八(上)1.3 勾股定理的应用

合集下载

北师大版八年级数学上册:1.3《勾股定理的应用》教案

北师大版八年级数学上册:1.3《勾股定理的应用》教案

北师大版八年级数学上册:1.3《勾股定理的应用》教案一. 教材分析《勾股定理的应用》是北师大版八年级数学上册第一章第三节的内容。

本节课主要让学生掌握勾股定理在实际问题中的应用,培养学生的解决问题的能力。

教材通过引入古希腊数学家毕达哥拉斯的故事,引导学生探索直角三角形斜边与两直角边的关系,从而引入勾股定理。

学生通过观察、实验、猜想、验证等过程,体验数学的探索乐趣,提高解决问题的能力。

二. 学情分析学生在七年级已经学习了直角三角形的性质,对直角三角形的边长关系有一定了解。

但勾股定理的应用涉及实际问题,对学生来说是一个新的挑战。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高解决问题的能力。

三. 教学目标1.理解勾股定理的含义,掌握勾股定理在直角三角形中的应用。

2.能够运用勾股定理解决实际问题,提高解决问题的能力。

3.培养学生的合作、交流、探究能力,体验数学探索的乐趣。

四. 教学重难点1.重难点:勾股定理的应用。

2.难点:如何将实际问题转化为勾股定理的形式,求解问题。

五. 教学方法1.采用问题驱动法,引导学生探究勾股定理的应用。

2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。

3.采用启发式教学法,教师提问、学生回答,激发学生的思维。

4.利用多媒体辅助教学,展示勾股定理的应用实例。

六. 教学准备1.准备相关课件、教学素材。

2.设计好教学问题,准备好答案。

3.安排好教学过程中的各个环节。

七. 教学过程1.导入(5分钟)利用多媒体展示勾股定理的动画故事,引导学生了解勾股定理的背景。

同时,提问学生:“你们认为直角三角形的斜边与两直角边有什么关系?”2.呈现(10分钟)教师提出一组实际问题,如:“一个直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。

”让学生尝试解决。

学生在解决过程中,发现无法直接运用已知的直角三角形性质解决问题,从而引出勾股定理。

3.操练(10分钟)教师提出多个关于勾股定理的应用问题,让学生在小组内讨论、交流,共同解决。

北师大版初中数学八年级(上)第一章勾股定理1-3勾股定理的应用教学详案

北师大版初中数学八年级(上)第一章勾股定理1-3勾股定理的应用教学详案

第一章勾股定理3 勾股定理的应用教学目标1.利用勾股定理及其逆定理解决简单的实际问题.2.通过观察图形,探索图形间的关系,发展学生的空间观念,在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.教学重难点重点:构建直角三角形,利用勾股定理及其逆定理解决实际问题.难点:从实际问题中合理抽象出数学模型.教学过程导入新课游乐场有一个圆柱形的大型玩具,如图所示,现要从点A开始环绕圆柱侧面修建梯子,正好到达A点的正上方B点,已知圆柱形玩具的底面周长是12米,高AB为5米,那么梯子的长度是多少米?探究新知一、合作探究【探究1】确定立体物体表面上两点之间的最短距离.【例1】如图,有一个圆柱,它的高等于12 cm,底面圆的周长为18 cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?(1)在你自己做的圆柱上,尝试从点A到点B沿圆柱侧面画几条路线,你觉得哪条路线最短?(2)如图,将圆柱侧面剪开展成一个长方形,点A到点B的最短路线是什么?你画对了吗?(3)蚂蚁从点A出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?∵AB2 = 122+92,∴AB = 15(cm).答:蚂蚁从点A出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是15 cm.变式训练:如图,长方体的底面边长分别为2 cm和4 cm,高为5 cm.如果一根细线从点P开始经过四个侧面绕一圈到达点Q,那么所用细线最短需要_________cm.答案:13【探究2】应用勾股定理解决实际问题【例2】如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE = 3 m,CD = 1 m,试求滑道AC的长.【解】设滑道AC的长度为x m,则AB的长度为x m,AE的长度为(x-1)m.在Rt△ACE中,∠AEC = 90°,由勾股定理得AE2+CE2 = AC2,即(x-1)2+32 = x2,解得x = 5.故滑道AC的长度为5 m.变式训练:在一次消防演习中,消防员架起一架25米长的云梯,如图所示那样斜靠在一面墙上,梯子底端离墙7米.(1)这架云梯的顶端距地面有多高?(2)如果消防员接到命令,要把云梯的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?解:(1)由题图可以看出云梯、墙、地面可围成一个直角三角形,即云梯为斜边,云梯底部到墙的线段为一条直角边,云梯顶端到地面的线段为另一条直角边.根据题意252-72 = 242,所以云梯顶端距地面有24米.(2)当云梯顶端下降4米后,云梯顶部到地面的距离为20米.因为252-202 = 152,且15-7 = 8(米),所以云梯底部应水平滑动8米.课堂练习1.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,则问这根铁棒应有多长?2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它爬的最短距离为____.m=0.33m)的正方形.在水池正中央3.有一个水池,水面是一个边长为10尺(1尺=13有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问:这个水池的深度和这根芦苇的长度各是多少?4.如图,台风过后,某小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8 m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂的吗?参考答案1.解:如图,由题意得当铁棒在B处:AC = 1.5米,BC = 2米.∵AB2 = AC2+CB2 = 2.52,∴AB = 2.5米.∵油桶外的部分是0.5米,∴AD = 2.5+0.5 = 3(米).当铁棒垂直进入,得出油桶中的长度1.5米+桶外的0.5米= 2米.答:这根铁棒的长度范围是2米到3米.2.253.解:设水池的深度为x尺,则芦苇的长度为(x+1)尺.根据题意得x²+5² =(x+1)².解得x =12.x+1=12+1=13(尺).答:这个水池的深度和这根芦苇的长度各是12尺和13尺.4.解:设旗杆在离底部x米的位置断裂,由题意得x2+82 = (16-x)2,解得x = 6米.答:旗杆在离底部6米的位置断裂.课堂小结确定立体物体表面上两点之间的最短距离的方法:将其转化为平面上两点间的距离,利用两点之间,线段最短来求解.布置作业习题1.4第1,2,3,4题板书设计3 勾股定理的应用1.确定立体物体表面上两点之间的最短距离例1 如图,有一个圆柱,它的高等于12 cm,底面圆的周长为18 cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?2.应用勾股定理解决实际问题例2 如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE = 3 m,CD = 1 m,试求滑道AC的长.。

