电力设备低频电磁场仿真分析解决方案

电力设备低频电磁场仿真分析解决方案
电力设备低频电磁场仿真分析解决方案

ANSYS

电力设备低频电磁场仿真分析解决方案

目录

一、电力设备仿真分析(CAE)的必要性 (3)

二、ANSYS低频电磁场仿真分析论证 (3)

2.1 ANSYS Emag软件简介 (3)

2.2 ANSYS Emag在电力系统中的应用 (4)

2.2.1 电场分析 (4)

2.2.2 磁场分析 (5)

2.2.3 耦合场分析 (5)

2.3 ANSYS Emag应用案例 (6)

2.3.1 电场分析 (6)

2.3.1.1 电场分析应用案例——屏蔽电极电场结构优化设计 (6)

2.3.1.2 电场分析应用案例——电流互感器远场边界计算 (7)

2.3.2 磁场分析 (8)

2.3.2.1 磁场分析应用案例——空心电流互感器磁场分析 (8)

2.3.2.2 磁场分析应用案例——电流互感器输出特性计算 (9)

2.3.3 电磁场-热耦合分析 (10)

一、电力设备仿真分析(CAE)的必要性

随着超高压特高压电网的相继投运,电力系统的安全性以及电网的稳定性成为电网运行中关键因素之一。更高的电压等级、更严格的运行指标对大容量、高性能输配电设备提出了更高的要求。当前,计算机辅助设计(CAD)技术早已在电力设备制造中成熟运用,然而,对产品性能进行前期计算机仿真分析(CAE)技术还未能广泛应用。

随着电压等级以及性能要求的提高,样品试验的试验成本、试验耗时以及试验困难度(如大电流、高电压)等传统的产品性能验证方式都对设计成功率要求更高,传统的反复试验指导设计的方式已经不可行,因此,计算机辅助分析(CAE)的重要性达到了空前的高度,计算机硬件以及软件技术的飞速发展也使得CAE 成功应用于大规模工程问题成为现实。

电力设备的主要特性可分为电气、机械、温升以及化学等特性,这些特性相互作用,是一个集电、磁、结构、热、流体等于一体的综合的复杂的过程。ANSYS 公司开发提供的系列仿真分析软件包含电磁、结构、热以及流体的仿真分析模块,可以很好的应用于电力设备的各方面性能仿真分析;其优越的多物理场耦合功能能够分析电力设备的整体综合性能;其优化功能能够为电力设备小型化、性能优化提供最优方案。

二、ANSYS低频电磁场仿真分析论证

2.1 ANSYSEmag软件简介

ANSYS Emag是ANSYS产品家族中专用的低频电磁场仿真分析模块,秉承了ANSYS家族产品的整体优势,历经超过25年的开发与应用,成为ANSYS家族产品中不可或缺的一员。

ANSYS Emag提供了完备的低频电磁场分析功能,包括静态电场、静态磁场、直流传导场、低频电场(时谐和瞬态)、以及低频磁场(时谐和瞬态)分析功能,覆盖了几乎所有工程低频电磁问题的分析类型;ANSYS Emag提供的场路耦合功能能够方便直观的将电路模型与电磁场有限元模型直接相连,进行更精确、更系

统的电气电磁特性分析,广泛应用与各种机电产品、电磁设备以及电气电力设备的研发和设计。

ANSYS Emag与ANSYS的另外两大分析模块——结构分析模块ANSYS Mechanical和流体分析模块ANSYS CFD之间能够实现分析数据的无缝链接,实现高效完整的电磁-热-流体-结构等多物理场分析功能。

2.2 ANSYSEmag在电力系统中的应用

电力系统一次侧设备(如:变压器、断路器、隔离开关、电流互感器、电压互感器和电力电缆等)直接与发电机、母线和传输线等高电压大电流元件相连,电气设备长期处于此类环境中,为保证运行的可靠性,需对一次侧设备进行试验,以确定设备的各项性能。大量的重复性试验不仅增加设备成本,同时也对设备的制造周期有很大影响。最重要的是,设备正常运行时其周围的电磁环境较复杂,试验不能完全模拟实际运行情况,这给电网的安全工作带来一定隐患。

ANSYS Emag电磁仿真软件应用长期以来被普遍证明准确的麦克斯韦方程组作为计算依据,通过设定各种载荷与边界条件,模拟复杂电磁环境中运行的电气设备,有助于及时发现长期运行设备中的隐患并排除,保证电网的安全工作。2.2.1 电场分析

ANSYS Emag电场分析模块主要分为静电场与传导电流场计算。

静电场主要用于计算电压作用下绝缘设备的电场数值分布,例如变压器、断路器、隔离开关、电流互感器、电压互感器、避雷器、电抗器、电容器。静电场分为稳态与时谐计算。稳态静电场采用麦克斯韦方程组,通过电位(V),电场强度(E)与电位移矢量(D)之间的相互关系,考虑电介质在外电场下的极化作用,最终求取绝缘设备表面的电场强度数值与分布。该分析可以指导电力设备的设计与安装,防止因电场集中导致的闪络,局部放电与击穿现象的发生。时谐电场可以考虑介电材料在交变电压作用下产生的介电损耗,该损耗通过后续温度计算可以得出绝缘材料整体的温度分布,为评估绝缘老化提供了良好的参考依据。

传导电流场主要计算由导线中的电流引起的周围绝缘设备内部的电场分布。传导电流场分为稳态,时谐和瞬态三种。稳态传导电流场计算时只考虑导线内稳定流动的电流对绝缘设备电场分布的影响。而时谐与瞬态传导电流场,在稳态的

