电磁场与电磁波基础(第2章)

合集下载

第2章—静磁场

第2章—静磁场
FB
v
B
FB = qv ´ B
B =
(T, 特斯拉) q v sin q
2-2
FB
第2章 静磁场
磁力线
某点处磁感应强度的方向为穿过此点的磁力线的切向; 某点处磁感应强度的大小正比于穿过此点处与磁力线垂 直的单位面元的磁力线的条数; 磁力线永不相交,并构成闭合曲线。
B
第2章 静磁场
2-3
磁场中的运动电荷
第2章 静磁场
2-28
感应电动势的产生
S
S
B
B
B 与 S 的夹角随时间变化
第2章 静磁场
2-29
楞次定律
感应电流的磁通总是力图阻碍引起感应电流的磁通的变 化。
B
第2章 静磁场 2-30
动生电动势
E=
ò (v
B )× l d
第2章 静磁场
2-31
感生电动势
线圈不动而磁场发生变化,从而引起线圈的磁通发生变 化,此时产生的电动势为感生电动势。
YN = M N 1I 1 + M N 2I 2 + L + LN I N
1 N 2 1 W = 邋I n Ln + 2 n=1 2
N N
I n M nm I m
n m=1 m¹ n
单个回路
W =
1 2 I L 2
第2章 静磁场
2-44
磁场能量密度
Yn =
1 N 1 N Wm = å In 蝌 鬃 = å ÑA dl 2 n = 1 2 n=1 l
J (r ¢ )dV ¢ dA (r ) = m 4p R
线电流
J dV ⅱ J dS dl ⅱ Idl = =
A (r ) = mò

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。

如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。

解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。

解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。

由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。

解:以球心为坐标原点,转轴(一直径)为$z$轴。

设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。

电磁场与电磁波课后习题及答案二章习题解答

电磁场与电磁波课后习题及答案二章习题解答

二章习题解答2.1 一个平行板真空二极管内的电荷体密度为4320049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2) 43230024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。

由212mv qU = 得61.3710v ==⨯ m s 故 0.318J v == 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

电磁场与电磁波理论基础 第二章 课后答案

电磁场与电磁波理论基础 第二章 课后答案

u=0
∂u 1 ∂u ∂u E = −∇u = − e ρ + eϕ + e z ρ ∂ϕ ∂z ∂ρ
得到 题 2-9 图
E = −∇u = 0, ρ ≤ a
a2 a2 E = − A 1 + 2 cos ϕ e ρ + A 1 − 2 sin ϕ eϕ , ρ ≥ a ρ ρ
代入得到
2 2
r1
-2 q
Y
S1 (-a, 0 , 0)
X
S 2 (a, 0, 0)
题 2-7 图
u (r ) =
q 4πε 0
1
( x + a)
2
+ y2 + z2

2 2 2 ( x − a) + y + z 2
电位为零,即令
q u (r ) = 4πε 0
∂u2 =0 ∂x
代入,得到
ρ S下 = −ε 0
∂u1 ∂x
=
x =0
ρd ρd ε U ε U x2 − 0 0 + 0 = − 0 0 + 0 2d 6 x =0 6 d d
ρ0
对于上极板,导体中的电位为常数
u1 = U 0

∂u1 =0 ∂x
上极板下表面电荷密度为
l
场分布具有柱对称性,电通密度矢量 D 仅有 e ρ 分量,由 高斯定理 题 2-15 图
D ⋅ dS = ρ
(S ) (V )
V
dV
取圆柱面为高斯面,有

Dρ ρ ldϕ = 20 ρ e
0 0 0

电磁场与电磁波_章二习题答案

电磁场与电磁波_章二习题答案

静电场 恒定电场习题解答主要问题: 1) 矢量标量书写不加区分(忘记在矢量顶部加箭头) 2) 机械抄袭标准答案,不理解其含义3)不理解极化电荷面密度和极化电荷体密度含义:极化电荷面密度仅仅存在于介质表面,静电场情形下导体表面没有极化电荷面密度(题2-15) 4)所谓验证边界条件对静电场而言有两种方法(题2-13),一是从电位着手判断电位是否连续(12?Φ=Φ)法向电位条件如何?(1212s n nεερ∂Φ∂Φ-+=∂∂,这里格外需要注意说明边界上有没有电荷?s ρ=)二是判断切向电场是不是连续,法向电通密度是不是相等,要是不等,面电荷密度是多少 这两种方法等价。

