SPSS因子分析经典案例

合集下载

spss因子分析案例

spss因子分析案例

spss因子分析案例在进行SPSS因子分析时,我们通常遵循以下步骤:数据准备、因子提取、因子旋转、因子得分和结果解释。

下面是一个因子分析的案例,展示了如何使用SPSS软件进行这一统计分析。

首先,我们需要准备数据。

这通常涉及收集问卷调查数据,其中包含多个项目或变量,这些变量被认为是潜在因子的指标。

在SPSS中,数据应该以数据集的形式输入,每个变量代表一个问卷项目,每个案例代表一个受访者的回答。

接下来,我们进行因子提取。

在SPSS中,我们可以通过“分析”菜单选择“降维”然后选择“因子”来开始因子分析。

在因子分析对话框中,我们需要指定分析的变量,并决定提取因子的方法。

常见的提取方法包括主成分分析和最大似然法。

此外,我们还需要决定因子提取的标准,如特征值大于1的规则或基于特定比例的方差提取。

因子提取后,我们通常需要进行因子旋转。

旋转的目的是使因子结构更加清晰,便于解释。

SPSS提供了多种旋转方法,如正交旋转(如Varimax)和斜交旋转(如Promax)。

旋转后,每个变量的因子载荷(即变量与因子的相关系数)将被重新估计。

然后,我们可以计算因子得分。

因子得分是每个受访者在每个因子上的估计得分,它可以帮助我们了解每个受访者在潜在因子上的位置。

在SPSS中,可以通过“保存”选项来保存因子得分,以便进一步分析。

最后,我们需要解释因子分析的结果。

这包括解释每个因子的含义,以及哪些变量与每个因子最相关。

我们可以通过查看因子载荷矩阵来完成这一步骤。

通常,载荷值较高的变量被认为是该因子的良好指标。

在实际应用中,因子分析可以帮助我们识别数据中的潜在结构,简化数据集,并为进一步的分析提供基础。

例如,在市场研究中,因子分析可以用来识别消费者行为的潜在维度,从而帮助企业更好地理解其客户群体。

通过上述步骤,我们可以使用SPSS软件有效地进行因子分析,从而揭示数据背后的潜在结构,并为决策提供支持。

SPSS期末作业-因子分析

SPSS期末作业-因子分析

SPSS期末作业-因⼦分析上证A股房地产⾏业盈利能⼒因⼦分析摘要:本⽂选取了上证A股房地产⾏业70家公司2014年度的财务数据,通过SPSS 因⼦分析模型,对我国房地产⾏业的盈利能⼒进⾏了简单的实证分析。

得出各房地产公司综合得分和排名情况,并以各公司综合得分作为其盈利能⼒综合指标。

关键字:盈利能⼒;房地产⾏业;因⼦分析;⼀.引⾔20 年来,房地产业蓬勃发展,已经成为我国国民经济的⽀柱产业之⼀,在经济建设中扮演着越来越重要的作⽤。

然⽽,2008年全球性⾦融危机以及政府⼀系列宏观调控政策使得我国房地产市场发⽣了深刻变化,中国房地产市场进⼊深度调整期。

当前中国的房地产企业,普遍存在着企业规模⼩、资产负债率⾼、资信不⾼、整体盈利⽔平低等问题,企业的⽣存和发展⾯临巨⼤压⼒。

在此背景下,房地产企业要想在不断变化的市场上获得⽣存和发展的空间,必须积极增强⾃⼰的盈利能⼒,因此研究房地产上市公司盈利能⼒,对于规范房地产市场合理健康、持续发展有⼀定现实意义和指导意义。

要研究房地产上市公司的盈利能⼒状况,就要充分了解影响盈利⽔平的各种因素。

⼀般来说,影响公司盈利能⼒的因素很多,分为外部和内部两⼤类。

其中外部因素包括经济环境、市场环境和法律环境等等,例如经济发展⽔平、产品市场状况、产业发展规模、⾏业准则及税收法律等等。

这些外部因素是公司不能改变的,因此,提⾼企业的竞争⼒和综合实⼒只有改变内部的⾃⾝条件,资产利⽤合理化的前提下,再充分利⽤外部环境,才能提⾼企业⾃⾝综合能⼒,逐步扩⼤市场占有率。

在这种情况下,本⽂基于房地产公司的财务指标-盈利能⼒建⽴因⼦分析模型,并最后得出公司的综合得分和排名就有了重要意义。

⼆.变量选取由于本⽂选取的数据主要是基于财务⽅⾯的数据,因此在选取衡量公司盈利能⼒指标⽅⾯侧重于财务⽅⾯的指标,为此我们主要从⽣产经营盈利能⼒、资产盈利能⼒和所有者投资盈利能⼒选取以下6个指标:营业⽑利率、主营业务收⼊增长率、总资产利润率、净资产收益率、成本费⽤利⽤率和市盈率作为盈利能⼒综合评价指标。

(详细图解版)应用SPSS17进行因子分析举例

(详细图解版)应用SPSS17进行因子分析举例

SPSS进行因子分析举例2011-4-61.数据准备下表是较次P126-127数据,其中V1-V6分别代表含义:V1——购买预防蛀牙的牙膏很重要V2——我喜欢使牙齿亮泽的牙膏V3——牙膏应当保护牙龈V4——我喜欢使口气清新的牙膏V5——预防坏牙不是牙膏提供的一项重要利益V6——购买牙膏时,最重要的考虑是富有魅力的牙齿。

调查的人员有30人,按编号布置。

附数据列表编号V1 V2 V3 V4 V5 V601 7.00 3.00 6.00 4.00 2.00 4.0002 1.00 3.00 2.00 4.00 5.00 4.0003 6.00 2.00 7.00 4.00 1.00 3.0004 4.00 5.00 4.00 6.00 2.00 5.0005 1.00 2.00 2.00 3.00 6.00 2.0006 6.00 3.00 6.00 4.00 2.00 4.0007 5.00 3.00 6.00 3.00 4.00 3.0008 6.00 4.00 7.00 4.00 1.00 4.0009 3.00 4.00 2.00 3.00 6.00 3.0010 2.00 6.00 2.00 6.00 7.00 6.0011 6.00 4.00 7.00 3.00 2.00 3.0012 2.00 3.00 1.00 4.00 5.00 4.0013 7.00 2.00 6.00 4.00 1.00 3.0014 4.00 6.00 4.00 5.00 3.00 6.0015 1.00 3.00 2.00 2.00 6.00 4.0016 6.00 4.00 6.00 3.00 3.00 4.0017 5.00 3.00 6.00 3.00 3.00 4.0018 7.00 3.00 7.00 4.00 1.00 4.0019 2.00 4.00 3.00 3.00 6.00 3.0020 3.00 5.00 3.00 6.00 4.00 6.0021 1.00 3.00 2.00 3.00 5.00 3.0022 5.00 4.00 5.00 4.00 2.00 4.0023 2.00 2.00 1.00 5.00 4.00 4.0024 4.00 6.00 4.00 6.00 4.00 7.0025 6.00 5.00 4.00 2.00 1.00 4.0026 3.00 5.00 4.00 6.00 4.00 7.0027 4.00 4.00 7.00 2.00 2.00 5.0028 3.00 7.00 2.00 6.00 4.00 3.0029 4.00 6.00 3.00 7.00 2.00 7.0030 2.00 3.00 2.00 4.00 7.00 2.002.具体操作1), 打开因子分析界面2),将各原始变量选入变量框3),设定描述指标4),设置因子提取项,如采用什么方法,输出什么,提取什么等5),设置因子的旋转方法6),设置因子得分选项3.结果分析。