基础上还考虑电位移矢量(D)随时间变化对周围电场强度的影响效果。该方法主要用于具有电流作用的电力设备电场分析,例如输变电系统中的母线、汇流排和传输线等。

此外,ANSYS Emag电场分析可以计算多导体系统的分布电容以及分布电导矩阵参数,软件提供的远场单元和Trefftz方法可以用于处理2D/3D电场分析中的开域问题,从而获得更精确的求解结果。

2.2.2 磁场分析

ANSYS Emag磁场分析包括2D/3D静磁场、低频磁场(时谐和瞬态)以及电磁场-电路耦合分析功能,用于分析由永磁体、交直流或任意时变电流/电压以及外部电源电路所产生的恒定或时变磁场特性,主要应用于电机、变压器、永磁设备、电磁感应装置等的稳态和动态磁场特性分析和参数计算。

ANSYS Emag磁场分析功能提供包括磁矢位法、磁标位法和棱边单元法在内的三种磁场分析方法,包含绞线圈和块导体两种导体类型,可以方便的定义各向同性、各向异性线性或非线性磁性材料属性;软件自动考虑块导体中的集肤效应,计算涡流及其损耗,计算所得电阻损耗和涡流损耗可应用于后续的热分析,进而分析设备的温升特性;ANSYS Emag的场路耦合分析功能方便直观的将有限元分析模型与离散电路分析模型直接相连,分析设备在外部电源电路或外接负载电路下的系统性能。

2.2.3 耦合场分析

ANSYS Emag与ANSYS Mechanical耦合可用于分析设备中由于电流发热或电磁感应生热(电阻损耗和涡流损耗)所引起的结构温升,与ANSYS CFD耦合可用于设备的传热和散热分析,可考虑电磁材料属性随温度的变化特性,所得温度结果可进一步用于热应力形变分析。

例如汇流排通过大电流所产生的热可以传递到ANSYS Mechanical中进行热应力分析,观察汇流排形变;电力变压器涡流损耗和线圈电阻损耗产生的热量;绝缘材料温度升高后对其绝缘性能的影响等;

2.3 ANSYSEmag应用案例

2.3.1 电场分析

采用电场分析模块进行静电场与传导电流场的计算。激励主要为电位和电流,后处理中主要关注电场,电位的数值以及分布规律。

(a)分析模型(b)均压环表面电场分布

高压输电线试验线路电场分析

(a)分析模型(b)电位分布

(c)导体表面电场分布(d)壳体表面电场分布

高压开关柜电场分析

2.3.1.1电场分析应用案例——屏蔽电极电场结构优化设计

高电压设备中,电极外形轮廓对其表面及周围的电位和电场分布影响极大,要使得电极表面不产生电晕放电乃至介质不会被击穿,需要对电极的结构形状进

行优化设计。

(a)不考虑屏蔽结构时的电场分布(b)锥形屏蔽结构时的电场分布

(c)半圆形屏蔽结构时的电场分布(d)半圆形屏蔽结构时的等电位线分布

高压开关屏蔽电极结构形状优化分析

2.3.1.2电场分析应用案例——电流互感器远场边界计算

在进行电场计算时,一般对计算边界采用人工截断的方法,即人为的将计算边界设置为0电位。而对于日益发展的高压以及特高压电力设备计算时,如果采用人工截断边界的方法,0电位边界将要设置在距离电力设备很远处。这样会导致空气网格大幅度增加,计算效率下降。若将0电位边界设置在距离电力设备较近的区域内,计算结果显然是不正确的。

ANSYS Emag电场计算模块提出了一种应用远场单元来模拟无穷远边界的方法。该方法不受计算区域大小的限制,只需要将远场单元设置为边界即认为该边界的0电位在无穷远处。该方法不仅减少计算机开销,更能准确分析高电压和超高电压下电力设备的电场电位分布。

(a)电流互感器模型三维模型(b)电流互感器与空气电位分布

电流互感器

2.3.2 磁场分析

磁场分析激励主要为电流密度,电流和电位。后处理关心的数据为磁通密度,磁场强度,输出电流和电感等数据。

(a)分析模型(b)磁通密度分布(c)电流密度分布(含涡流)

铁芯交流磁场分析

2.3.2.1磁场分析应用案例——空心电流互感器磁场分析

(a)分析模型(b)副边线圈电流密度分布

(c)磁通密度分布(d)副边线圈空间磁密分布

空心电流互感器交流磁场分析

2.3.2.2磁场分析应用案例——电流互感器输出特性计算

电流互感器在电网中起到检测线路电流,防止产生电流过大而产生危害的作用。电流互感器要求可以准确输出经过数倍缩小后的线路电流值。

(a)电流互感器模型三维网格模型(b)电流互感器模型三维模型

(c)电流互感器磁密分布图(d)实际测量输出电流与仿真对比

电流互感器输出特性计算

从上述仿真分析中可以看出,在保证模型、材料属性和载荷正确的情况下,

ANSYS Emag仿真出的电流互感器二次侧电流值与实际测量值差别很小,验证了Emag的准确性。

2.3.3 电磁场-热耦合分析

耦合场分析以电磁计算的结果为输入量,例如焦耳热,电磁力等,传递到ANSYS Mechanical和CFD中进行结构与流体的计算。

真空开关电磁场-热分析

2.3.3.1电磁场-热耦合分析应用案例——三相交流母线温升分析

(a)几何模型(b)分析模型(c)壳体磁通密度分布

(d)壳体涡流密度分布(e)母线表面温度分布(f)壳体表面温度分布

三相交流母线电磁场-热分析(Emag + Mechanical)

PERA ANSYS(ANSYS软件)

2016年《电磁场与电磁波》仿真实验 (1)

《电磁场与电磁波》仿真实验 2016年11月

《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题

目录 一、电磁场仿真软件——Matlab的使用入门 (4) 二、单电荷的场分布 (10) 三、点电荷电场线的图像 (1) 2 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17)

