【最新整理】初等数论同余共52页

合集下载

初等数论 第四章 同余式

初等数论 第四章 同余式

140+63 233+30 2×105 =23 =233
2015/11/17
为什么啊?
19
问题1:今有物不知其数,三三数之剩二,五五数之 剩二,七七数之剩二,问物几何。 x-2是3、5、7的公倍数。 问题2:今有物不知其数,三三数之剩二,五五数之 剩三,问物几何。
3|x 2, 5|x 3 x 3k1 2 5k2 3
2015/11/17
13
例3 解同余方程6x 7 (mod 23)。
m ax b (mod m) a1 x b[ ](mod m ) a
解 由定理4,依次得到
6x 7 (mod 23) 5x 73 2 (mod 23)
3x 24 8 (mod 23)
则(1)的解为
x ai M i M i (mod m )
i 1
k
(2)
其中,整数Mi(1 i k),满足MiMi 1 (mod mi).
2015/11/17
22
证明: 由 (Mi, mi) = 1,利用辗转相除法可以求出 Mi与yi ,使得 MiMi yimi = 1,
rm sm rm sm 注:x0 x0 (mod m ) (mod m ) r s d d d d
解方程(2)的方法: 先求出相应不定方程 ax my = b的一个特解
m 再代入 x x0 r (mod m ), 0 r d 1. d
2015/11/17
(3)设m是素数,f(x) = g(x)h(x),g(x)与h(x)都是 整系数多项式,又设x0是同余方程(1)的解, 则x0必是同余方程 g(x) 0 (mod m) 或 h(x) 0 (mod m)的解。

初等数论第三章同余

初等数论第三章同余

第三章同余§ 1 同余的概念及其基本性质定义1设m Z,称之为模。

若用m去除两个整数a与b所得的余数相同,则称a, b对模m同余,记作:a b (mod m);若所得的余数不同,则称a, b对模m不同余,记作: a b(mod m)。

例如,8 1(mod 7),;所有偶数 a 0(mod 2),所有奇数 a 1(mod 2)。

同余是整数之间的一种关系,它具有下列性质:1、a a(mod m); (反身性)2、若a b (mod m),则b a (mod m);(对称性)3、若a b (mod m),b c (mod m),则a c(mod m);(传递性) 故同余关系是等价关系。

定理1 整数a,b对模m同余的充分必要条件是m|(a b),即卩a b mt,t Z。

证明设 a mq1r1, b mq2r2,0 r1,r2m,则 a b(mod m) r1r2a b m(q1q2) m|(a b)。

性质1 (1)若a i b i (mod m),a? b2 (mod m),贝U a i a? b i b2 (mod m);(2) 若a b c (mod m),贝U a c b (mod m)。

性质2 若a1b1 (mod m),a2b2 (mod m),贝U a1a2b1b2(mod m);特别地,若 a b (mod m),贝U ka kb (mod m)。

定理2 若A1kB 1 k (mod m),x i y i (mod m),i 1,2, ,k,则 A 1 k x1 11k k xk k B 1 k y1 11kky k k(mod m);特别地,若a i b i (mod m),i 0,1,2, ,n,则n a n x n1a n 1x a0 n n 1b n x b n 1x b0 (mod m)。

性质3 若aa1d, b b1d,(d,m) 1, a b(mod m),则a1 b1 (mod m)。

【最新整理】初等数论同余共52页

【最新整理】初等数论同余共52页
【最新整理】初等数论同余
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利

初等数论 同余方程组

初等数论 同余方程组

初等数论同余方程组初等数论是数学中的一个分支,主要研究自然数的性质和整数的性质。

同余方程组是初等数论中的一个重要概念,它涉及到数与数之间的整除关系。

本文将介绍同余方程组的定义、性质以及解法,并通过例题来加深理解。

一、同余方程组的定义同余方程组是由若干个同余方程组成的一组方程。

同余方程的定义如下:对于整数a、b和正整数m,如果m能整除(a-b),即(a-b)能被m整除,则称a与b对于模m同余,记为a≡b(mod m)。

这里的≡表示同余关系。

二、同余方程组的性质1. 同余关系具有自反性、对称性和传递性。

即对于任意的整数a、b和正整数m,有a≡a(mod m),a≡b(mod m)等价于b≡a(mod m),若a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。

