次函数与幂函数典型例题
幂函数题型及解析
幂函数题型及解析幂函数题型及解析1.(1)下列函数是幂函数的是________y=x 2,y=()x,y=4x 2,y=x 5+1,y=(x ﹣1)2,y=x ,y=a x(a >1)分析:由幂函数的定义直接进行判断知甩给的函数中是幂函数的是y=x 2和y=x .解:由幂函数的定义知,y=x 2,y=()x,y=4x 2,y=x 5+1,y=(x ﹣1)2,y=x ,y=a x(a >1),七个函数中是幂函数的是y=x 2和y=x ,(2)①y=x 2+1;②y=2x;③y=;④y=(x ﹣1)2;⑤y=x 5;⑥y=x x+1分析:根据幂函数的定义,对以下函数进行判断即可.解:根据幂函数y=x α,α∈R 的定义知,①y=x 2+1不是幂函数,②y=2x不是幂函数,③y==x ﹣2是幂函数,④y=(x ﹣1)2不是幂函数,⑤y=x 5是幂函数,⑥y=x x+1不是幂函数;综上是幂函数的为③⑤2.已知幂函数y=f (x )的图象过点(9,).(1)求f (x )的解析式;(2)求f (25)的值;(3)若f (a )=b (a ,b >0),则a 用b 可表示成什么?分析:(1)设出幂函数f (x )的解析式,根据图象过点(9,),求出函数解析式;(2)根据函数的解析式求出f (25)的值;(3)根据函数的解析式求出a 与b 的关系.解:(1)设幂函数f (x )=x t,∵图象过点(9,),∴;即32t =3﹣1,∴,∴;(2)∵f (x )=,∴f (25)=25-0.5===;(3)∵f (a )=a -0.5=b ,∴a -0.5=b ,∴a ﹣1=b 2,∴a=.3.比较下列各组中两个值的大小(1)1.5,1.7;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--;(4)()﹣0.24与41)65(-;(5)3.10.5,3.12.3;(6)()﹣1.5,()﹣1.8;(7)0.62,0.63;(8)()﹣0.3,()﹣0.24分析:由幂函数的单调性,有的需要结合指数函数的性质,逐个题目比较可得.解:(1)∵幂函数y=53x 在(0,+∞)单调递增,∴535.1<537.1;(2)∵幂函数y=x 1.5在(0,+∞)单调递增,∴0.71.5>0.61.5;(3))∵幂函数y=32-x在(﹣∞,0)单调递增,∴32)2.1(-->32)25.1(--;(4)∵0<<1,﹣0.24,∴()0.24<41)65(-;(5)3.10.5<3.12.3;(6)()﹣1.5>()﹣1.8;(7)0.62>0.63;(8)()﹣0.3<()﹣0.244.若函数y=(m 2+2m ﹣2)x m为幂函数且在第一象限为增函数,求m 的值②已知幂函数y=(m 2﹣m ﹣1)x m2﹣2m ﹣3,当x ∈(0,+∞)时为减函数,求幂函数分析:根据幂函数的性质,列出不等式组,求出m 的值即可解:①∵函数y=(m 2+2m ﹣2)x m 为幂函数且在第一象限为增函数,∴m 2+2m-2=1且m >0;解得m=1②解:∵幂函数y=(m 2﹣m ﹣1)x m2﹣2m ﹣3,∴m 2﹣m ﹣1=1,解得m=2,或m=﹣1;又x ∈(0,+∞)时y 为减函数,∴当m=2时,m 2-2m-3=﹣3,幂函数为y=x -3,满足题意;当m=-1时,m 2-2m-3=0,幂函数为y=x 0,不满足题意;综上幂函数y=x -35.幂函数y=(m 2﹣3m+3)x m是偶函数,求m 的值分析:根据幂函数的定义先求出m 的值,结合幂函数是偶函数进行判断即可.解:∵函数是幂函数,∴m 2﹣3m+3=1,即m 2﹣3m+2=0,则m=1或m=2,当m=1时,y=x 是奇函数,不满足条件.当m=2时,y=x 2是偶函数,满足条件,即m=2 6.求函数y=32-x的定义域和值域.分析:本题考察幂函数的概念及性质,把y=32-x 化为根式的形式,容易写出它的定义域和值域.解:∵函数y=32-x=,∴x ≠0,且y >0;∴函数y 的定义域是{x |x ≠0},值域是{y |y >0}7.求函数y=0.2﹣x2﹣3x+4的定义域、值域和单调区间.分析:根据二次函数以及指数函数的性质求出函数的单调性和值域即可.解:令f (x )=﹣x 2﹣3x +4=﹣(x 2+3x +)+=﹣+,∴f (x )在(﹣∞,﹣)递增,在(﹣,+∞)递减,∴函数y=0.2﹣x2﹣3x+4在(﹣∞,﹣)递减,在(﹣,+∞)递增,∴y min ==,∴函数y=0.2﹣x2﹣3x+4的定义域是R 、值域是[,+∞),在(﹣∞,﹣)递减,在(﹣,+∞)递增8.已知幂函数y=234m m x --(m ∈Z )的图象与y 轴有公共点,且其图象关于y 轴对称,求m 的值,并作出其图象分析:由题意得4-3m-m 2>0解得﹣4<m <1,又因为图象关于y 轴对称,所以4﹣3m ﹣m 2必须为偶数,故m=0,﹣1,﹣2,﹣3,即可画出图象.解:由题意得4﹣3m ﹣m 2>0,即有(m+4)(m ﹣1)<0,解得﹣4<m <1,又因为图象关于y 轴对称,所以4﹣3m ﹣m 2必须为偶数,所以m=0,﹣1,﹣2,﹣3,m=﹣3,y=x 4,m=﹣2,y=x 6,m=﹣1,y=x 6,m=0,y=x 4其图象如图:9.已知函数y=(n ∈Z )的图象与两坐标轴都无公共点,且其图象关于y 轴对称,求n 的值,并画出函数图象.分析:由题意可得,可得幂指数n 2﹣2n ﹣3为负数,且为偶数.由于当n=1时,幂指数n 2﹣2n ﹣3=﹣4,满足条件,可得函数的解析式,从而得到函数的图象.解:已知函数y=(n ∈Z )的图象与两坐标轴都无公共点,且其图象关于y 轴对称,可得幂指数n 2﹣2n ﹣3为非正数,且为偶数.由于当n=1时,幂指数n 2﹣2n ﹣3=﹣4,满足条件,当n=3时,n 2﹣2n ﹣3=0,满足条件故函数为y=x ﹣4,或y=x 0,它的图象如图所示:10.已知幂函数y=x m ﹣2(m ∈N )的图象与x ,y 轴都无交点,且关于y 轴对称,求m 的值,并画出它的图象.分析:由题意利用幂函数的性质可得m∈N,m﹣2≤0,且m﹣2为偶数,由此求得m的值.解:∵幂函数y=x m﹣2(m∈N)的图象与x,y轴都无交点,且关于y轴对称,∴①m﹣2<0,m﹣2为偶数,故m=0,即幂函数y=x ﹣2,它的图象如右图所示.或②m﹣2=0,m=2,此时y=x0,(x≠0),它的图象如图所示11.已知幂函数的图象与x轴,y轴没有交点,且关于y轴对称,求m的值分析:由幂函数的概念与该函数为偶函数的性质可知,m2﹣2m ﹣3≤0且m2﹣2m﹣3为偶数,从而可得答案.解:∵幂函数y=(m∈Z)的图象与x轴,y轴没有交点,且关于y轴对称,∴m2﹣2m﹣3≤0且m2﹣2m﹣3为偶数(m∈Z),由m2﹣2m﹣3≤0得:﹣1≤m≤3,又m∈Z,∴m=﹣1,0,1,2,3.当m=﹣1时,m2﹣2m﹣3=1+2﹣3=0,为偶数,符合题意;当m=0时,m2﹣2m﹣3=﹣3,为奇数,不符合题意;当m=1时,m2﹣2m﹣3=1﹣2﹣3=﹣4,为偶数,符合题意;当m=2时,m2﹣2m﹣3=4﹣4﹣3=﹣3,为奇数,不符合题意;当m=3时,m2﹣2m﹣3=9﹣6﹣3=0,为偶数,符合题意.综上所述,m=﹣1,1,312. 已知幂函数y=x m2﹣2m﹣3(m∈Z)的图象与x、y轴都无公共交点,且图象关于原点中心对称,求m的值,并且画出它的图象.分析:由题意知,m2﹣2m﹣3<0,且m2﹣2m﹣3为奇数,解此不等式组可得m的值.解:幂函数y=x m2﹣2m﹣3(m∈Z)的图象与x、y轴都无公共交点,且图象关于原点中心对称,∴m2﹣2m﹣3<0,且m2﹣2m ﹣3为奇数,即﹣1<m<3 且m2﹣2m﹣3 为奇数,∴m=0或2,∴y=x﹣3,其图象为:13.若实数m满足不等式0.642m+3<1.253m,求实数m的取值范围分析:不等式0.642m+3<1.253m,即为()﹣(4m+6)<()3m,再由y=()x在R上递增,得到﹣(4m+6)<3m,解出即可.解:不等式0.642m+3<1.253m,即为0.82(2m+3)<()3m,即有()﹣(4m+6)<()3m,由于y=()x在R上递增,则﹣(4m+6)<3m,解得,m>﹣,故实数m的取值范围是(﹣,+∞)14.已知幂函数.(1)试求该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点,求m的值并求满足条件f(2﹣a)>f(a﹣1)的实数a的取值范围.分析:(1)将指数因式分解,据指数的形式得到定义域,利用幂函数的性质知单调性(2)将点的坐标代入列出方程解得m,利用函数的单调性去掉法则f,列出不等式解得,注意定义域.解:(1)∵m2+m=m(m+1),m∈N*∴m2+m为偶数,∴x≥0,所以函数定义域为[0,+∞)由幂函数的性质知:其函数在定义域内单调递增.(2)依题意得:,∴,∴m=1(m∈N*)由已知得:,∴,故a的取值范围为:。
