fm f m >-⇔>-.所以21m m >-,两边平方,整理得()()3110m m -+>, 解得1m <-或13m >.18.解:(1)()24f x x '=-.令()0f x '=,解得2x =-或2x =.因此,当2x =-时,()f x 有极大值,且极大值为()23f -=. 当2x =时,()f x 有极小值,且极小值为()1323f =-. (2)方程()f x a =的实数解的个数,即为函数()y f x =的图象与直线y a =的交点的个数. 当x →-∞时,()f x →-∞,当x →+∞时,()f x →+∞, 结合(1)知()f x 的大致图象如图所示.所以,当193a >或133a <-时,解为1个; 当193a =或133a =-时,解为2个;当131933a -<<时,解为3个. 19.解:(1)要使()f x 的定义域为R ,只需4210x xk +⋅+>在R 上恒成立.令20x t =>,只需210y t kt =++>在0t >上恒成立.当02k-≤,即0k ≥时,()y t 在()0,+∞单增,恒有()()010y t y >=>, 因此,对任意0k ≥均成立.当02k ->,即0k <时,()y t 在0,2k ⎛⎫- ⎪⎝⎭单减,,2k ⎛⎫-+∞ ⎪⎝⎭单增,只需02k f ⎛⎫-> ⎪⎝⎭, 即221042k k -+>,解得22k -<<,所以20k -<<.综上,k 的取值范围为()2,-+∞.(2)若不等式()()f x g x <有解,即()ln 421ln 2ln 2x x xk x +⋅+<=,可得04212x x x k <+⋅+<有解.因为当x →+∞时,421x x k +⋅+→+∞,所以,对任意实数k ,总存在00x >,使得004210x x k +⋅+>,即4210x x k +⋅+>有解.由4212x x x k +⋅+<可得,1122x x k ⎛⎫-<-+⎪⎝⎭. 令20x t =>,1y t t=--,()()221111t t y t t-+'=-+=, 显然当()0,1t ∈时,函数单调递增,当()1,t ∈+∞时,函数单调递减, 所以当1t =时,y 取最大值2-, 所以12k -<-,即1k <-.20.解:(1)由题意知,长方体容器的长、宽、高分别为2a x -,528a x -,x , 容器的体积()5228V a x a x x ⎛⎫=-- ⎪⎝⎭. 令20a x ->,5208a x ->,0x >,可得5016x a <<. 故函数()()3225135224848V x a x a x x x ax a x ⎛⎫=--=-+ ⎪⎝⎭,5016x a <<.(2)令()221351228V x x ax a '=-+. 令()0V x '=,得11x a =,25ax =(舍去).因此,18x a =是函数()V x 的极大值点,相应的极大值398256a aV ⎛⎫= ⎪⎝⎭,也是()V x 在区间50,16a ⎛⎫⎪⎝⎭上的最大值. 答:截去的小正方形边长为18a 时,容器的容积最大,最大容积39256a .21.解:(1)()f x 的定义域为()0,+∞,()1ln 1ln f x x x x x'=+⋅-=. 当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增. 因此,当1x =时,()()min 11f x f m ==-. 由题意,()min 0f x >,即10m ->,解得1m >. (2)由(1)及()f x 的单调性知,1201x x <<<. 构造函数()()()2g x f x f x =--,01x <<.则()()()2ln ln 2ln 11g x x x x ⎡⎤'=+-=--⎣⎦,当01x <<时,()2111x --<,()2ln 110x ⎡⎤--<⎣⎦,即()0g x '<,所以()g x 在区间()0,1上单调递减.因为11x <,所以()()110g x g >=,即()()112f x f x >-. 由题意()()21f x f x =,所以()()212f x f x >-. 因为()f x 在()1,+∞,且单调递增,21x >,121x ->, 所以212x x >-,即122x x +>. 22.解:(1)()1xxf x e -'=, 令()0f x '>,得1x <;令()0f x '<,得1x >.所以()f x 的单调增区间为(),1-∞,单调减区间为()1,+∞.(2)由题意知()ln xae g x x x x=-+. 于是()()()221111x xx ae x x e x g x a x x x e --⎛⎫'=-+=- ⎪⎝⎭, 由(1)知,在[)1,+∞上,()f x 单调道减,且()10,f x e⎛⎤∈ ⎥⎝⎦,当0a ≤时,()0g x '≤,函数()g x 在[)1,+∞上单调递减,取0x e =,显然1e >, 但()1111e g e ae e e -=-+≤-<-,因此,0a ≤不合题意.当10a e<<时,结合(1)中()f x 的单调性知,存在()01,x ∈+∞,得00x ae x =, 此时()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()()0000minln x ae g x g x x x x ==-+()001ln 1ln 1x x ae a =-+=+≥-,解得21a e ≥,即211a e e≤<;当1a e≥时,()0g x '≥,函数()g x 在[)1,+∞上单调道增,()()min 111g x g ae ==-≥-, 解得0a ≥,即1a e≥;综上所述,a 的取值范围21,e ⎡⎫+∞⎪⎢⎣⎭.。
专题07概率(原卷版)
专题07概率1.【吉林省长春市第150中学2017-2018学年高一下学期期末】从装有4个黑球、2个白球的袋中任取3个球,若事件A为“所取的3个球中至多有1个白球”,则与事件A互斥的事件是()A.所取的3个球中至少有一个白球B.所取的3个球中恰有2个白球1个黑球C.所取的3个球都是黑球D.所取的3个球中恰有1个白球2个黑球2.【北京市房山区2020-2021学年高一上学期期末】某工厂生产了一批节能灯泡,这批产品按质量分为一等品、二等品、不合格品.从这批产品中随机抽取一件进行检测,设“抽到一等品”的概率为0.75,“抽到二等品”的概率为0.2,则“抽到不合格品”的概率为()A.0.05 B.0.25 C.0.8 D.0.953.【湖南省娄底市2019-2020学年高一下学期期末】从一批产品中取出三件产品,设事件A 为“三件产品全不是次品”,事件B为“三件产品全是次品”,事件C为“三件产品至少有一件是次品”,则下列结论正确的是()A.B与C互斥B.任何两个均互斥C.A与C互斥D.任何两个均不互斥4.【北京市东城区2019-2020学年度高一下学期期末统一检测】在北京消费季活动中,某商场为促销举行购物抽奖活动,规定购物消费每满200元就可以参加一次抽奖活动,中奖的概率为110.那么以下理解正确的是()A.某顾客抽奖10次,一定能中奖1次B.某顾客抽奖10次,可能1次也没中奖C.某顾客消费210元,一定不能中奖D.某顾客消费1000元,至少能中奖1次5.【湖南师范大学附属中学2019-2020学年高一下学期期末】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.25B.35C.12D.136.【北京八中2018-2019学年度高一第二学期期末】从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是()A .至少有一个黑球与都是黑球B .至少有一个黑球与至少有一个红球C .恰好有一个黑球与恰好有两个黑球D .至少有一个黑球与都是红球7.【山东省威海市2020-2021学年高一上学期期末】从含有3件正品2件次品的5件产品中,任意取出2件产品,则取出的2件产品中至少有一件次品的概率为()A .710B .310C .15D .1108.【北京市海淀区2020-2021学年高一上学期期末】从数字2,3,4,6中随机取两个不同的数,分别记为x 和y ,则xy为整数的概率是() A .16 B .14 C .12 D .7129.【辽宁省沈阳市郊联体2020-2021学年高一上学期期末】从装有大小和形状完全相同的8个红球和2个白球的口袋内任取两个球,下列各对事件中,互斥而不对立的是() A .“至少一个白球”和“都是红球”B .“至少一个白球”和“至少一个红球”C .“恰有一个白球”和“恰有一个红球”D .“恰有一个白球”和“都是红球”10.【甘肃省庆阳市镇原中学第2019-2020学年高一下学期期末】围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235则从中任意取出2粒恰好是同一色的概率是()A .17B .1235C .1735D .111.【湖北省荆门市2019-2020学年高一下学期期末】华人数学家张益唐证明了孪生素数(注:素数也叫做质数)猜想的一个弱化形式,孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数p 使得2p +是素数,素数对(),2p p +称为孪生素数.从15以内的素数中任取两个,其中能构成孪生素数的概率为()A.115B.15C.13D.1212.【山东省烟台市2019-2020学年高一下学期期末】人的眼皮单双是由遗传自父母的基因决定的,其中显性基因记作B,隐性基因记作b:成对的基因中,只要出现了显性基因,就一定是双眼皮(也就是说,“双眼皮”的充要条件是“基因对是BB,bB或Bb”).人的卷舌与平舌(指是否能左右卷起来)也是由一对基因对决定的.分别用D,d表示显性基因、隐性基因,基因对中只要出现了显性基因D,就一定是卷舌的.生物学上已经证明:控制不同性状的基因邀传时互不干扰.若有一对夫妻,两人决定眼皮单双和舌头形态的基因都是BdDd,不考虑基因突变,他们的孩子是单眼皮且卷舌的概率为()A.116B.316C.716D.91613.【广东省佛山市第一中学2019-2020学年高一下学期期末】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽取的第一张卡片上的数不小于第二张卡片上的数的概率为()A.35B.310C.15D.11014.【广东省佛山市第一中学2019-2020学年高一下学期期末】甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则下列说法正确的是()A.甲获胜的概率是16B.甲不输的概率是12C.乙输的概率是13D.乙不输的概率是1215.【湖南省长沙市长郡中学2019-2020学年高一下学期期末】数学与文学有许多奇妙的联系,如诗中有回文诗:“垂帘画阁画帘垂,谁系怀思怀系谁?”既可以顺读也可以逆读,数学中有回文数,如343、12521等,两位数的回文数有11、22、33、…、99共9个,则三位数的回文数中为偶数的概率是()A.19B.29C.39D.4916.【辽宁省沈阳市2020-2021学年高一上学期期末】设,,A B C为三个随机事件,若A与B互斥,B与C对立,且1()4P A=,()23P C=,则()P A B+=_____________.17.【山东省枣庄市2019-2020学年高一(下)期末】在一次全运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.羽毛球的比赛规则是3局2胜制,假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,利用计算机模拟试验,估计甲获得冠军的概率.为此,用计算机产生1~5之间的随机数,当出现随机数1,2或3时,表示一局比赛甲获胜,其概率为0.6.由于要比赛三局,所以每3个随机数为一组.例如,产生了20组随机数:423 231 423 344 114 453 525 323 152 342345 443 512 541 125 342 334 252 324 254相当于做了20次重复试验,用频率估计甲获得冠军的概率的近似值为_____.18.【福建省三明市2019-2020学年高一(下)期末】已知事件A B ,互相对立,且2P A P B ()=(),则P (A )=_____.19.【陕西省宝鸡市渭滨区2019-2020学年高一下学期期末】甲、乙两人下棋,两人下成和棋的概率是16,甲不输的概率是56,则甲赢的概率为______. 20.【重庆市九龙坡区2019-2020学年高一下学期期末】已知一个口袋有3个白球,1个黑球,这些球除颜色外全部相同,现从口袋中随机逐个取出两球,取出的两个球是一黑一白的概率是________.21.【北京市房山区2020-2021学年高一上学期期末】暑假期间,甲外出旅游的概率是14,乙外出旅游的概率是15,假定甲乙两人的行动相互之间没有影响,则暑假期间两人中至少有一人外出旅游的概率是__________.22.【湖南省怀化市2019-2020学年高一下学期期末】甲、乙两人随意入住两间空房,则甲、乙两人各住一间房的概率是_______23.【安徽师范大学附属中学2019-2020学年高一下学期期末】抛掷甲、乙两枚质地均匀且各面分别标有1,2,3,4,5,6的骰子,记正面向上的数字分别为x ,y ,则x y <的概率是__________.24.【延安市实验中学高一下学期期末】采用简单随机抽样从含10个个体的总体中抽取一个容量为4的样本,若个体a 前两次未被抽到,则第三次被抽到的概率为_____.25.【山西省朔州市怀仁一中2018-2019学年高一上学期期末】口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的序号为________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件:④()1P C E =;⑤()()P B P C =.26.【安徽省淮北市树人高级中学2020-2021学年高一上学期期末】甲、乙两人独立破译一个密码,他们译出的概率分别为13和1.4求:(1)两人都译出的概率;(2)两人中至少一人译出的概率;(3)至多有一人译出的概率.27.【辽宁省营口市2020-2021学年高一上学期期末】甲、乙二人独立破译同一密码,甲破译密码的概率为0.7,乙破译密码的概率为0.6.记事件A:甲破译密码,事件B:乙破译密码. (1)求甲、乙二人都破译密码的概率;(2)求恰有一人破译密码的概率.28.【安徽省蚌埠市2020-2021学年高一上学期期末】袋中装有6个形状、大小完全相同的球,其中黑球2个、白球2个、红球2个,规定取出一个黑球记0分,取出一个白球记1分,取出一个红球记2分,抽取这些球的时候,谁也无法看到球的颜色,首先由甲取出3个球,并不再将它们放回原袋中,然后由乙取出剩余的3个球,规定取出球的总积分多者获胜.(1)求甲、乙成平局的概率;(2)从概率的角度分析先后取球的顺序是否影响比赛的公平性.29.【北京市东城区2019-2020学年度高一下学期期末统一检测】某医院首批援鄂人员中有2名医生,3名护士和1名管理人员.采用抽签的方式,从这六名援鄂人员中随机选取两人在总结表彰大会上发言.(Ⅰ)写出发言人员所有可能的结果构成的样本空间;(Ⅱ)求选中1名医生和1名护士发言的概率;(Ⅲ)求至少选中1名护士发言的概率.30.【山东省滕州一中2019-2020学年高一下学期期末】若5张奖券中有2张是中奖的,先由甲抽1张,然后由乙抽1张,求:(1)甲中奖的概率()P A;(2)甲、乙都中奖的概率()P B;(3)只有乙中奖的概率(C)P.。
2020-2021学年山东省济宁市高一(下)期末数学试卷(b卷)
