2020年高二数学上期中试卷附答案
2020-2021学年山西省太原市高二上学期期中数学试卷(解析版)
2020-2021学年山西省太原市高二(上)期中数学试卷一、选择题(共12小题).1.(3分)直线x﹣2y+6=0的斜率为()A.2B.﹣2C.D.﹣2.(3分)长方体的长、宽、高分别为,,1,且其顶点都在同一球面上,则该球的表面积为()A.3πB.6πC.12πD.24π3.(3分)已知A(0,0),B(1,1),直线l过点(2,0)且和直线AB平行,则直线l的方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.2x﹣y﹣4=0D.2x+y﹣4=0 4.(3分)圆(x﹣1)2+(y+2)2=1的一条切线方程是()A.x﹣y=0B.x+y=0C.x=0D.y=05.(3分)已知直线a,b,c满足a⊥b,a⊥c,且a⊂α,b,c⊂β,有下列说法:①a⊥β;②α⊥β;③b∥c.则正确的说法有()A.3个B.2个C.1个D.0个6.(3分)直线x﹣2y+2=0关于直线x=1对称的直线方程是()A.x+2y﹣4=0B.2x+y﹣1=0C.2x+y﹣3=0D.2x+y﹣4=0 7.(3分)在三棱锥A﹣BCD中,E,F分别为AC,AD的中点,设三棱锥A﹣BCD的体积为V1,四棱锥B﹣CDFE的体积为V2,则V1:V2=()A.4:3B.2:1C.3:2D.3:18.(3分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.19.(3分)如图,在三棱锥P﹣ABC中,不能证明AP⊥BC的条件是()A.BC⊥平面APCB.BC⊥PC,AP⊥PCC.AP⊥PB,AP⊥PCD.AP⊥PC,平面APC⊥平面BPC10.(3分)已知半径为1的圆经过直线x+2y﹣11=0和直线2x﹣y﹣2=0的交点,那么其圆心到原点的距离的最大值为()A.4B.5C.6D.711.(3分)如图,正方体ABCD﹣A1B1C1D1中,DD1的中点为N,则异面直线AB1与CN 所成角的余弦值是()A.B.C.D.012.(3分)在同一平面直角坐标系中,直线y=k(x﹣1)+2和圆x2+y2﹣4x﹣2ay+4a﹣1=0的位置关系不可能是()A.①③B.①④C.②④D.②③二、填空题(共4小题).13.(4分)空间直角坐标系中,已知点A(4,1,2),B(2,3,4),则|AB|=.14.(4分)已知一个几何体的三视图如图所示,则该几何体的侧面积为.15.(4分)已知圆C:x2+y2﹣2mx﹣4y+m2=0(m>0)被直线l:x﹣y+3=0截得的弦长为2,则m=.16.(4分)已知四棱锥的底面是边长为2的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.三、解答题(本大题共3小题,共48分,解答应写出文字说明,证明过程或演算步骤)17.(8分)已知直线l1经过点M(2,1),在两坐标轴上的截距相等且不为0.(1)求直线l1的方程;(2)若直线l2⊥l1,且过点M,求直线l2的方程.18.(10分)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC,BD为圆锥底面的两条直径,M为母线PD上一点,连接MA,MO,MC.(1)若M为PD的中点,证明:PB∥平面MAC;(2)若PB∥平面MAC,证明:M为PD的中点.19.(10分)已知圆C经过点A(0,1),B(2,1),M(3,4).(1)求圆C的方程;(2)设点P为直线l:x﹣2y﹣1=0上一点,过点P作圆C的两条切线,切点分别为E,F.若∠EPF=60°,求点P的坐标.四.(本小题满分10分)说明:请同学们在(20)、(21)两个小题中任选一题作答。
2020-2021学年山东省烟台市高二(上)期中数学试卷+答案解析(附后)