1.3勾股定理的应用 蚂蚁怎样走最近说课稿 北师大版 八年级数学上册 第一章 勾股定理

1.3勾股定理的应用 蚂蚁怎样走最近说课稿 北师大版 八年级数学上册 第一章 勾股定理

1.3 勾股定理的应用引言勾股定理是数学中的一个重要定理,它是我们学习数学的基础。

在八年级数学上册的第一章中,我们学习了勾股定理以及它的应用。

在本文档中,我们将重点讨论勾股定理的应用之一:蚂蚁怎样走最近。

蚂蚁怎样走最近在我们的日常生活中,我们经常会遇到类似的问题:蚂蚁在平面上的两个点之间移动,它应该选择怎样的路径才能够走得最近呢?这个问题可以通过勾股定理来解决。

假设蚂蚁需要从点A到达点B,我们可以将平面上的点A和点B连接起来,形成一条直线。

根据勾股定理,直角三角形的斜边的长度等于两个直角边长度的平方和的平方根。

因此,我们可以通过计算直线AB的长度,再结合其他已知条件,来确定蚂蚁应该走的最短路径。

解决问题的步骤在解决蚂蚁怎样走最近的问题时,我们可以按照以下步骤进行:1.确定两点的坐标:首先,我们需要确定点A和点B的坐标。

假设点A的坐标为(x1, y1),点B的坐标为(x2, y2)。

2.计算直线AB的长度:根据勾股定理,直线AB的长度可以通过以下公式计算:AB = √((x2-x1)^2 + (y2-y1)^2)。

3.根据其他条件确定最短路径:除了直线AB的长度,我们还需要根据其他条件来确定最短路径,例如是否存在障碍物等。

示例接下来,我们通过一个示例来演示蚂蚁怎样走最近的问题。

假设蚂蚁需要从点A(1, 2)到达点B(4, 6),我们需要确定蚂蚁应该走的最短路径。

首先,我们可以计算直线AB的长度:AB = √((4-1)^2 + (6-2)^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5因此,直线AB的长度为5。

接下来,我们需要根据其他条件确定最短路径。

假设在点C(2, 4)处存在一个障碍物,蚂蚁不能穿过障碍物。

根据直线AB的长度为5,我们可以尝试绘制一条与直线AB等长的线段CD,并且使得线段CD与直线AB垂直相交。

请注意,我们可以使用勾股定理来计算线段CD的长度。

假设线段CD的长度为d,则有:d^2 + 4^2 = 5^2解方程,我们可以得到:d^2 + 16 = 25d^2 = 9d = 3因此,线段CD的长度为3。

八年级上《1.3勾股定理的应用》同步练习(含答案解析)

八年级上《1.3勾股定理的应用》同步练习(含答案解析)