2020-2021学年山东省济宁市高一(下)期末数学试卷(B卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知复数z的共轭复数为,z=1+i,则z(+1)=()A.3+i B.3﹣i C.1+3i D.1﹣3i2.(5分)设向量=(2,1),=(λ,1),若(+2)⊥,则实数λ的值等于()A.﹣2B.﹣C.2D.3.(5分)如图,在直三棱柱ABC﹣A′B′C′中,AB=BC=CC′且∠ABC=90°.则异面直线AC与BC′所成的角为()A.30°B.45°C.60°D.90°4.(5分)我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人等六项专项附加扣除.某单位老年、中年、青年员工分别有80人、100人、120人,现采用分层随机抽样的方法()A.8人B.10人C.12人D.18人5.(5分)已知样本数据x1,x2,…,x100的方差为4,若由y1=2x1+3,y2=2x2+3,…,y100=2x100+3得到另一组样本数据y1,y2,…,y100,则样本数据y1,y2,…,y100的方差为()A.8B.16C.32D.646.(5分)为了让学生了解更多的“一带一路”倡议的信息,某中学举行了一次“丝绸之路知识竞赛”,全校学生的参赛成绩的频率分布直方图如图所示,则可以参加复赛的成绩约为()A.72B.73C.74D.757.(5分)已知||=4,||=2,当与时,在上的投影向量为()A.2B.C.2D.8.(5分)已知A,B,C为球O的球面上的三点,⊙O1为△ABC的外接圆,若AB=BC=AC=OO1=,则球O的表面积为()A.16πB.12πC.9πD.8π二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求。
山东省烟台市2023-2024学年高一下学期期中学业水平诊断数学试题
山东省烟台市2023-2024学年高一下学期期中学业水平诊断数学试题一、单选题1.下列说法正确的是( )A .若a b =r r ,则a b =r r 或a b =-r rB .若a c b c ⋅=⋅r r r r ,则a b =r rC .若a b =r r ,则a c b c ⋅=⋅r r r rD .若0a b ⋅>r r ,则a r ,b r 夹角为锐角 2.若复数z 满足()i 23i z ⋅+=-,则z =( )A .33i --B .33i -+C .33i -D .33i + 3.在高为6的三棱柱111ABC A B C -中,A B C '''V 是底面ABC V 的水平放置的直观图,如图,2O A O B ''''==,O C ''=111ABC A B C -的体积为( )A .B .C .D .4.在边长为2的正三角形ABC 中,点M 满足2CM MA =u u u u r u u u r ,则AC BM ⋅=u u u r u u u u r ( )A .23- B .23 C .43- D .435.若1a =r ,(b =r ,且a r 在b r 上的投影向量为14b r ,则a r 与b r 的夹角为( ) A .π6 B .π4 C .π3 D .2π3 6.在ABC V 中,a ,b ,c 分别为角A ,B ,C 的对边,且()cos 2cos a B c b A c +-=,则ABC V 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形7.已知正四棱台的上、下底面边长分别为7,9,体积为193,则该正四棱台的侧棱长为( )A B C D8.在锐角三角形ABC V 中,若()2c a a b =+,则11tan tan A C-的取值范围为( )A .(B .⎛ ⎝⎭C .D .⎝二、多选题9.已知复数1z ,2z 是关于x 的方程()2404,x bx b b -+=<∈R 的两根,则( )A .124z z =B .12z z =C .122z z ==D .1212z z z z +=+ 10.一圆锥的侧面展开图如图所示,2π3BAC ∠=,弧BC 长为2π,M 为线段AB 的中点,N 为弧BC 中点,则( )A B .在扇形ABC 中,94AN MC ⋅=-u u u r u u u u r C .该圆锥内半径最大的球的表面积为2πD .该圆锥内接正四棱柱表面积的最大值为16311.已知ABC V 为斜三角形,角A ,B ,C 的对边分别为a ,b ,c ,且2sin c a B =,则( )A .112tan tan A B+= B .b a a b +的最小值为2C .若π4C =,则22+=a bD .若b a a b +5π12C =三、填空题12.已知向量a r ,b r 的夹角为2π3,若2b =r,2a b -=r r a =r . 13.在直三棱柱ABC A B C '''-中,π2ABC ∠=,AB =1BC AA '==,则直三棱柱ABC A B C '''-外接球的体积为,在三棱锥B A BC ''-中,底面A BC '上的高长为. 14.南方由于雨水较多,三角形斜屋顶建筑在江浙一带随处可见.如图是一三角形木屋的建筑示意图.三角形斜屋顶PMN 在地面的投影为ABC V ,且45ABC ∠=o ,60ACB ∠=o .在M 点测得N 点的仰角为15o ,在N 点测得P 点的仰角为30o ,M 点到地面的距离为3m ,N 点到地面的距离为4m ,则P 点到地面的距离为m .四、解答题15.欧拉公式i e cos isin x x x =+(i 为虚数单位)是由瑞士著名数学家欧拉提出的,它将指数函数的定义域扩大到复数集.(1)若复数()20243π2i 3i11i 21i e z -=+-+,求z ; (2)在复平面内复数πi 41e z =,2z =对应的向量分别是OA u u u r ,OB u u u r ,其中O 是原点,求向量AB u u u r对应的复数z . 16.在平面直角坐标系中,O 为坐标原点,已知()3,2A ,()2,0B ,()1,OP t =u u u r .(1)若点A ,B ,P 不能构成三角形,求PB u u u r ;(2)当PA PB ⋅u u u r u u u r 取得最小值时,求ABP V 的面积.17.如图,ABCD 是圆台下底面圆的内接四边形,4AB AD ==,C 为底面圆周上一动点,π3BCD ∠=,P A 为圆台的母线,5PA =,圆台上底面的半径为1.(1)求该圆台的表面积;(2)求四棱锥P ABCD -的体积的最大值.18.请在①向量()cos ,2x C c a =-r ,(),cos y b B =u r ,且x y ⊥r u r ;②()()2222sin sin a b A b c C -=-这两个条件中任选一个,填入横线上并解答.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足_______.(1)求B 的大小:(2)若2b =,求ABC V 周长的取值范围;(3)若AC 边上的高为1,求ABC V 面积的最小值.19.近年来,民宿作为一种具有特色的住宿形式,逐渐受到人们的青睐.小李计划将旧居改造成田园农家民宿,民宿小院用栅栏围成如图所示的等腰梯形形状,BC 临街,长16米,75B ∠=︒,在BC 上选择一点G 开设大门,从大门出发铺两条鹅卵石小路GE ,GF ,小路终点E 、F 在墙AB 、CD 上,且60BGE CGF ∠=∠=︒,GEF 为庭院休闲区,为使小院更具田园气息,路面EF 用防腐木铺设.(1)GE GF +是否为定值?若是,求出该定值;若不是,请说明理由;(2)若鹅卵石路面平均每米需花费200元,防腐路面平均每米需花费400元,设修路总费用为S (单位:元),求S 最小值.(最终结果保留整数) 1.732)。
潍坊市高一数学下学期期末考试试题含解析
当 时, ,此时 ,点 , ,故D正确,
故选:AD.
【点睛】本题考查的是有关函数的应用问题,涉及到的知识点有数学建模,将实际问题转化为函数问题来解决,结合三角函数的相应的性质求得结果,属于中档题。
三、填空题:本题共4小题,每小题5分,共20分。
【答案】(1) ;(2) 。
【解析】
【分析】
(1)用三角函数的定义;
(2)先求正切值,再把弦化切.
【详解】(1)由题意知, ,
因为 ,
所以 。
解得 ,
所以 .
(2)当 时, ,
所以 。
【点睛】本题为基础题,考查三角函数的定义及同角三角函数的关系。
18。 某广场设置了一些多面体形或球形的石凳供市民休息.如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是 .
【详解】由题意,某扇形的半径为 ,圆心角为 ,
根据扇形的面积公式,可得
所以此扇形的面积为 。
故选:B。
【点睛】本题主要考查了扇形的面积公式及其应用,其中解答中熟记扇形的面积公式是解答的关键,着重考查推理与运算能力。
4。 在 中,点 满足 ,则( )
A。 B.
C. D。
【答案】A
【解析】
【分析】
由已知条件可得 ,然后由向量的加减法法则进行运算可得答案.
对于C,因为平面与平面的位置关系有:相交或平面,因为 , 是空间两个不同的平面,而 ,所以平面 与 相交,即 , 必相交于一条直线,故C正确;
对于D,当直线 与平面 相交,且 垂直于平面 内的无数条直线,若这些直线中没有相交直线,则 不一定垂直平面 ,故D 不正确,
山东烟台市2019-2020学年度第一学期学段检测高一数学试题含答案(定稿)
烟台市2019-2020学年度第一学期期中学业水平诊断高一数学注意事项:1.本试题满分150分,考试时间为120分钟。
2.答卷前务必将姓名和准考证号填涂在答题纸上。
3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰。
超出 答题区书写的答案无效;在草稿纸、试题卷上答题无效。
一、选择题:本大题共13小题,每小题4分,共52分。
在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分。
1.已知集合{1,2,3,4,5}U =,={1,3,4}A ,={4,5}B ,则()=UA BA .{3}B .{1,3}C .{3,4}D .{1,3,4}2.命题“x ∀∈R ,21x >”的否定是 A .x ∃∈R ,21x ≤ B .x ∃∈R ,21x < C .x ∀∈R ,21x <D .x ∀∈R ,21x ≤3.设a ∈R ,则“0a >”是“20a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.我们把含有限个元素的集合A 叫做有限集,用card()A 表示有限集合A 中元素的个数.例如,{,,}A x y z =,则card()=3A .若非空集合,M N 满足card()M =card()N ,且M N ⊆,则下列说法错误..的是 A .M N M = B .M N N =C .M N N =D .M N =∅5.设102x <<,则(12)x x -的最大值为A .19B .29C .18D .146.下面各组函数中表示同一个函数的是A .()f x x =,2()g x =B .()f x x =,()g xC .21()1x f x x -=-,()1g x x =+D .()x f x x =,1,0,()1,0.x g x x ≥⎧=⎨-<⎩7.已知231,0,()21,0,x x f x x x +>⎧=⎨-<⎩若()(1)8f a f +-=,则实数a 的值为 A .2-B .2C .2±D .3±8.若不等式2220mx mx +-<对一切实数x 都成立,则实数m 的取值范围为 A .(2,0)-B .(2,0]-C .(,0)-∞D .(,0]-∞9.某容器如右图所示,现从容器顶部将水匀速注入其中,注满为止. 记容器内水面的高度h 随时间t 变化的函数为()h f t =,则()h f t = 的图象可能是A .B .C .D .10.已知函数()f x 是定义在R 上的单调函数,(0,1)A ,(2,1)B -是其图象上的两点,则不等式(1)1f x ->的解集为 A .(1,1)-B .(,1)(1,)-∞-+∞ C .(1,3) D .(,1)(3,)-∞+∞11.下列结论正确的有A .函数0()(1)1f x x x =-++的定义域为(1,1)(1,)-+∞B .函数()y f x =,[1,1]x ∈-的图象与y 轴有且只有一个交点C .“1k >”是“函数()(1)+f x k x k =-(k ∈R )为增函数”的充要条件D .若奇函数()y f x =在0x =处有定义,则(0)=0f12.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若,,a b c ∈R ,则下列命题正确的是 A .若0ab ≠且a b <,则11a b> B .若01a <<,则3a a < C .若0a b >>,则11b b a a+>+ D .若c b a <<且0ac <,则22cb ab < 13.我们把定义域为[0,)+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:(1)对任意的[0,)x ∈+∞,总有()0f x ≥;(2)若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,下列判断正确的是 A .若()f x 为“Ω函数”,则(0)0f =B .若()f x 为“Ω函数”,则()f x 在[0,)+∞上为增函数C .函数0,,()1,x g x x ∈⎧=⎨∉⎩Q Q在[0,)+∞上是“Ω函数” D .函数2g()+x x x =在[0,)+∞上是“Ω函数”。
山东省烟台市2023-2024学年高一下学期7月期末英语试题(含答案)
2023—2024学年度第二学期期末学业水平诊断高一英语注意事项:1. 答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3. 考试结束后,只交答题卡。
第一部分听力(共两节,满分30分)做题时,请先将答案划在试卷上。
该部分录音内容结束后,你将有两分钟的时间将你的答案转涂到客观题答题卡上。
第一节(共5小题;每小题1. 5分,满分7. 5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What is the woman going to buy?A. A pair of boots.B. A new bag.C. A new car.2. What is the man doing now?A. Having lunch.B. Repairing a printer.C. Working on a computer.3. What is the man going to do next?A. Say goodbye to everyone.B. Run to the airport.C. Find a taxi.4. What is the conversation mainly about?A. Foods for dinner.B. Gifts for the birthday.C. Arrangements for the holiday.5 Who is the man talking with?A. A doctor.B. His teacher.C. His mother.第二节(共15小题;每小题1. 5分,满分22. 5分)听下面5段对话或独白。
临沂市高一数学下学期期末考试试题含解析
设圆锥的底面半径为 ,内接圆柱的底面半径为 ,
因为内接圆柱的体积为 ,所以 ,解得 ,
又由 ,所以 ,解得 ,
所以圆锥的母线长为 ,
所以该圆锥的表面积为 。
故答案为: 。
【点睛】本题主要考查了圆锥的表面积和圆柱的体积的计算,其中解答中熟记圆锥、圆柱的结构特征是解答的关键,着重考查数形结合法,以及推理与运算能力.