实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。 注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6)

电磁场与电磁波实验报告-2

电磁场与电磁波实验报告

实验一电磁场参量的测量 实验目的 1、在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定电磁波 的相位常数和波速 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长的值,再由2,f 得到电磁波的主要参量:和等。 本实验采取了如下的实验装置 设入射波为E i E)e j,当入射波以入射角!向介质板斜投射时,则在 分界面上产生反射波E r和折射波E t。设介质板的反射系数为R,由空气进入 介质板的折射系数为T o,由介质板进入空气的折射系数为T c,另外,可动板 P r2和固定板P r1都是金属板,其电场反射系数都为-1。在一次近似的条件下,

接收喇叭处的相干波分别为E M RT o T c E oi e j 1,RT o T c E^e j 2 这里 1 2L ri L r3 L ri ;2 2L「2 L“2L M 2 L L r3 L2;其中L L2 L i|。 又因为为定值,L2则随可动板位移而变化。当P r2移动L值,使P r3有零 指示输出时,必有E M与E r2反相。故可采用改变P r2的位置,使尺3输出最大或零指示重复出现。从而测出电磁波的波长和相位常数。下面用数学式 来表达测定波长的关系式。 在P r3处的相干波合成为E r E M E「2 e j 1 e j2 j 1 2 / 或写成E r2RT0T c E0i cos 2 e 2(1-2) 式中 1 2 2 L 为了测量准确,一般采用P3零指示法,即cos 20 或(2n 1),n=0,1,2…… 这里n表示相干波合成驻波场的波节点(E r 0 )数。同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。故把n=0时E r 0驻波节点为参考节点的位置L。 2 又因 2 — L (1-3) 2 故2n 1 2 — L 或 4 L (2 n 1)(1-4)由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的值。当n=0的节点处L。作为第一个波节点,对其他N值则有: n=1, 4 L 4L1 L0 2 ,对应第二个波节点,或第一个半波长数。

低频磁场屏蔽的原理及屏蔽物的结构要点

5.3.4 低频磁场屏蔽的原理及屏蔽物的结构要点 1.低频磁场屏蔽原理 减小低频磁场干扰的方法,除了合理地布置元器件、走线的相对位置和方位外,对于低频(如50 H2)交变磁场的干扰,可采用低频磁场屏蔽的方法来减小其影响,见图5—32 图5—32(a)中,T为电子元器件或电路,当不加屏蔽地放在磁场中时,将会受到低频磁场于扰,如电子束受力发生偏转,改变磁性材料的磁化性能等。图5—32(b)为用高磁导串材料做的一个屏蔽盒。斯麦迪电子磁力线通过时阻力很小,而空气的磁导率很低,磁力线通过时受到很大阻力。因此磁力线将绝大部分从屏蔽体上流过,只有很少量经过屏蔽体内的空气到达元器件了上。即磁力线主要经1—2—3—4线路流走,很少量经1—2’一3’一4流走,从而对T起到了保护作用。综上所述,低频磁场的屏蔽原理就是磁分路原理,即用高磁导率的材料做成屏蔽体,使磁力线分路而起到屏蔽效果。屏蔽体导磁率越南,屏蔽体的壁厚越厚,磁分路作用就越好,屏蔽效果也就越好。几种常用材料的相对导磁串见表5—9。相对导磁率是材料的导磁率与空气导磁串之比,空气的相对导磁串为l。从表5—9中可知:作为低频敬屏蔽物的材料应选钢铁、不锈钢或坡莫合金,而不应选铜或铝等电的良导体。 2.低频疆场屏蔽物的结构要点(1)减小蹬屏蔽盒在接口处的接继磁力线通过屏蔽罩的接口缝隙处时,将会受到很大的磁阻,使磁力线产生泄漏,因此在设计时缝隙处应有较大的重矗[见图5—33(a)中的A3,且应使配合紧密,尽量减小缝隙。还应注意统欧与磁力线的相对位置,不应使接缝切断磁力线而增加磁阻。图5—33(a)的安装是正确的,图5—33(b)的安装则不正确。

武大电气工程电磁场仿真实验报告

武汉大学 工程电磁场及高电压综合实验

一、题目 有一极长的方形金属槽,边宽为1cm,除顶盖电位为100sinπxV外,其他三面的电位均为零,试用差分法求槽内电位的分布。 二、解题原理:均匀媒质中的有限差分法 我们在求解场的分布时,当边界形状比较复杂时,解析分析法不再适合了,我们可以采用数值计算的方法,数值计算法的基本思想,是将整体连续的场域划分为若干个细小区域,一般称之为网格或单元,如图1所示,然后用所求的网格交点(一般称为节点或离散点)的数值解,来代替整个场域的真实解。因而数值解,即是所求场域离散点的解。虽然数值解是一种近似解法,但当划分的网格或单元愈密时,离散点数目也愈多,近似解(数值解)也就愈逼近于真实值。 实解。在此处键入公式。 图1场域的剖分,网格节点及步长