2018-2019学年度北师大版数学八年级上册同步练习1.3 勾股定理的应用(word解析版)学校:___________姓名:___________班级:___________一.选择题(共10小题)1.如图,CD是一平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=12,则CE的值为()A.3 B.4 C.5 D.62.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米3.小明从家走到邮局用了8分钟,然后右转弯用同样的速度走了6分钟到达书店(如图所示).已知书店距离邮局660米,那么小明家距离书店()A.880米B.1100米C.1540米D.1760米4.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A.直角三角形两个锐角互补B.三角形内角和等于180°C.如果三角形两条边长的平方和等于第三边长的平方D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形5.如图,厂房屋顶人字形钢架的跨度BC=12米,AB=AC=6.5米,则中柱AD(D为底边BC的中点)的长是()A.6米B.5米 C.3米D.2.5米6.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm7.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm8.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为()A.B.2C.3D.49.如图,长方体的底面边长分别为2cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A.11cm B.2cm C.(8+2)cm D.(7+3)cm10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二.填空题(共6小题)11.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长海里.12.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.13.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.14.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动.15.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).16.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.三.解答题(共4小题)17.如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向上,轮船从B 处继续向正东方向航行100海里到达C处时,测得小岛A在船的北偏东30°的方向上,AD⊥BC于点D,求AD的长.18.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?19.如图,甲乙两船同时从A港出发,甲船沿北偏东35°的方向,以每小时12海里的速度向B岛驶去.乙船沿南偏东55°的方向向C岛驶去,2小时后,两船同时到达了目的地.若C、B两岛的距离为30海里,问乙船的航速是多少?20.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?2018-2019学年度北师大版数学八年级上册同步练习:1.3 勾股定理的应用(word解析版)参考答案与试题解析一.选择题(共10小题)1.【分析】证明△AEC∽△BED,可得=,由此构建方程即可解决问题;【解答】解:由镜面反射对称可知:∠A=∠B=∠α,∠AEC=∠BED.∴△AEC∽△BED.∴=,又∵若AC=3,BD=6,CD=12,∴=,求得EC=4.故选:B.2.【分析】要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE的长即可.【解答】解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=4,∴AC=2,∵BD=0.9,∴CD=2.4.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.42=0.49,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.3.故选:B.3.【分析】利用勾股定理求出小明家到书店所用的时间,求出小明的速度,再求小明家距离书店的距离.【解答】解:∵小明家到书店所用的时间为=10分钟,又∵小明的速度为=110米/分钟,故小明家距离书店的距离为110×10=1100米.故选:B.4.【分析】根据勾股定理的逆定理即可判断.【解答】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选:D.5.【分析】首先证明AD⊥BC,再利用勾股定理计算即可;【解答】解:∵AB=AC,BD=DC,∴AD⊥BC,在Rt△ADB中,AD===2.5,故选:D.6.【分析】两次运用勾股定理:两直角边的平方和等于斜边的平方即可解决.【解答】解:本题需先求出长和宽组成的长方形的对角线长为=3cm.这根最长的棍子和矩形的高,以及长和宽组成的长方形的对角线组成了直角三角形.盒内可放木棒最长的长度是=7cm.故选:B.7.【分析】首先根据题意画出图形,利用勾股定理计算出AC的长【解答】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC===15(cm),则这只铅笔的长度大于15cm.故选:D.8.【分析】求出圆锥底面圆的周长,则以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后∠BAC=90°,连接BP,根据勾股定理求出BP即可.【解答】解:圆锥底面是以BC为直径的圆,圆的周长是BCπ=6π,以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,弧长是l=6π,设展开后的圆心角是n°,则=6π,解得:n=180,即展开后∠BAC=×180°=90°,AP=AC=3,AB=6,则在圆锥的侧面上从B点到P点的最短路线的长就是展开后线段BP的长,由勾股定理得:BP=,故选:C.9.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:把长方体的侧表面展开得到一个长方形,高6cm,宽=2+3+2+3=10cm,AB为对角线.AB==2cm.故选:B.10.【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.二.填空题(共6小题)11.【分析】首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP •cos∠A=2海里.【解答】解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×=2海里.故答案为2.12.【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【解答】解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.13.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.14.【分析】利用勾股定理进行解答.先求出下滑后梯子低端距离低端的距离,再计算梯子低端滑动的距离.【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故答案为:8m.15.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.16.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.【解答】解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图③:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.三.解答题(共4小题)17.【分析】如图,直角△ACD和直角△ABD有公共边AD,在两个直角三角形中,利用三角函数即可用AD表示出CD与BD,根据CB=BD﹣CD即可列方程,从而求得AD的长.【解答】解:如图所示.则∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD,∴BC=AC=100海里.在Rt△ACD中,设CD=x海里,则AC=2x海里,AD===x,在Rt△ABD中,AB=2AD=2x,BD===3x,又∵BD=BC+CD,∴3x=100+x,解得x=50,∴AD=x=50海里.18.【分析】(1)如图1,设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r.根据圆柱的体积和棱柱的体积公式分别求得圆柱型唇膏和纸盒的体积,然后求其比值;(2)求得易拉罐总体积和纸箱容积,然后求得比值;(3)利用(1)(2)的数据进行解答.【解答】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r则圆柱型唇膏和纸盒的体积之比为:()(2)易拉罐总体积和纸箱容积的比:=;(3)∵=∴第二种包装的空间利用率大.19.【分析】首先求得线段AB的长,然后利用勾股定理求得线段AC的长,然后除以时间即可得到乙船的速度.【解答】解:根据题意得:AB=12×2=24,BC=30,∠BAC=90°.…(1分)∴AC2+AB2=BC2.∴AC2=BC2﹣AB2=302﹣242=324∴AC=18.…(4分)∴乙船的航速是:18÷2=9海里/时.…(6分)20.【分析】(1)直接利用勾股定理求出AC的长,进而得出答案;(2)直接利用勾股定理得出B′C,进而得出答案.【解答】解:(1)∵∠C=90°,AB=2.5,BC=0.7,∴AC===2.4(米),答:此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,即1.52+B′C2=2.52,∴B′C=2(m),∴BB′=CB′﹣BC=2﹣0.7=1.3(m),答:梯子的底端B在水平方向滑动了1.3m.。

北师大版八年级数学上册:1.3《勾股定理的应用》说课稿

北师大版八年级数学上册:1.3《勾股定理的应用》说课稿

北师大版八年级数学上册:1.3《勾股定理的应用》说课稿一. 教材分析《勾股定理的应用》是人教版八年级数学上册第一章第三节的内容。

这一节主要让学生学会运用勾股定理解决实际问题,巩固他们对勾股定理的理解。

教材通过例题和练习题的安排,让学生在解决实际问题的过程中,加深对勾股定理的记忆和应用。

二. 学情分析八年级的学生已经学习了勾股定理的定义和证明,他们对勾股定理有了初步的理解。

但是,他们在解决实际问题时,可能会对题目中的信息提取和运用勾股定理不够熟练。

因此,在教学过程中,我需要关注学生的理解和应用情况,引导他们正确运用勾股定理解决实际问题。

三. 说教学目标1.知识与技能目标:学生能理解勾股定理的应用,会在实际问题中正确运用勾股定理。

2.过程与方法目标:通过解决实际问题,学生能提高自己的问题解决能力,培养数学思维。

3.情感态度与价值观目标:学生能感受到数学与生活的联系,增强学习数学的兴趣。

四. 说教学重难点1.教学重点:学生能正确运用勾股定理解决实际问题。

2.教学难点:学生能在复杂的情境中,正确提取信息,运用勾股定理。

五. 说教学方法与手段1.教学方法:引导发现法,让学生在解决实际问题的过程中,发现和理解勾股定理的应用。

2.教学手段:多媒体教学,通过图片、动画等形式,直观展示勾股定理的应用。

六. 说教学过程1.导入:通过一个生活中的实际问题,引出勾股定理的应用,激发学生的学习兴趣。

2.新课导入:讲解勾股定理的应用,通过例题和练习题,让学生理解和掌握。

3.课堂实践:学生自主解决一些实际问题,巩固对勾股定理的应用。

4.总结提升:对学生的解题过程进行点评,总结勾股定理的应用方法和技巧。

5.课后作业:布置一些实际问题,让学生进一步巩固和应用勾股定理。

七. 说板书设计板书设计如下:1.勾股定理的应用2.解题步骤:a.理解题意,提取相关信息b.确定已知和未知c.运用勾股定理,列出方程d.解方程,求解未知数e.检验答案,确认无误八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况和课后反馈来进行。