A. B. C。 D.
【答案】C
【解析】
【分析】
计算出基本事件的总数以及事件“抽到的两人中有一男一女”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率.
【详解】从两名男生和两名女生中任意抽取两人,若采取有放回简单随机抽样,基本事件总数为 ,
若抽到的两人中有一男一女,可以先抽到男生后抽到女生,也可以先抽到女生后抽到男生,
所以 .
故答案为: .
【点睛】本题考查了正弦定理和余弦定理解三角形的应用,考查了三角恒等变换的应用及运算求解能力,属于中档题。
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
【答案】C
【解析】
【分析】
由题意 ,根据复数的除法运算可得 ,进而求得共轭复数 ,即可知对应点所在的象限
【详解】由 知:
∴ ,即 对应的点为
故选:C
【点睛】本题考查了复数的除法运算,以及共轭复数的概念,首先由复数四则运算的除法求得复数,进而依据共轭复数的概念得到对应的共轭复数,即可判断所在象限
2. 的值是( )
四边形 为平行四边形, ,
平面 , 平面 , 平面 ,即选项 正确;
选项 ,取 的中点 ,连接 、 ,
平面 , 即为二面角 的平面角.
山东省百师联盟2023-2024学年高一下学期期末联考(6月)数学试题(原卷版)
2023—2024学年高一期末联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号、座位号填写在答题卡上.2回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. |34i |34i −=+( )A.34i 55− B.34i 55+ C.43i 55D.43i 55+ 2. 已知直线m ,n ,平面α,则“//m α,n α∥”是“m n ∥”的( )条件. A 充分不必要B. 必要不充分C. 充要D. 不充分不必要3. 从一堆产品(其中正品与次品都多于2件)中任取2件,下列事件是互斥事件但不是对立事件是( )A. 恰好有1件次品和恰好有2件次品B. 至少有1件次品和全是次品C. 至少有1件正品和至少有1件次品D. 至少有1件次品和全是正品4. 在直角梯形ABCD 中,//AB CD ,AD AB ⊥,3AB =,2AD CD ==,M 是CD 的中点,N 在BC上,且13BN BC =,则cos ,BM DN = ( )A.B.C.D.5. 某校举办歌唱比赛,将200名参赛选手的成绩整理后画出频率分布直方图如图,根据频率分布直方图,第40百分位数估计为( ).的A. 64B. 65C. 66D. 676. 圭表是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根呈南北方向的水平长尺(称为“圭”)和一根直立于圭面的标杆(称为“表”),如图.成语有云:“立竿见影”,《周髀算经》里记载的二十四节气就是通过圭表测量日影长度来确定的.利用圭表测得某市在每年夏至日的早上8:00和中午13:00的太阳高度角分别为23°(ABC ∠)和83°(ADC ∠).设表高AC 为1米,则影差BD ≈( )(参考数据:sin160.276°≈1.732≈)A. 2.016米B. 2.232米C. 2.428米D. 2.614米7. 下列说法正确的是( )A. 某人在玩掷骰子游戏,掷得数字5的概率是16,则此人掷6次骰子一定能掷得一次数字5 B. 为了了解全国中学生的心理健康情况,应该采用普查的方式 C. 一组数据8,8,7,10,6,8,9众数和中位数都是8D. 若甲组数据方差20.01S =,乙组数据的方差20.1S =,则乙比甲稳定8. “木桶效应”是一个有名的心理效应,是指木桶盛水量的多少,取决于构成木桶的最短木板的长度,而不取决于构成木桶的长木板的长度,常被用来寓意一个短处对于一个团队或者一个人的影响程度.某同学认为,如果将该木桶斜放,发挥长板的作用,在短板存在的情况下,也能盛较多的水.根据该同学的说法,若有一个如图①所示的圆柱形木桶,其中一块木板有缺口,缺口最低处与桶口距离为2,若按照图②的方式盛水,形成了一个椭圆水面,水面刚好与左边缺口最低处M 和右侧桶口N 齐平,且MN 为该椭圆水面的长轴.则此时比图①盛水方式多盛的水的体积为( )的的A. 2πB. 3πC. 4πD. 6π二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知()0,0O ,()01,0P ,()1cos ,sin P αα,()2cos ,sin Pββ−,下列结论正确的是( ) A. 若παβ+=,则1020OP OP OP OP ⋅=⋅B. 若π2αβ+=,则12OP OP ⊥ C. 若0102P P P P = ,则αβ=−D. 若021OP OP OP += ,且α,β均为锐角,则π3αβ== 10. 如图,在正三棱台111ABC A B C -中,11124A B AA ==,1π3B BC ∠=,棱11B C ,BC 的中点分别为D ,E ,点P 在侧面11BCC B 内运动(包含边界),且AP =,则下列结论正确的是( )A. AD ⊥平面11BCC BB. 正三棱台111ABC A B C -C. AP 与平面11BCC BD. 动点P 形成的轨迹长度为4π311. 已知采用分层抽样得到的样本数据由两部分组成,第一部分样本数据()1,2,,i x i m = 的平均数为x ,方差为2x s ;第二部分样本数据()1,2,,i y i n = 的平均数为y ,方差为2y s ,设22,x y x y s s ≤≤,则以下命题正确的是( )A. 设总样本的平均数为z ,则x z y ≤≤B. 设总样本的平均数为z ,则2z x y ≥⋅C. 设总样本的方差为2s ,则222x y s s s ≤≤D. 若,m n x y ==,则2222xy s s s +=三、填空题:本题共3小题,每小题5分,共15分.12. 某高中学校进行问卷调查,用比例分配的分层随机抽样方法从该校三个年级中抽取36人进行问卷调查,其中高一年级抽取了15人,高二年级抽取了12人,且高三年级共有学生900人,则该高中的学生总数为__________人.13. 某科技公司组织技术人员进行某新项目研发,技术人员将独立地进行项目中不同类型的实验甲、乙、丙,已知实验甲、乙、丙成功的概率分别为34、23、12,对实验甲、乙、丙各进行一次,则至少有一次成功的概率为______.(结果用最简分数表示)14. 勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终保持与两平面都接,利用这一原理,科技人员发明了转子发动机.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体如图乙所示,若正四面体ABCD 的棱长为1,则勒洛四面体能够容纳的最大球的半径为_______;用过,,A B C 三点的平面去截勒洛四面体,所得截面的面积为_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知复数()()22i z m m m =++−∈R ,z 为z 的共轭复数,且6z z +=. (1)求m 的值;(2)若3i z −是关于x 的实系数一元二次方程20x ax b ++=的一个根,求该一元二次方程的另一复数根.16. 在锐角三角形ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且223sin 2sin cos sin sin 4A ABC C −+=.(1)求角B 的值. (2)求2a cb+的取值范围. 17. 在直角梯形ABCD 中,AD BC ∥,22BC AD AB ===ABC =90°(如图1).把△ABD 沿BD 翻折,使得二面角A -BD -C 的平面角为θ(如图2),M 、N 分别是BD 和BC 中点.(1)若E 是线段BN 中点,动点F 在三棱锥A -BMN 表面上运动,并且总保持FE ⊥BD ,求动点F 的轨迹的长度(可用θ表示),详细说明理由; (2)若P 、Q 分别为线段AB 与DN 上一点,使得()APNQPB QDλλ==∈R ,令PQ 与BD 和AN 所成的角分别为1θ和2θ,求12sin sin θθ+的取值范围.18. 某电子产品制造企业为了提升生产质量,对现有的一条电子产品生产线进行技术升级改造,为了分析改造的效果,该企业质检人员从该条生产线所生产的电子产品中随机抽取了1000件,检测产品的某项质量指标值,根据检测数据得到下表(单位:件). 质是指标值 [)25,35[)35,45[)45,55[)55,65[)65,75[)75,85[)85,95产品 6010016030020010080(1)估计这组样本的质量指标值的平均数x 和方差2s(同一组中的数据用该组区间中点值作代表); (2)设[]x 表示不大于x 的最大整数,{}x 表示不小于x 的最小整数,s 精确到个位,1122225,5,5,55555x s x s x s x s a b a b −+−+==⋅=⋅=⋅.根据检验标准,技术升级改造后,若质量指标值有65%落在[]11,a b 内,则可以判断技术改造后的产品质量初步稳定;若有95%落在[]22,a b 内,则可以判断技术改造后的产品质量稳定,可认为生产线技术改造成功.请问:根据样本数据估计,是否可以判定生产线的技术改造是成功的?的19. 为了建设书香校园,营造良好的读书氛围,学校开展“送书券”活动.该活动由三个游戏组成,每个游戏各玩一次且结果互不影响.连胜两个游戏可以获得一张书券,连胜三个游戏可以获得两张书券.游戏规则如下表:游戏一游戏二游戏三箱子中球的颜色和数量大小质地完全相同的红球3个,白球2个(红球编号为“1,2,3”,白球编号为“4,5”)取球规则取出一个球有放回地依次取出两个球不放回地依次取出两个球获胜规则取到白球获胜取到两个白球获胜编号之和为m获胜(1)分别求出游戏一,游戏二的获胜概率;(2)一名同学先玩了游戏一,试问m为何值时,接下来先玩游戏三比先玩游戏二获得书券的概率更大.。
山东省烟台市2022-2023学年高一下学期期中数学试题
10.已知向量
r a
1,
2
,
b
3,
1
,
c
2,
m
,则下列说法正确的是(
)
A.若
m
1,则
a
与
c
夹角的余弦值为
4 5
C.若 m 1,则 a 与 c 夹角为锐角
B.若
ab
∥c
,则
m
1
2
D.向量
a
在
b
上的投影向量是
3 10
,
1 10
11.函数 f x A sin x A 0, 0,
外接圆圆心,则下列结论正确的有( )
试卷第 2页,共 4页
A.
A
π 3
C.
BO
BC
9
2
B. ABC 外接圆面积为12π
D.
SABC
的最大值为
9
3 4
13.已知
sin
cos
7 5
,
π 4
π 2
ห้องสมุดไป่ตู้
,则 sin
2
π 4
的值为______.
14.写出一个同时满足以下三个性质的函数: f x ______.(写出一个符合条件的即
(2)设向量
c
sin
x,
cos
x
,
x
R
,向量
m
3,1
,若 b m
0 ,求
bc
的最大值
并求出此时 x 的取值集合.
19.在 ABC 中,角 A, B,C 所对的边分别为 a,b, c ,且 2a bcos C c cos B .
(1)求角 C 的大小; (2)若 SABC 2 3 , c 2 3 ,求 ABC 的周长.
人教版2020-2021学年下学期高一数学期末检测卷及答案(含两套题)
【点睛】一般地,如果 为等差数列, 为其前 项和,则有性质:
(1)若 ,则 ;
(2) 且 ;
(3) 且 为等差数列;
(4) 为等差数列.
6.A
【解析】
【分析】
利用正弦定理将边转化为角得到 ,再由角C的范围可得选项.
【详解】因为 ,
所以由正弦定理得 ,所以 ,即 ,
又因为 为 的内角,
所以 .
解得 , ,
, ;
(2) ,
,
又 ,由题得 ,即 ,
,即
由题知 且 ,故 ,
故 ,
故只需考虑 , 时 , 时 , 时 ,
17.(10分)已知 中,点 .
(1)求直线 的方程;
(2)求 的面积.
18.(12分)已知函数 .
(1)当 时,求不等式 的解集;
(2)若关于x的不等式 的解集为R,求a的取值范围.
19.(12分)己知向量 , .
(1)若 ,其中 ,求 坐标;
(2)若 与 的夹角为 ,求 的值.
20.(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产,某医疗器械厂统计了口罩生产车间每名工人的生产速度,将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等.
故 ,
故答案为:
【点睛】向量的数量积有两个应用:(1)计算长度或模长,通过用 来求;(2)计算角, .特别地,两个非零向量 垂直的等价条件是 .
15.9
【解析】
【分析】
将 变形后利用基本不等式可求其最小值
【详解】 ,
,等号成立时 , .
故答案为:9.
【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.