SPSS因子分析法内容与案例

SPSS因子分析法内容与案例

SPSS因子分析法内容与案例实验课:因子分析实验目的理解主成分(因子)分析的根本原理,熟悉并掌握SPSS中的主成分(因子)分析方法及其主要应用.因子分析、根底理论知识1概念因子分析(Factor analysis):就就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大局部信息的统计学分析方法.从数学角度来瞧,主成分分析就是一种化繁为简的降维处理技术.主成分分析(Principal component analysis):就是因子分析的一个特例,就是使用最多的因子提取方法.它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量.选取前面几个方差最大的主成分,这样到达了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大局部的信息.两者关系:主成分分析(PCA)与因子分析(FA)就是两种把变量维数降低以便于描述、理解与分析的方法,而实际上主成分分析可以说就是因子分析的一个特例.2特点(1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量.(2)因子变量不就是对原始变量的取舍,而就是根据原始变量的信息进行重新组构,它能够反映原有变量大局部的信息.(3)因子变量之间不存在显著的线性相关关系,对变量的分析比拟方便,但原始局部变量之间多存在较显著的相关关系.(4)因子变量具有命名解释性,即该变量就是对某些原始变量信息的综合与反映.在保证数据信息丧失最少的原那么下,对高维变量空间进行降维处理(即通过因子分析或主成分分析).显然,在一个低维空间解释系统要比在高维系统容易的多.SPSS因子分析法内容与案例3类型根据研究对象的不同,把因子分析分为R型与Q型两种.当研究对象就是变量时,属于R型因子分析;当研究对象就是样品时,属于Q型因子分析.但有的因子分析方法兼有R型与Q型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析 ,以示与其她两类的区别.4分析原理假定:有n个地理样本,每个样本共有p个变量,构成一个n x p阶的地理数据矩阵:X ii X12 X ip当p较大时,在p维空间中韦•察问磐比拟麻烦%这就需要进行降维处理,即用较少几个综X2i X22 X2 p合指标代替原来指标,而总使这些综合指标既能尽量多地反映原来指标所反映的信息,同时它们之间又就是彼此独立的.线性组合:记x1,x2,…,xP 肺变标标,z1,x2p…,zm(mw p)为新变量指标(主成分,那么其线性组合为:z1 l11 x1 l 12 x2 l1 p x pLij就是原变量在各主成@上l呼荷l Yz2 21 x1 22 x2 l2p x pzi 111x1 112x2 l1 p x p无论就是哪一种因子分析方法#相昌的因子解用不就是唯一的l因子解中之一. 舍瞌攵2m2% 21mp>pp,主因子解仅仅就是无数zi与zj相互无关;z1就是x1,x2,…,xp的4切㈣mOl合+2^21最大者1mp x z2就是与zi不相关的x1,x2,…的所有线性组合中方差最大者.那么 ,新变量指标z1,z2,…分别称为原变量指标的第一 ,第二,…主成分.Z为因子变量或公共因子,可以理解为在高维空间中互相垂直的m个坐标轴.主成分分析实质就就是确定原来变量xj(j=1,2 ,…,p)在各主成分zi(i=1,2,…,m)上的荷载lij.从数学上容易知道,从数学上也可以证实,它们分别就是相关矩阵的m个较大的特征值所对应的特征向量.5分析步骤5、1确定待分析的原有假设干变量就是否适合进行因子分析(第一步)因子分析就是从众多的原始变量中重构少数几个具有代表意义的因子变量的过程. 其潜在的要求:原有变量之间要具有比拟强的相关性. 因此,因子分析需要先进行相关分析,计算原始变量之间的相关系数矩阵.如果相关系数矩阵在进行统计检验时,大局部相关系数均小于0、3且未通过检验,那么这些原始变量就不太适合进行因子分析.SPSS因子分析法内容与案例差标准化方法,标准化后的数据均值为0,方差为1).SPSS在因子分析中还提供了几种判定就是否适合因子分析的检验方法.主要有以下3种:巴特利特球形检验(Bartlett Test of Sphericity)反映象相关矩阵检验(Anti-image correlation matriX)KMO(Kaiser-Meyer-Olkin)检验(1)巴特利特球形检验该检验以变量的相关系数矩阵作为出发点,它的零假设H0为相关系数矩阵就是一个单位阵,即相关系数矩阵对角线上的所有元素都为1,而所有非对角线上的元素都为0,也即原始变量两两之间不相关.巴特利特球形检验的统计量就是根据相关系数矩阵的行列式得到.如果该值较大,且其对应的相伴概率值小于用户指定的显著性水平,那么就应拒绝零假设H0,认为相关系数不可能就是单位阵,也即原始变量间存在相关性.(2)反映象相关矩阵检验该检验以变量的偏相关系数矩阵作为出发点,将偏相关系数矩阵的每个元素取反,得到反映象相关矩阵.偏相关系数就是在限制了其她变量影响的条件下计算出来的相关系数,如果变量之间存在较多的重叠影响,那么偏相关系数就会较小,这些变量越适合进行因子分析.(3)KMO(Kaiser-Meyer-Olkin)检验该检验的统计量用于比拟变量之间的简单相关与偏相关系数.KMO值介于0-1,越接近1,说明所有变量之间简单相关系数平方与远大于偏相关系数平方与,越适合因子分析.其中,Kaiser给出一个KMO 检验标准:KMO>0、9,非常适合;0、8<KMO<0、9适合;0、7<KMO<0、8,一般;0、6<KMO<0、7,不太适合;KMO<0、5,不适合.5、2构造因子变量因子分析中有很多确定因子变量的方法,如基于主成分模型的主成分分析与基于因子分析模型的主轴因子法、极大似然法、最小二乘法等.前者应用最为广泛.主成分分析法(Principal component analysis):该方法通过坐标变换,将原有变量作线性变化,转换为另外一组不相关的变量Zi(主成分).求相关系数矩阵的特征根入i (入1,入2,…,入p>0)与相应的标准正交的特征向量li;根据相SPSS 因子分析法内容与案例公共因子个数确实定准那么:1〕根据特征值的大小来确定,一般取大于1的特征值对应的几 个公共因子/主成分.2〕根据因子的累积方差奉献率来确定,一般取累计奉献率达 85-95%的特 征值所对应的第一、第二、…、第 m 〔mwp 〕个主成分.也有学者认为累积方差奉献率应在 80%以上.5、3因子变量的命名解释因子变量的命名解释就是因子分析的另一个核心问题.经过主成分分析得到的公共因子/主成分Z1,Z2,…,Zm 就是对原有变量的综合.原有变量就是有物理含义的变量 ,对它们进行线性变换后得到的新的综合变量的物理含义到底就是什么?在实际的应用分析中,主要通过对载荷矩阵进行分析 得到因子变量与原有变量之间的关 系,从而对新的因子变量进行命名.利用因子旋转方法能使因子变量更具有可解释性.计算主成分载荷,构建载荷矩阵A .正交旋转与斜通!转堤是因子旋裂的两类加l 1籍向于保持喻^汕的正交性,因此 使用最多.正本噂翎罚T 渊21多…,典21m 以方假设最历法最内常用.…bmjT方差最大令交旋转〔varimax . orthogonal rotation 〕 ----------------- 根本思想:使公共因子的相对负荷的■ ■■... ... ...方差之与最大,且彳柑寺原劄因子的指交性与今共方差总节不变:可使每l 个因子上的具有最 a p1 Pp1 ... Ppm p1 1 l p1 2... l pm* m大载荷的变量数最小,因此可以简化对因子的解释.斜交旋转〔oblique rotation 〕 ------------ 因子斜交旋转后,各因子负荷发生了变化,出现了两极分 化.各因子间不再相互独立,而就是彼此相关.各因子对各变量的奉献的总与也发生了改变.斜交旋转由于因子间的相关性而不受欢送. 但如果总体中各因子间存在明显的相关关系那么应该考虑斜交旋转.适用于大数据集的因子分析.无论就是正交旋转还就是斜交旋转,因子旋转的目的:就是使因子负荷两极分化 ,要么接近于0,要么接近于1.从而使原有因子变量更具有可解释性.5、4计算因子变量得分因子变量确定以后,对于每一个样本数据,我们希望得到它们在不同因子上的具体数据值 即因子得分.估计因子得分的方法主要有:回归法、Bartlette 法等.计算因子得分应首先将因关系数矩阵的特征根,即公共因子Zj 的方差奉献与〕,计算公共因子Zj 的方差奉献率与累积奉献率.〔等于因子载荷矩阵 L 中第j 列各元素的平方主成分分析I坐标原点与数据^M:心■合.一 〔方差奉献〕与方〔主成分〕所能代表的原始变量信息.,将原始变看 ;第一轴与数与等指标,,使得新的,化最大■向对■. ■!过计算特征根 来判断选取公共因子的数量 k 1 与公共因子SPSS因子分析法内容与案例子变量表示为原始变量的线性组合.即Bartlett 法:Bartlett 因子得分就是无偏的,但计算结果误差*因子得分可用于模型诊断,也可用作进一步分析如聚类分析、回归分析等的原始资料. 