5)2-2题很多人和标准答案中的坐标图不一致,答案却一样,明显错误2-1、半径为a 的球内充满介电常数为1ε的均匀介质,球外是介电常数为2ε的均匀介质。

若已知球内和球外的电位分别为:122(,) ()(,) ()r Ar r a Aa r r a rθθθθΦ=≤⎧⎪⎨Φ=≥⎪⎩ 式中A 为常数。

求1) 两种介质中的E 和D ;2) 两种介质中的自由电荷密度。

解:1) 在r < a 区域内:111111111A Ar r A A θθεεθε∂Φ∂Φ=-∇Φ=--=--∂∂==--rθr θ1r θE e e e e D E e e , 在r > a 区域内:()()2222222121Aa r r rAarθθεεθ∂Φ∂Φ=-∇Φ=--=-∂∂==-2r θr θ22r θE e e e e D E e e 2) 在r < a 区域内:。

()()()21112111sin sin 2cot r r D D r r r Arθρθθθεθθ∂∂=∇⋅=+∂∂=-+1D在r > a 区域内:()()2222222311sin sin cot r r D D r r r Aa rθρθθθεθ∂∂=∇⋅=+∂∂=-2D 在球面r = a 上,电荷面密度()()()12s r a r a A ρεεθ===⋅-=⋅-=+21r 21n D D e D D2-2一个半径为a 的半圆环上均匀分布线电荷ρl ,求垂直于半圆环平面的轴线z =a 处的电场强度。