2020-2021学年山东省烟台市高二(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列说法正确的是( )A. 任何三个不共线的向量可构成空间向量的一个基底B. 空间的基底有且仅有一个C. 两两垂直的三个非零向量可构成空间的一个基底D. 直线的方向向量有且仅有一个2.直线的倾斜角是( )A. B. C.D.3.已知,,,若P ,A ,B ,C 四点共面,则( )A. 9B.C. D. 34.已知实数x ,y 满足,那么的最小值为( )A. B.C. 2D. 45.直线的一个方向向量是( )A.B.C.D.6.正四面体ABCD 中,M ,N 分别是BC ,AD 的中点,则直线AM 和CN 夹角的余弦值为( )A.B.C. D.7.棱长为1的正方体中,O 是面的中心,则O 到平面的距离是( )A.B.C. D.8.已知圆C 的方程为,过直线l :上任意一点作圆C 的切线,若切线长的最小值为,则直线l 的斜率为( )A. 4B.C.D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.下列叙述正确的有( )A. 平面直角坐标系中的任意一条直线都有斜率B. 平面直角坐标系中的任意一条直线都有倾斜角C. 若,则D. 任意两个空间向量共面10.古希腊数学家阿波罗尼奥斯著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,,圆C:上有且仅有一个点P满足,则r的取值可以为( )A. 2B. 4C. 6D. 811.如图,棱长为1的正方体中,E,F分别为,的中点,则( )A. 直线与底面ABCD所成的角为B. 平面与底面ABCD夹角的余弦值为C.直线与直线AE的距离为D. 直线与平面的距离为12.设有一组圆:,下列说法正确的是( )A. 这组圆的半径均为1B.直线平分所有的圆C.直线被圆截得的弦长相等D. 存在一个圆与x轴和y轴均相切三、填空题:本题共4小题,每小题5分,共20分。
河南省2020年高二数学上学期期中考试卷附答案题库(共7套)
河南省2020年高二数学上学期期中考试卷(一)(理科)(考试时间120分钟满分150分)一.单项选择题:本大题共12小题,每小题5分,共60分.1.已知函数f(x)=x+sinπx﹣3,则的值为()A.4029 B.﹣4029 C.8058 D.﹣80582.如图:D,C,B三点在地面同一直线上,DC=a,从C,D两点测得A点仰角分别是β,α(α<β),则A点离地面的高度AB等于()A.B.C.D.3.已知函数f(x)=(ax﹣1)(x+b),如果不等式f(x)>0的解集是(﹣1,3),则不等式f(﹣2x)<0的解集是()A.(﹣∞,﹣)∪(,+∞)B.(﹣,)C.(﹣∞,﹣)∪(,+∞)D.(﹣,)4.已知a,b,c分别是△内角A,B,C的对边,且(b﹣c)(sinB+sinC)=(a﹣)•sinA,则角B的大小为()A.30°B.45°C.60° D.120°5.已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+b的取值范围是()A.(4,+∞)B.(2,+∞)C.[2,+∞)D.R6.设x,y满足约束条件,若目标函数的最大值为2,则的图象向右平移后的表达式为()A. B.C.y=sin2x D.7.已知等差数列{a n}的前n项和为S n,a2=4,S10=110,则的最小值为()A.7 B.8 C. D.8.设x,y∈R,a>1,b>1,若a x=b y=2.2a+b=8,则的最大值为()A.2 B.3 C.4 D.log239.若目标函数z=ax+by(a>0,b>0)满足约束条件且最大值为40,则的最小值为()A. B.C.1 D.410.设数列{a n}的前n项和为S n,且a1=1,{S n+na n}为常数列,则a n=()A.B. C.D.11.设等差数列{a n}的前n项和为S n,且满足S19>0,S20<0,则,,,…,中最大项为()A. B. C.D.12.已知等差数列{a n}的前n项和为S n,向量=(n,),=(m,),=(k,)(n,m,k∈N*),且=λ•+μ•,则用n、m、k表示μ=()A.B.C.D.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中横线上.13.若关于x的不等式|ax﹣2|<3的解集为{x|﹣<x<},则a=.14.设S n是数列{a n}的前n项和(n∈N*),若a1=1,S n﹣1+S n=3n2+2(n≥2),则S101=.15.