八年级数学上册《第一章3 勾股定理的应用》讲解与例题

八年级数学上册《第一章3 勾股定理的应用》讲解与例题

《第一章3 勾股定理的应用》讲解与例题1.长方体(或正方体)面上的两点间的最短距离长方体(或正方体)是立体图形,但它的每一个面都是平面.假设计算同一个面上的两点之间的距离比较容易,假设计算不同面上的两点之间的距离,就必需把它们转化到同一个平面内,即把长方体(或正方体)设法展开成为一个平面,使计算距离的两个点处在同一个平面中,如此就能够够利用勾股定理加以解决了.因此立体图形中求两点之间的最短距离,必然要审清题意,弄清楚究竟是同一平面中两点间的距离问题仍是异面上两点间的距离问题.谈重点 长方体表面上两点间最短距离因为长方体的展开图不止一种情形,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.只是要留意展开时的多种情形,尽管看似很多,但由于长方体的对面是相同的,因此归纳起来只需讨论三种情形——前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【例1-1】 如图①是一个棱长为3 cm 的正方体,它的6个表面都别离被分成了3×3的小正方形,其边长为1 cm.此刻有一只爬行速度为2 cm/s 的蚂蚁,从下底面的A 点沿着正方体的表面爬行到右边表面上的B 点,小明把蚂蚁爬行的时刻记录了下来,是2.5 s .通过简短的试探,小明先是脸上露出了惊讶的表情,然后又露出了欣赏的目光.你明白小明什么缘故会佩服这只蚂蚁的举动吗? 解:如图②,在Rt△ABD 中,AD =4 cm ,BD =3 cm.由勾股定理,AB 2=BD 2+AD 2=32+42=25,AB =5 cm ,∴蚂蚁的爬行距离为5 cm. 又明白蚂蚁的爬行速度为2 cm/s ,∴它从点A 沿着正方体的表面爬行到点B 处,需要时刻为52=2.5 s.小明通过试探、判定,发觉蚂蚁爬行的时刻恰恰确实是选择了这种最优的方式,因此他感到惊讶和佩服. 【例1-2】 如图,一只蚂蚁从实心长方体的极点A 动身,沿长方体的表面爬到对角极点C 1处(三条棱长如下图),问如何走线路最短?最短线路长为多少?解:蚂蚁由A 点沿长方体的表面爬行到C 1点,有三种方式,别离展成平面图形如下:如图①,在Rt△ABC 1中,AC 21=AB 2+BC 21=42+32=52=25. 故AC 1=5.如图②,在Rt△ACC 1中,AC 21=AC 2+CC 21=62+12=37. 如图③,在Rt△AB 1C 1中,AC 21=AB 21+B 1C 21=52+22=29.∵25<29<37,∴沿图①的方式爬行线路最短,最短的线路是5.点技术巧展长方体求解此类问题时只需对长方体进行部份展开,画出局部的展开图,假设将长方体全数展开,不仅没有必要反而会扰乱视线.2.圆柱体(或圆锥体)面上的两点间的最短距离圆柱体(或圆锥体)是立体图形,从其表面看两点之间的连线绝大部份是曲线,那么如何确信哪一条是最短的呢?解决问题的方式是将圆柱(或圆锥)的侧面展开,转化为平面图形,应用勾股定明白得决,而不能盲目地凭感觉来确信.【例2】如图①所示,一只蚂蚁在底面半径为20 cm,高为30π cm的圆柱下底的点A处,发觉自己正上方圆柱上边缘的B处有一只小昆虫,便决定捕捉这只小昆虫,为了不引发这只小昆虫的注意,它故意不走直线,而绕着圆柱,沿一条螺旋线路,从背后对小昆虫进行突然攻击,结果蚂蚁偷袭成功,取得了一顿美餐.依照上述信息,请问蚂蚁至少爬行多少路程才能捕捉到小昆虫?分析:解此题的关键是把圆柱的侧面展开,利用两点之间线段最短和勾股定理作答.解:假设将圆柱体的侧面沿AB剪开摊平如图②,那么对角线AB即为蚂蚁爬行的最短线路.在Rt△ACB中,AC=40π cm,BC=30π cm.由勾股定理,得AB2=AC2+BC2=(40π)2+(30π)2=(50π)2,∴AB=50π cm.∴蚂蚁至少爬行50π cm才能捕捉到小昆虫.谈重点圆柱体两点间的最短距离此题文字表达较多,要求在阅读的基础上提炼有效的信息,具体解题时先将圆柱沿AB剪开,将侧面展开成一矩形,会发觉对角线AB即为蚂蚁爬行的最短线路,再运用勾股定理即可求得.3.生活中两点间的最短距离用勾股定明白得决实际问题的关键是从实际问题中构建数学模型——直角三角形,再正确利用两点之间线段最短解答.【例3】如图①是一个三级台阶,它的每一级的长、宽和高别离为5 dm,3 dm和1 dm,A和B是那个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点动身,沿着台阶面爬到B点的最短路程是多少?分析:由于蚂蚁是沿台阶的表面由A爬行到B,故需把三个台阶展开成平面图形(如图②).解:将台阶展开成平面图形后,可知AC=5 dm,BC=3×(3+1)=12 dm,∠C=90°.在Rt△ABC中,∵AB2=AC2+BC2,∴AB2=52+122=132,∴AB=13 dm.故蚂蚁爬到B点的最短路程是13 dm.4.如何正确利用勾股定理及其逆定明白得决生活中的问题利用勾股定理及其逆定明白得决生活中的实际问题,重要的是将实际问题转化成数学模型(直角三角形模型),将实际问题中的“数”转化为定理中的“形”,再转化为“数”.解题的关键是深刻明白得题意,并画出符合条件的图形.解决几何体表面上两点之间的最短距离问题的关键是要设法把立体图形转化为平面图形,具体步骤是: (1)把立体图形展成平面图形; (2)确信点的位置; (3)确信直角三角形;(4)分析直角三角形的边长,用勾股定理求解.【例4】 如图①,圆柱形玻璃容器的高为18 cm ,底面周长为60 cm ,在外侧距下底1 cm 的点S 处有一只蜘蛛,在与蜘蛛相对的圆柱形容器的上口外侧距上口1 cm 的点F 处有一只苍蝇,急于捕捉苍蝇果腹的蜘蛛需要爬行的最短距离是__________cm.解析:将圆柱的侧面展开取得它的侧面展开图(如图②),CD ∥AB ,且AD =BC =12底面周长,BS =DF =1 cm.那么蜘蛛所走的最短线路的长度即为线段SF 的长度.过S 点作SM ⊥CD ,垂足为M ,由条件知,SM =AD =12×60=30 cm ,MC =SB =DF =1 cm ,因此MF =18-1-1=16 cm ,在Rt△MFS 中,由勾股定理得SF 2=162+302=342,因此SF =34 cm.故蜘蛛需要爬行的最短距离是34 cm.答案:345.勾股定理与方程相结合的应用方程思想是一种重要的数学思想.所谓方程思想是指从分析问题的数量关系入手,将问题中的已知量和未知量之间的数量关系通过适当设元成立起方程(组),然后通过解方程(组)使问题取得解决的思维方式.而勾股定理反映的直角三角形三边的关系正是构建方程的基础.故勾股定理的许多问题的解决都要跟方程相结合.方程思想是勾股定理中的重要思想.【例5】 如图,有一张直角三角形状纸片ABC ,两直角边AC =6 cm ,BC =8 cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?解:设CD =x cm ,由题意知DE =x cm ,BD =(8-x ) cm ,AE =AC =6 cm ,在Rt△ABC 中,由勾股定理得AB =AC 2+BC 2=10 cm. 于是BE =10-6=4 cm.在Rt△BDE 中,由勾股定理得42+x 2=(8-x )2,解得x =3. 故CD 的长为3 cm.。