关于因子得分的进一步应用将在案例介绍一节分析.5、5结果的分析解释此局部详细见案例分析、案例分析1研究问题石家庄18个县市14个指标因子,具体来说有人均GDP〔元/人/人均全社会固定资产投资额、人均城镇固定资产投资额、人均一般预算性财政收入、第三产业占GDP比重〔%〕、人均社会消费品零售额、人均实际利用外资额〔万美元/人〕、人均城乡居民储蓄存款、农民人均纯收入、在岗职工平均工资、人才密度指数、科技支出占财政支出比重〔%〕、每万人拥有执业医师数量、每千人拥有病床数.要求根据这14项内容进行因子分析,得到维度较少的几个因子.2实现步骤【1】在"Analyze〞菜单“ Data Reduction〞中选择“Factor〞命令,如下列图所示[2]在弹出的下列图所示的Factor Analysis对话框中,从对话框左侧的变量列表中 选择这14个变量,使之添加到Variables 框中.[3]点击 “ Descriptives 〞 按钮,弹出 “Factor Analysis:Descriptives 〞 对木舌框,如图Value..OK Pasie1 r 1 rReset Cancel HelpFactor Analysis人均里枢经囱定奂… 人西城槽固定饶产… 人均一服限篡住附… 第三产业占GDP 出■.. 人均社会清费品零… 人均空布■利用外袋…Seierfion Vsrisble.Statistics框用于选择哪些相关的统计量,其中:Univariate descriptives傥量描述〕:输出变量均值、标准差;Initial solution 〔初始结果〕Correlation Matrix框中提供了几种检验变量就是否适合做引子分析的检验方法其中:Coefficients 〔相关系数矩阵〕Significance leves 一著性水平〕Determinant 〔相关系数矩P$的行列式〕Inverse 〔相关系数矩P$的逆矩阵〕Reproduced再生相关矩阵,原始相关与再生相关的差值〕Anti-image 〔反影像相关矩阵检验〕KMO and Bartlett' s test of sphericity 〔KMO 检验与巴特利特球形检验〕本例中,选中该对话框中所有选项,单击Continue按钮返回Factor Analysis对【4】单击"Extraction〞按钮,弹出“Factor Analysis:Extraction〞对话框,选择因子提取方法,如下列图所示:SPSS因子分析法内容与案例因子提取方法在Method下拉框中选取,SPSS共提供了7种方法:Principle Components Analysis 住成分分析〕Unweighted least square哧力口权最小平方法〕Generalized least square磔合最小平方法〕Maximum likelihood 〔最大似然估价法〕Principal axis factoring 〔主轴因子法〕Alpha factoring 〔〕因子〕Image factoring 〔影像因子〕Analyze框中用于选择提取变量依据,其中:Correlation matrix 〔相关系数矩阵〕Covariance matrix 的方差矩阵〕Extract框用于指定因子个数的标准,其中:Eigenvaluse over 大于特征值〕Number of factors 〔因子个数〕Display框用于选择输出哪些与因子提取有关的信息,其中:Unrotated factor solution 〔未经旋转的因子载荷矩阵〕Screen plot特征值排列图〕Maximun interations for Convergence框用于指定因子分析收敛的最大迭代次数, 系统默认的最大迭代次数为25.本例选用Principal components方法,选择相关系数矩阵作为提取因子变量的依据, 选中Unrotated factor solution与Scree plot项,输出未经过旋转的因子载荷矩阵与其特征值的碎石图;选择Eigenvaluse over®,在该选项后面可以输入1,指定提取特征值大于1的因子.单击Continue按钮返回Factor Analysis对话框.【5】单击Factor Analysis对话框中的Rotation 按钮,弹出Factor Analysis: Rotation 对话框,如下列图所示:SPSS因子分析法内容与案例该对话框用于选择因子载荷矩阵的旋转方法.旋转目的就是为了简化结构以帮助我们解释因子.SPSS默认不进行旋转〔None〕oMethod框用于选择因子旋转方法,其中:None3旋转〕Varimax〔正交旋转〕Direct Oblimin〔直接斜交旋转〕Quanlimax〔四分最大正交旋转〕Equamax〞均正交旋转〕Promax〔M交旋转〕Display框用于选择输出哪些与因子旋转有关的信息,其中:Rotated solution^俞出旋转后的因子载荷矩阵〕Loading plots〔输出载荷散点图〕本例选择方差极大法旋转Varimax,并选中Rotated solution与Loading plot项, 表示输出旋转后的因子载荷矩阵与载荷散点图 ,单击Continue按钮返回Factor Analysis对话框.【6】单击Factor Analysis对话框中的Scores按钮,弹出Factor Analysis: Scores^ 话框,如下列图所示:ED Fjctor Analysis: Factor Store-;回S.ava as variablesrMethod -----------------------------------------G f RegressionQ|国rtl曲匚〕Anderson-RubinH display 伯cttM n心nr外心ceHicient matrixCancel H*ContinueSPSS因子分析法内容与案例该对话框用以选择对因子得分进行设置,其中:Regression回归法〕:因子得分均值为0,采用多元相关平方;Bartlett 〔巴特利法〕:因子得分均值为0,采用超出变量范围各因子平方与被最小化;Anderson-Rubin 〔安德森-洛宾法〕:因子得分均值为0,标准差1,彼此不相关;Display factor score coefficient matrix:选择此项将在输出窗口中显示因子得分系数矩阵.【7】单击Factor Analysis 对话框中的Options 按钮,弹出Factor Analysis: Options 对话框,如下列图所示:该对话框可以指定其她因子分析的结果,并选择对缺失数据的处理方法,其中:Missing Values框用于选择缺失值处理方法:Exclude cases listwise去除所有缺失值的个案Exclude cases pairwis哈有缺失值的变量,去掉该案例Replace with mean用平均值代替缺失值Cofficient Display Format框用于选择载荷系数的显示格式:Sorted by size载荷系数根据数值大小排列Suppress absolute values less thaffi显示绝对值小于指定值的载荷量本例选中Exclude cases listwise项,单击Continue 按钮返回Factor Analysis对话框,完成设置.单击OK,完成计算.3结果与讨论〔1〕SPSS输出的第一局部如下:第一个表格中列出了18个原始变量的统计结果,包括平均值、标准差与分析的个案数.这个就是步骤3中选中Univariate descriptives项的输出结果.〔2〕SPSS输出结果文件中的第二局部如下:该表格给出的就是18个原始变量的相关矩阵Correlation Matrix⑶SPSS输出结果的第四局部如下该局部2&出了KMO检验与Bartlett球度检验结果.其中KMO值为0、551, 根据统计学家Kaiser给出的标准,KMO取值小于0、6,不太适合因子分析.Bartlett球度检验给出白相伴概率为0、00,小于显著性水平0、05,因此才!绝Bartlett 球度检验的零假设,认为适合于因子分析.〔4〕SPSS输出结果文件中的第六局部如下:CommunalitiesExtraction Method: Principal Component Analysis 、这就是因子分析初始结果,该表格的第一列列出了14个原始变量名;第二列就是根据因子分析初始解计算出的变量共同度.利用主成分分析方法得到14个特征值,它们就是因子分析的初始解,可利用这14个初始解与对应的特征向量计算出因子载荷矩阵.由于每个原始变量的所有方差都能被因子变量解释掉,因此每个变量的共同度为1;第三列就是根据因子分析最终解计算出的变量共同度. 根据最终提取的m个特征值与对应的特征向量计算出因子载荷矩阵. (此处由于软件的原因有点小问题)这时由于因子变量个数少于原始变量的个数,因此每个变量的共同度必然小于1. (5)输出结果第六局部为Total Variance Explained表格Extraction Method: Principal Component Analysis 、Total Variance ExplainedExtraction Method: Principal Component Analysis 、该表格就是因子分析后因子提取与因子旋转的结果. 