设S n为数列{a n}的前n项之和,若不等式n2a n2+4S n2≥λn2a12对任何等差数列{a n}及任何正整数n恒成立,则λ的最大值为.16.△ABC中,角A,B,C所对的边分别为a,b,c,下列命题正确的是(写出正确命题的编号).①总存在某内角α,使cosα≥;②若AsinB>BsinA,则B>A.③存在某钝角△ABC,有tanA+tanB+tanC>0;④若2a+b+c=,则△ABC的最小角小于;⑤若a<tb(0<t≤1),则A<tB.三.解答题:本大题共6小题,共70分.17.(10分)设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a,b∈M.(Ⅰ)证明:|a+b|<;(Ⅱ)比较|1﹣4ab|与2|a﹣b|的大小.18.(12分)在△ABC中,内角A,B,C所对的边长分别为a,b,c,tan.(Ⅰ)求角C的大小;(Ⅱ)已知△ABC不是钝角三角形,且c=2,sinC+sin(B﹣A)=2sin2A,求△ABC的面积.19.(12分)已知a>0,b>0,a+b=1.(Ⅰ)求的最小值.(Ⅱ)求证:.20.(12分)已知数列{a n},{b n},{c n}满足(a n+1﹣a n)(b n+1﹣b n)=c n(n∈N*).(1)若{b n]为等差数列,b1=c1=2,a n=2n,求数列{b n}的前n项和S n;(2)设c n=2n+n,a n=.当b1=1时,求数列{b n]的通项公式.21.(12分)f(x)=ax2+bx+c(a≠0).(Ⅰ)f(﹣1)=0且任意x∈R,x≤f(x)≤,求f(x);(Ⅱ)若|f(x)|<1的解集(﹣1,3),求a的范围.22.(12分)已知数列{a n}、{b n}中,对任何正整数n都有:a1b n+a2b n+a3b n﹣2…+a n﹣1b2+a n b1=2n+1﹣n﹣2.﹣1(1)若数列{a n}是首项和公差都是1的等差数列,求b1,b2,并证明数列{b n}是等比数列;(2)若数列{b n}是等比数列,数列{a n}是否是等差数列,若是请求出通项公式,若不是请说明理由;(3)若数列{a n}是等差数列,数列{b n}是等比数列,求证: + +…+<.参考答案一.单项选择题:1.D2.A3.A.4.A.5.B.6.C.7.D8.B.9.B.10.B.11.C12.C.二.填空题:13.答案为:﹣3.14.答案为:15451.15.答案为:.16.答案为:①④⑤三.解答题:17.解:(Ⅰ)记f(x)=|x﹣1|﹣|x+2|=,由﹣2<﹣2x﹣1<0解得﹣<x<,则M=(﹣,).…(3分)∵a、b∈M,∴|a|<,|b|<,∴|a+b|≤|a|+|b|<.…(6分)(Ⅱ)由(Ⅰ)得a2<,b2<.因为|1﹣4ab|2﹣4|a﹣b|2=(1﹣8ab+16a2b2)﹣4(a2﹣2ab+b2)=(4a2﹣1)(4b2﹣1)>0,…(9分)所以|1﹣4ab|2>4|a﹣b|2,故|1﹣4ab|>2|a﹣b|.…(10分)18.解:(Ⅰ)在△ABC中,内角A,B,C所对的边长分别为a,b,c,tan,得到,所以,所以sinC=,又C∈(0,π),所以C=或者;(Ⅱ)∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sinBcosA,而2sin2A=4sinAcosA∴由sinC+sin(B﹣A)=2sin2A,得sinBcosA=2sinAcosA当cosA=0时,∠A=,可得b==2,可得三角△ABC的面积S=bc=;当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a…①,∵c=2,∠C=60°,c2=a2+b2﹣2abcosC∴a2+b2﹣ab=12…②,联解①②得a=2,b=4;∴△ABC的面积S=absinC=×2×4×sin60°=2.19.证明:(Ⅰ)∵.∵,∵=,令,∵,;{t1<t2t1<t2,,∵t1﹣t2<0,t1t2﹣2<0,∴y1﹣y2>0,∴y在上是减函数,∴;(Ⅱ)∵由(Ⅰ)20.