北师大版八年级数学初二上册《勾股定理的应用》教案设计

北师大版八年级数学初二上册《勾股定理的应用》教案设计

北师大版八年级数学初二上册《勾股定理的应用》教案设计1.3勾股定理的应用一.教学目标:1.知识与技能(1)利用勾股定理及逆定理解决生活中的实际问题。

(2)通过观察图形,探索图形间的关系,发展学生的空间观念.2.过程与方法在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.3.情感、态度与价值观在利用勾股定理解决实际问题的过程中,体验数学研究的实用性.二.教学重点:探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决实际问题.三.教学难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理解决实际问题。

XXX.学情分析:本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动.学生在研究七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.五.教学方法:引导——探究——归纳XXX.教具准备:多媒体,矩形纸片做成的圆柱等模型XXX.教学过程:(一)情境引入德国天文学家XXX曾经说过“几何学中有两大宝藏”,一个是黄金分割,另一个就是勾股定理,并被无数人论证,由此可见勾股定理的重要性。

然后引导大家复勾股定理及逆定理的内容。

(学生回答,教师板书)我们还知道许多科学家为了探寻其他星球上的生命,向宇宙发射很多信号,我国数学家XXX曾提议向宇宙发射勾股定理的图形,并说如果宇宙中有文明人,他们一定会认识这种图形“语言”的,由此可见勾股定理非常重要。

那么,它在我们的实际生活中到底有什么广泛的应用呢?下面,就让我们漫步走进勾股定理的世界,一起来用这种大自然共同的“语言”来解决实际问题吧!(由此引入课题:勾股定理的应用。

教师板书)(二)协作探究下面,我们通过几个例题来探究勾股定理的应用。

例1.如图所示,有一个圆柱,它的高是12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面上与点A相对的点B 处的食品,沿圆柱侧面爬行到B点,求其爬行的最短路程是多少?析:学生活动:学生分为2人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。

1.3 勾股定理的应用 北师大版数学八年级上册

1.3 勾股定理的应用  北师大版数学八年级上册
第一章 勾股定理
1.3 勾股定理的应用
北师大版八年级(初中解决实际问题. 体会把立体图形转化为 平面图形,解决“最短路径”的问题. 2.会根据勾股定理的逆定理解决实际问题. 3.利用数学中的建模思想构造直角三角形解决实际问题.
复习回顾
1. 勾股定理的内容是什么? A
展开
勾股定理
立体图形
平面图形
直角三角形模型
立体图形上的最短路程 1. 圆柱
立体图形上的最短路程 2. 棱柱(以长方体为例)
立体图形上的最短路程 3. 台阶问题
课堂练习
【教材P14 习题1.4 第1题】
1. 如图,阴影长方形的面积是多少?
解:设直角三角形斜边长(长方形
的长)为x cm,由勾股定理得
B 12cm A 8cm 8cm
解:最短线路如 图所示,最短路 程为 20 cm.
【教材P15 习题1.4 第5题】
5.在我国古代数学著作《九章算术》中记载
了一道有趣的问题,这个问题的大意是:有一
个水池,水面是一个边长为10尺的正方形.在
水 池 正中央有一根新生的芦苇,它高出水面1
尺.如果把这根芦苇垂直拉向岸边,它的顶端
如图所示,有一个圆柱,它的高等于 12 cm,底面 上圆的周长等于 18 cm. 在圆柱下底面的点 A 有一只蚂 蚁,它想吃到上底面上与点 A 相对的点 B 处的食物,沿 圆柱侧面爬行的最短路程是多少?
(1)自己做一个圆柱,尝试从点 A 到点 B 沿圆柱侧面 画出几条路线,你觉得哪条路线最短呢?
(2)如图所示,将圆柱侧面剪开展成一个长方形, 从点 A 到点 B 的最短路线是什么?你画对了吗?
恰好到达岸边的水面,请问:这个水池水的深
度和这根芦苇的长度各是多少?