幂函数基础知识及例题
幂函数基础知识及例题例1.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为______________ 例2.比较下列各组数的大小:(1)3-52和 3.1-52; (2)-8-78和-(19)78;(3)(-23)-23和(-π6)-23;(4)4.125,3.8-23和(-1.9)-35.例3已知幂函数f (x )=(t3-t +1)x 12(1-4t -t2)是偶函数,且在(0,+∞)上为增函数,求函数解析式. 例4已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.幂函数练习题1. 用“<”或”>”连结下列各式:0.60.32 0.50.32 0.50.34, 0.40.8- 0.40.6-,32(2)a + 32a ; 223(5)a -+ 235-;0.50.4 0.40.5, (23)12________(34)12,(-23)-1________(-35)-1, (-2.1)37________(-2.2)-37.2.比较下列各组数的大小:(1)1.531,1.731,1; (2)(-2)32-,(-107)32,1.134-;(3)3.832-,3.952,(-1.8)53; (4)31.4,51.5.3355(5)1.5 1.6与 1.3 1.3(6)0.60.7与 2233(7)3.5 5.3--与 0.30.3(8)0.18.15--与03.若3131)23()2(---<+a a ,求a 的取值范围。
4.幂函数y =x -1及直线y =x ,y =1,x =1将平面直角坐标系的第一象限分成八个部分:①、②、③、④、⑤、⑥、⑦、⑧(如图所示),那么幂函数y =x 12的图象经过的部分编号是___________.5.(1)函数1322(1)(4)y x x --=-+-的定义域是(2) 函数y =(x 2-2x )21-的定义域是6.(1)如果幂函数()f x x α=的图象经过点2(2,)2,则(4)f 的值等于(2) 幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .7.(1)函数y =52x 的单调递减区间为 (2)幂函数的图象过点(2,14), 则它的单调递增区间是 .(3)函数y =34x -在区间上 是减函数.8.(1)若幂函数ay x =的图象在0<x<1时位于直线y=x 的下方,则实数a 的取值范围是 (2)设x ∈(0, 1),幂函数y =a x 的图象在y =x 的上方,则a 的取值范围是 . (3)已知3532x x >,x 的取值范围为9.(1)942--=a a xy 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .(2)函数y =221m mx--在第二象限内单调递增,则m 的最大负整数是_______ _.10.若幂函数()f x 与函数g(x)的图像关于直线y=x 对称,且函数g(x)的图象经过3(33,)3,则()f x 的表达式为 11. 函数2()3x f x x +=+的对称中心是 ,在区间 是 函数(填“增、减”) 12若函数f (x )=(m 2-m -1)x -m +1是幂函数,且在x ∈(0,+∞)上是减函数,求实数m 的取值范围.13.幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.14.一个幂函数y =f (x )的图象过点(3, 427),另一个幂函数y =g (x )的图象过点(-8, -2), (1)求这两个幂函数的解析式; (2)判断这两个函数的奇偶性; (3)作出这两个函数的图象,观察得f (x )< g (x )的解集.15.已知函数y =42215x x --.(1)求函数的定义域、值域; (2)判断函数的奇偶性; (3)求函数的单调区间.。
幂函数经典例题(答案)
幂函数经典例题(答案)A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R.错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3. 点评 幂函数y =x α (α∈R),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎪⎨⎪⎧m =-3n =32, 所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z)的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3,当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意.当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝ ⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x-12,∴f (8)=8-12=24. 8.下列函数中,值域为[0,+∞)的函数是( ) A .y =2x B .y =x 2 C .y =x -2 D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________. 答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α (α∈R)的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x(x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则 ⎩⎨⎧ m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则 ⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。
高一幂函数的试题及答案
高一幂函数的试题及答案一、选择题1. 下列哪个函数是幂函数?- A. \( y = x^2 + 1 \)- B. \( y = \sqrt{x} \)- C. D. \( y = \frac{1}{x} \)2. 幂函数 \( y = x^3 \) 的图像通过哪个点?- A. (0, 1)- B. (1, 1)- C. (-1, 1)- D. (0, 0)3. 如果幂函数 \( y = x^n \) 的图像关于y轴对称,那么 \( n \) 的值是多少?- A. 1- B. 2- C. -1- D. 任意实数二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个_________。
5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而_________。
三、解答题6. 已知幂函数 \( y = x^n \) 通过点 (3, 27),请确定 \( n \) 的值。
7. 讨论幂函数 \( y = x^n \) 图像的变化趋势,并说明 \( n \) 的不同取值对图像的影响。
四、计算题8. 计算幂函数 \( y = x^{-2} \) 在 \( x = 2 \) 处的导数。
9. 假设幂函数 \( y = x^n \) 的图像经过点 (2, 8),求 \( n \)的值,并描述其图像的特点。
答案一、选择题1. 正确答案:B. \( y = \sqrt{x} \)(因为 \( \sqrt{x} = x^{1/2} \))2. 正确答案:C. (-1, 1)3. 正确答案:B. 2二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个抛物线。