解:(1)记数列{b n]的公差为d,依题意,(a2﹣a1)(b2﹣b1)=c1,∴(4﹣2)d=2,即d=1,∴b n=2+(n﹣1)=n+1,∴S n==;(2)∵a n=,∴a n+1﹣a n=﹣=(﹣1)n+1,∵c n=2n+n,∴b n+1﹣b n==(﹣1)n+1•(2n+n),∴b n﹣b n﹣1=(﹣1)n•(2n﹣1+n﹣1)(n≥2),b n﹣1﹣b n﹣2=(﹣1)n﹣1•(2n﹣2+n﹣2),b3﹣b2=(﹣1)3•(22+2),b2﹣b1=(﹣1)2•(21+1),当n=2k时,以上各式相加得:b n﹣b1=(2﹣22+23﹣…﹣2n﹣2+2n﹣1)+[1﹣2+3﹣…﹣(n﹣2)+(n﹣1)]=+=+,∴b n=b1++=++;当n=2k﹣1时,b n=b n+1﹣(﹣1)n+1(2n+n)=++﹣2n﹣n=﹣﹣+;综上所述,b n=.21.解:(Ⅰ)f(﹣1)=0,a﹣b+c=0,又x=1,1≤f(1)≤1,∴f(1)=1即a+b+c=1∴又∵x≤ax2+bx+c恒成立,∴…(4分)(Ⅱ)①a>0,ax2+bx+c<1解集(﹣1,3)且f(x)min>﹣1,∴,∴f(x)=ax2﹣2ax+1﹣3a,∴f(x)min=a﹣2a+1﹣3a>﹣1,∴…(8分)②若a<0,则﹣ax2﹣bx﹣c<1解集(﹣1,3)且f max(x)<1,∴,∴f(x)=ax2﹣2ax﹣3a﹣1,∴f(x)max=a﹣2a﹣3a﹣1<1,∴综上述或…(12分)22.解:(1)b1=1,b2=2,依题意数列{a n}的通项公式是a n=n,故等式即为b n+2b n﹣1+3b n﹣2+…+(n﹣1)b2+nb1=2n+1﹣n﹣2,b n﹣1+2b n﹣2+3b n﹣3+…+(n﹣2)b2+(n﹣1)b1=2n﹣n﹣1,(n≥2),两式相减可得b n+b n﹣1+…+b2+b1=2n﹣1,得b n=2n﹣1,数列{b n}是首项为1,公比为2的等比数列.(2)设等比数列{b n}的首项为b,公比为q,则b n=bq n﹣1,从而有:bq n﹣1a1+bq n﹣2a2+bq n﹣3a3+…+bqa n﹣1+ba n=2n+1﹣n﹣2,又bq n﹣2a1+bq n﹣3a2+bq n﹣4a3+…+ba n﹣1=2n﹣n﹣1(n≥2),故(2n﹣n﹣1)q+ba n=2n+1﹣n﹣2,a n=×2n×n,要使a n+1﹣a n是与n无关的常数,必需q=2,即①当等比数列{b n}的公比q=2时,数列{a n}是等差数列,其通项公式是a n=;②当等比数列{b n}的公比不是2时,数列{a n}不是等差数列.(3)由(2)知a n b n=n•2n﹣1,显然n=1,2时++…+<,当n≥3时++…+=+…+<++…+=1=.河南省2020年高二数学上学期期中考试卷(二)(文科)(考试时间120分钟满分150分)一.单项选择题:本大题共12小题,每小题5分,共60分.1.已知函数f(x)=x+sinπx﹣3,则的值为()A.4029 B.﹣4029 C.8058 D.﹣80582.如图:D,C,B三点在地面同一直线上,DC=a,从C,D两点测得A点仰角分别是β,α(α<β),则A点离地面的高度AB等于()A.B.C.D.3.已知函数f(x)=(ax﹣1)(x+b),如果不等式f(x)>0的解集是(﹣1,3),则不等式f(﹣2x)<0的解集是()A.(﹣∞,﹣)∪(,+∞)B.(﹣,)C.(﹣∞,﹣)∪(,+∞)D.(﹣,)4.已知a,b,c分别是△内角A,B,C的对边,且(b﹣c)(sinB+sinC)=(a﹣)•sinA,则角B的大小为()A.30°B.45°C.60° D.120°5.已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+b的取值范围是()A.(4,+∞)B.(2,+∞)C.[2,+∞)D.R6.设x,y满足约束条件,若目标函数的最大值为2,则的图象向右平移后的表达式为()A. B.C.y=sin2x D.7.已知等差数列{a n}的前n项和为S n,a2=4,S10=110,则的最小值为()A.7 B.8 C. D.8.设x,y∈R,a>1,b>1,若a x=b y=2.2a+b=8,则的最大值为()A.2 B.3 C.4 D.log239.若目标函数z=ax+by(a>0,b>0)满足约束条件且最大值为40,则的最小值为()A. B.C.1 D.410.