2. 同余关系具有加法和乘法的性质。

即对于任意的整数a、b和正整数m,若a≡b(mod m),则a+c≡b+c(mod m),ac≡bc(mod m)。

三、同余方程组的解法1. 线性同余方程组的解法:线性同余方程组是形如ax≡b(mod m)的方程组,其中a、b为整数,m为正整数。

若a与m互质,则存在唯一的解x0,且x≡x0(mod m)。

若a与m不互质,且b可被a整除,则方程组有无穷多个解,否则无解。

2. 中国剩余定理:中国剩余定理适用于一组两两互质的模数的同余方程组。

设m1、m2、...、mn为两两互质的正整数,a1、a2、...、an为整数,则同余方程组:x≡a1(mod m1)x≡a2(mod m2)...x≡an(mod mn)有唯一的解x,且0≤x<m1m2...mn。

四、例题解析1. 解线性同余方程组:求解方程组2x≡3(mod 5)和3x≡4(mod 7)。

首先,对于第一个方程,由于2与5互质,所以存在唯一解x0。

根据扩展欧几里得算法,我们可以求出x0=4。

然后,将x0代入第二个方程,得到3*4≡4(mod 7),即12≡4(mod 7)。

初等数论 同余

初等数论 同余

注意:这条与前面的(5)的推论和(7)不同, 模变了. 证明: m | (a-b) => km | k(a-b)
a b m a b mt t. d d d
2013年11月13日10时5分
我喜欢数学
性质(9)
若 a ≡b (mod m1), a ≡b (mod m2), m=[ m1, m2 ], 则 a ≡ b (mod m) . 证明: 由充要条件, 有 m2 | (a-b), m1 | (a-b)
2013年11月13日10时5分
性质的应用:
由 10≡1(mod 9),有 102≡12(mod 9), 103≡13(mod 9),…,10n≡1n(mod 9),
an an 1 a2 a1a0 an 10n an 1 10n 1 a1 10 a0 an an 1 a1 a0 (mod 9).
性质⑺ 同余式的“除”.
性质⑻⑼⑽
涉及模的改变!分别与a,b和m的约 数,倍数,公约数,最小公倍数有关.
性质⑾是关于a,b和m最大公约数的。
2013年11月13日10时5分
例 2
分析
今天是星期二,101000天之后的那天是星期几?
由于1乘a为a ,1n=1,先求得某数的n次幂与1对模同余 是非常方便的. 我们已知 7 | 1001, 即103 +1≡0 (mod 7), , 103 ≡-1(mod 7), 得106 ≡1 (mod 7).
又23m1 2(mod 7), 从而当且仅当
23m 2 4(mod 7),
n 3m时, 7 2n 1.
(2)由23m 1 2(mod 7),3m 1 1 3(mod 7), 23m 2 1 5(mod 7), 2 可知,对任何正整数n, 2n 1不能被7整除.

初等数论第二章同余

初等数论第二章同余
10°三1,IO】三一3, IO?三一4, IO?三一1,…(mod13)

N = cin_Yan_2…①仇=a2ci[a()-10°+a5a4a3-103H。
注:一般地,在考虑使N = an_{an_2-被加除的余数时,首先 是求岀正整数匕使得
10*三 一1或1(modm),
再将N=ci叶\5_2…写成
x + y+ 1 = 9或18,
3-y + x = 0或llo
这样得到四个方程组:
j\ + y + l = a
\3- y+x = b
其中。取值9或18, b取值0或11。在0<x,y<9的条件下解这四个 方程组,得到x=8, y = 0, z = 6o
习题一
1.证明定理1和定理2。
2.证明定理4。
3.证明定理5中的结论(i )—(iv)o
(v)由
ac=be(mod m)
得到m |c(a-b),再由(c,加)=1和鉛一章翕三节定理4得到m \a- b,即
a = b(mod m)o
证毕。
例1设N = anall_[- --aQ是整数N的十进制表示,即
N=ani0,?+an-ilO,/_1+ …+ailO+ao ,

(i )3|Nq3|£⑷;
x = y(modm),⑷三切(modm),0 < / <n,
则பைடு நூலகம்
工4兀’三工(mod力7)。⑵
i=0i=0
证明留作习题。
定理5下面的结论成立:
(i)a = b(mod m),d \ m, d> 0 a = b(modd);