(一)、场域的剖分、网格节点及步长 由边界Γ所界定的二维平行平面场(见图1),若采用直角坐标系则可令该场处在xoy 平面内。 所谓场域的剖分就是场域的离散化,即将场域剖分为若干个网格或单元。最常见最简单的剖分为正方形剖分,这种剖分就是在xy 平面上作许多分别与x 轴及y 轴平行的直线,称为网格线。网格线的交点称为节点或离散点,场域内的节点称为内节点,场域边界上的节点称为边界节点。两相邻网格线间距离称为步长,一般以h 表示。若步长相等则整个场域就被剖分为许多正方形网格,这就是正方形剖分。节点(离散点)的布局不一定采用正方形剖分,矩形剖分也常采用,正三角形剖分偶尔也被应用,不过最常见的最简单的仍然是正方形剖分。 (二)、差分与微分 从前面的分析可知,稳恒电、磁场的求解问题,归根到底是求解满足给定边界条件的偏微分方程(泊松方程或拉普拉斯方程)的解的问题所谓差分方法,就是用差商近似代替偏微商,或者说用差分代替微分,从而把偏微分方程转换为差分方程,后者实际上为代数方程。因此这种转化有利于方程的求解。 下面分别对一阶及二阶的差分公式进行推导。首先回顾有关偏导数的定义,有 00(,)(,)(,)(,) lim lim x x f f x x y f x y f x y f x x y x x x →→?+---==? (1) 因此当|x| 充分小时,可近似地用(,)(,)f x x y f x y x +- 或(,)(,) f x y f x x y x -- 代 替 f x ??,所谓差分公式,即是基于上述观点推得的。 设图1所示场域中的位函数为A ,任取一网格节点0,它在xy 平面上的坐标为(x ,i i y ),记节点0的矢量磁位为,i j A ,并把与节点0相邻的其他四个节点1、2、3、4的矢量磁位分别记为1,i j A +、,1i j A +、1,i j A -、,1i j A -,将节点0处函数A 的 一阶偏微商A x ??,用1、0两点函数值的差商1,,i j i j A A h +-近似代替,则有

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

基于有限元的电磁场仿真与数值计算介绍

鼠笼异步电动机磁场的有限元分析 摘要 鼠笼异步电动机具有结构简单、价格低廉、运行可靠、效率较高、维修方便等一系列的优点,在国民经济中得到广泛的应用。工业、农业、交通运输、国防工程以及日常生活中都大量使用鼠笼异步电动机。随着大功率电子技术的发展,异步电动机变频调速得到越来越广泛的应用,使得鼠笼异步电动机在一些高性能传动领域也得到使用。 鼠笼异步电动机可靠性高,但由于种种原因,其故障仍时有发生。由于电动机结构设计不合理,制造时存在缺陷,是造成故障的原因之一。对电机内部的电磁场进行正确的磁路分析,是电机设计不可或缺的步骤。利用有限元法对电机内部磁场进行数值分析,可以保证磁路分析的准确性。本文利用Ansys Maxwell软件,建立了鼠笼式异步电机的物理模型,并结合数学模型和边界条件,完成了对鼠笼式异步电动机的磁场仿真,得到了物理模型剖分图,磁力线和磁通分布图,为电机的进一步设计研究提供了依据。 关键词:Ansys Maxwell;鼠笼式异步电机;有限元分析

一、前言 当电机运行时,在它的内部空间,包括铜与铁所占的空间区域,存在着电磁场,这个电磁场是由定、转子电流所产生的。电机中电磁场在不同媒介中的分布、变化及与电流的交链情况,决定了电机的运行状态与性能。因此,研究电机中的电磁场对分析和设计电机具有重要的意义。 在对应用于交流传动的异步电机进行电磁场的分析计算时,传统的计算方法因建立在磁场简化和实验修正的经验参数的基础之上,其计算精度就往往不能满足要求。如果从电磁场的理论着手,研究场的分布,再根据课题的要求进行计算,就有可能得到满意的结果。电机电磁场的计算方法大致可以分为解析法、图解法、模拟法和数值计算法。数值解法是将所求电磁场的区域剖分成有限多的网格或单元,通过数学上的处理,建立以网格或单元上各节点的求解函数值为未知量的代数方程组。由于电子计算机的应用日益普遍,所以电机电磁场的数值解法得到了很大发展,它的适用范围超过了所有其它的解法,并能达到足够的精度。对于电机电磁场问题,常用的数值解法有差分法和有限元法两种。用有限元法时单元的剖分灵活性大,适用性强,解的精度高。因此我们采用有限元法对电机电磁场进行数值计算。 Maxwell2D 是一个功能强大、结果精确、易于使用的二维电磁场有限元分析软件。在这里,我们利用Ansys的Maxwell2D 有限元分析工具对一个三相四极电机进行有限元分析,构建鼠笼式异步电机电动机的物理模型,并结合电机的数学模型、边界条件进行磁场分析。

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电力设备低频电磁场仿真分析解决方案

ANSYS 电力设备低频电磁场仿真分析解决方案

目录 一、电力设备仿真分析(CAE)的必要性 (3) 二、ANSYS低频电磁场仿真分析论证 (3) 2.1 ANSYS Emag软件简介 (3) 2.2 ANSYS Emag在电力系统中的应用 (4) 2.2.1 电场分析 (4) 2.2.2 磁场分析 (5) 2.2.3 耦合场分析 (5) 2.3 ANSYS Emag应用案例 (6) 2.3.1 电场分析 (6) 2.3.1.1 电场分析应用案例——屏蔽电极电场结构优化设计 (6) 2.3.1.2 电场分析应用案例——电流互感器远场边界计算 (7) 2.3.2 磁场分析 (8) 2.3.2.1 磁场分析应用案例——空心电流互感器磁场分析 (8) 2.3.2.2 磁场分析应用案例——电流互感器输出特性计算 (9) 2.3.3 电磁场-热耦合分析 (10)