设数列{a n}的前n项和为S n,且a1=1,{S n+na n}为常数列,则a n=()A.B. C.D.11.设等差数列{a n}的前n项和为S n,且满足S19>0,S20<0,则,,,…,中最大项为()A. B. C.D.12.已知等差数列{a n}的前n项和为S n,向量=(n,),=(m,),=(k,)(n,m,k∈N*),且=λ•+μ•,则用n、m、k表示μ=()A.B.C.D.二.填空题:本大题共4小题,每小题5分,共20分.13.若关于x的不等式|ax﹣2|<3的解集为{x|﹣<x<},则a=.14.设S n是数列{a n}的前n项和(n∈N*),若a1=1,S n﹣1+S n=3n2+2(n ≥2),则S101=.15.已知点G是斜△ABC的重心,且AG⊥BG, +=,则实数λ的值为.16.已知点A(a,b)与点B(1,0)在直线3x﹣4y+10=0的两侧,给出下列说法:①3a﹣4b+10>0;②当a>0时,a+b有最小值,无最大值;③>2;④当a>0且a≠1,b>0时,的取值范围为(﹣∞,﹣)∪(,+∞).其中,所有正确说法的序号是.三.解答题:本大题共6小题,共70分.17.设函数f(x)=|x﹣1|+|x﹣a|.(1)若a=﹣1,解不等式f(x)≥3(2)如果∀x∈R,f(x)≥2,求a的取值范围.18.已知向量=(sinx,),=(cosx,﹣1).(1)当∥时,求cos2x﹣sin2x的值;(2)设函数f(x)=2()•,已知在△ABC中,内角A、B、C 的对边分别为a、b、c,若a=,b=2,sinB=,求f(x)+4cos(2A+)(x∈[0,])的取值范围.19.已知a>0,b>0,a+b=1,则的最小值是.20.已知数列{a n},{b n},{c n}满足(a n+1﹣a n)(b n+1﹣b n)=c n(n∈N*).(1)若{b n]为等差数列,b1=c1=2,a n=2n,求数列{b n}的前n项和S n;(2)设c n=2n+n,a n=.当b1=1时,求数列{b n]的通项公式.21.f(x)=ax2+bx+c(a≠0).(Ⅰ)f(x)=x的二实根x1,x2,且0<x1<x2<对x∈(0,x1),比较f(x)与x1的大小;(Ⅱ)若|f(x)|<1的解集(﹣1,3),求a的范围.22.已知数列{a n}、{b n}中,对任何正整数n都有:a1b n+a2b n﹣1+a3b n+…+a n﹣1b2+a n b1=2n+1﹣n﹣2.﹣2(1)若数列{a n}是首项和公差都是1的等差数列,求b1,b2,并证明数列{b n}是等比数列;(2)若数列{b n}是等比数列,数列{a n}是否是等差数列,若是请求出通项公式,若不是请说明理由.参考答案一.单项选择题:1.D2.A3.A.4.A.5.B.6.C.7.D8.B.9.B.10.B.11.C12.C.二.填空题:13.答案为:﹣3.14.答案为:15451.15.答案为:16.答案为:③④三.解答题:17.解:(1)若a=﹣1,函数f(x)=|x﹣1|+|x﹣a|=|x﹣1|+|x+1|,表示数轴上的x对应点到1、﹣1对应点的距离之和,而﹣1.2和1.5 对应点到1、﹣1对应点的距离之和正好等于3,故不等式f(x)≥3的解集为{x|≤﹣1.5,或x≥1.5}.(2)由于∀x∈R,f(x)≥2,故函数f(x)的最小值为2.函数f(x)=|x﹣1|+|x﹣a|表示数轴上的x对应点到1、a对应点的距离之和,它的最小值为|a﹣1|,即|a﹣1|=2,求得a=3 或a=﹣1.18.解:(1)∵∴∴(2)由正弦定理得,(a<b,即A<B),所以A=∵∴所以19.解:由已知,∴.∴由于f(t)=t+﹣2在上单调递减,∴当且仅当时,取最小值.故答案为:.20.解:(1)记数列{b n]的公差为d,依题意,(a2﹣a1)(b2﹣b1)=c1,∴(4﹣2)d=2,即d=1,∴b n=2+(n﹣1)=n+1,∴S n==;(2)∵a n=,∴a n+1﹣a n=﹣=(﹣1)n+1,∵c n=2n+n,∴b n+1﹣b n==(﹣1)n+1•(2n+n),∴b n﹣b n﹣1=(﹣1)n•(2n﹣1+n﹣1)(n≥2),b n﹣1﹣b n﹣2=(﹣1)n﹣1•(2n﹣2+n﹣2),b3﹣b2=(﹣1)3•(22+2),b2﹣b1=(﹣1)2•(21+1),当n=2k时,以上各式相加得:b n﹣b1=(2﹣22+23﹣…﹣2n﹣2+2n﹣1)+[1﹣2+3﹣…﹣(n﹣2)+(n﹣1)]=+=+,∴b n=b1++=++;当n=2k﹣1时,b n=b n+1﹣(﹣1)n+1(2n+n)=++﹣2n﹣n=﹣﹣+;综上所述,b n=.21.