其中,Component列与Initial Eigenvalues歹!J〔第一歹!J至U第四歹U 〕描述了因子分析初始解对原有变量总体描述情况.第一列就是因子分析13个初始解序号.第二列就是因子变量的方差贡献〔特征值〕,它就是衡量因子重要程度的指标,例如第一行的特征值为9、139,后面描述因子的方差依次减少.第三列就是各因子变量的方差奉献率〔% of Variance〕,表示该因子描述的方差占原有变量总方差的比例. 第四列就是因子变量的累计方差奉献率,表示前m个因子描述的总方差占原有变量的总方差的比例.第五列与第七列那么就是从初始解中根据一定标准〔在前面的分析中就是设定了提取因子的标准就是特征值大于1〕提取了3个公共因子后对原变量总体的描述情况.各列数据的含义与前面第二列到第四列相同,可见提取了5个因子后,它们反映了原变量的大局部信息.第八列到第十列就是旋转以后得到的因子对原变量总体的刻画情况.各列的含义与第五列到第七列就是一样的.〔6〕SPSS输出的该局部的结果如下Extraction Method: Principal Component Analysis 、a、13 components extracted 、该表格就是最终的因子载荷矩阵A,对应前面的因子分析的数学模型局部.根据该表格可以得到如下因子模型:X=AF+a &X I=0、959F1-0、075F2+0、015F3+0、158 F4-0、140F5-0、023F6-0、096F7+0、017F8-0、117F9+0、004F10-0、062F11-0、040 F12+0、021 F13aSPSS 因子分析法内容与案例-、116 、046 -、042 、036、044-、005 -、005 -、032 -、006、006 -、101 、023 、110 、039 、055、094 -、059 -、058 、053 -、045、081 、014 、000-、030、050Extraction Method: Principal Component Analysis a. 13 components extracted 、 Component Matrix aExtraction Method: Principal Component Analysis a 、 13 components extracted 、〔7〕SPSS输出的该局部的结果如下:该表格就是根据前面设定的方差极大法对因子载荷矩阵旋转后的结果.未经过旋转的载荷矩阵中,因子变量在许多变量上都有较高的载荷.经过旋转之后,第一个因子含义略加清楚,根本上放映了 “每万人拥有执业医师数量〞、“第三产业占GDP 比重〔%〕〞、“人均实际利用外资额〔万美元/人〕〞;第二个因子根本上反映了 “人 均全社会固定资产投资额〞、“人均城镇固定资产投资额〞 ;第三个因子反映了 “在岗职工平 均工资〞a 人均GDP 〔元/人〕 科技支出占财政支出比重〔%〕在岗职工平均工资农民人均纯收入SPSS因子分析法内容与案例Rotation Method: Varimax with Kaiser Normalizationa、Rotation converged in 7 iterations 、SPSS因子分析法内容与案例Extraction Method: Principal Component AnalysisRotation Method: Varimax with Kaiser Normalizationa、Rotation converged in 7 iterations 、Extraction Method: Principal Component Analysis 、Rotation Method: Varimax with Kaiser Normalization 、a、Rotation converged in 7 iterations 、〔8〕SPSS输出的该局部的结果如下:该局部输出的就是因子转换矩阵,说明了因子提取的方法就是主成分分析,旋转的方法就是方法极大法.Extraction Method: Prin( :ipal Compone snt Analysis 、Rotation Method: Varimax with Kaiser Normalization 、Component Transformation MatrixExtraction Method: Principal Component AnalysisRotation Method: Varimax with Kaiser Normalization(9)SPSS输出的该局部的结果如下Component Plot in Rotated Space该局部就是载荷散点图,这里为3个因子的三维因子载荷散点图,以三个因子为坐 标,给出各原始变量在该坐标中的载荷散点图,该图就是旋转后因子载荷矩阵的图 形化表示方式.如果因子载荷比拟复杂,那么通过该图那么较容易解释. 〔10〕SPSS 输出的该局部的结果如下:Component Score Coefficient MatrixComponent123456人均GDP 〔元/人〕 -、054 、003 、100 -、090 、046-、083 人均全社会固定资产投资额 -、237 、814 -、049 、044 -、064、141 人均城镇固定资产投资额 -、115 、520 -、158 -、164 、205、065 人均一般预算性财政收入 、045 -、143 、164 、148 -、191-、083 第三产业占GDP 比重〔%〕 、522-、062 -、111 -、161 、088-、193人均社会消费品零售额 -、217、017 -、092 、033 -、1942、033人均实际利用外资额〔万美元/ 、198 -、063-、026-、105、057-、231人〕人均城乡居民储蓄存款 、251 -、056 -、057 -、091 、018-、055 农民人均纯收入 、125、045 -、251-、036 1、119 -、657 在岗职工平均工资-、197 -、079 1、205-、096 -、183 -、179 人才密度指数-、099-、088-、021-、051-、068-、4171 .cr£ 0 5-c利打上出占时出点2止中 口 c.tr d E jGDP 〕人均一醺稹以性明 在岗朗「平均■ i ;i理千人相有病底数 士 人北 带度指我人均地; 赢人f 电0 第三产业叶GDP 比Jfi o O O幅i t 心—山 u 人均牡殳消费品单唐璇力美无人〕…邛、社或内泥诧桂箕相 o口人均城相固定镜产出 2收入人均实际利用外便领我民人上 poneni1Extraction Method: Principal Component Analysis 、Rotation Method: Varimax with Kaiser NormalizationComponent Scores 、Rotation Method: Varimax with Kaiser Normalization Component Scores 、Extraction Method: Principal Component Analysis 、Rotation Method: Varimax with Kaiser Normalization 、Component Scores 、该表格就是因子得分矩阵.这就是根据回归算法计算出来的因子得分函数的系数根据这个表格可以瞧出下面的因子得分函数.F I=-0、054x1+0、003x2+0、100x3-0、090X4+0、046x5-0、083x6-0、068x7+0、000x8+3、170x9+ 0、495x10-2、090x11-0、549x12+1、365x13[工定一E_上市H制* 「:事守■SPSS根据这13个因子的得分函数,自动计算2-个样本的3个因子得分,并且将3个引子得分作为新变量,保存在SPSS数据编辑窗口中〔分别为FAC1_1、FAC2_1、FAC3_1、FAC4_1、FAC5_1、FAC6_1、FAC7_1、FAC8_1、FAC9_1、FAC10_1、FAC11_1、FAC12_1、FAC13_1〕〔11〕SPSS输出的该局部的结果如下Extraction Method: Principal Component AnalysisRotation Method: Varimax with Kaiser Normalization Component Scores 、Extraction Method: Principal Component Analysis 、Rotation Method: Varimax with Kaiser Normalization 、Component Scores 、该输出局部就是因子变量的协方差矩阵. 在前面已经说明,所得到的因子变量应该就是正交、不相关的.从协方差矩阵瞧,不同因子之间的数据为0,因而也证实了因子之间就是不相关的.课程作业选择自己感兴趣的数据〔自己建立亦可〕,进行主成分分析,并对结果进行简要SPSS因子分析法内容与案例解释,可将结果与上次课中聚类分析结果进行比照.。