电磁场与电磁波(第5版)第2章

电磁场与电磁波(第5版)第2章

电磁场与电磁波(第5版)第2章本节介绍了电磁学的基本概念和原理,包括电荷、电场、电势、电场强度和电势差等。

本节讨论了静电场和静磁场的性质和特点,包括库伦定律、电场强度的计算、电场线和磁感线的性质等。

本节介绍了电场和磁场的性质,包括电场的叠加原理、高斯定律、环路定理和安培定律等。

本节讨论了电场和磁场相互作用的现象和规律,包括洛伦兹力、洛伦兹力的计算和洛伦兹力的方向等。

本节介绍了电磁波的基本概念和特征,包括电磁波的产生、传播和检测等。

本节讨论了电磁波的性质,包括电磁波的速度、频率、波长和能量等。

本节介绍了电磁波谱的分类和特点,包括射线、微波、红外线、可见光、紫外线、X射线和γ射线等。

本节讨论了电磁波在生活和科学研究中的广泛应用,包括通信、雷达、医学诊断和天文观测等。

本章节将介绍电荷的性质以及电场的基本概念。

首先,我们将讨论电荷的性质,包括电荷的类型和带电体的基本特征。

之后,我们将深入研究电场,包括电场的定义、电场的强度和方向,以及电场的计算公式。

电荷是物质的一种基本特性,它可以分为正电荷和负电荷两种类型。

正电荷表示物体缺少电子,而负电荷表示物体具有多余的电子。

电荷是一种离散的量子化现象,它以元电荷为单位进行计量。

带电体是指带有正电荷或负电荷的物体,而不带电的物体则是不具有净电荷的。

电场是指电荷周围所具有的一种物理现象,它可以影响周围空间中其他电荷的运动和状态。

电场的强度和方向决定了电场对其他电荷的力的大小和方向。

电场的强度用符号E表示,单位是牛顿/库仑。

电场的方向由正电荷朝向负电荷的方向确定。

库仑定律是描述电荷间作用力的基本定律。

根据库仑定律,两个电荷之间的作用力正比于它们的电荷量的乘积,反比于它们之间距离的平方。

电场强度是描述某处电场强度大小和方向的物理量。

电场强度的计算公式正是库仑定律的一种推导结果,它可以通过已知电荷量和距离来计算。

以上是《电磁场与电磁波(第5版)第2章》中2.1节的内容概述。

电磁场与电磁波第三版 郭辉萍 第二章习题解答

电磁场与电磁波第三版 郭辉萍 第二章习题解答

D2 z ( x, y,0) = 2
所以
r r r r D2 ( x, y, 0) = ax ⋅ 3 y − a y ⋅ 3x + az ⋅ 2 r E2 ( x, y, 0) = r r r r ax ⋅ 3 y − a y ⋅ 3 x + az ⋅ 2 D2 = ε0 ⋅εr2 3⋅ε0
故不能求出区域 2 中任一点处的 E2 和 D2 2.15 同轴电容器内导体半径为 a, 外导体内直径为 b, 在 a<r<b′部分填充介电常数为ε 的电介质, 求: (1) 单位长度的电容; (2) 若a=5 mm、 b=10 mm、 b′=8 mm, 内外导体间所加电压为 10 000 V, 介 质的相对介电常数为εr=5, 空气的击穿场强为 3×106 V/m, 介质的击穿场强为 20×106 V/m, 问电介质是否会被击穿? 解:
r
r
r
r
r
r
D2 z ( x, y,0) = 2 ,
(1)
r r ax D2 x ( x, y,0) + a y D2 y ( x, y,0) 3 ⋅ ε0
由(1)和(2)解得
=
r r ax ⋅ 2 y − a y ⋅ 2 x 2 ⋅ ε0
(2)
D2 x ( x, y,0) = 3 y ,
D2 y ( x, y,0) = −3 x ,
φab = ∫ E ⋅ d r = ∫
a
b
ur
r
b
a
ρs a ρs a b dr = ln ε 0r ε0 a
1 1
要使 ρ >b 的区域外电场强度为 0,即:
r ur ρ s a + ρ s b uu b 2 E= 1 ar =0,得 ρ S1 = − ρ s2 ε 0r a

电磁波基础

电磁波基础

偏振光的产生与变换
变换后 变换前
线偏光
自然光
通过?起偏器
线偏光
*****
圆偏光
椭圆偏光
先通过一个起偏器,再通 过一个快(慢)轴与起偏 器成45度的1/4波片
先通过一个起偏器,再通
过一个快(慢)轴与起偏 器 不 成 45 度 或 0 度 的 1/4 波片
通过一快(慢)轴与起
通 偏器过成一个45快度?(的慢1/)4波轴片与起

Ez

0,
x

y

0,
方程简化为:
2
Ex ( z 2
z)

k
2
Ex
(
z)

0,
其解一定为正、余弦形式或e指数形式,且它们之间
满足欧拉公式。
方程的解为Ex (z) Ee jkz Ee jkz , 考虑到场随时间呈简谐变化,则场复数形式为: Ex (z, t) Ee j(tkz) Ee j(tkz) , 代表沿z轴正向和负向传播的两个等幅正弦行波。
偏器不成?45度或0度的
1/4波片
圆偏光 椭圆偏光
通过一个?1/4波片
通过一快(慢)轴与椭
圆的长(短?)轴一致的
1/4波片
*****
先通过一个1/4波片变为
线慢)偏轴光与,起再偏?通器过不一成快(45
度或0度的1/4波片
先通过一个1/4波片变为
线 慢)偏轴光与,线再?偏通光过成一快45( 度
的1/4波片
en k

exkx
eyky
ezkz
en Em 0
复数表示法:E(r,
t)