一、电力设备仿真分析(CAE)的必要性 随着超高压特高压电网的相继投运,电力系统的安全性以及电网的稳定性成为电网运行中关键因素之一。更高的电压等级、更严格的运行指标对大容量、高性能输配电设备提出了更高的要求。当前,计算机辅助设计(CAD)技术早已在电力设备制造中成熟运用,然而,对产品性能进行前期计算机仿真分析(CAE)技术还未能广泛应用。 随着电压等级以及性能要求的提高,样品试验的试验成本、试验耗时以及试验困难度(如大电流、高电压)等传统的产品性能验证方式都对设计成功率要求更高,传统的反复试验指导设计的方式已经不可行,因此,计算机辅助分析(CAE)的重要性达到了空前的高度,计算机硬件以及软件技术的飞速发展也使得CAE 成功应用于大规模工程问题成为现实。 电力设备的主要特性可分为电气、机械、温升以及化学等特性,这些特性相互作用,是一个集电、磁、结构、热、流体等于一体的综合的复杂的过程。ANSYS 公司开发提供的系列仿真分析软件包含电磁、结构、热以及流体的仿真分析模块,可以很好的应用于电力设备的各方面性能仿真分析;其优越的多物理场耦合功能能够分析电力设备的整体综合性能;其优化功能能够为电力设备小型化、性能优化提供最优方案。 二、ANSYS低频电磁场仿真分析论证 2.1 ANSYSEmag软件简介 ANSYS Emag是ANSYS产品家族中专用的低频电磁场仿真分析模块,秉承了ANSYS家族产品的整体优势,历经超过25年的开发与应用,成为ANSYS家族产品中不可或缺的一员。 ANSYS Emag提供了完备的低频电磁场分析功能,包括静态电场、静态磁场、直流传导场、低频电场(时谐和瞬态)、以及低频磁场(时谐和瞬态)分析功能,覆盖了几乎所有工程低频电磁问题的分析类型;ANSYS Emag提供的场路耦合功能能够方便直观的将电路模型与电磁场有限元模型直接相连,进行更精确、更系

电磁场仿真软件简介

电磁场仿真软件简介 随着电磁场和微波电路领域数值计算方法的发展,在最近几年出现了大量的电磁场和微波电路仿真软件。在这些软件中,多数软件都属于准3维或称为2.5维电磁仿真软件。例如,Agilent公司的ADS(Advanced Design System)、AWR公司的Microwave Office、Ansoft公司的Esemble、Serenade和CST公司的CST Design Studio等。目前,真正意义上的三维电磁场仿真软件只有Ansoft公司的HFSS、CST公司的Mafia、CST Microwave Studio、Zeland公司的Fidelity和IMST GmbH公司的EMPIRE。从理论上讲,这些软件都能仿真任意三维结构的电磁性能。其中,HFSS(HFSS是英文高频结构仿真器(High Frequency Structure Simulator)的缩写)是一种最早出现在商业市场的电磁场三维仿真软件。因此,这一软件在全世界有比较大的用户群体。由于HFSS进入中国市场较早,所以目前国内的电磁场仿真方面HFSS的使用者众多,特别是在各大通信技术研究单位、公司、高校非常普及。 德国CST公司的MicroWave Studio(微波工作室)是最近几年该公司在Mafia软件基础上推出的三维高频电磁场仿真软件。它吸收了Mafia软件计算速度快的优点,同时又对软件的人机界面和前、后处理做了根本性的改变。就目前发行的版本而言,CST 的MWS的前后处理界面及操作界面比HFSS好。Ansoft也意识到了自己的缺点,在刚刚推出的新版本HFSS(定名为Ansoft HFSS V9.0)中,人机界面及操作都得到了极大的改善。在这方面完全可以和CST媲美。在性能方面,两个软件各有所长。在速度和计算的精度方面CST和ANSOFT成绩相差不多。值得注意的是,MWS采用的理论基础是FIT(有限积分技术)。与FDTD(时域有限差分法)类似,它是直接从Maxwell 方程导出解。因此,MWS可以计算时域解。对于诸如滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而HFSS采用的理论基础是有限元方法(FEM),这是一种微分方程法,其解是频域的。所以,HFSS如果想获得频域的解,它必须通过频域转换到时域。由于,HFSS是用的是微分方法,所以它对复杂结构的计算具有一定的优势。 另外,在高频微波波段的电磁场仿真方面也应当提及另一个软件:ANSYS 。ANSYS是一个基于有限元法(FEM)的多功能软件。该软件可以计算工程力学、材料力学、热力学和电磁场等方面的问题。它也可以用于高频电磁场分析(应用例如:微波辐射和散射分析、电磁兼容、电磁场干扰仿真等)。其功能与HFSS和CST MWS类似。但由于该软件在建模和网格划分过程中需要对该软件的使用规则有详细的了解,因此,对一般的工程技术人员来讲使用该软件有一定困难。对于高频微波波段通信、天线、器件封装、电磁干扰及光电子设计中涉及的任意形状三维电磁场仿真方面不如HFSS更专业、更理想。实际上,ANSYS软件的优势并不在电磁场仿真方面,而是结构静力/动力分析、热分析以及流体动力学等。但是,就其电磁场部分而言,它也能对任意三维结构的电磁特性进行仿真。 虽然,Zeland公司的Fidelity和IMST GmbH公司的EMPIRE也可以仿真三维结构。

电磁场的Matlab仿真.