专题07 (基本立体图形)(解析版)-2020-2021学年高一数学下学期期末考试考前必刷题
2020-2021高一下学期期末考试考前必刷题 07(基本立体图形)试卷满分:150分 考试时长:120分钟注意事项:1.本试题满分150分,考试时间为120分钟.2.答卷前务必将姓名和准考证号填涂在答题纸上.3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸、试题卷上答题无效.一、单选题(本大题共8小题,共40.0分)1.(2021·全国高一课时练习)下面四个几何体中,是棱台的是( )A .B .C .D .【答案】C【分析】根据棱柱、棱锥、棱台的结构特征,观察可得答案.【详解】A 项中的几何体是棱柱.B 项中的几何体是棱锥;D 项中的几何体的棱AA ′,BB ′,CC ′,DD ′没有交于一点,则D 项中的几何体不是棱台; C 项中的几何体是由一个棱锥被一个平行于底面的平面截去一个棱锥剩余的部分,符合棱台的定义,是棱台.故选:C2.(2021·湖南长沙市·雅礼中学高一月考)如图,已知等腰三角形O A B '''△,OA AB ''''=是一个平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是( )A B .1 C D .【答案】D【分析】利用斜二测画法,由直观图作出原图三角形,再利用三角形面积公式即可求解.【详解】因为O A B '''△是等腰直角三角形,2O B ''=,所以O A A B ''''==,所以原平面图形为:且2OB O B ''==,OA OB ⊥,2OA O A ''==所以原平面图形的面积是122⨯⨯=, 故选:D3.(2020·陕西西安市第三中学高一月考)如果圆锥的侧面展开图是半圆,那么这个圆锥的轴截面对应的等腰三角形的底角是( )A .30°B .45°C .60°D .90°【答案】C【分析】由圆锥侧面展开所得扇形的弧长与底面周长相等可得圆锥母线与底面半径的数量关系,即可求轴截面底角的大小.【详解】若圆锥如下图所示,则侧面展开图半圆的半径R PA PB ==,底面半径r OA OB ==,由题意知:1222R r ππ⨯=,即2R r =, ∴轴截面对应等腰三角形的底角1cos 2OB r PBA PB R ∠===, ∴60PBA ∠=︒,故选:C4.(2020·四川省广元市八二一中学高一月考)某数学小组进行“数学建模”社会实践调查.他们在调查过程中将一实际问题建立起数学模型,现展示如下:四个形状不同、内空高度相等、杯口半径相等的圆口容器,如图所示.盛满液体后倒出一半,设剩余液体的高度从左到右依次为1h ,2h ,3h ,4h .则它们的大小关系正确的是( )A .214h h h >>B .123h h h >>C .324h h h >>D .241h h h >>【答案】A【分析】可根据几何体的图形特征,结合题目,选择答案.【详解】观察图形可知体积减少一半后剩余就的高度最高为2h ,最低为4h .故选:A【点睛】本题考查旋转体的结构特征,属于基础题.5.(2020·山东德州市·高一期末)一个正三棱锥的底面边长是6( )A .B .C .D .3【答案】D【分析】画出正三棱锥A BCD -的图像,得到底面正三角形的中心O 到正三角形的CD 的距离,再利用勾股定理求斜高即可.【详解】正三棱锥A BCD -的底面边长6BC CD DB ===,高AO =所以底面正三角形的中心O 到正三角形的CD 的距离为1623OH =⨯=故正三棱锥的斜高3AH ==;故选:D.6.(2020·全国高一单元测试)某三棱锥的三视图如图所示,则该三棱锥的侧棱最长的是( )A .2B C D .【答案】C【分析】 画出几何体的直观图,利用三视图的数据,求解棱锥最长的棱长即可.【详解】由三视图可知,该三棱锥的直观图如图所示,取AB 的中点O ,则OC AB ⊥,易知2AB OC ==,1PC =,又PC ⊥底面ABC ,所以PC BC ⊥,从而最长棱为PA 和PB ,=.故选:C .【点睛】本题考查三视图求解几何体的几何量,考查空间想象能力以及计算能力,属于中档题.关键在于根据三视图还原出几何体的形状,画出直观图,并分析几何体的结构特征.7.(2020·南阳市第四中学高一月考)给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥;④长方体一定是正四棱柱.其中正确的命题个数是( )A .0B .1C .2D .3【答案】A【分析】利用底面为菱形的直四棱柱可判断①的正误;利用底面为等腰梯形的直四棱柱可判断②的正误;利用正六棱锥的几何特征可判断③的正误;取长、宽、高都不相等的长方体可判断④的正误.【详解】对于①,底面是菱形(不是正方形)的直四棱柱满足条件,但它不是正棱柱,①错误; 对于②,底面为等腰梯形的直四棱柱的对角面全等,但它不是长方体,②错误; 对于③,如下图所示:在正六棱锥P ABCDEF -中,六边形ABCDEF 为正六边形,设O 为正六边形的中心,则PO ⊥平面ABCDEF ,OA ⊂平面ABCDEF ,则PO OA ⊥,由正六边形的几何性质可知,OAB 为等边三角形,则AB OA =,PA OA ∴>,③错误;对于④,在长方体1111ABCD A BC D -中,若AB 、AD 、1AA 的长两两不相等, 则长方体1111ABCD A BC D -不是正四棱柱,④错误.故选:A.8.(2020·武汉市钢城第四中学高一月考)小蚂蚁的家住在长方体1111ABCD A BC D -的A 处,小蚂蚁的奶奶家住在1C 处,三条棱长分别是12AA =,3AB =,4=AD ,小蚂蚁从A 点出发,沿长方体的表面到小蚂蚁奶奶家1C 的最短距离是( )A B . C D 【答案】D【分析】根据题意知蚂蚁所走的路线有三种情况,利用勾股定理能求出小蚂蚁从A 点出发,沿长方体的表面到小蚂蚁奶奶家1C 的最短距离.【详解】解:根据题意知:蚂蚁所走的路线有三种情况,如下图所示①②③,由勾股定理得:图①中,1AC =图②中,1AC ==图③中,1AC故小蚂蚁从A 点出发,沿长方体的表面到小蚂蚁奶奶家1C 故选:D .【点睛】本题考查最短距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想,属于中档题.二、多选题(本大题共4小题,共20.0分)9.(2020·山东枣庄市·滕州市第一中学新校高一月考)已知圆锥的顶点为P ,母线长为2,A ,B 为底面圆周上两个动点,则下列说法正确的是A .圆锥的高为1B .三角形PAB 为等边三角形C .三角形PABD .直线PA 与圆锥底面所成角的大小为π6 【答案】AD【分析】根据圆锥的性质判断各选项.【详解】由题意圆锥的高为1h ===,A 正确;PAB △中PA PB =是母线长,AB 是底面圆的一条弦,与PA 不一定相等,B 错;当PAB △是轴截面时,cos PAB ∠=,30PAB ∠=︒,则120APB ∠=︒,当,A B 在底面圆上运动时,21sin 2sin 22PAB S PA APB APB =∠=∠≤△,当且仅当90PB ∠=︒时取等号.即PAB △面积最大值为2.C 错;设底面圆圆心为O ,则PAO ∠为PA 与底面所成的角,易知cos 26PAO PAO π∠=∠=,D 正确. 故选:AD .本题考查圆锥的性质,圆锥的轴截面是等腰三角形,腰即为圆锥的母线,底为底面直径,轴截面的高即为圆锥的高.10.(2020·江苏泰州市·兴化一中高一期中)下列命题中正确的有A .空间内三点确定一个平面B .棱柱的侧面一定是平行四边形C .分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上D .一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内【答案】BC【分析】利用平面的定义,棱柱的定义,对选项逐一判断即可.【详解】对于A 选项,要强调该三点不在同一直线上,故A 错误;对于B 选项,由棱柱的定义可知,其侧面一定是平行四边形,故B 正确;对于C 选项,可用反证法证明,故C 正确;对于D 选项,要强调该直线不经过给定两边的交点,故D 错误.故选:BC.【点睛】本题考查平面的基本性质及其推论的应用,考查棱柱的定义,属于基础题.11.(2020·全国高一课时练习)长方体1111ABCD A BC D 的长、宽、高分别为3,2,1,则( )A .长方体的表面积为20B .长方体的体积为6C .沿长方体的表面从A 到1C 的最短距离为D .沿长方体的表面从A 到1C 的最短距离为【答案】BC【分析】由题意,可利用柱体体积公式和多面体表面积公式进行计算,沿表面最短距离可将临近两个面侧面展开图去计算,即可求解正确答案.长方体的表面积为2(323121)22⨯⨯+⨯+⨯=,A 错误.长方体的体积为3216⨯⨯=,B 正确.如图(1)所示,长方体1111ABCD A BC D -中,3AB =,2BC =,11BB =.求表面上最短(长)距离可把几何体展开成平面图形,如图(2)所示,将侧面11ABB A 和侧面11BCC B 展开,则有1AC ==,即经过侧面11ABB A 和侧面11BCC B如图(3)所示,将侧面11ABB A 和底面1111D C B A 展开,则有1AC ==过侧面11ABB A 和底面1111D C B A 时的最短距离是4)所示,将侧面11ADD A 和底面1111D C B A 展开,则有1AC ==11ADD A 和底面1111D C B A 时的最短距离是因为<,所以沿长方体表面由A 到1C 的最短距离是C 正确,D 不正确.故选:BC .【点睛】本题考查长方体体积公式、表面积公式和沿表面的最短距离,考查空间想象能力,属于基础题.12.(2020·瓦房店市高级中学高一期末)如图,透明塑料制成的长方体容器1111ABCD A BC D -内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的命题有( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,11AC 始终与水面所在平面平行D .当容器倾斜如图(3)所示时,AE AH ⋅为定值【答案】AD【分析】想象容器倾斜过程中,水面形状(注意AB 始终在桌面上),可得结论.【详解】由于AB 始终在桌面上,因此倾斜过程中,没有水的部分,是以左右两侧的面为底面的棱柱,A 正确;图(2)中水面面积比(1)中水面面积大,B 错;图(3)中11AC 与水面就不平行,C 错;图(3)中,水体积不变,因此AEH △面积不变,从而AE AH ⋅为定值,D 正确. 故选:AD .【点睛】本题考查空间线面的位置关系,考查棱柱的概念,考查学生的空间想象能力,属于中档题.三、填空题(本大题共4小题,共20.0分)13.(2020·浙江高一期末)如果用半径为R =个圆锥筒的高是___________.【答案】3【分析】先求半圆的弧长,就是圆锥的底面周长,求出底面圆的半径,然后利用勾股定理求出圆锥的高.【详解】半径为R =,圆锥的底面圆的周长为,3=,故答案为:3.14.(2020·河南)若正三棱锥A BCD -的侧棱长为8,底面边长为4,E ,F 分别为AC ,AD 上的动点(如图),则截面BEF 的周长最小值为______.【答案】11【分析】将正三棱锥A BCD -的侧面沿AB 剪开,然后展开'BB 即为所求,然后利用相似,分别求得BE ,EF ,'FB 即可.【详解】正三棱锥A BCD -的侧面展开图如图,由平面几何知识可得//BB CD ',所以BEC ECD ACB ∠=∠=∠,所以BE =BC =4,BCE ABC ∽, 所以CE BC BC AB =.即448CE =, 所以2CE =,所以6AE =, 又34EF AE CD AC ==, 解得3EF =.所以截面BEF 的周长最小值为:''BB BE EF FB =++=43411++=.故答案为:1115.(2020·浙江杭州市·高一期末)正方体1111ABCD A BC D -中,棱长为2,E 是线段1CD 上的动点,则||||AE DE +的最小值是_______.【分析】在正方体中,由图形可知||||,||||AE AP DE DP ≥≥,且当,E P 重合时,等号同时成立,即可求解.【详解】如图,取1CD 的中点为P ,连接AP ,DP则由1AC AD =,1DC DD =知,1AP CD ⊥, 1DP CD ⊥,所以||||,||||AE AP DE DP ≥≥,所以||||||||AE DE AP DP +≥+,在正方体中,棱长为2,所以2AP ==, 122DP ==故当E 在线段1CD 上运动,E 与P 重合时,||||AE DE +【点睛】关键点点睛:根据图象可知,当E 在线段1CD 上运动时,垂线段最短,可得||||AE AP ≥,同理,当E 在线段1CD 上运动时,||||DE DP ≥,且当E 与P 重合时等号同时成立. 16.(2020·浙江杭州市·高一期末)如图,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是______.【分析】蚂蚁爬行距离最短,即将圆锥侧面展开后A 到C 的直线距离,根据已知条件、余弦定理可求出最短距离.【详解】圆锥的侧面展开图为半径为3的扇形,弧AB 长为122ππ⨯=,∴3AVB π∠=,则3AVC π∠=, 由余弦定理可知22212cos 9123172AC VA VC VA VC AVC =+-⋅⋅∠=+-⨯⨯⨯=,AC =四、解答题(本大题共6小题,共70.0分)17.(2020·全国高一单元测试)画出图中水平放置的四边形ABCD 的直观图.【答案】图见解析.【分析】在四边形ABCD 中,过A 作出x 轴的垂直确定坐标,进而利用斜二测画法画出直观图.【详解】由斜二测画法:纵向减半,横向不变;即可知A 、C 在对应点1(3,1),(0,)2A C '',而B 、D 对应点,B D ''位置不变,如下图示:18.(2020·福建漳州市·高一期末)已知球O 的半径为5.(1)求球O 的表面积;(2)若球O 有两个半径分别为3和4的平行截面,求这两个截面之间的距离.【答案】(1)100π;(2)1或7.【分析】(1)利用球的表面积公式计算即可;(2)先求球心到两个截面的距离,再计算即可.【详解】解:(1)因为球O 的半径为5R =,所以球O 的表面积为24100S R ππ==.(2)设两个半径分别为13r =和24r =的平行截面的圆心分别为1O 和2O ,所以14OO ===,所以23OO ===, 所以1212347O OO OO O =+=+=, 或1122431O OO OO O =-=-=,所以两个截面之间的距离为1或7.【点睛】本题考查了球的表面积和截面问题,属于基础题.19.(2020·河北沧州市一中高一月考)如图所示,在正三棱柱111ABC A B C -中,3AB =,14AA =,M 为1AA 的中点,P 是BC 上的一点,且由P 沿棱柱侧面经过棱1CC 到M 的最.设这条最短路线与1CC 的交点为N ,求:(1)该三棱柱的侧面展开图的对角线的长;(2)PC 和NC 的长.【答案】(1(2)PC 的长为2,NC 的长为45. 