Eme

2电磁场与电磁波-第二章

2电磁场与电磁波-第二章
复习
1.通量: 矢量 A 沿某一有向曲面 S 的面积分称为矢量 A 通过该有向曲面 S 的通量,即:
2.散度
当闭合面 S 向某点无限收缩时,矢量 A 通过该 闭合面S 的通量与该闭合面包围的体积之比的极限 称为矢量场 A 在该点的散度,以 div A 表示,即
3.散度定理(高斯定理)
某一矢量散度的体积分等于该矢量穿过该体积的 封闭表面的总通量.
μo称为真空中的磁导率:
理论上可以认为是孤立电流元I1dl1对另一个孤立电流 元I2dl2的安培力。对换1、2则:
可见并不满足牛顿第三定律孤立直流电源不存在。 记任何电流元产生的磁场为:
上式为任意电流元产生磁场的定义式,B(或dB)称为磁感 应强度或磁通密度,单位为T(特斯拉)或Wb/m2,三者间满足右 手螺旋定则.
p r r` dr`
在r=a处E(a)=ρ0a/3ε0,且从球内到球外两个区域的场 表示式计算到的E(a)是相同的.
2.7 磁感应强度的矢量积分公式
对于体电流J(r`)和面电流Js(r`),相应的矢量源分别 为J(r`)dσ`和JsdS`,相应的比奥-沙伐公式改为:
例2.7.1 计算长度为l直线电流I的磁场
若将微电流放在柱坐标原点,取+Z方向 则:
任何直流回路周围空间的磁场分布:
积分号可放到里面
例题2.5.1 求半径为a的微小电流元的磁场.
解:采用球面坐标,圆环面积为ds=πa2,法向单位矢量为ez, 因为磁场圆对称,显然将场点P(r,θ,π/2)置于yoz平 面不失普遍性: 投影关系: 余弦定理:
微电流源长度为:
将这些结果代入2.5.5就可得到磁场的计算公式2.5.6。
远场区r>>a,可用泰勒级数展开:

电磁场与电磁波第三版 郭辉萍 第2章习题答案

电磁场与电磁波第三版 郭辉萍 第2章习题答案

(2-1-5)
第2章 静电场分析
2. 分布电荷的电场强度
上述的分析, 我们假设电荷是集中在一个点上, 从宏观的角度讲, 电荷是连续的分布在一段线上、 一 个面上或一个体积内的, 因此, 我们先定义电荷分布。 线电荷密度(Charge Line Density): 当电荷分布 在一细线(其横向尺寸与长度的比值很小)上时, 定 义线电荷密度为单位长度上的电荷
第2章 静电场分析
第2章 静电场和恒定电场
2.1 电场强度与电位函数
2.2 真空中静电场的基本方程 2.3 电介质的极化与介质中的场方程 2.4 导体间的电容与电耦合 2.5 静电场的边界条件
2.6 恒定电场
习 题
第2章 静电场分析
2.1 电场强度与电位函数
2.1.1 库仑定律 库仑定律(Coulom's Law)是静电现象的基本实验定 律, 它表明固定在真空中相距为R的两点电荷q1与q2之间 的作用力:正比于它们的电荷量的乘积; 反比于它们之 两点电 间距离的平方;作用力的方向沿两者间的连线;
(2-1-7)
第2章 静电场分析
P(r) R
dV
V
r
r
O
图2 - 3 体电荷产生的场
第2章 静电场分析
体电荷密度(Charge Volume Density): 如果电 荷分布在一个体积空间内, 定义体电荷密度为单位体 积内的电荷
q V lim V 0 V
式中, Δq是体积元ΔV内所包含的电荷。
荷同性为斥力, 异性为吸力(如图2-1所示), 表达式为
第2章 静电场分析
q1q2 q1q2 F12 a R R 2 3 4 0 R 4 0 R
F12 q2 R

电磁场与电磁波(第二章)

电磁场与电磁波(第二章)