初等数论(三)同余

初等数论(三)同余

初等数论(三)--同余基本性质:(1) 反身性:(mod )a a m ≡(2) 对称性:若(mod ),a b m ≡则(mod ),b a m ≡(3) 传递性:如果(mod ),a b m ≡(mod ),b c m ≡那么(mod ),a c m ≡以上三个性质说明∙“同余是一个等价关系,Z 中元素可以按照模m 分成m 个类,粗略地讲,用一类中的元素可以认为是相同的”(4) 如果(mod ),a b m ≡(mod ),c d m ≡那么(mod ),(mod ),a c b d m ac bd m ±≡±≡(5) 如果(mod ),a b m ≡那么(mod ),n n a b m ≡(6) 如果(mod )ac ab m ≡,不一定有(mod )c b m ≡(整数之间的乘法消去律不一定成立),(7) 若(mod ),ac bc m ≡则mod (,)m a b c m ⎛⎫≡ ⎪⎝⎭。

因此,(,)1c m =时,才会有(mod )a b m ≡。

例1.若质数5,p ≥并且21p +也是质数,证明:41p +是合数。

例2.对于任何n 个整数的集合,存在一个子集,该子集的元素之和被n 整除。

例3.证明表达式23,95x y x y ++按照相同的,x y 被17整除。

例4.设3p ≥为奇质数且111...21a p b +++=-, 证明:p a 。

作业:证明:3131421x x ++++被7整除。

例5.30对夫妻围着圆桌而坐。

证明:至少有两名妻子到各自丈夫的距离相等。

例6.设(,)1a m =,证明方程(mod )ax b m ≡在{0,1,2,3,...,1}m -中有唯一解。

例7.设01,,,,1,2,3,...n n a b x N x ax b n -∈=+=。

证明:数列12,,....,,...n x x x 不可能都是质数。

例8.证明方程2222x y z xyz ++=只有一个整数解0x y z ===。

初等数论同余式

初等数论同余式
进而有 M ,1 4, M , 2 1, M ,3 5
72M ,1 1(mod7),63M , 2 1(mod8),56M ,3 1(mod9)
所以有x 72 4 1 63 (1) 2 56 5 3 498(mod504)
是原一次同余式组的解。
f ( x) 0(modmi ),i 1,2k 设 和 f ( x) 0(modmi ) f ( x) 0(mod m) 数为 则有
(2) 的解
T , Ti . 下面来看证明
T T1T2 Tk
证明:若 x0 是(1)的解,即 f ( x0 ) 0(modm) 则 m | f ( x0 ) 从而有 mi | f ( x0 ) ,即 f ( x0 ) 0(modmi ) 即(1)的解就是(2)的解, 反之若 x0 是(2)的解,则有 f ( x0 ) 0(modmi ),i 1,2k 即 mi | f ( x0 ) 从而有[m1, m2 ,mk ] | f ( x0 ) 由于 m1 , m2 ,mk 两两互素,所以
模m的一个完全剩余系中满足同余方程的个 数称为满足同余方程的解数。
.
注:对模m互相同余的解是同一个解。 例:同余式 x 2 x 1 0(mod3)
x 1(mod3) 是解, x 2(mod3)也 次数为2, 是解,因为 1 2(mod3)
所以为同一解,解数是1,
为了求方程的解经常有等价变形的问题, 对 于同余方程同样也有等价变形,即使原同余 方程和新的同余方程互相等价的若干变换。 常用的变换有
§3 一次同余方程组的解法
定义:如下(*)称为一次同余方程组
x≡b1(mod m1)
x≡b2(mod m2)

同余

同余

a 用a modm表示余数r,则 a [ ]m ( a m odm ) m
定理3 整数a, b模m 同余 a modm=b modm
ab (modm) m|a-b a modm=b modm
a=b+km
性质:
(1) ( 2) ( 3)
[(a modm ) (b modm )]modm (a b) modm [(a modm ) (b modm )]modm (a b) modm [(a modm ) (b modm )]modm (a b) modm
(r r ) a b (q q)m
m a b的充分必要条件是 m r r. 但因为 0 r r m , 因此,
且 m r r 的充分必要条件是 r r 0 ,所以 m a b 的充分必 要条件是 r r 0. 这就是定理的结论.
2
2003
2

22 1 4 4(mod 7).
故第 22003 天是星期二。 定理5 若 x y(mod m),
ai bi (mod m),
0 i k, 则 0 i k.
a0 a1 x ak x k b0 b1 y bk yk (mod m).
故 3 n, 9 | n.
k 定理7 设 n ak 1000 a11000 a0 , 0 ai 1000. 则7或11,或
13 n 7或11或 13 a0 a2 - a1 a3 .
例4 设 n 637693.
例5 设n 75312289.
定理10 设a b ( mod m) . 若d | m, 则a b ( mod d) .