Matlab 与电磁场模拟 一单电荷的场分布: 单电荷的外部电位计算公式: q φ= 4πε0r 等位线就是连接距离电荷等距离的点,在图上表示就是一圈一圈的圆,而电力线就是由点向 外辐射的线。 MATLAB 程序: theta=[0:.01:2*pi]'; r=0:10; x=sin(theta*r; y=cos(theta*r; plot(x,y,'b' x=linspace(-5,5,100; for theta=[-pi/4 0 pi/4] y=x*tan(theta; hold on ; plot(x,y; end grid on 单电荷的等位线和电力线分布图: 二多个点电荷的电场情况: 模拟一对同号点电荷的静电场 设有两个同号点电荷, 其带电量分别为 +Q1和+Q2(Q1、Q2>0 距离为 2a 则两 电荷在点P(x, y处产生的电势为: 由电场强度可得E = -?U, 在xOy 平面上, 电场强度的公式为: 为了简单起见, 对电势U 做如下变换:

。 Matlab 程序: q=1; xm=2.5; ym=2; x=linspace(-xm,xm; y=linspace(-ym,ym; [X,Y]=meshgrid(x,y; R1=sqrt((X+1.^2+Y.^2; R2=sqrt((X-1.^2+Y.^2; U=1./R1+q./R2; u=1:0.5:4; figure contour(X,Y,U,u grid on legend(num2str(u' hold on

plot([-xm;xm],[0;0] plot([0;0],[-ym;ym] plot(-1,0,'o' , 'MarkerSize' ,12 plot(1,0,'o' , 'MarkerSize' ,12 [DX,DY] = gradient(U; quiver(X,Y,-DX,-DY; surf(X,Y,U; 同号电荷的静电场图像为: 50 40 30 20 10 0-2 2

电磁场及电磁波实验报告

电磁场与电磁波 实验报告 实验名称:有限差分法解电场边值问题 实验日期:2012年12月8日 姓名:赵文强 学号:100240333 XX工业大学(威海)

问题陈述 如下图无限长的矩形金属导体槽上有一盖板,盖板与金属槽绝缘,盖板电位为U0,金属槽接地,横截面如图所示,试计算此导体槽内的电位分布。 参数说明:a=b=10m, U=100v 实验要求 1)使用分离变量法求解解析解; 2)使用简单迭代发求解,设-10 =100.1,1 x y ε?=?= ,两种情况分别求解数值解; 3)使用超松弛迭代法求解,设-10 =100.1 x y ε?=?= ,确定?(松弛因子)。 求解过程 一、分离变量法求解 因为矩形导体槽在z方向为无限长,所以槽内电位函数满足直 角坐标系中的二维拉普拉斯方程。 22 22 (0,)0,(,)0(0) (,0)0,(,)(0) x y y a y y b x x b U x a ?? ?? ?? ?? += ?? ==≤≤ ==≤≤

根据边界条件可以确定解的形式: 1ππ(,)sin()sinh()n n n x n y x y A a a ?∞ ='=∑ 利用边界条件0(,)x b U ?=求解系数。 01 ππsin( )sinh()n n n x n b A U a a ∞ ='=∑ 01 πsin( )n n n x U f a ∞ ==∑ 0 0041,3,5,2πsin()d π 2,4,6,a n U n n x f U x n a a n ?=? ==??=? ? 011 πππsin()sinh()sin()n n n n n x n b n x A U f a a a ∞ ∞ =='==∑∑ 041,3,5,πsinh(π/) 'πsinh()02,4,6,n n U n f n n b a A n b n a ? =? ==??= ? 01,3,5, 4ππ(,)sin()sinh()πsinh(π/)n U n x n y x y n n b a a a ?∞ == ∑ 简单迭代法求解 二、 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上?的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式

浅谈电磁场屏蔽

浅谈电磁场屏蔽 【摘要】阐述了三种电磁场屏蔽的屏蔽原理,在屏蔽材料的选取、屏蔽效果、应用范围等方面对三者进行了比较。 【关键词】电磁场屏蔽;屏蔽原理;屏蔽材料;屏蔽效果 0引言 随着电子技术的发展,越来越多的电子电气设备进入人们的生活,电磁污染日益严重。另一方面,由于电子电气设备小型化的要求,极易受外界电磁干扰而使其产生误动作,从而带来严重后果。因此人们越来越重视电子产品的电磁兼容性(EMC),电磁场的屏蔽就是电磁兼容技术的主要措施之一。 根据条件的不同,电磁场的屏蔽一般可以分为三类:静电屏蔽、静磁屏蔽和高频电磁场的屏蔽。三种屏蔽的共同点是防止外界的电磁场进入到某个需要保护的区域中去。但是由于所要屏蔽的场的特性不同,因而对屏蔽材料的要求也就不一样。 1静电屏蔽 静电屏蔽的目的是防止外界的静电场进入到某个区域。实际上对于变化很慢的交流电而言,它周围的电场几乎和静电场一样,只是电荷的分布周期性地变化而已。因此防止低频交流电的电场,也可以归结为静电屏蔽一类。静电屏蔽对导体壳的厚度和电导率无特别要求,但对于低频交流电场,屏蔽壳要选电导率高一点的材料。 图1空腔导体屏蔽外电场 静电屏蔽分为外屏蔽和全屏蔽。空腔导体内无电荷,在外电场中处于静电平衡时,其内部的场强总等于零(图1),因此外电场不可能对其内部空间发生任何影响。若空腔导体内有带电体,在静电平衡时,它的内表面将产生等量异号的感应电荷,外表面会产生等量同号的感应电荷(图2),此时感应电荷的电场将对外界产生影响。这时空腔导体只能屏蔽外电场,却不能屏蔽内部带电体对外界的影响,所以叫外屏蔽。如果外壳接地,即使内部有带电体存在,内表面感应的电荷与带电体所带的电荷的代数和为零,而外表面产生的感应电荷通过接地线流入大地(图3)。此时外界无法影响壳内空间,内部带电体对外界的影响也随之消除,所以这种屏蔽叫做全屏蔽。 实际使用中一般均采用接地的屏蔽方法,且金属外壳不必严格完全封闭,用金属网罩代替金属壳体也可达到类似的静电屏蔽效果。例如高压电力设备安装接地金属网,电子仪器的整体及某些部分使用接地金属外壳等。 2静磁屏蔽 图4 静磁屏蔽的目的是屏蔽外界静磁场和低频电流的磁场,这时必须用磁性介质作外壳。如图4,用磁导率为的铁磁材料制成屏蔽壳,壳与空腔则可看作两个并联的磁阻。由于,空腔磁阻远大于屏蔽壳磁阻,所以外界的磁感线绝大部分穿过屏蔽壳而不进入空腔。要想获得更好的屏蔽效果,可使用较厚的屏蔽壳或采用多重屏蔽壳。因此效果良好的铁磁屏蔽壳一般都比较笨重。在重量和体积受到限制的情况下,常常采用磁导率高达数万的坡莫合金来做屏蔽壳,壳的各个部分要尽量结合紧密,使磁路畅通。磁屏蔽不同于电屏蔽,壳体是否接地不会影响屏蔽效果,但是要求金属材料磁导率要高。