S
s
t
dS
v
Ñl JS
g(n)
v dl )
0
对时变面电流 对恒定面电流
第二节 库仑定律 电场强度
一、库仑定律
❖库仑定律描述了真空中两个点电荷间相互作用力的规律。
v
❖库仑定律内容:如图,电荷q1 对电荷q2的作用力为:
q1
R
v F12
q1 q2
4 0 R 2
evR
q1 q2
4 0 R3
v R
rv' vO
(
1
)
v ex
(
1
)
v ey
(
1
)
v ez
(1)
R x R y R z R
v ex
uv
x
x R3
' uur
v ey
y
y R3
'
v ez
zz' R3
R R3
eR R2
第二章
❖电荷、电流 2.4
❖电场强度、矢量积分公式 2.8 2.9
作业
t 0
讨论:1)
v J
vv
式中: 为空间中电荷体密度,vv 为
正电荷流动速度。
2) I Jv(rv)gdsv Jv(rv)gn)ds
S
S
S Jv(rv) cos ds
n)
S
Jv(rv)
2、面电流密度
❖当电荷只在一v个薄层内流动时,形成的电流为面电流。 ❖面电流密度 J s 定义:
电流在曲面S上流动,在垂直于
电流方向取一线元 l ,若通过
I l
v J
线元的电流为 I ,则定义
S

电磁场与电磁波(电磁场理论)第二章

电磁场与电磁波(电磁场理论)第二章

例2.7.6 球形电容器的内导体半径为a ,外导体内半径为b,
设内球带电荷为q ,外球壳带电荷为-q ,求两球壳间的电场和极
q q
,
2
1
即为切向分量。根据边界条件可知
但 。由高斯定理,有
q q
2
1
处:
处:
相互抵消。 在圆环的中心点上,即z = 0 磁感应强 度最大
当场点P 远离圆环,即z >> a 时
3. 利用安培环路定理计算磁感应强度
在磁场分布具有一定对称性的情况下,可以利用安培环路 定理计算磁感应强度。 例2.3.2 求电流面密度为 感应强度。 解:分析场的分布,取安培环路如图,则 的无限大电流薄板产生的磁
以上各个场矢量都应满足麦克斯韦方程,将以上得到的 H 和 D 代入式

例2.7.1 z < 0的区域的媒质参数为 区域的媒质参数为 强度为 媒质2中的电场强度为 (1)试确定常数A的值;(2)求磁场强度 (3)验证 和 满足边界条件。 和
, z>0 。若媒质1中的电场

解:(1)这是两种电介质的分界面,在分界面z = 0 处,有
例 2.6.2 在无源
电场强度矢量
的电介质
中,若已知
,式中的E0为振幅、ω为
角频率、k 为相位常数。试确定 k 与ω 之间所满足的关系,并求
出与
相应的其他场矢量。
解: 是电磁场的场矢量,应满足麦克斯韦方程组。因此,利
用麦克斯韦方程组可以确定 k 与ω 之间所满足的关系,以及与
相应的其他场矢量。
对时间 t 积分,得
的球形电介质内的极化强
,式中的 k 为常数。(1)计算极化电荷体密度 解:(1)电介质球内的极化电荷体密度为

电磁场与电磁波 第二章-5 恒定电场

电磁场与电磁波  第二章-5 恒定电场

填充两种ε1、σ1,ε2、σ2的电介质材料, 介质分界面半径为 c ,内
外导体的电压为U0。试计算
(1)介质中的电场强度;
2,2
(2)分界面上的自由电荷
(3)单位长度的电容和电导。
解: (1)考察单位长度
E1r
Jr
1
I
2 r1
, E2r
Jr
2
I
2 r 2
1,1
c
U0
c
a E1rdr
b c
1 ( m)
• 欧姆定理的推导:I J d S S
JS ES
U
El
I
S
l
I
l
S
IR
SJ
l
E
U IR
J E
5
电流密度与电荷平均速度的关系:
dt时间内流过S面的电量及电流分别为:
dq Svdt I Sv J v
S vJ
vdt
6
二、 恒定电流场方程
1 电流连续性方程 2 基尔霍夫电流定律
数值为
Js
dI dl
A/m,方向为电流的方向。
通过任意曲线l 的电流
的电流为
I S JS dl
dl
JS
bupt 2012
4
3 欧姆定律
欧姆定理微分式:
导体任一点上电流密度与电场强度成正比。 J E
描述媒质的导电特性,理想导体σ为趋于无穷大。
是媒质的电导率,单位 1/欧.米 (1/ m)
xb
U
xb x
I
2 r 2
dr
I
2
( 1 ) bI
r x 2x(x b)
半球形接地器的危险区