5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而增加。
三、解答题6. 由于 \( y = x^n \) 通过点 (3, 27),我们有 \( 27 = 3^n \)。
幂函数的练习题
幂函数的练习题幂函数的练习题幂函数是数学中一种常见的函数形式,它的表达式为y = ax^n,其中a是常数,n是指数。
在解决实际问题或数学题目时,我们经常会遇到幂函数的练习题。
本文将通过一些例题来帮助读者更好地理解和应用幂函数。
例题一:已知y = 2x^3,求当x = 4时,y的值。
解析:将x = 4代入幂函数的表达式中,得到y = 2(4^3) = 2(64) = 128。
因此,当x = 4时,y的值为128。
例题二:已知y = 5x^2,求当y = 45时,x的值。
解析:将y = 45代入幂函数的表达式中,得到45 = 5(x^2)。
将方程两边除以5,得到9 = x^2。
开平方根,得到x = ±3。
因此,当y = 45时,x的值为±3。
例题三:已知y = 2^x,求当x = 0时,y的值。
解析:将x = 0代入幂函数的表达式中,得到y = 2^0 = 1。
因此,当x = 0时,y的值为1。
例题四:已知y = 3^x,求当y = 81时,x的值。
解析:将y = 81代入幂函数的表达式中,得到81 = 3^x。
将等式两边取对数,得到log3(81) = x。
由于3的多少次幂等于81,可以得到x = 4。
因此,当y =81时,x的值为4。
通过以上例题,我们可以看到幂函数在解决实际问题中的应用。
幂函数的指数决定了函数的增长速度,当指数为正数时,函数呈现递增趋势,当指数为负数时,函数呈现递减趋势。
幂函数也可以用来描述物理现象中的指数增长或衰减。
除了以上的例题,我们还可以通过一些练习题来进一步巩固对幂函数的理解。
练习题一:已知y = 4x^2,求当x = -2时,y的值。
练习题二:已知y = 2^x,求当y = 16时,x的值。
练习题三:已知y = 3^x,求当x = -1时,y的值。
练习题四:已知y = 5^x,求当y = 625时,x的值。
通过解答这些练习题,读者可以进一步熟悉幂函数的性质和运算规律。
二次函数与幂函数(试题部分)
一元二次方程根的分布
3.已知一元二次方程 x2+mx+3=0(m∈Z)有两个实数根 x1,x2,且 0<x1<2<x2<4,则 m 的值为(
A.-4
B.-5
答案
C.-6
D.-7
A
4.方程 x2+ax-2=0 在区间[1,5]上有解,则实数 a 的取值范围为(
A.(C.[-
23
5
23
5
答案
, + ∞)
答案
D.点(2,8)在曲线 y=f(x)上
A
2.(2013 重庆,3,5 分)√(3-)( + 6)(-6≤a≤3)的最大值为(
A.9
答案
B.
9
2
C.3
D.
)
3√2
2
B
3 4 5
3.(2014 辽宁,16,5 分)对于 c>0,当非零实数 a,b 满足 4a2-2ab+4b2-c=0 且使|2a+b|最大时, - + 的最小值为
由|a|+|b|={
得|a|+|b|≤3.
|-|, < 0,
当 a=2,b=-1 时,|a|+|b|=3, |f(x)|=|x2+2x-1|,此时易知|f(x)|在[-1,1]上的最大值为 2,即 M(2,-1)=2.
所以|a|+|b|的最大值为 3.
考点二
幂函数
5.(2014 浙江,7,5 分)在同一直角坐标系中,函数 f(x)=xa(x>0),g(x)=logax 的图象可能是(
)
D.[2,4]
D
1
5.(2020 届广东揭阳三中第一次月考,7)如图的曲线是幂函数 y=xn 在第一象限内的图象.已知 n 分别取±2,± 四个值,与
幂函数知识归纳及习题(含答案)
自主梳理1.幂函数的概念形如________的函数叫做幂函数,其中____是自变量,____是常数. 2.幂函数的性质(1)五种常见幂函数的性质,列表如下: 定义域 值域 奇偶性 单调性 过定点y =x R R 奇 Z (1,1)y =x 2 R [0,+∞)偶 [0,+∞)Z (-∞,0][y =x 3R R 奇 ZY =x 12[0,+∞) [0,+∞) 非奇 非偶 [0,+∞)Z Y =x -1(-∞,0) ∪(0,+∞)(-∞,0) ∪(0,+∞)奇(-∞,0)[(0,+∞)[(2)所有幂函数在________上都有定义,并且图象都过点(1,1),且在第____象限无图象. (3)α>0时,幂函数的图象通过点____________,并且在区间(0,+∞)上是________,α<0时,幂函数在(0,+∞)上是减函数,图象______原点.1.已知幂函数y =f (x )的图像经过点⎝⎛⎭⎫4,12,则f (2)=( ) A.14 B .4C.22D. 2 2.下列函数中,其定义域与值域不同的函数是( ) A .y =x 12B .y =x -1 C .y =x 13D .y =x 23.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b )4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)5.(2013·蚌埠二中调研)设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)=( )A .-b2aB .-baC .c D.4ac -b 24a6.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值( ) A .正数 B .负数 C .非负数D .与m 有关 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图像关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图像都是抛物线型. 其中正确的有________.8.(2012·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.9.(2012·无锡联考)设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________.10.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数.且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.11.已知二次函数f(x)的图像过点A(-1,0)、B(3,0)、C(1,-8).(1)求f(x)的解析式;(2)求f(x)在x∈[0,3]上的最值;(3)求不等式f(x)≥0的解集.12.设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图像是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.(1)求函数f(x)在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f(x)的草图;(3)写出函数f (x )的值域.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12 C.34D .12.(2013·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.3.(2012·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.答 案 课时跟踪检测(九)A 级1.选C 设f (x )=x α,因为图像过点⎝⎛⎭⎫4,12,代入解析式得:α=-12, ∴f (2)=2-12=22.2.选D 对A ,定义域、值域均为[0,+∞);对B ,定义域、值域均为(-∞,0)∪(0,+∞);对C ,定义域值域均为R ;对D ,定义域为R ,值域为[0,+∞).3.选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a . 4.选D 由已知可得二次函数图像关于直线x =1对称,又f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.