【分析】(1)由展开图为矩形,用勾股定理求出对角线长;(2)在侧面展开图中三角形MAP 是直角三角形,可以求出线段AP 的长度,进而可以求PC 的长度,再由相似比可以求出CN 的长度.【详解】(1)由题意,该三棱柱的侧面展开图是宽为4,长为339⨯=的矩形,=(2)将该三棱柱的侧面沿棱1BB 展开,如图所示.设PC 的长为x ,则222()MP MA AC x =++.因为MP =2MA =,3AC =,所以2x =(负值舍去),即PC 的长为2.又因为//NC AM , 所以PC NC PA AM =,即252NC =, 所以45NC =. 【点睛】 本题考查求侧面展开图的对角线长,以及三棱柱中的线段长,熟记三棱柱的结构特征即可,属于常考题型.20.(2020·湖北武汉市·华中师大一附中高一月考)已知一个圆锥的底面半径为2,母线长为4.(1)求圆锥的侧面展开图的扇形的圆心角;(2.求圆柱的表面积.【答案】(1)π (2)(2π+【分析】(1)由圆锥侧面展开图的定义计算;(2)由圆锥截面性质,在轴截面中得到相似三角形,由比例性质可得圆柱的底面半径后可得圆柱表面积.【详解】(1)244r l ππαπ=== (2)如图所示,设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S ,则2,4,R OC AC AO =====易知AEB AOC ∆∆AE EBAO OC ∴=,12r r =∴= 222,223S r S r h ππππ====底侧(22S S S ππ∴=+=+=+底侧【点睛】本题考查圆锥的侧面展开图,考查圆柱表面积,考查圆锥的内接圆柱性质.解题关键是掌握圆锥平行于底面的截面的性质.21.(2020·全国高一课时练习)如图,在三棱柱111ABC A B C -中,,E F 分别是11A B ,11AC 的中点,连接,,BE EF FC ,试判断几何体1A EF ABC -是什么几何体,并指出它的底面与侧面.【答案】几何体1A EF ABC -是三棱台.面ABC 是下底面,面1A EF 是上底面,面1ABEA ,面BCFE 和面1ACFA 是侧面【分析】根据题意以及三棱台的结构特征,可以猜想几何体1A EF ABC -是三棱台,再根据三棱台的定义证明即可,然后由三棱台定义可指出它的底面与侧面.【详解】,E F 分别是1111,A B AC 的中点,且11A B AB =,11ACAC =,11B C BC =, 1112A E A F EF AB AC BC ∴===.1~A EF ABC ∴,且1,,AA BE CF 延长后交于一点.又面111A B C 与面ABC 平行,∴几何体1A EF ABC -是三棱台.其中面ABC 是下底面,面1A EF 是上底面,面1ABEA ,面BCFE 和面1ACFA是侧面. 【点睛】本题主要考查三棱台的结构特征,以及利用三棱台定义判断几何体的形状,属于基础题. 22.(2020·全国)在正三棱台111ABC A B C -中,已知10AB =,棱台一个侧面梯形的面积,1,O O 分别为上、下底面正三角形的中心,连接11AO ,AO 并延长,分别交11B C ,BC 于点1D ,D ,160D DA ︒∠=,求上底面的边长.【答案】【分析】由题意,可设上底面边长为x ,利用题中所给侧面梯形面积列方程,求x 值即可.【详解】10AB =,2AD AB ∴==133OD AD ==.设上底面的边长为(0)x x >,则116O D x =. 如图所示,连接1O O ,过1D 作1D H AD ⊥于点H ,则四边形11OHD O 为矩形,且116OH O D x ==.36DH OD OH x ∴=-=-,在1Rt D DH 中,12cos 6036DH D D x ︒⎛⎫==- ⎪ ⎪⎝⎭. 四边形11BC CB 的面积为()11112B C BC D D +⋅,1(10)22x x ⎫=+⨯⎪⎪⎝⎭, 即40(10)(10)x x =+-,x ∴=【点睛】本题考查正棱台几何性质,空间想象能力,计算能力,属于中等题型.。
2022-2023学年山东省烟台市高一上数学期末检测模拟试题含解析
(1)设动圆圆心为 ,则 ,化简得 ( ),这就是动圆圆心的轨迹 的方程.
(2)直线 的方程为 ,代入曲线 的方程得
显然 .
设 , ,则 , ,
而
若以 为直径的圆过点 ,则 ,
∴ 由此得
∴ ,即 .
解得 (舍去)
故存在以 为直径的圆过点
点睛:本题考查了轨迹方程的求法,考查了直线与圆锥曲线的关系,训练了利用数量积判断两个向量的垂直关系,考查了学生的计算能力.
(2)间接法,有如下几种方法:①几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;②动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即ห้องสมุดไป่ตู้得到欲求的动点轨迹方程;③参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程.
10、B
【解析】直接利用函数的性质奇偶性求出结果
三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)
16、(1)2;(2) .
【解析】(1)根据指数幂的运算法则和对数的运算性质计算即可;
(2)不等式化为 ,根据不等式对应方程的两根写出不等式的解集
【详解】(1)
(2)不等式 可化为 ,
不等式对应方程的两根为 , ,且 (其中 );
所以原不等式的解集为
17、(1)见解析;(2)见解析
【解析】(Ⅰ)由已知得 , ,从而 平面 ,由此能证明 ;(Ⅱ)连接 与 相交于 ,连接 ,由已知得 ,由此能证明 平面
试题解析:(Ⅰ)由 平面 可得 AC,
又 , 故AC 平面PAB,所以 .
(Ⅱ)连BD交AC于点O,连EO,
则EO是△PDB的中位线,所以EO PB
【解析】分类讨论, 时根据二次函数的性质求解
浙江省台州市2023-2024学年高一上学期期中数学试题含解析
2023年学年第一学期期中考试试卷高一数学(答案在最后)总分:150分考试时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知全集U =R ,集合{}1,0,1,2A =-,{}|210B x x =->,则()A B ⋂R ð等于()A.{}1,0- B.{}1,2C.{}1,0,1- D.{}0,1,2【答案】A 【解析】【分析】先求B R ð,然后由交集运算可得.【详解】因为{}1|210|2B x x x x ⎧⎫=->=>⎨⎬⎩⎭,所以1|2B x x ⎧⎫=≤⎨⎬⎩⎭R ð,所以(){}1,0A B ⋂=-R ð.故选:A2.命题“2000,10x x x ∃∈++<R ”的否定为()A.2000,10x x x ∃∈++≥R B.2000,10x x x ∃∈++>R C.2,10x x x ∀∈++≥R D.2,10x x x ∀∈++>R 【答案】C 【解析】【分析】在写命题的否定中要把存在变任意,任意变存在.【详解】因为特称命题的否定为全称命题,所以2000,10x x x ∃∈++<R 的否定即为2,10x x x ∀∈++≥R .故选:C.3.设x ∈R ,则“220x x -<”是“12x -<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解不等式,再判断不等式解集的包含关系即可.【详解】由220x x -<得()0,2x ∈,由12x -<得()1,3x ∈-,故“220x x -<”是“12x -<”的充分不必要条件.故选:A.4.已知关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,则下列说法错误的是()A.0a >B.不等式0bx c +>的解集是{}6x x <C.0a b c ++< D.不等式20cx bx a -+<的解集是1|3x x ⎧<-⎨⎩或12x ⎫>⎬⎭【答案】B 【解析】【分析】先求得,,a b c 的关系式,然后对选项进行分析,所以确定正确答案.【详解】由于关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,所以0a >(A 选项正确),且2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,整理得,6b a c a =-=-,由0bx c +>得60,6ax a x --><-,所以不等式0bx c +>的解集是{}6x x <-,所以B 选项错误.660a b c a a a a ++=--=-<,所以C 选项正确.()()22260,6121310cx bx a ax ax a x x x x -+=-++<--=-+<,解得13x <-或12x >,所以D 选项正确.故选:B5.已知函数()y f x =的定义域为{}|06x x ≤≤,则函数()()22f xg x x =-的定义域为()A.{|02x x ≤<或}23x <≤B.{|02x x ≤<或}26x <≤C.{|02x x ≤<或}212x <≤ D.{}|2x x ≠【答案】A 【解析】【分析】由已知列出不等式组,求解即可得出答案.【详解】由已知可得,02620x x ≤≤⎧⎨-≠⎩,解得,02x ≤<或23x <≤.故选:A .6.已知函数5(2),22(),2a x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩是R 上的减函数,则实数a 的取值范围是()A.()0,2 B.()1,2 C.[)1,2 D.(]0,1【答案】C 【解析】【分析】由题可得函数在2x ≤及2x >时,单调递减,且52(2)22aa -+≥,进而即得.【详解】由题意可知:ay x=在()2,+∞上单调递减,即0a >;5(2)2y a x =-+在(],2-∞上也单调递减,即20a -<;又()f x 是R 上的减函数,则52(2)22aa -+≥,∴02052(2)22a a a a ⎧⎪>⎪-<⎨⎪⎪-+≥⎩,解得12a ≤<.故选:C .7.已知函数()y f x =的定义域为R ,()f x 为偶函数,且对任意12,(,0]x x ∈-∞都有2121()()0f x f x x x ->-,若(6)1f =,则不等式2()1f x x ->的解为()A.()(),23,-∞-⋃+∞ B.()2,3- C.()0,1 D.()()2,01,3-⋃【答案】B 【解析】【分析】由2121()()0f x f x x x ->-知,在(,0]-∞上单调递增,结合偶函数,知其在在[0,)+∞上单调递减即可解.【详解】对120x x ∀<≤,满足()()21210f x f x x x ->-,等价于函数()f x 在(,0]-∞上单调递增,又因为函数()f x 关于直线0x =对称,所以函数()f x 在[0,)+∞上单调递减.则()21f x x ->可化为26x x -<,解得23x -<<.故选:B.8.函数()f x x =,()22g x x x =-+.若存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,则n 的最大值是()A.8B.11C.14D.18【答案】C 【解析】【分析】令()222h x x x =-+,原方程可化为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n h x h x h x h x -++⋅⋅⋅+=,算出左侧的取值范围和右侧的取值范围后可得n 的最大值.【详解】因为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,故2221111222222n n n n x x x x x x ---+++-+=-+ .令()222h x x x =-+,90,2x ⎡⎤∈⎢⎥⎣⎦,则()5314h x ≤≤,故()221111531222214n n n x x x x n ---≤-+++-+≤- ,因为()5314n h x ≤≤故5314n -≤,故max 14n =.故选:C.【点睛】本题考查二次函数的最值,注意根据解析式的特征把原方程合理整合,再根据方程有解得到n 满足的条件,本题属于较难题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.对实数a ,b ,c ,d ,下列命题中正确的是()A.若a b <,则22ac bc <B.若a b >,c d <,则a c b d ->-C.若14a ≤≤,21b -≤≤,则06a b ≤-≤D.a b >是22a b >的充要条件【答案】BC 【解析】【分析】利用不等式的性质一一判定即可.【详解】对于A ,若0c =,则22ac bc =,故A 错误;对于B ,c d c d <⇒->-,由不等式的同向可加性可得a c b d ->-,故B 正确;对于C ,2121b b -≤≤⇒≥-≥-,由不等式的同向可加性可得06a b ≤-≤,故C 正确;对于D ,若102a b =>>=-,明显22a b <,a b >不能得出22a b >,充分性不成立,故D 错误.故选:BC10.已知函数()42f x x =-,则()A.()f x 的定义域为{}±2x x ≠ B.()f x 的图象关于直线=2x 对称C.()()56ff -=- D.()f x 的值域是()(),00,-∞+∞ 【答案】AC 【解析】【分析】根据解析式可得函数的定义域可判断A ,利用特值可判断,直接求函数值可判断C ,根据定义域及不等式的性质求函数的值域可判断D.【详解】由20x -≠,可得2x ≠±,所以()f x 的定义域为{}±2x x ≠,则A 正确;因为()14f =-,()34f =,所以()()13f f ≠,所以()f x 的图象不关于直线=2x 对称,则B 错误;因为()453f -=,所以()()56f f -=-,则C 正确;因为2x ≠±,所以0x ≥,且2x ≠,所以22x -≥-,且20x -≠,当220x -≤-<时,422x ≤--,即()2f x ≤-,当20x ->时,402x >-,即()0f x >,所以()f x 的值域是(](),20,-∞-+∞ ,故D 错误.故选:AC.11.高斯是德国著名的数学家,近代数学奠基之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为七界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是()A.x ∀∈R ,[][]22x x =B.x ∀∈R ,[][]122x x x ⎡⎤++=⎢⎥⎣⎦C.x ∀,R y ∈,若[][]x y =,则有1x y ->-D.方程[]231x x =+的解集为【答案】BCD 【解析】【分析】对于A :取12x =,不成立;对于B :设[]x x a =-,[0,1)a ∈,讨论10,2a ⎡⎫∈⎪⎢⎣⎭与1,1)2a ⎡∈⎢⎣求解;对于C :,01x m t t =+≤<,,01y m s s =+≤<,由||x y -=||1t s -<得证;对于D :先确定0x ≥,将[]231x x =+代入不等式[][]()2221x x x ≤<+得到[]x 的范围,再求得x 值.