北邮电磁场与电磁波实验报告

信息与通信工程学院 电磁场与电磁波实验报告 题目:校园信号场强特性的研究 姓名班级学号序号薛钦予2011210496 201121049621

一、实验目的 1.掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2.研究校园内各种不同环境下阴影衰落的分布规律; 3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5.研究建筑物穿透损耗与建筑材料的关系。 二、实验原理 1、电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。当电磁波传播遇到比波长大很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。 2、尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗表示为: ()[]()() =+(式1) 010log/0 PL d dB PL d n d d 即平均接收功率为: ()[][]()()()[]() =--=- Pr010log/0Pr010log/0 d dBm Pt dBm PL d n d d d dBm n d d (式2)其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,d0为近地参考距离,d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率10ndB /10 倍程的直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。

低频磁场的屏蔽解读

低频磁场的屏蔽 对于许多人而言,低频磁场干扰是一种最难对付的干扰,这种干扰是由直流电流或交流电流产生的。例如,由于炼钢的感应炉中有数万安培的电流,会在周围产生很强的磁场,这个强磁场会使控制系统中的磁敏感器件失灵,最常见的磁敏感设备是彩色CRT显示器。在磁场的作用下,显示器屏幕上的图象会发生抖动、图象颜色会失真,导致显示质量严重降低,甚至无法使用。低频磁场往往随距离的衰减很快,因此在很多场合,将磁敏感器件远离磁场源是一个减小磁场干扰的十分有效的措施。但当空间的限制而无法采取这个措施时,屏蔽是一个十分有效的措施。但要注意的是,低频磁场屏蔽与与射频屏蔽是完全不同的,射频屏蔽可以用铍铜复合材料、银、锡或铝等材料,但这些材料对磁场没有任何屏蔽作用。只有高导磁率的铁磁合金能屏蔽磁场。 1.基本原理 根据电磁屏蔽的基本原理,低频磁场由于其频率低,趋肤效应很小,吸收损耗很小,并且由于其波阻抗很低,反射损耗也很小,因此单纯靠吸收和反射很难获得需要的屏蔽效能。对这种低频磁场,要通过使用高导磁率材料提供磁旁路来实现屏蔽,如图1所示。由于屏蔽材料的导磁率很高,因此为磁场提供了一条磁阻很低的通路,因此空间的磁场会集中在屏蔽材料中,从而使敏感器件免受磁场干扰。 图1 高导磁率材料提供了磁旁路,起到屏蔽作用 从这个机理上看,显然屏蔽体分流的磁场分量越多,则屏蔽效能越高。根据这个原理,我们可以用电路的的计算方法来计算磁屏蔽效果。用两个并联的电阻

分别表示屏蔽材料的磁阻和空间的磁阻,用电路分析的方法来计算磁场的分流,由此可以计算屏蔽效果。 计算屏蔽效果 H i = H 0 Rs / ( Rs + R 0) 式中: H i = 屏蔽体内的磁场强度 H 0 = 屏蔽体外的磁场强度 Rs = 屏蔽体的磁阻 R 0 = 空气的磁阻 磁阻的计算公式 磁阻 = S / (μ A ) 式中: S = 磁路长度 μ = m 0 m r μ r = 屏蔽材料的相对磁导率 A = 磁通流过的面积 因此圆形管子的磁阻为 Rs = p b /( μ 0 μ r 2t L ) 为了简单,设截面为正方形, 管子内空气的磁阻为: 屏蔽效能为: R 0 = 2 b /( μ 0 2b L ) SE = H 0 / H i 对于高导磁率屏蔽材料,Rs < < R 0 ,因此,屏蔽效能为: SE = R 0 / Rs = 2 m r t / p b 从公式中可以看出,屏蔽材料的导磁率越高、越厚,则屏蔽效能越高。另外,b 越小,屏蔽效能越高,这意味着,屏蔽体距离所保护的空间越近,则效果越好。 2.基本概念 磁场强度 ( H ): 单位是奥斯特,与磁场源的强度和距离有关 磁通密度 ( B ): 单位是高斯,度量穿过每平方厘米的磁力线数量,与源的方向有关 磁导率 ( μ ): 表征材料为磁力线提供通路的能力, μ = B / H 饱和强度 : 在饱和强度下,材料不能再通过多余的磁力线 磁阻 ( R ): 表征材料对通过磁通的阻碍特性,定义为:R = L / μ A ,L 是磁通路径长度(cm ),A 截面面积(cm 2) 3.屏蔽材料