选C 由题意得:a ≠0,x 1+x 22=-b 2a ,x 1+x 2=-b a .得f (x 1+x 2)=f ⎝⎛⎭⎫-b a =a ·b 2a 2-b 2a +c =c .6.选B 法一:∵f (x )=x 2-x +a 的对称轴为x =12,而-m ,m +1关于12对称,∴f (m +1)=f (-m )<0.法二:∵f (-m )<0,∴m 2+m +a <0,∴f (m +1)=(m +1)2-(m +1)+a =m 2+m +a <0. 7.①②⑤⑥8.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.解析:若m =0,显然-1<0恒成立, 若m ≠0,则⎩⎨⎧m <0,Δ<0.∴-4<m <0.故所求范围为:-4<m≤0.答案:(-4,0]10.解:∵f(x)在(0,+∞)上是增函数,∴-12+p+32>0,2p即p2-2p-3<0.∴-1<p<3.又∵f(x)是偶函数且p∈Z,∴p=1,故f(x)=x2.11.解:(1)由题意可设f(x)=a(x+1)(x-3),将C(1,-8)代入得-8=a(1+1)(1-3),得a=2.即f(x)=2(x+1)(x-3)=2x2-4x-6.(2)f(x)=2(x-1)2-8,当x∈[0,3]时,由二次函数图像知,f(x)min=f(1)=-8,f(x)max=f(3)=0.(3)f(x)≥0的解集为{x|x≤-1,或x≥3}.12.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图像如图,(3)由图像可知,函数f (x )的值域为(-∞,4].B 级1.选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像如图所示,结合图像可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像有两个交点.答案:⎝⎛⎦⎤-94,-2 3.解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.。
幂函数经典例题(答案解析)
幂函数的概念例1、下列结论中,正确的是( )A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,12时,幂函数y=xα是增函数D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数.答案 C例2、已知幂函数f(x)=(t3-t+1)x 15(7+3t-2t2) (t∈Z)是偶函数且在(0,+∞)上为增函数,求实数t的值.分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设pq(|p|、|q|互质),当q为偶数时,p必为奇数,y=x pq是非奇非偶函数;当q是奇数时,y=x pq的奇偶性与p的值相对应.解∵f(x)是幂函数,∴t3-t+1=1,∴t=-1,1或0.当t=0时,f(x)=x75是奇函数;当t=-1时,f(x)=x25是偶函数;当t=1时,f(x)=x85是偶函数,且25和85都大于0,在(0,+∞)上为增函数.故t=1且f(x)=x85或t=-1且f(x)=x25.点评如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t∈Z给予足够的重视.例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R .错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3.点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎨⎧m =-3n =32,所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23;(2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3, 当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意. 当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A 4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B 5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x -12,∴f (8)=8-12=24.8.下列函数中,值域为[0,+∞)的函数是( )A .y =2xB .y =x 2C .y =x -2D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________.答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α(α∈R )的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x (x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则⎩⎨⎧m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。
幂函数练习题及答案解析
幂函数练习题及答案解析1.下列幂函数中为偶函数的是 y = x^2.解析:定义域为实数集,f(-x) = (-x)^2 = x^2,因此是偶函数。
2.若 a < 1,则 5a < 0.5a < 5-a。
解析:因为 a < 1,所以 y = x 是单调递减函数且 0.5 < 5 < 5-a,因此 5a < 0.5a < 5-a。
3.α 可能的取值为 1 和 3,使得函数y = x^α 的定义域为实数集且为奇函数。
解析:只有函数 y = x 和 y = x^3 的定义域是实数集且为奇函数,因此α 可能的取值为 1 和 3.4.当 n = -1 或 n = 2 时,满足 (-2)^n。
(-3)^n。
解析:因为 (-2)^n。
0 且 (-3)^n < 0,所以 y = x^n 在 (-∞。
+∞) 上为减函数。
因此 n = -1 或 n = 2.1.函数 y = (x+4)^2 的递减区间是 (-∞。
-4)。
解析:函数的开口向上,关于 x = -4 对称,因此在 (-∞。
-4) 上递减。
2.幂函数的图像过点(2.4),则其单调递增区间是(-∞。
0)。
解析:因为 y = x^2 的图像是开口向上的抛物线,过点(2.4),因此其单调递增区间为 (-∞。
0)。
3.正确的说法有 2 个。
解析:①错误;②中 y = x^-1 的图像不过点 (1.1);③正确;④正确,因此有 2 个正确的说法。
4.使f(x) = x^α 为奇函数且在(0.+∞) 上单调递减的α 的值的个数是 1.解析:因为f(x) = x^α 为奇函数,所以α 为奇数,因此α可能的取值为 -3.-1.1.3.因为在(0.+∞) 上单调递减,所以只有α = -1 满足条件。
因此个数为 1.1.α=-1,1,3.由于f(x)在(,+∞)上为减函数,所以α=-1.2.使(3-2x-x^2)/4有意义的x的取值范围是(-3<x<1)。
幂函数的典型例题