【详解】对于A :取12x =,[][][]1211,2220x x ⎡⎤==⎢⎥⎣⎦==,故A 错误;对于B :设11[],[0,1),[][][]22x x a a x x x x a ⎡⎤⎡⎤=-∈∴++=+++⎢⎥⎢⎥⎣⎦⎣⎦12[]2x a ⎡⎤=++⎢⎥⎣⎦,[2][2[]2]2[][2]x x a x a =+=+,当10,2a ⎡⎫∈⎪⎢⎣⎭时,11,122a ⎡⎫+∈⎪⎢⎣⎭,2[0,1)a ∈,则102a ⎡⎤+=⎢⎥⎣⎦,[2]0a =则1[]2[]2x x x ⎡⎤++=⎢⎣⎦,[2]2[]x x =,故当10,2a ⎡⎫∈⎪⎢⎣⎭时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.当1,1)2a ⎡∈⎢⎣时,131,22a ⎡⎫+∈⎪⎢⎣⎭,2[1,,)2a ∈则112a ⎡⎤+=⎢⎥⎣⎦,[2]1a =则1[]2[]1[2]],2[12x x x x x ⎡⎤++=+=+⎢⎣⎦,故当1,1)2a ⎡∈⎢⎣时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.综上B 正确.对于C :设[][]x y m ==,则,01x m t t =+≤<,,01y m s s =+≤<,则|||()x y m t -=+-()|||1m s t s +=-<,因此1x y ->-,故C 正确;对于D :由[]231x x =+知,2x 一定为整数且[]310x +≥,所以[]13x ≥-,所以[]0x ≥,所以0x ≥,由[][]()2221x x x ≤<+得[][][]()22311x x x ≤+<+,由[][]231x x ≤+解得[]33 3.322x +≤≤≈,只能取[]03x ≤≤,由[][]()2311x x +<+解得[]1x >或[]0x <(舍),故[]23x ≤≤,所以[]2x =或[]3x =,当[]2x =时x =[]3x =时x =,所以方程[]231x x =+的解集为,故选:BCD.【点睛】高斯函数常见处理策略:(1)高斯函数本质是分段函数,分段讨论是处理此函数的常用方法.(2)由x 求[]x 时直接按高斯函数的定义求即可.由[]x 求x 时因为x 不是一个确定的实数,可设[]x x a =-,[0,1)a ∈处理.(3)求由[]x 构成的方程时先求出[]x 的范围,再求x 的取值范围.(4)求由[]x 与x 混合构成的方程时,可用[][]1x x x ≤<+放缩为只有[]x 构成的不等式求解.12.函数()1f x a x a =+--,()21g x ax x =-+,其中0a >.记{},max ,,m m n m n n m n ≥⎧=⎨<⎩,设()()(){}max ,h x f x g x =,若不等式()12h x ≤恒有解,则实数a 的值可以是()A.1B.12 C.13 D.14【答案】CD 【解析】【分析】将问题转化为()min 12h x ≥;分别在a ≥和0a <<的情况下,得到()f x 与()g x 的大致图象,由此可得确定()h x 的解析式和单调性,进而确定()min h x ,由()min 12h x ≤可确定a 的取值范围,由此可得结论.【详解】由题意可知:若不等式()12h x ≤恒有解,只需()min 12h x ≥即可.()1,21,x x af x a x x a +≤⎧=⎨+-≥⎩,∴令211ax x x -+=+,解得:0x =或2x a=;令2121ax x a x -+=+-,解得:x =或x =;①当2a a≤,即a ≥时,则()f x 与()g x大致图象如下图所示,()()()(),02,02,g x x h x f x x a g x x a ⎧⎪≤⎪⎪∴=<<⎨⎪⎪≥⎪⎩,()h x ∴在(],0-∞上单调递减,在[)0,∞+上单调递增,()()()min 001h x h g ∴===,不合题意;②当2a a>,即0a <<时,则()f x 与()g x大致图象如下图所示,()()()(),0,0,g x x h x f x x g x x ⎧≤⎪∴=<<⎨⎪≥⎩()h x ∴在(],0-∞,a ⎡⎣上单调递减,[]0,a,)+∞上单调递增;又()()001h g ==,21hg a ==,∴若()min 12h x ≥,则需()min h x h =,即1212a ≤,解得:14a -≤;综上所述:实数a的取值集合10,4M ⎛⎤-= ⎥ ⎝⎦,1M ∉ ,12M ∉,13M ∈,14M ∈,∴AB 错误,CD 正确.故选:CD.【点睛】关键点点睛:本题考查函数不等式能成立问题的求解,解题关键是将问题转化为函数最值的求解问题,通过分类讨论的方式,确定()f x 与()g x 图象的相对位置,从而得到()h x 的单调性,结合单调性来确定最值.三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数()f x 过点()42,,则满足不等式()()21f a f a ->-的实数a 的取值范围是__________.【答案】312⎡⎫⎪⎢⎣⎭,【解析】【分析】利用待定系数法求出幂函数()f x 的解析式,再利用函数定义域和单调性求不等式的解集.【详解】设幂函数()y f x x α==,其图像过点()42,,则42α=,解得12α=;∴()12f x x ==,函数定义域为[)0,∞+,在[)0,∞+上单调递增,不等式()()21f a f a ->-等价于210a a ->-≥,解得312a ≤<;则实数a 的取值范围是31,2⎡⎫⎪⎢⎣⎭.故答案为:31,2⎡⎫⎪⎢⎣⎭14.已知0a >,0b >,且41a b +=,则22ab +的最小值是______.【答案】18【解析】【分析】利用基本不等式“1”的妙用求解最小值.【详解】由题意可得24282221018b a b ab a b a ab +=++=⎛⎫⎛⎫ ⎪⎪⎝⎭⎝++≥⎭,当且仅当13a =,6b =时,等号成立.故答案为:1815.若函数()()22()1,,=-++∈f x x xax b a b R 的图象关于直线2x =对称,则=a b +_______.【答案】7【解析】【分析】由对称性得()(4)f x f x =-,取特殊值(0)(4)(1)(3)f f f f =⎧⎨=⎩求得,a b ,再检验满足()(4)f x f x =-即可得,【详解】由题意(2)(2)f x f x +=-,即()(4)f x f x =-,所以(0)(4)(1)(3)f f f f =⎧⎨=⎩,即15(164)08(93)b a b a b =-++⎧⎨=-++⎩,解得815a b =-⎧⎨=⎩,此时22432()(1)(815)814815f x x x x x x x x =--+=-+--+,432(4)(4)8(4)14(4)8(4)15f x x x x x -=--+-----+432232(1696256256)8(644812)14(168)32815x x x x x x x x x x =--+-++-+---+-++432814815x x x x =-+--+()f x =,满足题意.所以8,15a b =-=,7a b +=.故答案为:7.16.设函数()24,()2,ax x a f x x x a-+<⎧⎪=⎨-≥⎪⎩存在最小值,则a 的取值范围是________.【答案】[0,2]【解析】【分析】根据题意分a<0,0a =,02a <≤和2a >四种情况结合二次函数的性质讨论即可》【详解】①当a<0时,0a ->,故函数()f x 在(),a -∞上单调递增,因此()f x 不存在最小值;②当0a =时,()24,0()2,0x f x x x <⎧⎪=⎨-≥⎪⎩,当0x ≥时,min ()(2)04f x f ==<,故函数()f x 存在最小值;③当02a <≤时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,2()(2)(2)0f x x f =-≥=.若240a -+<,则()f x 不存在最小值,故240a -+≥,解得22a -≤≤.此时02a <≤满足题设;④当2a >时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,22()(2)()(2)f x x f a a =-≥=-.因为222(2)(4)242(2)0a a a a a a ---+=-=->,所以22(2)4a a ->-+,因此()f x 不存在最小值.综上,a 的取值范围是02a ≤≤.故答案为:[0,2]【点睛】关键点点睛:此题考查含参数的分段函数求最值,考查二次函数的性质,解题的关键是结合二次函数的性质求函数的最小值,考查分类讨论思想,属于较难题.四、解答题:本题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{|13}A x x =<<,集合{|21}B x m x m =<<-.(1)若A B ⋂=∅,求实数m 的取值范围;(2)命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数m 的取值范围.【答案】(1)[)0,∞+(2)(],2-∞-【解析】【分析】(1)根据B 是否为空集进行分类讨论,由此列不等式来求得m 的取值范围.(2)根据p 是q 的充分条件列不等式,由此求得m 的取值范围.【小问1详解】由于A B ⋂=∅,①当B =∅时,21m m ³-,解得13m ≥,②当B ≠∅时,2111m m m <-⎧⎨-≤⎩或2123m mm <-⎧⎨≥⎩,解得103m ≤<.综上所述,实数m 的取值范围为[)0,∞+.【小问2详解】命题:p x A ∈,命题:q x B ∈,若p 是q 的充分条件,故A B ⊆,所以2113m m ≤⎧⎨-≥⎩,解得2m ≤-;所以实数m 的取值范围为(],2-∞-.18.2018年8月31日,全国人大会议通过了个人所得税法的修订办法,将每年个税免征额由42000元提高到60000元.2019年1月1日起实施新年征收个税.个人所得税税率表(2019年1月1日起执行)级数全年应纳税所得额所在区间(对应免征额为60000)税率(%)速算扣除数1[]0,36000302(]36000,1440001025203(]144000,30000020X 4(]300000,42000025319205(]420000,66000030529206(]660000,96000035859207()960000,+∞45181920有一种速算个税的办法:个税税额=应纳税所得额×税率-速算扣除数.(1)请计算表中的数X ;(2)假若某人2021年税后所得为200000元时,请按照这一算法计算他的税前全年应纳税所得额.【答案】(1)16920X =(2)153850元.【解析】【分析】(1)根据公式“个税税额=应纳税所得额×税率-速算扣除数”计算,其中个税税额按正常计税方法计算;(2)先判断他的全年应纳税所参照的级数,是级数2还是级数3,然后再根据计税公式求解.【小问1详解】按照表格,假设个人全年应纳税所得额为x 元(144000300000x ≤≤),可得:()()20%14400020%1440003600010%360003%x X x -=-⨯+-⨯+⨯,16920X =.【小问2详解】按照表格,级数3,()30000030000020%16920256920-⨯-=;按照级数2,()14400014400010%2520132120-⨯-=;显然1321206000019212020000031692025692060000+=<<=+,所以应该参照“级数3”计算.假设他的全年应纳税所得额为t 元,所以此时()20%1692020000060000t t -⨯-=-,解得153850t =,即他的税前全年应纳税所得额为153850元.19.已知定义在R 上的函数()f x 满足()()()2f x y f x f y +=++,且当0x >时,()2f x >-.(1)求()0f 的值,并证明()2f x +为奇函数;(2)求证()f x 在R 上是增函数;(3)若()12f =,解关于x 的不等式()()2128f x x f x ++->.【答案】(1)(0)2f =-,证明见解析(2)证明见解析(3){1x x <-或}2x >【解析】【分析】(1)赋值法;(2)结合增函数的定义,构造[]1122()()f x f x x x =-+即可;(3)运用题干的等式,求出(3)10f =,结合(2)的单调性即可.【小问1详解】令0x y ==,得(0)2f =-.()2()2(0)20f x f x f ++-+=+=,所以函数()2f x +为奇函数;【小问2详解】证明:在R 上任取12x x >,则120x x ->,所以12()2f x x ->-.又[]11221222()()()()2()f x f x x x f x x f x f x =-+=-++>,所以函数()f x 在R 上是增函数.【小问3详解】由(1)2f =,得(2)(11)(1)(1)26f f f f =+=++=,(3)(12)(1)(2)210f f f f =+=++=.由2()(12)8f x x f x ++->得2(1)(3)f x x f -+>.因为函数()f x 在R 上是增函数,所以213x x -+>,解得1x <-或2x >.故原不等式的解集为{1x x <-或}2x >.20.已知函数()2,R f x x x k x k =-+∈.(1)讨论函数()f x 的奇偶性(写出结论,不需要证明);(2)如果当[]0,2x ∈时,()f x 的最大值是6,求k 的值.【答案】(1)答案见解析(2)1或3【解析】【分析】(1)对k 进行分类讨论,结合函数奇偶性的知识确定正确答案.(2)将()f x 表示为分段函数的形式,对k 进行分类讨论,结合二次函数的性质、函数的单调性求得k 的值.【小问1详解】当0k =时,()f x =||2x x x +,则()f x -=||2x x x --=()f x -,即()f x 为奇函数,当0k ≠时,(1)f =|1|2k -+,(1)|1|2f k -=-+-,(1)(1)|1|2|1|2|1||1|0f f k k k k +-=-+-+-=--+≠,则()f x 不是奇函数,(1)(1)|1|2|1|2|1||1|40f f k k k k --=-++++=-+++≠,则()f x 不是偶函数,∴当0k =时()f x 是奇函数,当0k ≠时,()f x 是非奇非偶函数.