电磁场与电磁波第二章讲义

电磁场与电磁波第二章讲义

(r )
第二章 静 电 场
当r<a时,
Er 4r2

0 0
4
3
r3
所以
Er

0r 30
(r )
第二章 静 电 场
例 2 - 3 已知半径为a的球内、 外的电场强度为
E

er E0
a2 r2
(r a)
E

er E0 5

r 2a

3
r3 2a3

(r a)
们的连线, 同号电荷之间是斥力, 异号电荷之间是引力。点电
荷q′受到q的作用力为F′,且F′=-F,可见两点电荷之间的作用力 符合牛顿第三定律。
第二章 静 电 场
库仑定律只能直接用于点电荷。所谓点电荷,是指当带电体 的尺度远小于它们之间的距离时,将其电荷集中于一点的理想化 模型。 对于实际的带电体, 一般应该看成是分布在一定的区域 内,称其为分布电荷。用电荷密度来定量描述电荷的空间分布情 况。电荷体密度的含义是,在电荷分布区域内,取体积元ΔV, 若其中的电量为Δq,则电荷体密度为
(r)

P(r' )V '
4 0

r r' r r' 3
整个极化介质产生的电位是上式的积分:
(r) 1
4 0
V
P(r' ) (r r r' 3
4 0R2
R

q' q
4 0
R R3
式中:R=r-r′表示从r′到r的矢量;R是r′到r的距离;R°是R的单
位矢量;ε0是表征真空电性质的物理量,称为真空的介电常数,
其值为

电磁场与电磁波 第2章静电场

电磁场与电磁波 第2章静电场
如果电场由点电荷q单独产生
如果是一个闭合路径,则W=0 电场强度的环路线积分恒为零,即
应用斯托克斯定理
因此,静电场的电场强度 可以用一个标量函数 的梯度来表示,即定义
单位正实验电荷在电场中移动电场力做功
两点间的电位差定义为两点间的电压U,即
单位:V
电位函数不唯一确定,取
故可选空间某点Q作为电位参考点,空间任一点P的电位为 通常选取无限远作为电位参考点,则任一P点的电位为
在交界面上不存在 时,E、D满足折射定律。
D 1 n D 2 n 1 E 1 c1 o 2 E s 2 c2 os
E 1 t E 2 t E 1 si1 n E 2 si2n
图2.3.3 分界面上E线的折射
t电位函数 表示分界面上的衔接条件
Ax Ay Az
对应静电场的基本方程 E 0 ,矢量 A 可以表示一个静电场。
能否根据矢量场的散度来判断该矢量场是否是静电场?
2.3.2 分界面上的边界条件
1、 电位移矢量D的衔接条件 以分界面上点P作为观察点,作一
小扁圆柱高斯面( L 0)。
图2.3.1 在电介质分界面上应用高斯定律
根据 DdSq
V ' P d ' V S 'P e n d ' S 0
• 在均匀极化的电介质内,极化电荷体密度 p 0。
• 有电介质存在的场域中,任一点的电位及电场强度表示为
(r) 4 1 0 V '( r f r 'p )d' V S '( r f r 'p )d' S E (r ) 4 1 0 V '( f r p r )'3 r( r ')d' V S '( f r p r ) '3 r( r ')d' S

2 电磁场与电磁波第二章习题答案

2 电磁场与电磁波第二章习题答案

第二章 习题解答2.5试求半径为a ,带电量为Q 的均匀带电球体的电场。

解:以带电球体的球心为球心,以r 为半径,作一高斯面,由高斯定理S D dS ∙⎰ =Q ,及D E ε= 得,错误!未找到引用源。

r ≤a 时, 由S D dS ∙⎰ =224433Qr a ππ⨯,得34Qr D a π= 304Qr E a πε= 错误!未找到引用源。

r>a 时,由S D dS ∙⎰ =Q ,得34Qr D r π= 304Qr E rπε= 2.5 两无限长的同轴圆柱体,半径分别为a 和b (a<b ),内外导体间为空气。