经典例题透析类型一、求函数解析式例1.已知幂函数2223(1)m m y m m x --=--,当(0)x ∈+,∞时为减函数,则幂函数y =__________.解析:由于2223(1)mm y m m x --=--为幂函数,所以211m m --=,解得2m =,或1m =-.当2m =时,2233m m --=-,3y x -=在(0)+,∞上为减函数;当1m =-时,2230m m --=,01(0)y x x ==≠在(0)+,∞上为常数函数,不合题意,舍去.故所求幂函数为3y x -=.总结升华:求幂函数的解析式,一般用待定系数法,弄明白幂函数的定义是关键. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)433.14-与43π-; (2)35(2)-与35(3)-.解:(1)由于幂函数43y x -=(x>0)单调递减且3.14π<,∴44333.14π-->.(2)由于35y x -=这个幂函数是奇函数. ∴f(-x)=-f(x)因此,3355(2)2)--=-,3355(3)3)--=-,而35y x-=(x>0)23<,∴ 333355552)3)2)3)---->⇒-<-.即3355(2)(3)---<. 总结升华:(1)各题中的两个数都是“同指数”的幂,因此可看作是同一个幂函数的两个不同的函数值,从而可根据幂函数的单调性做出判断.(2)题(2)中,我们是利用幂函数的奇偶性,先把底数化为正数的幂解决的问题.当然,若直接利用x<0上幂函数的单调性解决问题也是可以的.举一反三【变式一】比较0.50.8,0.50.9,0.50.9-的大小.思路点拨:先利用幂函数0.5y x =的增减性比较0.50.8与0.50.9的大小,再根据幂函数的图象比较0.50.9与0.50.9-的大小.解:0.5y x =在(0)+,∞上单调递增,且0.80.9<,0.50.50.80.9∴<.作出函数0.5y x =与0.5y x-=在第一象限内的图象,易知0.50.50.90.9-<.故0.50.50.50.80.90.9-<<.例 3.已知幂函数1ny x =, 2ny x =, 3ny x =, 4ny x =在第一象限内的图象分别是C 1,C 2,C 3,C 4,(如图),则n 1,n 2,n 3,n 4,0,1的大小关系?解:应为n 1<n 2<0<n 3<1<n 4. 总结升华:对于幂函数()y x R αα=∈的图象,其函数性质的正确把握主要来源于对图象的正确处理,而幂函数的图象,最重要的是搞清第一象限的图象类型及分布;反过来,也能通过第一象限的图象判断指数的取值范围.举一反三【变式一】(2011 陕西文4) 函数13y x =的图像是( )思路点拨:已知函数解析式和图像,可以用取点验证的方法判断. 解:取11,88x =-,则11,22y =-,选项B ,D 符合;取1x =,则1y =,选项B 符合题意. 类型三、求参数的范围 例4.已知幂函数2()m y x m -=∈N 的图象与x y ,轴都无交点,且关于y 轴对称,求m 的值,并画出它的图象.解:图象与x y ,轴都无交点, 2m ∴-≤0,即2m ≤.又m ∈N ,012m ∴=,,.幂函数图象关于y 轴对称,0m ∴=,或2m =.当0m =时,函数为2y x -=,图象如图1;当2m =时,函数为01(0)y x x ==≠,图象如图2.举一反三【变式一】若()()22132a a --+>-,求实数a 的取值范围.解法1:∵()()22132a a --+>-, 考察2y x -=的图象,得以下四种可能情况:(1)⎪⎩⎪⎨⎧+>->+>-12301023a a a a (2)⎪⎩⎪⎨⎧+<-<+<-12301023a a a a (3)⎪⎩⎪⎨⎧+->-<+>-)1(2301023a a a a (4)⎪⎩⎪⎨⎧+>-->+<-1)23(01023a a a a分别解得:(1)213a -<<. (2)无解. (3)1a <-. (4)4a >.∴a 的取值范围是()()21143⎛⎫-∞--+∞ ⎪⎝⎭,,,. 解法2:画出2y x -=的图象,认真观察图象,可得:越接近y 轴,y 值越大,即|x|越小,y 值越大,∴要使()()22132a a --+>-, 即10320|1||32|a a a a +≠⎧⎪-≠⎨⎪+<-⎩, 解得:()()21143⎛⎫-∞--+∞ ⎪⎝⎭,,,. 总结升华:以上两种方法都是运用函数的单调性,但显然第二种方法更好.而这种方法的应用,必须对图象的特征有深刻的认识.可见,能很好地运用数形结合是解决函数问题的重要途径.【变式二】当m 为何值时,幂函数y=(m 2-5m+6)322--m mx 的图象同时通过点(0,0)和(1,1).解:∵y=(m 2-5m+6)322--m mx 是幂函数.∴m 2-5m+6=1.得:m=255±, 又∵函数图象过(0,0)和(1,1)点,∴m 2-2m-3>0,得m>3或m<-1, ∴ m=255-(舍去) 即:m=255+. 类型四、讨论函数性质 例5.求函数y=3221)3()2(x x -+的定义域.解:原函数可化为 y=32)3(2x x -+ ⎩⎨⎧≠-≥+0302x x ∴x ∈[-2,3)∪(3,+∞). 总结升华:正确判断函数的定义域是完成函数的图象,讨论函数的性质的前提,必须加以重视. 例6.讨论函数324(23)y x x -=--的单调性.解:324(23)y x x -=--可看作是由34y u-=与u=x 2-2x-3复合而成,∵34y u -=中,u ∈(0,+∞).∴ x 2-2x-3>0, 得到x>3或x<-1.当x>3时,∵u=(x-1)2-4, ∴随着x 的增大u 增大, 又∵34y u-=在定义域内为减函数,∴y 随着u 的增大而减小,即()3x ∈+∞,时,324(23)y x x -=--是减函数,而()1x ∈-∞-,时,原函数为增函数.总结升华:1.复合函数的讨论一定要理清x ,u ,y 三个变量的关系.2.对于这样的幂函数与二次函数的复合,要先考虑幂函数的定义域对自变量x 的限制.举一反三【变式一】讨论函数211()()m m f x x m *++=∈N 的定义域、奇偶性和单调性.解:(1)2(1)()m m m m m *+=+∈N 是正偶数,21m m ∴++是正奇数. ∴函数()f x 的定义域为R .(2)21m m ++是正奇数,221111()()()m m m m f x x xf x ++++∴-=-=-=-,且定义域关于原点对称.()f x ∴是R 上的奇函数.(3)2101m m >++,且21m m ++是正奇数, ∴函数()f x 在()-+,∞∞上单调递增.。
高一数学幂函数习题及答案
高一数学幂函数习题及答案高一数学幂函数习题及答案在高一数学课程中,幂函数是一个非常重要的概念。
幂函数是指形如f(x) =ax^b的函数,其中a和b是常数,x是自变量。
在本文中,我们将探讨一些关于幂函数的习题,并提供相应的答案。
1. 习题一:已知函数f(x) = 2x^3,求f(2)的值。
解答:将x替换为2,得到f(2) = 2(2)^3 = 2(8) = 16。
因此,f(2)的值为16。
2. 习题二:已知函数g(x) = 4x^2,求g(0)的值。
解答:将x替换为0,得到g(0) = 4(0)^2 = 4(0) = 0。
因此,g(0)的值为0。
3. 习题三:已知函数h(x) = 5x^-2,求h(1)的值。
解答:将x替换为1,得到h(1) = 5(1)^-2 = 5(1/1^2) = 5(1/1) = 5。
因此,h(1)的值为5。
4. 习题四:已知函数k(x) = x^4 + 2x^3 - 3x^2 + x - 1,求k(-1)的值。
解答:将x替换为-1,得到k(-1) = (-1)^4 + 2(-1)^3 - 3(-1)^2 + (-1) - 1 = 1 - 2 - 3 - 1 - 1 = -5。
因此,k(-1)的值为-5。
5. 习题五:已知函数m(x) = (1/2)x^2 - 3x + 2,求m(3)的值。
解答:将x替换为3,得到m(3) = (1/2)(3)^2 - 3(3) + 2 = (1/2)(9) - 9 + 2 = 4.5 - 9 + 2 = -2.5。
因此,m(3)的值为-2.5。
通过以上习题,我们可以看到幂函数的计算方法。
对于给定的函数,我们只需将自变量替换为相应的值,然后按照幂函数的定义进行计算即可。
在实际应用中,幂函数常常用于描述各种变化规律,如物体的增长、衰减等。
除了计算习题,我们还可以通过绘制幂函数的图像来更好地理解其特点。
下面是几个常见的幂函数图像:1. 当b>0时,函数f(x) = ax^b的图像呈现出从左下方向右上方递增的趋势。
幂函数的典型例题
∴a
的取值范围是
,,,
1U
1
2 3
U
4
.
解法 2:画出 y x2 的图象,认真观察图象,可得:越接近 y 轴,y 值越大,即
小,y 值越大,
a 1 0
∴ 要使 a 1 2 3 2a2 ,
即 3 2a 0
,
解得:
总以结上升两华种:方法都是运用函数的单调性,但显然第| a二种1方||法3 更 2好a.|而这种方法的应
f (x) 是 R 上的奇函数.
(3)Q
1
0 ,且 m2 m 1 是正奇数,
m2 m 1
函数 f (x) 在 (∞,∞ ) 上单调递增.