spss因子分析案例

spss因子分析案例

spss因子分析案例SPSS因子分析是一种用于探索或验证潜在结构的数据分析方法。

它将一组观测变量分解为几个潜在变量(或因子),以便更好地理解这些变量之间的关系。

假设我们有一个数据集,其中包含了一些心理测量量表的数据。

我们对这些测量量表进行因子分析,以了解是否可以将它们归类为几个互相关联的潜在因子。

我们将使用SPSS进行因子分析。

首先,我们打开SPSS,并加载数据集。

然后,我们选择'Analyze'菜单下的'Dimension Reduction',再选择'Factor'。

在'Factor'对话框中,我们将选择要进行因子分析的测量量表变量,并将它们添加到'Variables'框中。

然后,我们单击'Extraction'选项卡。

在'Extraction'选项卡中,我们需要选择一个因子抽取方法。

常用的方法包括主成分分析和最大似然估计。

在本例中,我们选择最大似然估计。

然后,我们单击'Rotation'选项卡。

因子旋转是为了使因子之间更易解释。

我们可以选择'Varimax'或'Promax'旋转方法。

在本例中,我们选择'Varimax'。

接下来,我们单击'Summary'选项卡,然后单击'Continue'。

最后,我们单击'OK'按钮开始进行因子分析。

SPSS将计算因子分析,并提供一个结果表。

在结果表中,我们可以看到每个测量量表变量在每个因子上的载荷值。

载荷值表示变量与因子之间的关联强度。

我们还可以看到每个因子的解释方差比例。

这个比例表示每个因子解释了多大比例的变量的方差。

我们希望尽可能多的方差被解释,以便更好地理解数据。

此外,结果表还提供了每个因子的特征值。

特征值表示因子的重要性,越大的特征值表示该因子在解释数据中起到更重要的作用。

利用SPSS进行因子分析(R型)

利用SPSS进行因子分析(R型)

利用SPSS进行因子分析(R型)【例】与主成分分析的数据相同:全国30个省市的8项经济指标。

因子模型是一个封闭方程,通常采用主成分求解,称为“主因解”。

上次讲述的“利用SPSS进行主成分分析”的过程,实际上是因子分析的第一步。

在主成分分析基础上,加上因子旋转,就可完成基于主成分分析的所谓因子分析。

当然也可通过另外的途径进行因子分析,在此暂不涉及。

第一步:录入或调入数据(见图1)。

图1 录入工作表中的原始数据第二步,进行主成分分析(参见主成分分析部分,在此从略)。

第三步,因子正交旋转的系统设置。

沿着主菜单的“Analyze→Data Reduction→Factor…”路径打开因子分析选项框(图2),完成主成分分析的设置或过程以后,单击Rotation(旋转)按钮,打开“Factor Analysis: Rotation”(因子分析:旋转)选项单(图3),在Method(方法)栏中选中Varimax(方差极大正交旋转)复选项,此时Display(展示)栏中的RotatedSolution(旋转解)将被激活为系统默认态,选中Loading Plot(s)(载荷图)复选项,将会在输出结果中给出因子载荷图式。

注意此时的Maximum Iterations for Convergence(迭代收敛的最大次数)为系统默认的25次,如果数据变量较多或样本较大,经过25次迭代可能计算过程仍然未能收敛,需要改为50次、100次乃至更多,否则SPSS无法给出计算结果。

迭代次数越多,计算时间也就越长。

在多数情况下,不足25次迭代计算过程就会收敛。

图2 因子分析选项框图3 因子旋转对话框注意:与上述Maximum Iterations for Convergence(迭代收敛的最大次数)有关的设置是Extraction(提取)对话框中的迭代次数设置(图4),如果今后工作中修改了图3所示的迭代次数仍然未能给出结果,那就意味着图4所示的迭代次数设置没有增加;反过来也是一样。

统计学案例——SPSS因子分析

统计学案例——SPSS因子分析

《统计学》案例——SPSS因子分析基于因子分析的宜昌与中西部城市竞争力比较研究1引言随着武汉城市圈被国家批准为“全国资源节约型和环境友好型”社会建设综合配套改革实验区后,湖北省11个地级城市有5个进入“8+1”城市圈,享受着“两型社会”实验区和中部崛起双重政策扶持,今后一段时期会得到很好的发展。

作为发展基础比较好的宜昌市,在目前的大环境下,要争当省内同类城市第一,走在中西部城市的前列,迫切需要客观、准确地评价宜昌市社会经济发展现状,探寻中西部城市间社会经济发展的差异以及形成差异的内在原因,拟定适合城市可持续发展的各项对策。