【小问2详解】由题设,()f x ()()222,2,x k x x k x k x x k ⎧+-≥⎪=⎨-++<⎪⎩,函数()22y x k x =+-的开口向上,对称轴为2122k kx -=-=-;函数()22y x k x =-++的开口向下,对称轴为2122k k x +=-=+-.1、当1122k k k -<+<,即2k >时,()f x 在(,1)2k-∞+上是增函数,∵122k+>,∴()f x 在[]0,2上是增函数;2、当1122k k k <-<+,即2k <-时,()f x 在1,2k ⎛⎫-+∞ ⎪⎝⎭上是增函数,∵102k-<1,∴()f x 在[]0,2上是增函数;∴2k >或2k <-,在[]0,2x ∈上()f x 的最大值是(2)2|2|46f k =-+=,解得1k =(舍去)或3k =;3、当1122k kk -≤≤+,即22k -≤≤时,()f x 在[]0,2上为增函数,令2246k -+=,解得1k =或3k =(舍去).综上,k 的值是1或3.【点睛】研究函数的奇偶性的题目,如果要判断函数的奇偶性,可以利用奇偶函数的定义()()f x f x -=或()()f x f x -=-来求解.也可以利用特殊值来判断函数不满足奇偶性的定义.对于含有绝对值的函数的最值的研究,可将函数写为分段函数的形式,再对参数进行分类讨论来求解.21.已知函数()2f x x =-,()()224g x x mx m =-+∈R .(1)若对任意[]11,2x ∈,存在[]24,5x ∈,使得()()12g x f x =,求m 的取值范围;(2)若1m =-,对任意n ∈R ,总存在[]02,2x ∈-,使得不等式()200g x x n k -+≥成立,求实数k 的取值范围.【答案】(1)54m ⎡∈⎢⎣(2)(],4∞-【解析】【分析】(1)将题目条件转化为()1g x 的值域包含于()2f x 的值域,再根据[]11,2x ∈的两端点的函数值()()1,2g g 得到()y g x =对称轴为[]1,2x m =∈,从而得到()()min g x g m =,进而求出m 的取值范围;(2)将不等式()200g x x n k -+≥化简得不等式024x n k ++≥成立,再构造函数()0024h x x n =++,从而得到()0max h x k ≥,再构造函数()(){}0max max ,8n h x n n ϕ==+,求出()min n ϕ即可求解.【小问1详解】设当[]11,2x ∈,()1g x 的值域为D ,当[]24,5x ∈,()2f x 的值域为[]2,3,由题意得[]2,3D ⊆,∴()()211243224443g m g m ⎧≤=-+≤⎪⎨≤=-+≤⎪⎩,得5342m ≤≤,此时()y g x =对称轴为[]1,2x m =∈,故()()[]min 2,3g x g m =∈,即()222243g m m m =-+≤≤得1m ≤≤1m ≤≤-,综上可得54m ⎡∈⎢⎣.【小问2详解】由题意得对任意n ∈R ,总存在[]02,2x ∈-,使得不等式024x n k ++≥成立,令()0024h x x n =++,由题意得()0max h x k ≥,而()()(){}{}0max max 2,2max ,8h x h h n n =-=+,设(){}max ,8n n n ϕ=+,则()min n k ϕ≥,而(){},4max ,88,4n n n n n n n ϕ⎧<-⎪=+=⎨+≥-⎪⎩,易得()()min 44n k ϕϕ=-=≥,故4k ≤.即实数k 的取值范围为(],4∞-.22.已知函数()()01ax g x a x =≠+在区间1,15⎡⎤⎢⎥⎣⎦上的最大值为1.(1)求实数a 的值;(2)若函数()()()()()210x b f x b b g x +=-+>,是否存在正实数b ,对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在以()()f g r 、()()f g s 、()()f g t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.【答案】(1)2a =(2)存在,15153b <<【解析】【分析】(1)由题意()1a g x a x =-+,1,15x ⎡⎤∈⎢⎥⎣⎦,然后分a<0,0a >两种情况讨论函数()g x 的单调性,即可得出结果;(2)由题意()()0bf x x b x=+>,可证得()f x 在(为减函数,在)+∞为增函数,设()u g x =,1,13u ⎡⎤∈⎢⎥⎣⎦,则()()()()0b f g x f u u b u ==+>,从而把问题转化为:1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max2f u f u >时,求实数b 的取值范围.结合()bf u u u=+的单调性,分109b <≤,1193b <≤,113b <<,1b ≥四种情况讨论即可求得答案.【小问1详解】由题意()11ax a g x a x x ==-++,1,15x ⎡⎤∈⎢⎥⎣⎦①当a<0时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递减,所以()max 151566a ag x g a ⎛⎫==-== ⎪⎝⎭,得6a =(舍去).②当0a >时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,所以()()max 1122a ag x g a ==-==,得2a =.综上所述,2a =.【小问2详解】由题意()22211x g x x x ==-++,又115x ≤≤,由(1)知函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,∴()()115g g x g ⎛⎫≤≤ ⎪⎝⎭,即()113g x ≤≤,所以函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上的值域为1,13⎡⎤⎢⎥⎣⎦.又因为()()()()()()()()()2211111x b x x b x b x b f x b b b g x x x++++++=-+=-+=-+,∴()()20x b bf x x b x x+==+>,令120x x <<,则()()()12121212121b b b f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当1x ,(2x ∈时,()121210b x x x x ⎛⎫--> ⎪⎝⎭,所以()()12f x f x >,()f x 为减函数;当1x ,)2x ∈+∞时,()121210b x x x x ⎛⎫--< ⎪⎝⎭,所以()()12f x f x <,()f x 为增函数;∴()f x 在(为减函数,在)+∞为增函数,设()u g x =,由(1)知1,13u ⎡⎤∈⎢⎥⎣⎦,∴()()()()0bf g x f u u b u==+>;所以,在区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在()()f g r 、()()f g s 、()()f g t 为边长的三角形,等价于1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max 2f u f u >.①当109b <≤时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递增,∴()min 133f u b =+,()max 1f u b =+,由()()min max 2f u f u >,得115b >,从而11159b <≤.②当1193b <≤时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u =,()max 1f u b =+,由()()min max 2f u f u >得77b -<<+1193b <≤.③当113b <<时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u ==,()max 133f u b =+,由()()min max 2f u f u >得74374399b -+<<,从而113b <<.④当1b ≥时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递减,∴()min 1f u b =+,()max 133f u b =+,由()()min max 2f u f u >得53b <,从而513b ≤<.综上,15153b <<.。
高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某市长安区第一中学2015-2016学年高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.====.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.)【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48 B.24 C.12 D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以=====.选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值X围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______. 【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=.解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 . 【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。
山东省烟台市中英文学校2023-2024学年高一下学期期末检测数学试题
山东省烟台市中英文学校2023-2024学年高一下学期期末检测数学试题一、单选题1.某地为了了解学生的睡眠时间,根据初中和高中学生的人数比例采用分层抽样,抽取了40名初中生和20名高中生,调查发现初中生每天的平均睡眠时间为8小时,方差为2,高中生每天的平均睡眠时间为7小时,方差为1.根据调查数据,估计该地区中学生睡眠时间的总体方差约为( ) A .1.3B .1.5C .1.7D .1.92.甲中学的女排和乙中学的女排两队进行比赛,在一局比赛中甲中学女排获胜的概率是35,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则甲中学的女排获胜的概率等于( ) A .19125B .27125C .54125D .811253.设,,αβγ是三个不同平面,且,l m αγβγ==I I ,则“//l m ”是“//αβ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.已知母线长为a 的圆锥的侧面展开图为半圆,在该圆锥内放置一个圆柱,则当圆柱的侧面积最大时,圆柱的体积为( )A 3aB 3aC 3aD 3a 5.2016年至2023年我国原油进口数量如图所示:下列结论正确的是( )A .2016年至2023年我国原油进口数量逐年增加B .2016年至2023年我国原油进口数量的极差为16138万吨C .2016年至2023年我国原油进口数是的80%分位数为54239万吨D .2015年我国原油进口数量少于30000万吨6.如图,四棱锥P ABCD -中,PA ⊥面ABCD ,四边形ABCD 为正方形,4PA =,PC 与平面ABCD 所成角的大小为θ,且tan θP ABCD -的外接球表面积为( )A .26πB .28πC .34πD .14π7.抛掷一枚骰子两次,将得到的点数分别记为,a b ,则,,6a b 能构成三角形的概率是( ) A .712B .512C .23D .138.在三棱锥-P ABC 中,顶点P 在底面的射影为ABC V 的垂心O (O 在ABC V 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( ) A .若12θθ=,则AC BC = B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6π D .当θ取值最大时,12θθ=二、多选题9.某不透明盒子中共有5个大小质地完全相同的小球,其中有3个白球2个黑球,现从中随机取两个球,甲表示事件“第一次取到黑球”,乙表示事件“第二次取到白球”,则下列说法错误的是( )A .若不放回取球,则甲乙相互独立B .若有放回取球,则甲乙相互独立C .若不放回取球,则甲乙为互斥事件D .若有放回取球,则甲乙为互斥事件10.盒子中有编号一次为1,2,3,4,5,6的6个小球(大小相同),从中不放回地抽取4个小球并记下编号,根据以下统计数据,可以判断一定抽出编号为6的小球的是( )A .极差为5B .上四分位数为5C .平均数为3.5D .方差为4.2511.如图,在棱长为4的正方体1111ABCD A B C D -中,E 为棱BC 的中点,(]()(]()10,1,0,1BP BD CQ CB λλμμ=∈=∈u u u r u u u r u u u r u u u r,过点,,P E Q 的平面截该正方体所得的截面为Ω,则( )A .不存在,λμ,使得PQ ⊥平面1ACDB .当平面//EPQ 平面1ACD 时,12λμ+=C .线段PQD .当14λμ==时,1Ω24PEQ =V 的面积的面积三、填空题12.已知样本数据为1,a ,b ,7,9,该样本数据的平均数为5,则这组样本数据的方差的最小值为.13.冰雹猜想又称考拉兹猜想、角谷猜想、31x +想等,其描述为:任一正整数x ,如果是奇数就乘以3再加1,如果是偶数就除以2,反复计算,最终都将会得到数字1如给出正整数5,则进行这种反复运算的过程为5→16→8→4→2→1,即按照这种运算规律进行5次运算后得到1.若从正整数6,7,8,9,10中任取2个数按照上述运算规律进行运算,则至少有1个数的运算次数为奇数的概率为.14.如图,在三棱台ABC DEF -中,平面ACFD ⊥平面ABC ,45ACB ∠=︒,60BCD ∠=︒,2DC BC =.(1)求DC 与平面ABC 所成线面角大小.(2)若2AB BC ==,求三棱锥D ABC -外接球表面积.四、解答题15.如图,在正四棱锥P ABCD -中,O 为底面ABCD 的中心.(1)若5AP =,AD =(2)若AP AD =,E 为PB 的中点, 求直线BD 与平面AEC 所成角的大小.16.某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5p c =%时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+,当[]95,105c ∈时,求()f c 的解析式,并求()f c 在区间[]95,105的最小值.17.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,M 在棱PD 上且AM ⊥侧面PCD ,PO AD ⊥,垂足为O .(1)求证:PO ⊥平面ABCD ;(2)若平面AMB 与直线PC 交于点Q ,证明:MQ AB ∥;(3)侧面PAD 为等边三角形时,求二面角P BD A --的平面角θ的正切值.18.