3
4
5
,
2
又∵函数图象过(0,0)和(1,1)点,∴m2-2m-3>0,得 m>3 或 m<-1,
|x|越
,,,
1
U
用, 要途
2
5 5
5 5
∴ m=
(舍去) 即:m=
.
2
2
类型四、讨论函数性质
1
(x 2) 2
例 5.求函数 y=
的定义域.
2
(3 x) 3
x2
解:原函数可化为 y=
3 (3 x)2
x 3
2 x
0 0
∴x
[-2,3)∪(3,+∞).
总结升华:正确判断函数的定义域是完成函数的图象,讨论函数的性质的前提,必须加以重视.
例
6.讨论函数
y
(x2
2x
3)
幂函数经典例的题目(答案)
幂函数的概念例1、如下结论中,正确的答案是( ) A.幂函数的图象都通过点(0,0),(1,1)B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,12时,幂函数y=xα是增函数D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,应当选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,应当选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数.答案 C例2、幂函数f(x)=(t3-t+1)x 15(7+3t-2t2) (t∈Z)是偶函数且在(0,+∞)上为增函数,某某数t的值.分析关于幂函数y=xα (α∈R,α≠0)的奇偶性问题,设pq(|p|、|q|互质),当q为偶数时,p必为奇数,y=x pq是非奇非偶函数;当q是奇数时,y=x pq的奇偶性与p的值相对应.解∵f(x)是幂函数,∴t3-t+1=1,∴t=-1,1或0.当t=0时,f(x)=x75是奇函数;当t=-1时,f(x)=x25是偶函数;当t=1时,f(x)=x85是偶函数,且25和85都大于0,在(0,+∞)上为增函数.故t=1且f(x)=x85或t=-1且f(x)=x25.点评如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t∈Z给予足够的重视.例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,如此( )A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,如此“点低指数大〞.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、x 2>x 13,求x 的取值X 围.错解 由于x 2≥0,x 13∈R ,如此由x 2>x 13,可得x ∈R .错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况如下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答此题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3.点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎨⎧m =-3n =32,所以m =-3,n =32.例6、比拟如下各组中两个数的大小: 〔1〕535.1,537.1;〔3〕32)2.1(--,32)25.1(--.解析:〔1〕考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1, 〔2〕考查幂函数y =23x .〔3〕先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比拟幂形式的两个数的大小,一般的思路是: 〔1〕假如能化为同指数,如此用幂函数的单调性; 〔2〕假如能化为同底数,如此用指数函数的单调性;〔3〕假如既不能化为同指数,也不能化为同底数,如此需寻找一个恰当的数作为桥梁来比拟大小.例7、比拟如下各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比拟大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比拟,这种方法叫“搭桥〞法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,如此⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比拟大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥〞法进展分组,常数0和1是常用的参数.变式 比拟如下各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23;25,(-1.9)35与3.8-23. 解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的X 围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3, 当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意. 当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.如下命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的答案是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.如下函数中,不是幂函数的是( ) A .y =2x B .y =x -1C .y =x D .y =x 2 答案 A3.设α∈⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-2,-1,-12,13,12,1,2,3,如此使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A 4.当x ∈(1,+∞)时,如下函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,如此m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝⎛⎭⎪⎫4,12,那么f (8)的值为( )A .26B .64 C.24D.164答案 C解析 设f (x )=x α (α为常数),将⎝⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x -12,∴f (8)=8-12=24.8.如下函数中,值域为[0,+∞)的函数是( )A .y =2xB .y =x 2C .y =x -2D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.假如幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫9,13,如此f (25)=_____________.答案 15解析 设f (x )=x α,如此9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),如此函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如下列图是幂函数y=x α在第一象限内的图象,α取±2,± 四个值,如此相应于曲线C1,C2,C3,C4的α依次为.答案 2,12,-12,-24.假如幂函数y =f (x )的图象经过点(2,2),如此f (25)的值是________.答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α(α∈R )的图象一定不经过第________象限. 答案 四6.把如下各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.幂函数f (x )=x -12,假如f (a +1)<f (10-2a ),如此a 的取值X 围是________.答案 3<a <5解析 f (x )=x -12=1x (x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4〔x ≥-32〕值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,如此y =t 2+2t +4=〔t +1〕2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4〔x ≥-32〕的值域为[3,+∞〕.点评:这是复合函数求值域的问题,应用换元法.2.f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)假如f (x )为正比例函数,如此⎩⎨⎧m 2+m -1=1m 2+2m ≠0,∴m =1. (2)假如f (x )为反比例函数,如此 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)假如f (x )为二次函数,如此⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132. (4)假如f (x )为幂函数,如此m 2+2m =1,∴m =-1±2。
幂函数的运算专项练习50题(有答案)
幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。
1. 计算 2^3。
答案:2^3 = 8。
2. 计算 (-3)^4。
答案:(-3)^4 = 81。
3. 计算 (4^2)^3。
答案:(4^2)^3 = 4^6 = 4096。
4. 计算 (2^3)(2^4)。
答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。
5. 计算 (2^3)^4。
答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。
6. 计算 (2^3)/2。
答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。
7. 计算 (2^4)/(2^2)。
答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。
8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。
9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。
10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。
11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。
12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。
13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。
14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。
...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。
每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。
祝您练习顺利!。
幂函数典型例题选解
幂函数典型例题选解
为帮助同学们加深理解幂函数有关内容,特就一些典型问题选解如下.
例1 确定m的值,使幂函数= (m-m+1)x的图象在第一象限内呈下降趋势.
分析:对于带字母参数的函数是幂函数时,一定要使系数为1,而幂指数按题设情况而定.
解:依题意有:m= 0或m = 1.
例2 如果幂函数= x(Q)为奇函数,且图象过原点,求证= x(Q)在(-∞,+∞)上为增函数.
证明:由幂函数= x的图象过坐标原点,从而有>0,= 0.
由幂函数的特性知在(0,+∞上是递增函数,
又据是奇函数可知,在(-∞,0上也是递增函数,
设x<0<x,则<<.
故= x(Q)在(-∞,+∞)上为增函数.
例3 已知幂函数= x(mZ)的图象与x、y轴都无交点,且关于原点对称.
⑴求函数= x的解析式;
⑵讨论函数=-的奇偶性.
解:⑴因为函数图象与x轴、y轴都无交点,所以m-1≤0,解得-1≤m≤1,
又图象关于原点对称,且mZ,所以m = 0.
∴= x.
⑵=-=-bx.
因此,的奇偶性,由参数a、b是否为零决定.