解:(Ⅰ)∵f(x)﹣x=a(x﹣x1)(x﹣x2),∴f(x)=a(x﹣x1)(x﹣x2)+x,∴f(x)﹣x1=a(x﹣x1)(x﹣x2)+(x﹣x1)=(x﹣x1)[a(x﹣x2)+1],∵,∵a>0∴a(x﹣x1)+1>0x﹣x1<0,∴f(x)﹣x1<0∴f(x)<x1…(Ⅱ)①a>0,ax2+bx+c<1,解集(﹣1,3)且f(x)min>﹣1,∴,∴f(x)=ax2﹣2ax+1﹣3a,∴f(x)min=a﹣2a+1﹣3a>﹣1,∴…②若a<0,则﹣ax2﹣bx﹣c<1解集(﹣1,3)且f max(x)<1,∴,∴f(x)=ax2﹣2ax﹣3a﹣1,∴f(x)max=a﹣2a﹣3a﹣1<1,∴综上述或…22.解:(1)证明:依题意数列a n的通项公式是a n=n,n=1时,a1b1=4﹣1﹣2=1;n=2时,a1b2+a2b1=8﹣2﹣2=4,则b1=1,b2=2,故等式即为b n+2b n﹣1+3b n﹣2+…+(n﹣1)b2+nb1=2n+1﹣n﹣2,b n﹣1+2b n﹣2+3b n﹣3+…+(n﹣2)b2+(n﹣1)b1=2n﹣n﹣1(n≥2),两式相减可得b n+b n﹣1+…+b2+b1=2n﹣1,得b n=2n﹣1,对n=1也成立.则数列{b n}是首项为1,公比为2的等比数列.(2)设等比数列{b n}的首项为b,公比为q,则b n=bq n﹣1,从而有:bq n﹣1a1+bq n﹣2a2+bq n﹣3a3+…+bqa n﹣1+ba n=2n+1﹣n ﹣2,又bq n﹣2a1+bq n﹣3a2+bq n﹣4a3+…+ba n﹣1=2n﹣n﹣1(n≥2),故(2n﹣n﹣1)q+ba n=2n+1﹣n﹣2,a n=•2n+•n+,要使a n+1﹣a n是与n无关的常数,必需q=2.即①当等比数列b n的公比q=2时,数列{a n}是等差数列,其通项公式是a n=;②当等比数列b n的公比不是2时,数列{a n}不是等差数列.河南省2020年高二数学上学期期中考试卷(三)(文科)(考试时间120分钟满分150分)一、单项选择题(本大题共12小题,每小题5分,共60分)1.设,是向量,命题“若,则”的逆命题是()A.若,则B.若,则C.若,则 D.若,则2.已知命题p:∀x∈R,sinx≤1,则¬p为()A.∃x∈R,sinx≥1 B.∀x∈R,sinx≥1 C.∃x∈R,sinx>1 D.∀x ∈R,sinx>13.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()A.5、10、15、20、25、30 B.3、13、23、33、43、53C.1、2、3、4、5、6 D.2、4、8、16、32、484.抛物线x=﹣2y2的准线方程是()A.B.C.D.5.如下图,在半径为1的半圆内,放置一个边长为的正方形ABCD,向半圆内任投一点,该点落在正方形内的概率是()A.πB. C.D.2π6.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A. B. C. D.7.执行如图所示的程序框图,运行的结果是4,则输入的x的值可以是()A.2,4或16 B.﹣2,2或4 C.﹣2,2或16 D.﹣2,4或16 8.等轴双曲线C的中心在原点,右焦点与抛物线的焦点重合,则C的实轴长为()A.B.2C.4 D.89.设F1、F2是椭圆E: +=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.10.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则△AOF的面积为()A. B.C.D.211.现有五个球分别记为A,C,J,K,S,随机放进三个盒子,每个盒子只能放一个球,则K或S在盒中的概率是()A. B.C. D.12.