初中数学北师大版八年级上册《13勾股定理的应用》教学设计

初中数学北师大版八年级上册《13勾股定理的应用》教学设计

北师大版数学八年级上册1.3勾股定理的应用教学设计师:1. 勾股定理的内容是什么?如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.2. 勾股定理的逆定理是什么?a2+b2=c2三角形是直角三角形3.欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.提出问题,学生探究热情高涨,为下一环节奠定了良好基础.合作探究蚂蚁爬行的最短(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?(2)如图所示,将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?师:想一想为什么线段AB是最短的路线?(3)蚂蚁从点A出发,想吃到点B处的食物,它沿圆柱侧面爬行的最短路程是多少?已知圆柱的高是12,∴AA'=12;底面周长是18,∴A'B=9;∴AB2=AA'2+A'B2=144+81=225,∴AB=15答:爬行的最短路程是15cm。

【总结提高】求圆柱侧面上两点间的最短路线长的方法:路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.生:两点之间,线段最短【解】设滑道AC的长度为xm,则AB的长度为xm,AE的长度为(x-1)m,在Rt△ACE中,∠AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32=x2,解得x=5.故滑道AC的长度为5m.1.如图,正方体的边长为1,一只蚂蚁沿正方体的表面从一个顶点A爬行到另一个顶点B,则蚂蚁爬行的最短路程的平方是( D )。

A.2 B.3 C.4 D.52.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B两地的距离是__5KM______;若A地在C地的正东方向,则B地在C地的____正北____方向.3.甲、乙两位探险者,到沙漠进行探险。

北师大版八年级上册 1.3 勾股定理的应用 学案设计(无答案)

北师大版八年级上册  1.3  勾股定理的应用  学案设计(无答案)

第2讲勾股定理的应用【教学目标】知识目标:熟练使用勾股定理进行相关计算,会利用勾股定理计算路程的最短距离问题。

重难点:勾股定理的运用思维目标:数形结合思想、方程思想、转化思想。

【知识梳理】1.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.2.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,_________.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.3.常见立体图形的平面展开图。

圆柱侧面展开图为长方形【典例讲解】类型一、圆柱中的最短路径问题:圆柱侧面展开图为长方形,最短路径及长方形的对角线。

例1.为筹备迎新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图,已知圆筒高108cm,其截面周长为36cm,如果在表面缠绕油纸4圈,应裁剪多长油纸。

练习1.如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm例2. 如图,长方体的长EF为15cm,宽AE为10cm,高AD为20cm,点B到点C的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距高是多少?练习2.如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为()m.A.4.8 B. C.5 D.【当堂检测】1.直角三角形的两边长分别为3厘米,4厘米,则这个直角三角形的周长为()A.12厘米 B.15厘米 C.12或15厘米 D.12或(7+)厘米2.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.3. 已知一直角三角形的木板,三边的平方和为1800cm’,则斜边长为()A.80mB.30mC.90 mD.120 m4. 如图是一个圆柱形饮料罐,底面半径是5,高是12.上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤135. 轮船在大海中航行,它从点A出发,向正北方向航行20km.遇到冰山后折向正东方向航行15km,则此时轮船与点A的距离为 km.6. 如图是一个三级台阶,它的每一级的长、宽和高分别为55 dm,10 dm和6dm.A和B是这个台阶的两个相对的端点,点A上有一只蚂蚁,想到点B去吃可口的蜜糖,则蚂蚁从点A出发,沿若台阶面爬到点B,最短路线 dm。

1.3 勾股定理的应用(课件)北师大版数学八年级上册

1.3 勾股定理的应用(课件)北师大版数学八年级上册

点 清
在实际生活中,可运用勾股定理解决一些实际问题(如
单 解
方位角问题、旗杆折断问题、蚂蚁最短路线问题、方案设计
读 问题等).不能直接用勾股定理解决问题时,可以尝试通过
添加辅助线(作高)的办法构造出直角三角形,再利用勾股
定理解答.
1.3 勾股定理的应用
返回目录
考 归纳总结
点 清
勾股定理在实际生活中应用很多,当已知直角三角形的
1.3 勾股定理的应用
考 [答案] 6 点 清 单 解 读
返回目录
1.3 勾股定理的应用
返回目录
重 ■题型 勾股定理中的方案设计问题
难 题
例 一路上 A,B 两地(视为直线上的两点)相距 25
型 突
km,C,D为两村庄(视为两点),DA⊥AB
于点
A,CB⊥AB
破 于点 B(如图),已知 DA=10 km,CB=15 km,现要在路
原理 两点之间线段最短
1.3 勾股定理的应用
返回目录

对点典例剖析
点 清
典例1 如图所示的是一个长方体盒子,其长、宽、高分
单 解
别为4,2,9,用一根细线绕侧面绑在点
A,B
处,不计线
读 头,求细线的最短长度.
1.3 勾股定理的应用
考 [解题思路] 点 清 单 解 读
返回目录
1.3 勾股定理的应用
1.3 勾股定理的应用
● 考点清单解读 ● 重难题型突破
1.3 勾股定理的应用
返回目录
考 ■考点一 立体图形上的最短路线
点 清 1. 确定圆柱侧面上两点之间的最短距离,其步骤如下:
单 解
(1)将侧面展开为长方形;

北师大版八年级上册数学1.3勾股定理的应用(教案)