①当a≠0且b≠0时,是非奇非偶函数;
②a = 0且b≠0时,是奇函数;
③当a≠0且b = 0时,是偶函数;
④当a = 0且b = 0时,既是奇函数又是偶函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与幂函数1.求二次函数的解析式. 2.求二次函数的值域与最值.3.利用幂函数的图象和性质分析解决有关问题. 【复习指导】本节复习时,应从“数”与“形”两个角度来把握二次函数和幂函数的图象和性质,重点解决二次函数在闭区间上的最值问题,此类问题经常与其它知识结合命题,应注重分类讨论思想与数形结合思想的综合应用.基础梳理1.二次函数的基本知识(1)函数f (x )=ax 2+bx +c (a ≠0)叫做二次函数,它的定义域是R .(2)二次函数f (x )=ax 2+bx +c (a ≠0)的图象是一条抛物线,对称轴方程为x =-b 2a ,顶点坐标是⎝ ⎛⎭⎪⎫-b 2a ,4ac -b 24a . ①当a >0时,抛物线开口向上,函数在⎝⎛⎦⎥⎤-∞,-b 2a 上递减,在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上递增,当x =-b 2a 时,f (x )min =4ac -b 24a;②当a <0时,抛物线开口向下,函数在⎝⎛⎦⎥⎤-∞,-b 2a 上递增,在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上递减,当x =-b 2a 时,f (x )max =4ac -b 24a.③二次函数f (x )=ax 2+bx +c (a ≠0)当Δ=b 2-4ac >0时,图象与x 轴有两个交点M 1(x 1,0)、M 2(x 2,0),|M 1M 2|=|x 1-x 2|=Δ|a |. (3)二次函数的解析式的三种形式: ①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+h (a ≠0); ③两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.幂函数(1)幂函数的定义形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数.(2)幂函数的图象(3)幂函数的性质第一象限一定有图像且过点(1,1);第四象限一定无图像;当幂函数是偶函数时图像分布第一二象限,奇函数时图像分布第一三象限;第一象限图像的变化趋势;当a<0时,递减,a>0时,递增,其中a>1时,递增速度越来越快,0<a<1时,递增速度越来越慢。
一条主线二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知道的考查往往渗透在其他知识之中,并且大都出现在解答题中.两种方法二次函数y =f (x )对称轴的判断方法:(1)对于二次函数y =f (x )对定义域内x 1,x 2,都有f (x 1)=f (x 2),那么函数y =f (x )图象的对称轴方程为x =x 1+x 22;(2)对于二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立,那么函数y =f (x )图象的对称轴方程为x =a (a 为常数). 两种问题与二次函数有关的不等式恒成立问题:(1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎨⎧ a >0,b 2-4ac <0;(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎨⎧a <0,b 2-4ac <0.双基自测1.下列函数中是幂函数的是( ). A .y =2x 2 B .y =1x2C .y =x 2+xD .y =-1x2.(2011·九江模拟)已知函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的范围是( ). A .f (1)≥25 B .f (1)=25 C .f (1)≤25D .f (1)>253.(2011·福建)若关于x 的方程x 2+mx +1=0,有两个不相等的实数根,则实数m 的取值范围是( ).A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 4.(2011·陕西)函数 的图象是( ).5.二次函数y =f (x )满足f (3+x )=f (3-x )(x ∈R )且f (x )=0有两个实根x 1,x 2,则x 1+x 2=________.考向一 求二次函数的解析式【例1】►已知函数f (x )=x 2+mx +n 的图象过点(1,3),且f (-1+x )=f (-1-x )对任意实数都成立,函数y =g (x )与y =f (x )的图象关于原点对称.求f (x )与g (x )的解析式.【训练1】 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8.试确定此二次函数的解析式.考向二 幂函数的图象和性质【例2】►幂函数y =xm 2-2m -3(m ∈Z )的图象关于y 轴对称,且当x >0时,函数是减函数,则m 的值为( ). A .-1<m <3 B .0 C .1D .2【训练2】 已知点(2,2)在幂函数y =f (x )的图象上,点⎝ ⎛⎭⎪⎫-2,12在幂函数y=g (x )的图象上,若f (x )=g (x ),则x =________.考向三 二次函数的图象与性质【例3】►已知函数f (x )=x 2-2ax +1,求f (x )在区间[0,2]上的最值.【训练3】已知f(x)=1-(x-a)(x-b)(a<b),m,n是f(x)的零点,且m<n,则a,b,m,n从小到大的顺序是________.双基自测1.(人教A版教材习题改编)下列函数中是幂函数的是( ).A.y=2x2B.y=1 x2C.y=x2+x D.y=-1 x解析A,C,D均不符合幂函数的定义.答案B2.(2011·九江模拟)已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是( ).A.f(1)≥25 B.f(1)=25C.f(1)≤25 D.f(1)>25解析对称轴x=m8≤-2,∴m≤-16,∴f(1)=9-m≥25.答案A3.(2011·福建)若关于x的方程x2+mx+1=0,有两个不相等的实数根,则实数m的取值范围是( ).A.(-1,1) B.(-2,2)C.(-∞,-2)∪(2,+∞) D.(-∞,-1)∪(1,+∞)解析依题意判别式Δ=m2-4>0,解得m>2或m<-2.答案C4.(2011·陕西)函数的图象是( ).解析 由幂函数的性质知:①图象过(1,1)点,可排除A ,D ;②当指数0<α<1时为增速较缓的增函数,故可排除C. 答案 B5.二次函数y =f (x )满足f (3+x )=f (3-x )(x ∈R )且f (x )=0有两个实根x 1,x 2,则x 1+x 2=________.解析 由f (3+x )=f (3-x ),知函数y =f (x )的图象关于直线x =3对称,应有x 1+x 22=3⇒x 1+x 2=6.答案 6考向一 求二次函数的解析式【例1】►已知函数f (x )=x 2+mx +n 的图象过点(1,3),且f (-1+x )=f (-1-x )对任意实数都成立,函数y =g (x )与y =f (x )的图象关于原点对称.求f (x )与g (x )的解析式.[审题视点] 采用待定系数法求f (x ),再由f (x )与g (x )的图象关于原点对称,求g (x ).解依题意得⎩⎨⎧1+m +n =3,-m2=-1,解得:⎩⎨⎧m =2,n =0,∴f (x )=x 2+2x .设函数y =f (x )图象上的任意一点A (x 0,y 0),该点关于原点的对称点为B (x ,y ),则x 0=-x ,y 0=-y .∵点A (x 0,y 0)在函数y =f (x )的图象上,∴y 0=x 20+2x 0,∴-y =x 2-2x ,∴y =-x 2+2x ,即g (x )=-x 2+2x .二次函数解析式的确定,应视具体问题,灵活地选用其形式,再根据题设条件列方程组,即运用待定系数法来求解.在具体问题中,常常会与图象的平移、对称,函数的周期性、奇偶性等知识有机地结合在一起.【训练1】 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8.试确定此二次函数的解析式. 