本文在对比样本城市选择的基础上,利用反映城市经济、社会、环境等方面指标体系,借助SPSS软件因子分析法进行定量分析,探讨宜昌城市如何建设成为省域副中心城市。

2样本城市和评价指标的选择2.1样本城市的选择中部地区包括湖北、湖南、江西、安徽、河南、山西六省,西部地区包括内蒙古、广西、四川、贵州、云南、西藏、陕西、甘肃、宁夏、新疆、青海、重庆市十二个省市自治区。

中西部共有地级以上城市166个,其中有17个省会城市和1个直辖市,148个地级市。

为了增加城市之间的可比性,以对比城市宜昌市作参照系,地级市中2007年地区生产总值在700万元以上作为样本城市(宜昌市2007年地区生产总值为820万元),共有20个城市分布于6个省市自治区,具体见表1:表1 2008年地区生产总值700万元以上的中西部地区地级城市资料来源:《中国城市统计年鉴2008》,中国统计出版社,20092.2评价指标的选择城市竞争力评价指标不同的学者观点不一,朱红根等(2005)用国内生产总值、海关进出口总额等14个指标对江西省各城市综合竞争力进行比较研究,陈晓林(2007)提出地区生产总值、全社会固定资产投资总额等14个指标构成城市评价指标体系,颜丙胜等(2007)认为城市经济实力评价指标应包括城乡居民储蓄余额等在内的13项统计指标,张旭亮(2009)认为城市群城市综合竞争力评价应涵盖经济、社会、文化、环境等方面,由人均图书、城市化水平等20项指标组成。

SPSS验证性因子怎么做?附案例讲解一文搞懂

SPSS验证性因子怎么做?附案例讲解一文搞懂

验证性因子分析1、作用验证性因子分析(confirmatory factor analysis, CFA)是用于测试一个因子与相对应的测度项之间的关系是否符合研究者所设计的理论关系的一种研究方法,可用于调查问卷的量表分析。

2、输入输出描述输入:至少两项或以上的定量变量或有序的定类变量。

输出:测量因子与变量之间的对应关系是否符合研究者所设计的理论关系。

3、案例示例案例:理科班的 100 名同学的语文、数学、英语、物理、生物、化学成绩,然后研究者想要验证他们的语文、英语成绩是否可以反映理科班的文科成绩水平,他们的数学、物理、生物、化学成绩是否可以反映理科班的理科成绩水平。

4、案例数据验证性因子分析案例数据模型要求为至少两项或以上的定量变量或有序的定类变量,其中数学、物理、化学、生物为一个因子,语文和英语为一个因子。

5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;Step4:选择【验证性因子分析】;Step5:查看对应的数据数据格式,【验证性因子分析】要求特征序列至少两项或以上的定量变量或有序的定类变量。

在因子 1 拖入需验证的变量。

Step6:当涉及到多个因子时,点击【创建因子】.Step7:在因子 2 拖入需验证的变量。

Step8: 点击【开始分析】,完成全部操作6、输出结果分析输出结果 1:因子基本汇总表图表说明: 上表展示了样本频数的统计情况,包括样本中各个因子的字段频数、总计、总样本频数,CFA分析要求总样本数据最少要是因子内个别量表的5倍以上,且一般情况下至少需要200个样本。

结果分析:样本数据集共有因子数量 2 个,变量数 6 个,样本数 200 满足验证性因子分析基本数据要求。

输出结果 2:因子载荷系数表图表说明:上表为模型的因子载荷系数表格,包括潜变量、分析项、非标准载荷系数、z检验结果等。

测量关系时第一项会被作为参照项,因此不会呈现P值等统计量。

SPSS因子分析实例操作步骤

SPSS因子分析实例操作步骤

SPSS因子分析实例操作步骤
SPSS因子分析实例操作步骤
实验目的:
引入2003~2013年全国的农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业7个产业的投资值作为变量,来研究其对全国总固定投资的影响。

实验变量:
以年份,合计(单位:千亿元),农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业
制造业11 .44 7.07 2.6900 2.22405
电力、热力、燃气及水生产和
11 3.36 15.05 10.3545 3.22751
供应业
建筑业11 1.79 23.51 7.8955 6.18302
批发和零售业11 2.10 18.52 9.1018 5.50553
交通运输、仓储和邮政业11 .82 8.39 2.7891 2.20903
Valid N (listwise) 11
该表提供分析过程中包含的统计量,表格显示了样本容量以及11个变量的最小值、最大值、平均值、标准差。

表格所示是因子分析的共同度。

表格第二列显示初始共同度,全部为1.000;第三列是按照提取3个公因子得到的共同度,可以看到只有“采矿业”的共同度稍低,说明其信息丢失量稍严重。

SPSS案例-因子分析结果聚类

SPSS案例-因子分析结果聚类

对因子分析结果进行聚类分析
一、指标选取
由因子分析结果可得,我国城市设施可以由三个方面来综合体现。

因子 1主要解释的是城市用水普及率,每万人拥有公共交通车辆,命名为保障因子;而因子 2 主要解释的是人均城市道路面积,人均公园绿地面积3个指标,命名为环境因子,而因子 3主要解释的是每万人拥有公共厕所,命名为卫生因子。

以全国31个城市为研究对象,以这三个因子为指标进行聚类分析。

二、对数据进行系统聚类分析
三、快速聚类结果
四、得出结论
根据系统聚类法的输出结果,可以看出,第一类城市包括北京与上海,第三类包括黑龙江与内蒙古,其他城市为第二类。

显然,第一类城市设施较好,第二类次之,第三类最差。

SPSS因子分析(因素分析)——实例分析

SPSS因子分析(因素分析)——实例分析

SPSS因子分析(因素分析)——实例分析SPSS因子分析(因素分析)——实例分析SPSS(Statistical Package for the Social Sciences)是一种广泛应用于数据分析的软件工具,其中的因子分析(Factor Analysis)被广泛用于统计学和社会科学领域的研究。