已知椭圆C: +=1(a>b>0)的离心率为,与双曲线x2﹣y2=1的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为()A. +=1 B. +=1 C. +=1 D. +=1二、填空题(每小题5分,共20分)13.已知某公司准备投资一个项目,为慎重起见,该公司提前制定了两套方案,并召集了各部门的经理对这两套方案进行研讨,并对认为合理的方案进行了投票表决,统计结果如茎叶图所示,试说明方案比较稳妥的是.14.若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为.15.命题“∀x∈R,ax2﹣2ax+3>0恒成立”是假命题,则a的取值范围是.16.双曲线=1(a>0,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D,则该双曲线的离心率e=.三、解答题:(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.)17.已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个.(I)从中任取1个球,求取得红球或黑球的概率;(II)列出一次任取2个球的所有基本事件.(III)从中取2个球,求至少有一个红球的概率.18.(1)已知命题p:(x+2)(x﹣10)≤0,命题q:1﹣m≤x≤1+m,m>0,若q是p的充分不必要条件,求实数m的取值范围.(2)已知命题p:|a|<2,命题q:一次函数f(x)=(2﹣2a)x+1是增函数,若p∨q为真,p∧q为假,求实数a的取值范围.19.已知三点P(5,2)、F1(﹣6,0)、F2(6,0).(Ⅰ)求以F1、F2为焦点且过点P的椭圆标准方程;(Ⅱ)设点P、F1、F2关于直线y=x的对称点分别为P′、F1′、F2′,求以F1′、F2′为焦点且过点P′的双曲线的标准方程.20.某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b)(a,b)其中a,分别表示甲组研发成功和失败,b,分别表示乙组研发成功和失败.(Ⅰ)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(Ⅱ)若该企业安排甲、乙两组各自研发一样的产品,试估计恰有一组研发成功的概率.21.如图,已知圆,Q是圆上一动点,AQ 的垂直平分线交直线CQ于点M,设点M的轨迹为E.(Ⅰ)求轨迹E的方程;(Ⅱ)过点A作倾斜角为的直线l交轨迹E于B,D两点,求|BD|的值.22.在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.(Ⅰ)求抛物线C的方程;(Ⅱ)过点F的直线交轨迹C于A,B两点,交抛物线C的准线l于点M,已知,,求λ1+λ2的值.参考答案一、单项选择题1.D2.C3.B4.D.5.C.6.A.7.C.8.C.9.C.10.B.11.D12.D.二、填空题13.解:首先将茎叶图的数据还原:第一套方案:8 25 20 24 38 41 55 58 64 67 66 73 72 70,第二套方案:6 5 12 14 19 19 21 36 37 42 42 45 54 61,第一套方案在14个部门的经理得票数为681票,第二套方案在14个部门的经理得票数为413票,第一套方案要比第二套方案得票率高得多,故第一套方案比较稳妥,故答案为:第一套方案14.解:由椭圆+=1,可得a2=6,b2=2,∴c==2,∴右焦点F(2,0).由抛物线y2=2px可得焦点.∴=2,解得p=4.故答案为:4.15.解:命题“ax2﹣2ax+3>0恒成立”是假命题,即“∃x∈R,ax2﹣2ax+3≤0成立”是真命题①.当a=0时,①不成立,当a≠0 时,要使①成立,必须a<0或,∴a<0或a≥3故答案为:(﹣∞,0)∪[3,+∞).16.解:∵双曲线的虚轴两端点为B1、B2,两焦点为F1,F2.∴F1(﹣c,0),B1(0,b),可得直线F1B1的方程为y=(x+c),即bx﹣cy+bc=0.