设同轴圆柱导体内、外导体上的电荷均匀分布,其电荷密度分别为1S ρ和2S ρ,求: 错误!未找到引用源。

空间各处的电场强度;错误!未找到引用源。

两导体间的电压;错误!未找到引用源。

要使ρ>b 区域内的电场强度等于零,则1S ρ和2S ρ应满足什么关系?解:错误!未找到引用源。

以圆柱的轴为轴做一个半径为r 的圆柱高斯面,由高斯定理S D dS ∙⎰ =q及D E ε= 得,当0<r<a 时,由S D dS ∙⎰ =q=0,得D =0,E =0当a ≤r ≤b 时,由S D dS ∙⎰ =q,得D r l π⨯2⨯= 1S ρa l π⨯2⨯D =1S r e r ρ ,10S r aE e rρε= 当b<r 时,由S D dS ∙⎰ =q,得D r l π⨯2⨯= 1S ρa l π⨯2⨯+2S ρb l π⨯2⨯D =12s s r a b e r ρρ+ ,E =120s s r a b e rρρε+ Equation.DSMT4 11ab 00ln b b s s a a a a a E dr dr r b ρρεε∅===⎰⎰ Equation.DSMT4 ρ>0的区域外电场强度为0,即:E =120s s r a b e rρρε+ =0,得1S ρ=2s b a ρ- 2.9 一个半径为a 的薄导体球壳,在其内表面覆盖了一层薄的绝缘膜,球内充满总电量为Q的电荷,球壳上又另充了电量为Q 的电荷,已知内部的电场为4()r r E a a= ,计算: = 2 \* GB2 ⑵球的外表面的电荷分布;布;= 4 \* GB2 ⑷球心的电位。

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。

在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。

电磁场与电磁波第二章课后答案解析

电磁场与电磁波第二章课后答案解析

第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式: 0ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=;⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式: ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。

在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷位于q 1及q 2的连线上时,系统处于平衡状态,试求的大小及位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 B 4

s
J s eR ds 2 R
如果电流是分布在某一体积内时,若面电流密度为J ,则 体电流在空间产生的磁感应强度为
0 B 4

v
J eR dv 2 R
B
3.矢量磁位
穿过某一曲面S的磁感应强度 面的磁通量
B 的通量称之为穿过该曲
m
由毕奥-沙伐尔定律

s
B dS
Idl ' eR dS 2 R
整个体电荷在空间产生的电场强度为
E

dV
R
2
V
eR
3. 电位
已知试验电荷 q在电场中的受力为
FE qE
在静电场中欲使试验电荷 q处于平衡状态,应有一 外力与电场力大小相等,方向相反,即
FW qE
于是,试验电荷q在静电场中由A点移动到B点时 B 外力需做的功为
W q
A
E dl
如果电荷是沿一曲面连续分布的面电荷
面电荷密度定义为
q dq s lim S 0 S dS
1 4 0
整个面电荷在空间产生的电场强度为
E

s dS
R
2
S
eR
如果电荷在某空间体积内连续分布
体电荷密度定义为
q dq lim V 0 V dV
1 4 0
用一个磁感应强度 B 来描述。
2.磁感应强度
磁场的特征是能对运动电荷施力,其施力的情况虽
然比较复杂,但我们可以用一个磁感应强度来描述它, 即 将其定义为一个单位电流受到另外一个电流的作用力。
已知磁场力
考虑磁场中载流线元
FB=qv B
Idl
的受力情况,由于
dq dl Idl dl dq dqv dt dt
q
q
积分表明,空间两点B和A之间的电位差只与场点所在位置 有关,而与积分路径无关。
因此,在静电场中