初等数论 第四章 同余式

初等数论 第四章 同余式

第四章 同余式§1 基本概念及一次同余式作为一个解。

中的一切数,即成立,故把都能使中的任意整数,则剩余类的合理性:若定义的一个解。

叫做成立的一个整数,则是使若称为次数。

,则的同余式。

若称为模,则,其中,设余方程)的求解问题。

课题是研究同余式(同初等数论中的一个基本)(m od )(m od 0)()(m od 0)(2)(m od 0)()(m od )(m od 0)()(m od 0)(m od 0)()(011m a x K m a f a K m a f m x f m a x m a f a n m a m m x f a a x a x a x f m a a n i n n n n ≡≡''≡≡≡≡≡/≡∈+++=∈--+定义2定义1Z Z 。

,解数为,的解为同余式,所以,,的一切整数解为因为不定方程。

有解不定方程有解同余式的任一个解。

是同余式其中,,个解,它们是余式共有。

当此条件成立时,同有解的充分必要条件是,则一次同余式设d d k m dmk x x m b ax t t dmx x b my ax b d b my ax m b ax m b ax x d k m dmk x x d b d m b ax d m a 1,,1,0)(m od )(m od )2(|)(m od )1()(m od 1,,1,0)(m od |)(m od ),(0000-=⋅+≡≡∈+==+⇔=+⇔≡≡-=⋅+≡≡= Z 证明定理。

解时,一次同余式有唯一当)(m od 1),(1)(m b a x m a m -≡=ϕ注同余式的解法1、代入法(适用于模较小时) 。

,得的完全剩余系逐一代入以,,所以同余式有唯一解因为解同余式)17(m od 6171)17,3()17(m od 13≡=≡x x 解例12、公式法(适用于模较小时)。

从而,,,所以同余式有唯一解因为解同余式)11(m od 8656)2()2()3(98981)11,8()11(m od 98491101)11(≡⋅≡⋅-≡-⋅-≡⋅≡⋅≡=≡--ϕx x 解例23、变换系数法 。

初等数论_第二章__同_余教案

初等数论_第二章__同_余教案
由于xi的选取是任意的,所以模m的完全剩余系有无穷多个,通常称
(ⅰ){0, 1, 2,,m1}是模m的最小非负完全剩余系;
(ⅱ) 或
是模m的绝对最小完全剩余系。
例如,集合{0, 6, 7, 13, 24}是模5的一个完全剩余系,集合{0, 1, 2, 3, 4}是模5的最小非负完全剩余系。
定理1整数集合A是模m的完全剩余系的充要条件是
证明过程。
定理1下面的三个叙述是等价的:
(ⅰ)ab(modm);
(ⅱ)存在整数q,使得a=bqm;
(ⅲ)mab。
证明留作习题。
对给定的整数b和模m,所有对模m同余b的整数的集合是
{b+km})(k为整数)。
根据带余除法,a=q1mr,0r<m。全体整数按整数m为标准分为m类。
定理2同余具有下面的性质:
解由
42n+13n+2=442n93n=416n93n
43n93n= 133n0 (mod 13)
得证。

例6设p是素数,a是整数,则由a21(modp)可以推出
a1或a1(modp)。
解由
a21(modp)pa21 = (a1)(a1),
所以必是
pa1或pa1,
即a1(modp)或a1(modp)。
[7(1)164]26=(74)26
=326= 3(35)53(7)5=37(72)2
2129(mod 50),
即所求的余数是29。
例3设n的十进制表示是 ,若792n,求x,y,z。
解因为792 =8911,故
792n8n,9n及11n。
我们有
8n8 z= 6,
以及
9n913xy45z= 19xy9xy1,(5)

初等数论第三章同余

初等数论第三章同余

第三章同余§ 1同余的概念及其基本性质定义1设meZ\称之为模。

若用加去除两个整数“与b所得的余数相同,则称"上对模加【可余,记作:a = b (mod /n);若所得的余数不同,则称w,〃对模加不同余,记作:"圭b(mod〃2)。

例如,8 = 1 (mod 7),:所有偶数“三0 (mod 2),所有奇数“ =1 (mod 2)。

同余是整数之间的一种关系,它具有下列性质:R a = a (mod m);(反身性)2、若"三b (mod加),贝肪三a (mod m);(对称性)3、若"三b (mod m), b = c (mod m),贝h 三 c (mod 加);(传递性) 故同余关系是等价关系。