本文将通过一个实例分析来介绍SPSS因子分析的基本原理和步骤。

1.研究背景在实施因子分析之前,首先需要明确研究背景和目的。

假设我们正在研究消费者购物行为,并希望确定出不同因素对于购物偏好的影响。

2.数据收集和准备在进行因子分析前,需要收集并准备相关数据。

假设我们已经收集到了100位消费者的关于购物行为的调查问卷数据,包括10个关于购物偏好的变量。

在SPSS中,我们可以将这些数据输入到一个数据矩阵中,每一行代表一个消费者,每一列代表一个变量。

3.因子分析设置在SPSS中,通过导航菜单选择适当的分析工具来进行因子分析。

在设置选项中,我们可以选择因子提取方法(如主成分分析、极大似然法等)和旋转方法(如方差最大旋转、斜交旋转等)等。

根据实际情况,我们可以调整这些参数以获得最佳结果。

4.因子提取在因子分析的第一步中,SPSS会计算每个变量的因子载荷矩阵,并根据设定的准则提取出主要因子。

因子载荷表示了每个变量与每个因子之间的关联程度,值越大表示关联程度越高。

通过因子载荷矩阵,我们可以判断每个变量对于哪个因子具有较高的影响。

5.因子旋转因子旋转可用于调整因子载荷矩阵,以使其更易于解释。

旋转后的因子载荷矩阵通常会呈现出更简洁、更有意义的结果。

在SPSS中,我们可以选择合适的旋转方法并进行旋转操作。

6.因子解释和命名在完成因子分析后,我们需要对结果进行解释和命名。

根据因子载荷矩阵和旋转结果,我们可以确定每个因子代表了哪些变量,并为每个因子赋予一个描述性的名称,以便于后续的数据分析和报告撰写。

7.结果解读最后,根据因子分析的结果,我们可以进行一系列的统计推断和解读。

因子分析出现非正定矩阵案例

因子分析出现非正定矩阵案例

某运营商无线增值业务全国各省某一个月内运营情况,变量35个,样本31个(全国31个省),希望通过因子分析对各省综合实力进行排序。

一、问题描述通过spss的因子分析对原始变量进行降维处理时,SPSS提示相关系数矩阵为“非正定矩阵”,无法给出KMO值,但是SPSS仍然给出了后续因子分析结果。

二、疑问1)什么是正定矩阵?2)因子分析是否一定要求变量的相关系数矩阵为正定矩阵?3)非正定矩阵的存在对因子分析结果有何影响?4)如何修正使得变成正定矩阵?三、解决办法通过在论坛上查阅人相关问题,发现其他网友总结出现这种情况的原因主要集中在两点:1)样本量太少,而指标过多2)某些变量间相关性太强而解决方案分别要求增加样本,或者剔除某些显著强相关的变量,但是在我的这个例子里面无法增加样本,因此只能从变量的相关性上考虑,看是不是存在一些和其他变量高度相关的变量。

通过查看因子分析结果中的相关系数矩阵,的确发现大部分变量之间都存在高度相关性,而且相关系数在以上:但是现在问题来了,那是不是应该直接删除高度相关的变量?该删除哪些变量?按照我的情况估计很多变量都要剔除了,那对于分析结果就会产生很大的影响。

为了找出具体是哪些变量导致问题的出现,我用了一个比较笨的办法:逐一淘汰法。

刚开始时不把所有变量都用来做因子分析,只选取一小部分,例如我先选取了10个变量做分析,发现spss没有再提示“非正定矩阵”而是正常的输出了KMO检验值,而且顺利完成了因子分析结果;然后下一步我再逐个添加其他变量进行测试,当发现添加某个变量spss提示“非正定矩阵”时,就记下这个变量,然后再换成下一个变量继续测试,直到把所有变量测试完。

通过这样的测试,我终于找到让spss认为“非正定矩阵”的原因:一共有5个变量,只要不纳入这5个变量进行分析,spss就能正常的进行因子分析。

找到原因后,我本来想直接删除掉这5个变量好了,但是我查看了一下spss因子分析的输出结果,发现了为什么是这5个变量的原因,如下图:上图的截图是“解释的总方差”显示所有变量的相关系数矩阵的所有特征值,大家可以看到在用红色方框标注的5个特征值,他们的数值的数量级都是10的负16次方、17次方、18次方,甚至出现了负值,几乎可以认为就是零了,远远小于其他特征值,根据之前的逐一测试法确认,这5个特征值是与之前发现的那5个变量是对应的,我想这就应该是为什么是这5个变量导致出现非正定矩阵的原因吧。

SPSS因子分析——实例分析

SPSS因子分析——实例分析

SPSS因子分析——实例分析SPSS因子分析是一种统计方法,用于探索多个变量之间的相关性和结构。

它可以帮助研究者发现潜在的因素或维度,简化数据分析,并揭示变量之间的潜在关系。

本文将通过一个实例来介绍如何使用SPSS进行因子分析。

假设我们有一个关于消费者购买行为的调查问卷,包含了多个变量,如购买频率、购买金额、购买渠道等。

我们想要通过因子分析来探索这些变量之间的潜在结构,并识别出潜在的因素。

首先,我们需要将原始数据导入SPSS软件。

在SPSS的"变量视图"中,我们可以将每个变量名称输入到空白单元格中,并为每个变量选择适当的测量尺度(如定类尺度、定序尺度、定距尺度)。

然后,切换到"数据视图",在每一行中输入被调查者的数据。

接下来,我们需要进行因子分析的前提检测。

在SPSS的"分析"菜单中,选择"数据采样"并点击"样本界限",以确保我们选择的样本大小是否足够。

然后,我们选择"统计"中的"相关性",点击"双变量"并检查变量之间是否存在显著的相关性。

如果我们的数据满足以上要求,我们可以继续进行因子分析。

在SPSS的"分析"菜单中,选择"数据准备",点击"描述统计"并选择"频数",以检查每个变量的分布情况。

然后,我们再次选择"分析"中的"数据准备",点击"因子"并选择"提取方法"。

在弹出的对话框中,我们可以选择合适的提取方法,如主成分分析、极大似然估计等。

这些方法之间的选择要根据具体情况而定。

接下来,我们需要选择合适的因子数。

在"因子提取"对话框中,点击"因子"并输入我们认为合适的因子数。

SPSS因子分析(因素分析)——实例分析

SPSS因子分析(因素分析)——实例分析

SPSS因子分析(因素分析)——实例分析提起因子分析那是老生常谈,分析人士大都喜欢讨论主成分与因子分析。

我也凑个热闹,顺便温习温习,时间长了就会很模糊。

一、概念探讨存在相关关系的变量之间,是否存在不能直接观察到的但对可观测变量的变化其支配作用的潜在因子的分析方法就是因子分析,也叫因素分析。

通俗点:原始变量是共性因子的线性组合。

二、简单实例现在有12个地区的5个经济指标调查数据(总人口、学校校龄、总雇员、专业服务、中等房价),为对这12个地区进行综合评价,请确定出这12 个地区的综合评价指标。

点击下载三、解决方案1、不同地区的不同指标不同,这导致目前我们拥有的5个指标数据很难对这12个地区给一个明确的评价。

所以,有必要确定综合评价指标,便于对比。

因子分析是一种选择,当然还有其他的方法。

5个指标即为我们分析的对象,直接选入。

2、描述统计选项卡。

我们要对比因子提取前后的方差变化,所以选定“初始分析结果”;现在是基于相关矩阵提取因子,所以,选定相关矩阵的“系数”;比较重要的还有KMO和球形检验,它告诉我们数据是不是适合做因子分析。

选定。

其他选择自定。

3、抽取选项卡。

提取因子的方法有很多,最常用的就是主成分法。

这里选主成分。

关于特征值,不想解释太多,这和显著性水平一样,都是统计学的一个基本概念。

因为参与分析的变量测度单位不同,所以选择“相关矩阵”,如果参与分析的变量测度单位相同,则考虑选用协方差矩阵。

4、是否需要旋转?因子分析要求对因子给予命名和解释,对因子旋转与否取决于因子的解释。

如果不经旋转因子已经很好解释,那么没有必要旋转,否则,应该旋转。

这里直接旋转,便于解释。

至于旋转就是坐标变换,使得因子系数向1和0靠近,对公因子的命名和解释更加容易。

5、要计算因子得分,就必须先写出因子的表达式。

而因子是不能直接观察到的,是潜在的。

但是可以通过可观测到的变量获得。

前面说到,因子分析模型是原始变量为因子的线性组合,现在我们可以根据回归的方法将模型倒过来,用原始变量也就是参与分析的变量来表示因子。

SPSS因子分析经典案例

SPSS因子分析经典案例

SPSS因子分析经典案例因子分析已经被各行业广泛应用,各种案例琳琅满目,以前在百度空间发表过相关文章,是以每到4至6月,这些文章总会被高校毕业生扒拉一遍,也总能收到各种魅惑的留言,因此,有必要再次发布这经典案例以飨读者。