北师大版八年级上册数学1.3勾股定理的应用(教案)
五、教学反思
在今天的课程中,我们探讨了勾股定理的应用。回顾整个教学过程,我觉得有几个方面值得反思和总结。
首先,关于导入新课环节,我通过提出一个与生活密切相关的问题来激发学生的兴趣,效果还是不错的。大部分同学都能够积极参与,表达自己的想法。但我也注意到,有些学生对这个问题还不够敏感,可能是因为他们对勾股定理还不够熟悉。在今后的教学中,我需要更加关注这部分学生,尽量用简单易懂的语言和例子来引导他们。
-学生需掌握勾股定理的表述和证明,即直角三角形两直角边的平方和等于斜边的平方。
-学生需学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度或确定直角三角形的形状。
-学生应能运用勾股定理推导出直角三角形的其他性质,如面积公式和周长计算。
-举例解释:例如,在解决实际问题中,学生需要能够识别直角三角形的结构,并应用勾股定理来计算斜边的长度。重点在于让学生理解勾股定理是解决这类问题的基本工具。
北师大版八年级上册数学1.3勾股定理的应用(教案)
一、教学内容
本节课选自北师大版八年级上册数学第1章第3节“勾股定理的应用”。教学内容主要包括以下方面:
1.理解勾股定理的应用范围,掌握勾股定理在直角三角形中的运用;
2.学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度、确定直角三角形的形状等;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

北师大版八年级数学上册第一章1.3 勾股定理的应用【教案】

北师大版八年级数学上册第一章1.3 勾股定理的应用【教案】

1.3 勾股定理的应用教学目标:知识目标:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。

能力目标:学会观察图形,勇于探索图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

情感目标:通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学。

教学重点:探索、发现给定事物中隐含的勾股定理及其逆定理,并用它们解决生活实际问题。

教学难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学准备:纸板做的圆柱。

教学过程:一、蚂蚁怎样走最近:(勾股定理的应用)如图所示,有一个圆柱,它的高等于123厘米。

A′ B在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B点处的食物,需要爬行的最短路程是多少?( 的值取3)(1)在自己做好的圆柱上尝试从A 点到B 点沿着圆柱侧面画出几条路线,你觉得哪条路线最短呢?(学生可能会有多种答案,可适当给学生一些讨论、交流想法的时间。

)师:我们知道,圆柱的侧面展开图是一个长方形。

现在我们就用剪刀沿着AA ′将圆柱的侧面展开。

(2)如图所示,将圆柱的侧面展开成一个长方形,从A 点到B 点的最短路径是什么?你画对了吗?(连接两点的所有连线中线段最短)(3)蚂蚁从A 点出发,想吃到B 点上的食物,它需要爬行的最短路程是多少?AA A ′BB ′在Rt△AA′B中已知AA′=12厘米,A′B′= r=3×3=9厘米。

根据勾股定理可得:AB2=AA′2+A′B′2=122+92=225,所以AB=15厘米。

即蚂蚁爬行的最短距离为15厘米。

思维过程:转化转化立体图形平面图形直角三角形问题做一做:(勾股定理逆定理的应用)李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺。

北师大版数学八年级上册1.3《勾股定理的应用》课件 (共19张PPT)

北师大版数学八年级上册1.3《勾股定理的应用》课件 (共19张PPT)
一、情景导入
从行政 楼A点走 到教学 楼B点怎 样走最 近? 你能说出 这样走的 理由吗?
行政楼 A 教 学 楼
B
在同一平面内,两点之间,线段最短 在同一平面内,
在一个圆柱石凳上,若小明在
吃东西时留下了一点食物在B处,
恰好一只在A处的蚂蚁捕捉到这一 信息,于是它想从A 处爬向B处, 你们想一想,蚂蚁怎么走最近?
A
解:设水池的水深AC为x,则这根芦苇长AD=AB=(x+1),
在直角三角形ABC中,BC=5 由勾股定理得,BC2+AC2=AB2

52+ x2= (x+1)2 25+ x2= x2+2x+1, 2 x=24,
∴ x=12, x+1=13 答:水池的水深12尺,这根芦苇长13尺.
小明发现旗杆上的绳子垂到地面还多1米,如图(1),当他们把绳 子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮 他们把旗杆的高度和绳子的长度计算出来吗?请你与同伴交流并回 答用的是什么方法.
AB 12 (3 3) AB 15
2 2 2
A

3
O
B
侧面展开图
A’
12

B
12
A
A
你学会了吗?
例1 有一个圆柱形油罐,要以A点环绕油罐建梯子,正好A 点的正上方B点,问梯子最短需多少米?(已知:油罐的底面半 径是2 m,高AB是5 m,π 取3) B B B'
A
A
A'
解:圆柱形油罐的展开图如图,则AB'为梯子的 最短距离.AA'=12, A'B'=5,所以AB '=13.
B
A
B

北师大版八年级数学上册课件 第1章 第3节 勾股定理的应用(共15张PPT)

北师大版八年级数学上册课件 第1章 第3节 勾股定理的应用(共15张PPT)
1.3 勾股定理的应用
复习回顾
1、勾股定理的内容是什么? 2、如何判断一个三角形是直角三角形? 到目前学习了几种方法?
有一个圆柱,它的高等于
B
12厘米,底面半径等于3
厘米,在圆柱下底面上的 A点有一只蚂蚁,它想从 点A爬到点B , 蚂蚁沿着
我怎么走 会最近呢?
圆柱侧面爬行的最短路 A
程是多少? (π的值取3)
A 2 D A 2 B 3 2 0 4 2 0 2500
BD2 2500 A2 D A2B B2 D
∴AD和AB垂直
李叔叔想要检测雕塑底座正 面的AD边和BC边是否分别垂直于 底边AB,但他随身只带了卷尺, (1)你能替他想办法完成任务 吗? (2)李叔叔量得AD长是30厘米, AB长是40厘米,BD长是50厘米, AD边垂直于AB边吗?为什么?
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

李叔叔想要检测雕塑底座正 面的AD边和BC边是否分别垂直于 底边AB,但他随身只带了卷尺, (1)你能替他想办法完成任务 吗? (2)李叔叔量得AD长是30厘米, AB长是40厘米,BD长是50厘米, AD边垂直于AB边吗?为什么?
A2B 122 (3 3 )214 84 1 22
AB15
A 3O
B