定理1整数对模加同余的充分必要条件是RP a = b + mt,r eZo证明设"=+ b = mq2 + r v 0 < r2 < m,贝l] a = b (mod m) O 打=r2 O a — b = m(q{一⑴)O I (" 一b)°性质1(1)若%三S (mod m)> a2 = b2 (mod m)> 则a x + a2 +b2 (mod /n);(2)若"+ h = c (mod 〃?),贝ij a = c-b (mod m)o性质2 若=/?, (mod /??), a2 =b2 (mod m),则"]5 "心(mod m):特别地,若a = b (mod m),则畑三kb (mod加)。

定理2若比…亞三〃叶・%(mod/),兀三片(mod皿),j = 1,2,…人则艺比…致坊‘…場三另3时灼)吓…yj (mod/);特别地,若%三化(mod加),i = OJ2・・・,n,则心* +"心]北1 + - - +u()=b n x n +/>n_|x71'1 + …+ "o (mod 加)。

【最新整理】初等数论同余

【最新整理】初等数论同余
把整除问题转化为同余问题是一种常用的方 法.
例2:证明5y+3=x2无解 证明:若5y+3=x2有解,则两边关于模5同余 有5y+3≡x2(mod 5) 即3≡x2(mod 5)
而任一个平方数x2≡0,1,4(mod 5) ∴ 3 ≡ 0,1,4(mod 5),不可能 ∴ 即得矛盾,即5y+3=x2无解 注:在证明方程无解时,经常用不同余就不相等的 方法。
性质7 a b(modm).d|(a,b),(d,m)=1 则
a b (modm). dd
证: 因为 m | d( a b ) ,(d,m)=1 ,所以有
dd
m| a b dd
性质8 若a b(modm).则 (a,m)=(b,m) 证:由已知a=b+mt,故 (a,m)|a, (a,m)|m, 有(a,m)|b,所以有 (a,m)|(b,m), 同理可证(b,m)|(a,m), 即(a,m)=(b,m).
因为0 X,Y 9,所以有
21 21+X+Y 39,4 X-Y+13 22,由此
可知 21+X+Y=27,X-Y+13=11 或21+X+Y=36,X-Y+13=22 X+Y=6,X-Y=-2,或X+Y=15,X-Y=9, 解得X=2,Y=4。
例3 :求111 被7除的余数。
50
解:∵111111被7整除,
(2)若 a b c(modm). 则 a c b(modm).
证:由(1)因为 b b(modm), 即得。
注4:性质2相当于等式中的两个等式相加和 移项. 结合前二条性质,我们来看几个例子.
例1:对任意整数a,8a+7不可能 是三个整数的平方.

初中数学重点梳理:同余式

初中数学重点梳理:同余式

同余式知识定位数论是初中数学竞赛比较重要的一个知识点,在历年竞赛中占据非常发比例,其中同余理论是初等数论中的重要内容之一,其同余式概念及应用,剩余系概念要熟练掌握。

本文归纳总结了同余的若干性质,将通过例题来说明这些方法的运用。

知识梳理1、同余概念定义1:给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m 同余,记作a≡b(modm),并读作a同余b,模m。

(1)若a与b对模m同余,由定义1,有a=mq1+r,b=mq2+r.所以a-b=m(q1-q2),即m|a-b。

反之,(2)若m|a-b,设a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1,则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2。

于是,我们得到同余的另一个等价定义:定义2:若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a与b对模m同余.2、同余定理定理1:(1)a≡a(modm).(2)若a≡b(modm),则b≡a(modm).(3)若a≡b(modm),b≡c(modm),则a≡c(modm).定理2:若a≡b(modm),c≡d(modm),则a±c≡b±d(modm),ac≡bd(modm).证:由假设得m|a-b,m|c-d,所以m|(a±c)-(b±d),m|c(a-b)+b(c-d),即a±c≡b±d(modm),ac≡bd(modm).由此我们还可以得到:若a≡b(modm),k是整数,n是自然数,则a±k≡b±k(modm),ak≡bk(modm),a n≡b n(modm).定理3:若ac≡bc(modm),且(c,m)=1,则a≡b(modm).定理4: 若n ≥2,a ≡b(modm 1),a ≡b(modm 2),…………a ≡b(modm n ),且M=[m 1,m 2,…,m n ]表示m 1,m 2,…,m n 的最小公倍数,则a ≡b(modM)3、剩余类和完全剩余系全体整数集合可按模m 来划分:当且仅当()mod a b m ≡时,a 和b 属于同一类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档