什么是因子分析?因子分析又称因素分析,传统的因子分析是探索性的因子分析,即因子分析是基于相关关系而进行的数据分析技术,是一种建立在众多的观测数据的基础上的降维处理方法。

其主要目的是探索隐藏在大量观测数据背后的某种结构,寻找一组变量变化的共同因子。

因子分析能做什么?人的心理结构具有层次性,即分为外显和内隐.但是作为具有同一性的个体来说,内隐的方面总是和外显的方面相互作用,内隐方面制约着外显特征。

所以我们经常说,一个人的内在自我会在相当程度上决定他的外在行为特征,表现为某些行为倾向具有高度的一致性或相关性。

反过来说,我们可以通过对个体进行系统的观察和测量,从一组高度相关的行为倾向(可观测)中,探索到某种稳定的内在心理结构(潜存在),这就是因子分析所能做的。

ﻫ具体来说主要应用于:(1)个体的综合评价:按照综合因子得分对case进行排序;(2)调查问卷效度分析:问卷所列问题作为输入变量,通过KMO、因子特征值贡献率、因子命名等判断调查问卷架构质量;(3)降维处理,结果再利用:因子得分作为变量,进行聚类或其他分析。

案例描述:高中大家都读过吧,那是一个以成绩论英雄的时代,理科王子、文科小生是时代标签。

为什么我们会将数学、物理、化学归并为理科,其他的归并为文科,有没有数据支持?今天我们将用科学的方法找到答案。

ﻫ100个学生数学、物理、化学、语文、历史、英语成绩如下表(部分),请你来评价他们。

这是一个有趣的案例,你可以客观的观测到每一科目的成绩,但你可以直接看到理科、文科的情况吗?6个科目的成绩是我们观测到的外在表现,隐藏在其中的公共因子你找到了吗?如果我们针对6科目做降维处理,会得到什么结果,拭目以待。

(完整版)SPSS因子分析法-例子解释

(完整版)SPSS因子分析法-例子解释

因子分析的基本概念和步骤一、因子分析的意义在研究实际问题时往往希望尽可能多地收集相关变量,以期望能对问题有比较全面、完整的把握和认识。

例如,对高等学校科研状况的评价研究,可能会搜集诸如投入科研活动的人数、立项课题数、项目经费、经费支出、结项课题数、发表论文数、发表专著数、获得奖励数等多项指标;再例如,学生综合评价研究中,可能会搜集诸如基础课成绩、专业基础课成绩、专业课成绩、体育等各类课程的成绩以及累计获得各项奖学金的次数等。

虽然收集这些数据需要投入许多精力,虽然它们能够较为全面精确地描述事物,但在实际数据建模时,这些变量未必能真正发挥预期的作用,“投入”和“产出”并非呈合理的正比,反而会给统计分析带来很多问题,可以表现在:计算量的问题由于收集的变量较多,如果这些变量都参与数据建模,无疑会增加分析过程中的计算工作量。

虽然,现在的计算技术已得到了迅猛发展,但高维变量和海量数据仍是不容忽视的。

变量间的相关性问题收集到的诸多变量之间通常都会存在或多或少的相关性。

例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。

而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。

例如,多元线性回归分析中,如果众多解释变量之间存在较强的相关性,即存在高度的多重共线性,那么会给回归方程的参数估计带来许多麻烦,致使回归方程参数不准确甚至模型不可用等。

类似的问题还有很多。

为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。

为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。

因子分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。

因子分析的概念起源于20世纪初Karl Pearson和Charles Spearmen等人关于智力测验的统计分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS因子分析经典案例
因子分析已经被各行业广泛应用,各种案例琳琅满目,以前在百度空间发表过相关文章,是以每到4至6月,这些文章总会被高校毕业生扒拉一遍,也总能收到各种魅惑的留言,因此,有必要再次发布这经典案例以飨读者。

什么是因子分析?
因子分析又称因素分析,传统的因子分析是探索性的因子分析,即因子分析是基于相关关系而进行的数据分析技术,是一种建立在众多的观测数据的基础上的降维处理方法。

其主要目的是探索隐藏在大量观测数据背后的某种结构,寻找一组变量变化的共同因子。

因子分析能做什么?
人的心理结构具有层次性,即分为外显和内隐。

但是作为具有同一性的个体来说,内隐的方面总是和外显的方面相互作用,内隐方面制约着外显特征。

所以我们经常说,一个人的内在自我会在相当程度上决定他的外在行为特征,表现为某些行为倾向具有高度的一致性或相关性。

反过来说,我们可以通过对个体进行系统的观察和测量,从一组高度相关的行为倾向(可观测)中,探索到某种稳定的内在心理结构(潜存在),这就是因子分析所能做的。

具体来说主要应用于:
(1)个体的综合评价:按照综合因子得分对case进行排序;
(2)调查问卷效度分析:问卷所列问题作为输入变量,通过KMO、因子特征值贡献率、因子命名等判断调查问卷架构质量;
(3)降维处理,结果再利用:因子得分作为变量,进行聚类或其他分析。

案例描述:
高中大家都读过吧,那是一个以成绩论英雄的时代,理科王子、文科小生是时代标签。

为什么我们会将数学、物理、化学归并为理科,其他的归并为文科,有没有数据支持?今天我们将用科学的方法找到答案。

100个学生数学、物理、化学、语文、历史、英语成绩如下表(部分),请你来评价他们。

这是一个有趣的案例,你可以客观的观测到每一科目的成绩,但你可以直接看到理科、文科的情况吗?6个科目的成绩是我们观测到的外在表现,隐藏在其中的公共因子你找到了吗?如果我们针对6科目做降维处理,会得到什么结果,拭目以待。

SPSS分析过程
6科目成绩作为6个原始变量,利用SPSS进行因子分析,具体步骤请参照各因子分析教程,默认亦可,不在讨论范围之内。

公共因子命名:解释的清楚、有无实际意义
经过SPSS降维,由公因子方差表看出,默认提取两个公因子,能够解释差异的81%,似乎暗合文科和理科。

我们试图通过旋转后进行因子的命名与解释,这似乎一点也不难,因子1与语文、历史、英语三科最相关,均在0.8相关度以上,因子2与数学、
物理、化学相关,也基本达到0.8以上,这正好与我们经常说的文科和理科不谋而合,没有理由不这样命名。

因子得分排序:综合评价
为公共因子合理命名之后,因子分析并没有结束,一般可以将因子得分作为变量,用于后续分析步骤。

本例:100名学生按照文科和理科因子得分进行排序,可以用(语文+历时+英语)及(数学+物理+化学)平均值验证因子得分排序是否合理,同时,也可以观测因子得分为负值时是否影响排序。

相关文档
最新文档