A’ 3π
B
12
12 侧面展开图
A
A
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/52021/9/5Sunday, September 05, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/52021/9/52021/9/59/5/2021 12:41:26 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/52021/9/52021/9/5Sep-215-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/52021/9/52021/9/5Sunday, September 05, 2021

北师大版八上数学1.3.勾股定理的应用知识精讲

北师大版八上数学1.3.勾股定理的应用知识精讲

13.勾股定理的应用1、定理内容:文字形式:直角三角形的两直角边的平方和,等于斜边的平方。

几何形式:如果直角三角形的直角边分别为a、b,斜边为c ,那么a2+b2 = c22、相关知识链接:直角三角形1)我国古代把直角三角形中较短的直角边叫作勾,较长的直角边叫作股,斜边叫作弦;2)汉代数学家赵爽把勾股定理叙述成:勾股各自乘,并之为弦实,开方除之即弦;3)国外称之为毕达哥拉斯定理;4)也有人称勾股定理为千古第一定理。

3、勾股定理的作用:1)己知直角三角形的两边长,求第三边长;2)知道一边长时,能够确定直角三角形的其余两个边长之间的关系;3)在证明含平方问题时,有时就可以考虑构造直角三角形帮助解决问题。

4、勾股定理的各种表达式在中,,A、B、C的对边分别为a、b、c,则,,,,,。

5、定理证明及典型例题:例1、已知:中,匕0 90,Z B. N C的对边为a、b、c。

求证:a2+b2=c2o证明方法一:取四个与R t AABC全等的直角三角形,把它们拼成如图所示的正方形。

如图,正方形ABCD的面积=4个直角三角形的面积+正方形PQRS的面积・,.(a + b )2 = 1/2 ab x 4 4- c2a2 + 2ab + b2 = 2ab + c2故a2 + b2 =c2证明方法二:图1中,甲的面积=(大正方形面积)一(4个直角三角形面积)。

图2中,乙和丙的面积和=(大正方形面积)一(4个直角三角形面积)。

四个直角三角形的面积和+小正方形的面积=大正方形的面 积,2ab + ( a —b ) 2 =。

2,2ab + a 2 — 2ab + b 2 = c 2故 a 2 + b 2 = c 2证明方法四:梯形面积=三个直角三角形的面积和1/2x(a^b)x(a + b) = 2x1/2xaxb - 1/2 x c x c(a + b 沪=2ab + c 2a 2 + 2ab + b 2 = 2ab +c 2故 a 2 + b 2=c 2例 2、在 Rt^ABC , zC = 90° ⑴已知a = b = 5 ,求c 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实践练习:1. 有一只蚂 蚁要从一个圆柱形玻璃杯的 点A爬到点B处,如图,已知杯子高8cm,点B距杯口 3cm(杯口朝上),杯子底面半径为4cm,蚂蚁从点 A爬到点B 的最短距离是多少?(π取3)
2. 如图,是一个三级台阶,它的每一级的长、宽、高分 别为20cm、3cm、2cm, A和B是这个台阶两个相对的端 点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁 沿着台阶面爬到B点的最短路程是________.
§1.3 勾股定理的应用
【学习目标】 1、运用勾股定理及直角三角 形的判别条件解决 简单的实际问题,进一步发展学生的应用意识。 2、通过解决实际问题,使学生体会数学来源于 生活,又应用于生活。
【学习活动】
情境引入:有这样一个有趣的问题:如图所示, 有一个圆柱,在圆柱的下底面的A点有一只蚂蚁, 它想吃到上底面上与A相对的B点的食物,如何 爬行路径才最短? 以下四种方案你认为哪种路径最短?
2. 李叔叔想检测雕塑底座正面的AD边和BC边是否分 别垂直于底边AB,李叔叔量得AD长是30厘米,AB长 是40厘米,BD长是50厘米.AD边垂直 于AB边吗?
D C
A
B
3. 一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁 爬行,要从A点爬到B点,则最少要爬行多少厘米?
4. 如图,一个无盖的长方体盒子的长、宽、高分别为 8cm,8cm,12cm,一只蚂蚁想从盒底的点A沿盒的表 面爬到盒顶的点B,你能帮蚂蚁设计一条最短的线路吗 ?蚂蚁要爬行的最短路程是多少?
实践练习:有一个高为1.5 m,半径是1m的圆柱形 油桶,在靠近边的地方有一小孔,从孔中插入一铁 棒,已知铁棒在油桶外的部分为0.5 m,问这根铁 棒有多长?
【学习评价】 1.有一个小朋友拿着一根竹竿要通过一个长方形的 门,如果把竹竿竖放就比门高出1尺,斜放就恰好等 于门的对角线,已知门宽4尺,则竹竿高 ,门 高.
C
C
C
C
【探究活动一】计算最短路程 例1.(1)若上图圆柱的高是12cm,底面上圆的周长 等于18cm,你能求出其爬行的最短路程是多少吗?
(2)如右图,蚂蚁怎样沿正方体表面从A点爬行到G 点?有最短路径吗?若有,哪条最短?你是怎么确定 呢?
(3)如右图把正方体变成如左图的长方体,长方体底 面长为2,宽为1,高为4,蚂蚁爬行的最短路程又是 多少?
A
20
23
B
实践练习计划在该空地
上种上草皮,经测量,A=90 , C
AB 3m ,BC 12m ,
CD 13m ,DA 4m ,
若每平方米草皮需要
B
200元,问购买草皮
共需要多少元?
A
D
【探究活动二】垂直距离的计算 例2. 某工厂的大门是一个长方形ABCD,上部是以AB 为直径的半圆,其中AD=2.3m,AB=2m.现在有一辆 装满货物的卡车,高2.5m,宽1.6 m,问这辆卡车能 否通过厂门?并说明你的理由.
相关文档
最新文档