解 法一 利用二次函数的一般式. 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解之得⎩⎨⎧a =-4,b =4,c =7.∴所求二次函数的解析式为y =-4x 2+4x +7. 法二 利用二次函数的顶点式. 设f (x )=a (x -m )2+n (a ≠0), ∵f (2)=f (-1).∴此二次函数的对称轴为x =2+-12=12. ∴m =12,又根据题意,函数有最大值8,即n =8.∴y =f (x )=a ⎝⎛⎭⎪⎫x -122+8,∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解之得a =-4.∴f (x )=-4⎝⎛⎭⎪⎫x -122+8=-4x 2+4x +7.考向二 幂函数的图象和性质【例2】►幂函数y =xm 2-2m -3(m ∈Z )的图象关于y 轴对称,且当x >0时,函数是减函数,则m 的值为( ). A .-1<m <3 B .0 C .1D .2[审题视点] 由幂函数的性质可得到幂指数m 2-2m -3<0,再结合m 是整数,及幂函数是偶函数可得m 的值.解析 由m 2-2m -3<0,得-1<m <3, 又m ∈Z ,∴m =0,1,2.∵m 2-2m -3为偶数, 经验证m =1符合题意. 答案 C根据幂函数的单调性先确定指数的取值范围,当α>0时,幂函数在(0,+∞)上为增函数,当α<0时,幂函数在(0,+∞)上为减函数,然后验证函数的奇偶性.【训练2】 已知点(2,2)在幂函数y =f (x )的图象上,点⎝ ⎛⎭⎪⎫-2,12在幂函数y=g (x )的图象上,若f (x )=g (x ),则x =________.解析 由题意,设y =f (x )=x α,,则2=(2)α,得α=2,设y =g (x )=x β,则12=(-2)β,得β=-2,由f (x )=g (x ),即x 2=x -2,解得x =±1. 答案 ±1考向三 二次函数的图象与性质【例3】►已知函数f (x )=x 2-2ax +1,求f (x )在区间[0,2]上的最值. [审题视点] 先确定对称轴,再将对称轴分四种情况讨论.解 函数f (x )=x 2-2ax +1=(x -a )2+1-a 2的对称轴是直线x =a , (1)若a <0,f (x )在区间[0,2]上单调递增, 当x =0时,f (x )min =f (0)=1; 当x =2时,f (x )max =f (2)=5-4a ; (2)若0≤a <1,则当x =a 时,f (x )min =f (a )=1-a 2; 当x =2时,f (x )max =f (2)=5-4a ; (3)若1≤a <2,则当x =a 时,f (x )min =f (a )=1-a 2; 当x =0时,f (x )max =f (0)=1;(4)若a ≥2,则f (x )在区间[0,2]上单调递减, 当x =0时,f (x )max =f (0)=1; 当x =2时,f (x )min =f (2)=5-4a .解二次函数求最值问题,首先采用配方法,将二次函数化为y =a (x -m )2+n (a ≠0)的形式,得顶点(m ,n )或对称轴方程x =m ,分三个类型: ①顶点固定,区间固定; ②顶点含参数,区间固定; ③顶点固定,区间变动.【训练3】 已知f (x )=1-(x -a )(x -b )(a <b ),m ,n 是f (x )的零点,且m <n ,则a ,b ,m ,n 从小到大的顺序是________.解析 由于f (x )=1-(x -a )(x -b )(a <b )的图象是开口向下的抛物线,因为f (a )=f (b )=1>0,f (m )=f (n )=0,可得a ∈(m ,n ),b ∈(m ,n ),所以m <a <b <n .答案 m <a <b <n考向四 有关二次函数的综合问题【例4】►设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,求实数a 的取值范围.[审题视点] 通过讨论开口方向和对称轴位置求解. 解 当a >0时,f (x )=a ⎝⎛⎭⎪⎫x -1a +2-1a .∴⎩⎨⎧ 1a ≤1,f 1=a -2+2≥0或⎩⎪⎨⎪⎧1<1a <4,f ⎝ ⎛⎭⎪⎫1a =2-1a >0或⎩⎨⎧1a ≥4,f 4=16a -8+2≥0,∴⎩⎨⎧a ≥1,a ≥0或⎩⎪⎨⎪⎧ 14<a <1,a >12或⎩⎪⎨⎪⎧a ≤14,a ≥38.∴a ≥1或12<a <1或∅,即a >12;当a <0时,⎩⎨⎧f1=a -2+2≥0,f4=16a -8+2≥0,解得a ∈∅;当a =0时,f (x )=-2x +2,f (1)=0,f (4)=-6, ∴不合题意.综上可得,实数a 的取值范围是a >12.含有参数的二次函数与不等式的结合问题是高考的热点,通过围绕二次函数的开口方向、对称轴,不等式的恒成立等基本问题展开,重点考查学生分类讨论的思想、函数与方程的思想,以及分析、解决问题的能力.【训练4】 已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎨⎧f x ,x >0,-f x ,x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立. (1)求F (x )的表达式;(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求k 的取值范围. 解 (1)∵f (-1)=0,∴a -b +1=0,∴b =a +1, ∴f (x )=ax 2+(a +1)x +1.∵f (x )≥0恒成立, ∴⎩⎨⎧a >0,Δ=a +12-4a ≤0,∴⎩⎨⎧a >0,a -12≤0.∴a =1,从而b =2,∴f (x )=x 2+2x +1, ∴F (x )=⎩⎨⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)g (x )=x 2+2x +1-kx =x 2+(2-k )x +1. ∵g (x )在[-2,2]上是单调函数, ∴k -22≤-2,或k -22≥2,解得k ≤-2,或k ≥6.所以k 的取值范围为k ≤-2,或k ≥6.规范解答3——如何求解二次函数在某个闭区间上的最值【问题研究】 二次函数在闭区间上的最值问题,一定要根据对称轴与区间的相对位置关系确定最值,当函数解析式中含有参数时,要根据参数的取值情况进行分类讨论,避免漏解.【解决方案】 对于二次函数f (x )=ax 2+bx +c (a ≠0)而言,首先确定对称轴,然后与所给区间的位置关系分三类进行讨论.【示例】►(本题满分12分)(2011·济南模拟)已知f (x )=-4x 2+4ax -4a -a 2在区间[0,1]内有最大值-5,求a 的值及函数表达式f (x ).求二次函数f (x )的对称轴,分对称轴在区间的左侧、中间、右侧讨论.[解答示范] ∵f (x )=-4⎝⎛⎭⎪⎫x -a 22-4a , ∴抛物线顶点坐标为⎝ ⎛⎭⎪⎫a 2,-4a .(1分) ①当a 2≥1,即a ≥2时,f (x )取最大值-4-a 2. 令-4-a 2=-5,得a 2=1,a =±1<2(舍去);(4分)②当0<a 2<1,即0<a <2时,x =a 2时, f (x )取最大值为-4a .令-4a =-5,得a =54∈(0,2);(7分) ③当a 2≤0,即a ≤0时,f (x )在[0,1]内递减, ∴x =0时,f (x )取最大值为-4a -a 2,令-4a -a 2=-5,得a 2+4a -5=0,解得a =-5或a =1,其中-5∈(-∞,0].(10分)综上所述,a =54或a =-5时,f (x )在[0,1]内有最大值-5. ∴f (x )=-4x 2+5x -10516或f (x )=-4x 2-20x -5.(12分) 求解本题易出现的问题是直接利用二次函数的性质——最值在对称轴处取得,忽视对称轴与闭区间的位置关系,不进行分类讨论.【试一试】 设函数y =x 2-2x ,x ∈[-2,a ],求函数的最小值g (a ).[尝试解答] ∵函数y =x 2-2x =(x -1)2-1,∴对称轴为直线x =1,而x =1不一定在区间[-2,a ]内,应进行讨论.当-2<a <1时,函数在[-2,a ]上单调递减,则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y min =-1.综上,g (a )=⎩⎨⎧ a 2-2a ,-2<a <1,-1,a ≥1.。