低频电磁波的屏蔽

低频电磁波的屏蔽一、前言 凡是有电源的地方、有用电设备的地方、几百米内有高压电线的地方、几十米内有地下电缆的地方,甚至只有金属管道和金属梁架的地方,都可能有高达数十以至数百毫高斯的低频电磁干扰。低频电磁干扰的强度变化常常无规律可循,短时间内就会有相当大的上下波动;低频电磁干扰的来源往往难以确定,这样就更增加了屏蔽设计的难度。 二、低频电磁屏蔽与其它屏蔽的差异比较 1、低频电磁场 根据电磁波传输的基本原理,在频率很低的时候良导体中的电磁波只存在于导体表面有“趋肤效应”(波从表面进入导电媒质越深,场的幅度就越小,能量就变得越小,这一效应就是趋肤效应)。 高频电路中,传导电流集中到导线表面附近的现象也有这样的问题又称“集肤效应”。交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。这种“趋肤效应”使导体的有效电阻增加。频率越高,趋肤效应越显著。当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。因此,在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。)、磁滞损耗(放在交变磁场中的铁磁体,因磁滞现象而产生一些功率损耗,从而使铁磁体发热,这种损耗叫磁滞损耗。铁磁材料在磁化过程中由磁滞现象引起的能量损耗。磁滞指铁磁材料的磁性状态变化时,磁化强度滞后于磁场强度,它的磁通密度B与磁场强度H之间呈现磁滞回线关系。经一次循环,每单位体积铁心中的磁滞损耗等于磁滞回线的面积。这部分能量转化为热能,使设备升温,效率降低,这在交流电机一类设备中是不希望的。软磁材料的磁滞回线狭窄,其磁滞损耗相对较小。硅钢片因此而广泛应用于电机、变压器、继电器等设备中。)以及反射损耗(反射损耗是指由于屏蔽的内部反射导致的能量损耗的数量,他随着波阻和屏蔽阻抗的比率而变化)都很小,低频电磁波的能量基本由磁场能量构成。所以这时我们所要屏蔽的应该是电磁波的磁场分量(电磁屏蔽的

电磁场与电磁波实验报告

实验一 静电场仿真 1.实验目的 建立静电场中电场及电位空间分布的直观概念。 2.实验仪器 计算机一台 3.基本原理 当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。 点电荷q 在无限大真空中产生的电场强度E 的数学表达式为 2 04q E r r πε= (r 是单位向量) (1-1) 真空中点电荷产生的电位为 04q r ?πε= (1-2) 其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为 122 101 4n i n i i i q E E E E r r πε==+++=∑ (i r 是单位向量) (1-3) 电位为 12101 4n i n i i q r ????πε==+++= ∑ (1-4) 本章模拟的就是基本的电位图形。 4.实验内容及步骤 (1) 点电荷静电场仿真 题目:真空中有一个点电荷-q ,求其电场分布图。

程序1: 负点电荷电场示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; E=(-q./m1).*r; surfc(x,y,E);

负点电荷电势示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; z=-q./m1 surfc(x,y,z); xlabel('x','fontsize',16) ylabel('y','fontsize',16) title('负点电荷电势示意图','fontsize',10)

浅谈电磁场的屏蔽及其应用

浅谈电磁场的屏蔽及其应用 屏蔽就是对感应源和受感器两者之间进行金属的隔离,以控制电场、磁场和电磁波由感应源对受感器的感应和辐射。具体地说,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。屏蔽按机理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽,本文主要就电磁屏蔽及其应用作一阐述。电磁场屏蔽是利用屏蔽体削弱电磁波在空间的传播,电磁场屏蔽的原理是,(1)当电磁波到达屏蔽体表面时,由于空气与金属的交界面上阻抗的不连续,对入射波产生的反射,由于交界面上的不连续;(2)未被表面反射掉而进入屏蔽体的能量,在体内向前传播的过程中,被屏蔽材料所衰减,也就是通过材料对电磁波的吸收而产生损耗;(3)在屏蔽体内尚未衰减掉的剩余能量,传到材料的另一表面时,遇到金属——空气阻抗不连续的交界面,又会形成再次反射,并重新返回屏蔽体内,进一步产生损耗,这种反射在两个金属的交界面之间可能进行多次,通过多次反射、吸收和衰减最终达到屏蔽的目的。 一.电磁场屏蔽的概念及其原理 电磁场的屏蔽即电磁屏蔽,它是利用屏蔽体阻止电磁场在空间的传播。当同时存在的交变电场和交变磁场频率提高时,电场和磁场辐射的能力就会增强,就会又辐射出同频率的电磁场。由于电场分量和磁场分量同时出现且相互垂直,所以对电磁场进行屏蔽效果的好坏关键就取决于对电场和磁场同时屏蔽效果的好坏。 金属板内的电磁波反射、吸收过程,并不是只进行一次就完结了。而是在金属板的两个界面之间往复多次直到消耗尽。在金属板足够厚的情况下,第二次传入右边空间的场强与第一次的传入的场强相比小的很多,可忽略不记。而第三次传入的右边空间的场强就更可忽略了。在工程设计中,要求板的厚度应足以对电磁场的衰减在10db以上。 电磁屏蔽的效果就是从其它的角度分析,也会得到同样的结果。如图所示,一块接地良好的金属板,在它左侧有干扰源存在并辐射电磁波,其电场分量为E0,磁场分量为H0;在它右侧有受感器。 当用此来屏蔽电场分量时,金属屏蔽板必须良好接地。如果金属板接地不良,干扰源对受感器电场的感应所引发的干扰就可大大地增强。接地越好干扰就越小。 当用此来对磁场分量进行屏蔽时,主要是靠在屏蔽板内的感生电流所产生的磁场与干扰磁场方向相反,而削弱了干扰磁场达到屏蔽结果的。由此可见金属屏蔽板的导电性能越好,金属板越厚,屏蔽效

2016年《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验

2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用MATLAB仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题

目录 一、电磁场仿真软件——Matlab的使用入门......... (4) 二、............................................................ 单电荷的场分布 1O 三、........................................................ 点电荷电场线的图像 12- 四、................................................................ 线电荷产生的电位............................................................. : ..... 14 - 五、....................................................................... 有限差分法处理电磁场问题17…

相关文档
最新文档