某电子公司新开发一款电子产品,该电子产品的一个系统G 由3个电子元件组成,各个电子元件能正常工作的概率为23,且每个电子元件能否正常工作是相互独立,若系统G 中有超过一半的电子元件正常工作,则G 可以正常工作,否则就需要维修. (1)求系统需要维修的概率;(2)为提高系统G 正常工作的概率,在系统内增加两个功能完全一样的其他品牌的电子元件,每个新元件正常工作的概率为p ,且新增元件后有超过一半的电子元件正常工作,则G 可以正常工作.问:p 满足什么条件时可以提高整个系统G 的正常工作概率?19.如图,点C 在以AB 为直径的圆O 上(C 不同于A ,)B ,PA 垂直于圆O 所在平面,G 为AOC V 的重心,2PA AB ==,N 在线段PA 上,且2AN NP =.(1)证明:NG ∥平面POC ;(2)在圆O 上是否存在点C ,使得二面角A OP G --的余弦值为23若存在,指出点C 的位置;若不存在,说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省烟台市2019-2020学年高一数学下学期期末考试试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足()1i z i -=(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.抛掷两枚质地均匀的硬币,设事件A =“第一枚硬币正面向上”,设事件B =“第二枚硬币正面向上”,则( ) A .事件A 与B 互为对立事件 B .事件A 与B 为互斥事件C .事件A 与事件B 相等D .事件A 与B 相互独立3.为了解疫情防控延迟开学期间全区中小学线上教学的主要开展形式,某课题组面向各学校开展了一次随机调查,并绘制得到如下统计图,则采用“直播+录播”方式进行线上教学的学校占比约为( )A .22.5%B .27.5%C .32.5%D .37.5%4.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c 22243,则C =( )A .2π B .3π C .4π D .6π 5.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 6.某市从2017年秋季入学的高一学生起实施新高考改革,学生需要从物理、化学、生物、政治、历史、地理六门课中任选3门作为等级考科目.已知该市高中2017级全体学生中,81%选考物理或历史,39%选考物理,51%选考历史,则该市既选考物理又选考历史的学生数占全市学生总数的比例为( )A .9%B .19%C .59%D .69%7.已知三条不重合的直线m ,n ,l ,三个不重合的平面α,β,γ,则( )A .若//m n ,n α⊂,则//m αB .若l α⊥,m β⊂,l m ⊥,则//αβC .若αγ⊥,βγ⊥,l αβ⋂=,则l γ⊥D .若m α⊂,n α⊂,//m β,//n β,//αβ8.人的眼皮单双是由遗传自父母的基因决定的,其中显性基因记作B ,隐性基因记作b ;成对的基因中,只要出现了显性基因,就一定是双眼皮(也就是说,“双眼皮”的充要条件是“基因对是BB ,bB 或Bb ”).人的卷舌与平舌(指是否能左右卷起来)也是由一对基因对决定的,分别用D ,d 表示显性基因、隐性基因,基因对中只要出现了显性基因D ,就一定是卷舌的.生物学上已经证明:控制不同性状的基因遗传时互不干扰.若有一对夫妻,两人决定眼皮单双和舌头形态的基因都是BbDd ,不考虑基因突变,他们的孩子是单眼皮且卷舌的概率为( )A .116B .316C .716D .916二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分. 9.下面关于复数的四个命题中,真命题是( ) A .若复数z ∈R ,则z ∈R B .若复数z 满足2z ∈R ,则z ∈RC .若复数z 满足1z∈R ,则z ∈R D .若复数1z ,2z 满足12z z ∈R ,则12z z =10.给定一组数5,5,4,3,3,3,2,2,2,1,则( ) A .平均数为3 B .标准差为85C .众数为2和3D .第85百分位数为4.511.如图,在正方体1111ABCD A B C D -中,点P 为线段1B C 上一动点,则( )A .直线1BD ⊥平面11AC DB .异面直线1BC 与11A C 所成角为45︒C .三棱锥11P A DC -的体积为定值D .平面11AC D 与底面ABCD 的交线平行于11A C12.已知甲罐中有四个相同的小球,标号为1,2,3,4;乙罐中有五个相同的小球,标号为1,2,3,5,6.现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于5”,事件B =“抽取的两个小球标号之积大于8”,则( ) A .事件A 发生的概率为12B .事件A B ⋃发生的概率为1120 C .事件A B ⋂发生的概率为25D .从甲罐中抽到标号为2的小球的概率为15三、填空题:本题共4小题,每小题5分,共20分.13.若向量()1,1a =,()1,2b =,且()a b b λ-,则实数λ的值为________.14.某工厂有A ,B ,C 三个车间,A 车间有600人,B 车间有500人.若通过比例分配的分层随机抽样方法得到一个样本量为30的样本,其中B 车间10人,则样本中C 车间的人数为________. 15.已知某运动员每次投篮命中的概率为0.6,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:在R 软件的控制平台,输入“()sample 0:999,50,replace F =”,按回车键,得到0999范围内的50个不重复的整数随机数,指定0,1,2,3,4,5表示命中,6,7,8,9表示未命中,再以每个随机整数(不足三位的整数,其百位或十位用0补齐)为一组,代表三次投篮的结果,据此估计,该运动员三次投篮恰有两次命中的概率为________.16.已知三棱锥P ABC -内接于半径为5的球,90ACB ∠=︒,7AC =,15BC =则三棱锥P ABC-体积的最大值为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知点(),2A m ,()1,1B ,()2,4C .(1)若CA CB +最小,求实数m 的值;(2)若CA 与CB 夹角的余弦值为55,求实数m 的值. 18.(12分)已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,且cos cos 3c A a C a +=. (1)求ab的值; (2)若1a =,6c =,求ABC △外接圆的面积.19.(12分)为普及抗疫知识、弘扬抗疫精神,某学校组织防疫知识竞赛.比赛共分为两轮,每位参赛选手均须参加两轮比赛,若其在两轮比赛中均胜出,则视为赢得比赛.已知在第一轮比赛中,选手甲、乙胜出的概率分别为35,34;在第二轮比赛中,甲、乙胜出的概率分别为23,25;甲、乙两人在每轮比赛中是否胜出互不影响.(1)从甲、乙两人中选取1人参加比赛,派谁参赛赢得比赛的概率更大? (2)若甲、乙两人均参加比赛,求两人中至少有一人赢得比赛的概率. 20.(12分)在三棱锥P ABC -中,D ,E ,F 分别为棱AB ,CP ,AC 的中点.(1)求证://PA 平面DEF ;(2)若面PAC ⊥底面ABC ,BC AC ⊥,ACP △为等边三角形,求二面角E FD B --的大小. 21.(12分)为了解某市家庭用电量的情况,该市统计部门随机调查了200户居民去年一年的月均用电量(单位:kW h ⋅),并将得到的数据按如下方式分为9组:[)0,40,[)40,80,,[]320,360,绘制得到如下的频率分布直方图:(1)试估计抽查样本中用电量在[)160,200的用户数量;(2)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯电价,使75%的居民缴费在第一档,20%的居民缴费在第二档,其余5%的居民缴费在第三档,试基于统计数据确定第二档月均用电量的范围(计算百分位数时,结果四舍五入取整数;范围用左开右闭区间表示);(3)为了解用户的具体用电需求,统计部门决定在样本中月均用电量为[)0,40和[]320,360的两组居民用户中随机抽取两户进行走访,求走访对象来自不同分组的概率.22.(12分)如图,四边形ABCD 是圆柱1OO 的轴截面,点P 为底面圆周上异于A ,B 的点.(1)求证:PB ⊥平面PAD ;(2)若圆柱的侧面积为2π,体积为π,点Q 为线段DP 上靠近点D 的三等分点,是否存在一点P 使得直线AQ 与平面BDP 所成角的正弦值最大?若存在,求出相应的正弦值,并指出点P 的位置;若不存在,说明理由.2019-2020学年度第二学期期末学业水平诊断高一数学参考答案一、单项选择题1.B 2.D 3.B 4.D 5.A 6.A 7.C 8.B 二、多项选择题9.AC 10.AC 11.ACD 12.BC 三、填空题 13.3514.8 15.0.46 16四、解答题17.解:(1)由题意,()2,2CA m =--,()1,3CB =--,于是()3,5CA CB m +=--, 所以(CA CB m +=所以CA CB +的最小值为5, 此时3m =; (2)由(cos,CA CBCA CB CA CBm ⋅==⋅5=, 化简得28480m m +-=,解得4m =或12m =-.18.解:(1)因为cos cos 3c A a C a +=,由余弦定理得222222322b c aa b c c a a bc ab+-+-+=,即3b a =,所以13a b =; (2)因为1a =,c =3b =,所以22219622213co 3s a b c ab C +-+-==⨯⨯=, 所以sin C =由正弦定理得2sin cR C===,所以22271010S R πππ⎛=== ⎝⎭.19.解:(1)设1A =“甲在第一轮比赛中胜出”,2A =“甲在第二轮比赛中胜出”,1B =“乙在第一轮比赛中胜出”,2B =“乙在第二轮比赛中胜出”,则12A A =“甲赢得比赛”,()()()1212322535P A A P A P A ==⨯=.12B B =“乙赢得比赛”,()()()12123235510P B B P B P B ==⨯=.因为23510>,所以派甲参赛获胜的概率更大.(2)由(1)知,设C =“甲赢得比赛”,D =“乙赢得比赛”,则()()12231155P C P A A -=-==; ()()1237111010P D P B B -=-==.于是C D ⋃=“两人中至少有一人赢得比赛”()()()()372911151050P C D P CD P C P D ⋃--=-⨯===. 20.(1)证明:因为E ,F 分别为CP ,AC 的中点,所以EF 为CAP △的中位线, 所以//EF PA ,而EF ⊂平面DEF ,PA ⊄平面DEF , 所以//PA 平面DEF ;(2)因为面PAC ⊥面ABC ,面PAC ⋂面ABC AC =,BC ⊂面ABC ,BC AC ⊥,所以BC ⊥平面PAC ,而//DF BC ,所以DF ⊥平面PAC , 所以FE FD ⊥,FC FD ⊥,所以CFE ∠是二面角E FD B --的平面角, 又ACP △为等边三角形,所以60PAC ∠=︒, 又//EF PA ,所以60PAC EFC ∠=∠=︒.21.解:(1)由直方图可得,样本落在[)0,40,[)40,80,[)80,120,[)120,160的频率分别为0.02,0.15,0.27,0.23,落在[)200,240,[)240,280,[)280,320,[]320,360的频率分别为0.09,0.06,0.04,0.01.因此,样本落在[)160,200的频率为()10.020.150.270.230.090.060.040.010.13-+++++++=.样本中用电量在[)160,200的用户数为2000.1326⨯=.(2)为了使75%的居民缴费在第一档,需要确定月均用电量的75%分位数,因为0.020.150.270.230.67+++=,0.020.150.270.230.130.8++++=, 所以75%分位数必位于[)160,200内, 于是0.750.67160401850.80.67-+⨯≈-,又0.020.150.270.230.130.090.060.95++++++=, 所以95%分位数为280.所以第二档的范围可确定为(]185,280.(3)由题可知,样本中用电量在[)0,40的用户有4户,设编号分别为1,2,3,4;在[]320,360的用户有2户,设编号分别为a ,b ,则从6户中任取2户的样本空间为:()()()()()()()(){1,2,1,3,1,4,1,,1,,2,3,2,4,2,,a b a Ω=()()()()()()()}2,,3,4,3,,3,,4,,4,,,b a b a b a b ,共有15个样本点.设事件A =“走访对象来自不同分组”,则()()()()()()()(){}1,,1,,2,,2,,3,,3,,4,,4,A a b a b a b a b =, 所以()8n A =,从而()()()815n n A P A ==Ω.22.解:(1)证明:因为AB 是圆O 的直径,点P 是圆周上一点,所以90APB ∠=︒,即PB PA ⊥, 又在圆柱1OO 中,母线AD ⊥底面O ,PB ⊂底面O ,所以AD PB ⊥, 又PA AD A ⋂=, 所以PB ⊥平面PAD ;(2)设圆柱底面半径为r ,母线为l ,则222rl r l ππππ=⎧⎨=⎩,解得11r l =⎧⎨=⎩, 在PAD △中,过A 作AM DP ⊥交DP 于点M . 由(1)知PB ⊥平面PAD ,因为AM ⊂平面PAD ,所以PB AM ⊥, 又DP PB P ⋂=,所以AM ⊥平面BDP .若M 与Q 不重合,AQM ∠即为直线AQ 与平面BDP 所成的角. 若M 与Q 重合,直线AQ 与平面BDP 所成的角为90︒.(法一)设AOP θ∠=,由对称性,不妨设()0,θπ∈, 则在AOP △中,2sin2AP θ=,在Rt ADP △中,22sin214sin2AM θθ=+2221sin 21233AQ AD AP θ+⎛⎫=+=⎪⎝⎭.于是3sinsin AM AQM AQ θ∠==1=≤=. 当且仅当2214sin 2sin 2θθ=,即sin22θ=,2πθ=时,等号成立. 此时,AM AQ =,直线AQ 与平面BDP 所成的角为90︒,正弦值为1, 点P 为两个半圆弧AB 的中点.(法二)若直线AQ 与平面BDP 所成角为90︒,则AQ DP ⊥, 在Rt ADP △中,由2213AD DQ DP DP =⋅=,可得DP =.因此AP ==此时AOP △为直角三角形,所以点P 为两个半圆弧AB 中点.因此,当点P 为两个半圆弧AB 中点.时,直线AQ 与平面BDP 所成角为最大值90︒, 正弦值为1.。