l
E dl 0
若单位正电荷是从无穷远处出发移到B点的,则电位差为
B
或写成
q
B
q 4 0 RB
4 0 RB
可将下列左式改写成一个具有普遍意义的式子(右式)
BA E dl
假定电荷q=1C,于是电场力 FE 即为q1对单位电荷的作用
力,我们将这个特定大小的电场力 F 称为电场强度矢量 E E
q1 R 1 E= 2 R R 4 0
结论
由电场强度矢量可以得出两个或多个彼此相对 静止的电荷之间的作用力,所以电场强度表示 了电场力。
第2章 电场、磁场与麦克斯韦方程
重点:
1. 电场力、电场强度与电位 2. 磁场力、磁感应强度与磁位 3. 洛伦兹力 4. 电偶极子与磁偶极子 5. 麦克斯韦方程的导出及意义 6. 电磁场中的三种电流以及电流连续性原理 7. 电磁场的能量与坡印廷矢量
2.1 电场力、电场强度与电位 1. 电场力
库仑定律
方法比直接求解电场强度要简便。
2.2 磁场力、磁感应强度与磁位 1. 磁场力
当电荷之间存在相对运动,比如两根载流导线,会
发现另外一种力,它存在于这两线之间,是运动的电荷 即电流之间的作用力,我们称其为磁场力 。 假定一个电荷 q 以速度 到磁场力为
v
在磁场中运动,则它所受
FB=qv B
这表明:一个单位电流与另外一个电流的作用力可以
如果电荷是沿一曲线连续分布的线电荷
线电荷密度定义为
q dq l lim l 0 l dl
dq在空间产生的电场强度为
l dl dq dE e e 2 R 2 R 4 0 R 4 0 R
整个线电荷在空间产生的电场强度为
E
1 4 0

l dl
R
2
l
eR
FE q1q2 R 1 ( )( ) 2 R R 4 0
适用条件 两个可视为点电荷的带电体之间相互作用力;
无限大真空情况 (式中
109 0 8.85 1012 36
F/m)
可推广到无限大各向同性均匀介质中 ( 0 )
2. 电场强度
库仑定律还可以换一种方式来阐述:
A
B
E dl
l
得到空间一段线元上两端点间的电位差为
d E dl
d E dl
由式(1.95)可知
d dl
E
可得电位与电场强度的关系为
此式提供了求解静电场中电场强度的一种方法,
即把求解电场强度的问题变成先求解电位而后再
通过微分关系求电场强度。一般情况下,用这种
毕奥-萨伐尔定律
运用叠加原理,可得闭合回路1在空间所产生的磁感应强度
0 B 4

l1
I1dl1 eR R2
上式是计算线电流周围磁感应强度的公式。磁感应强度的单 位为牛顿/(安培米),在国际单位制中的单位为特斯拉。 如果电流是分布在某一曲面上时,若面电流密度为 J s ,则 面电流在空间产生的磁感应强度为
所以
dFB dqv dB Idl dB
如图:电流元
I1dl1 和 I 2 dl2之间的作用力为
0 I1dl1 eR dF21 I 2 dl2 [ ] FB dqv dB Idl dB
eR
I 1 dl1
R
dl2
可得
0 I1dl1 eR dB 2 4 R

l'
1 [( ) Idl ']dV R
利用矢量恒等式 ( F G) G F F G
可得
1 1 1 [( ) Idl '] Idl ' ( ) ( ) Idl ' R R R
我们将静电场内单位正电荷从A点移动到B点时外 力所做的功称为点B和点A之间的电位差
BA E dl
A
B
在自由空间,如果点电荷位于原点,原点到场点A的距离为RA
原点到场点B的距离为RB ,则B点和A点之间的电位差为
BA
RB
RA
E dl
RB
RA
1 1 e eR dR ( ) 2 R 4 0 R 4 0 RB RA
m
根据梯度规则

s
0 4

l'
上式中的被积函数变成
eR 1 ( ) 2 R R
Idl ' eR 1 ( ) Idl ' 2 R R
根据高斯定律

s
B dS BdV
v
0 m 4


v
v


l'
1 ( ) Idl ' dV R
0 m 4
相关文档
最新文档