∵双曲线的两顶点为A1、A2,以A1A2为直径的圆内切于菱形F1B1F2B2,∴点O到直线F1B1的距离等于半径,即=a,化简得b2c2=a2(b2+c2),∵b2=c2﹣a2,∴上式化简为(c2﹣a2)c2=a2(2c2﹣a2),整理得c4﹣3a2c2+a4=0.两边都除以a4,得e4﹣3e2+1=0,解之得e2=∵双曲线的离心率e>1,∴e2=,可得e==故答案为:三、解答题:17.解:(Ⅰ)从6只球中任取1球得红球有2种取法,得黑球有3种取法,得红球或黑球的共有2+3=5种不同取法,任取一球有6种取法,所以任取1球得红球或黑球的概率得,(II)将红球编号为红1,红2,黑球编号为黑1,黑2,黑3,则一次任取2个球的所有基本事件为:红1红2红1黑1红1黑2红1黑3红1白红2白红2黑1红2黑2红2黑3黑1黑2黑1黑3黑1白黑2黑3黑2白黑3白(III)由(II)知从6只球中任取两球一共有15种取法,其中至少有一个红球的取法共有9种,所以其中至少有一个红球概率为.18.解:(1)命题p:(x+2)(x﹣10)≤0,∴﹣2≤x≤10,命题q:1﹣m≤x≤1+m,m>0∴1﹣m≤x≤1+m,∵q是p的充分不必要条件,p:x∈[﹣2,10],q:x∈[1﹣m,1+m]∴[1﹣m,1+m]⊂[﹣2,10],∴,解得:,当1﹣m=﹣2时,m=3,[﹣2,4]⊂[﹣2,10],∴m=3成立,∴实数m的取值范围是[3,+∞);(2)若命题p:|a|<2,则﹣2<a<2,命题q:一次函数f(x)=(2﹣2a)x+1是增函数,则2﹣2a>0,解得:a<1,若p∨q为真,p∧q为假,则p,q一真一假,p真q假时:,解得:1≤a<2,p假q真时:,解得:a≤﹣2,综上:a∈(﹣∞,﹣2]∪[1,2).19.解:(1)由题意可设所求椭圆的标准方程为(a>b>0),其半焦距c=6∴,b2=a2﹣c2=9.所以所求椭圆的标准方程为(2)点P(5,2)、F1(﹣6,0)、F2(6,0)关于直线y=x的对称点分别为点P′(2,5)、F1′(0,﹣6)、F2′(0,6).设所求双曲线的标准方程为由题意知,半焦距c1=6,,b12=c12﹣a12=36﹣20=16.所以所求双曲线的标准方程为.20.解:(Ⅰ)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,则=,==乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1则=,==.因为所以甲的研发水平高于乙的研发水平.(Ⅱ)记E={恰有一组研发成功},在所抽到的15个结果中,恰有一组研发成功的结果是(a,),(,b),(a,),(,b),(a,),(a,),(,b)共7个,故事件E发生的频率为,将频率视为概率,即恰有一组研发成功的概率为P(E)=.21.解:(Ⅰ)由题意得|MC|﹣|MA|=|MC|﹣|MQ|=|CQ|=2<2,∴轨迹E是以A,C为焦点,实轴长为2的双曲线的左支…∴轨迹E的方程为=1(x)…(Ⅱ)设切线l的方程为y=x﹣,代入=1,消元得x2﹣4x ﹣8=0.设B,D两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=4,x1x2=﹣8所以|BD|==4.22.解:(Ⅰ)∵⊙Q过M、F、O三点,∴Q一定在线段FO的中垂线上,∵抛物线x2=2py的焦点F(0,),O(0,0)∴FO的中垂线为:y=,设Q(x Q,y Q),得y Q=,结合抛物线的定义,得Q到抛物线C的准线的距离为﹣(﹣)=,解之得p=2由此可得,抛物线C的方程为x2=4y;(Ⅱ)由已知得直线l的斜率一定存在,由抛物线x2=4y的焦点F为(0,1),准线方程为y=﹣1,所以可设l:y=kx+1,则M点坐标为(﹣,﹣1),设直线l交抛物线于A(x1,y1),B(x2,y2),由直线与抛物线方程联立,可得x2﹣4kx﹣4=0∴x1+x2=4k,x1•x2=﹣4,又由,,∴(x1+,y1+1)=λ1(﹣x1,1﹣y1),∴x1+=﹣λ1x1,∴λ1=﹣﹣1,同理λ2=﹣﹣1,∴λ1+λ2=﹣﹣1﹣﹣1=﹣﹣2=0.河南省2020年高二数学上学期期中考试卷(四)(文科)(考试时间120分钟满分150分)一、单项选择题:(本大题共12小题,每小题5分,满分60分)1.△ABC中,A=45°,B=30°,a=10,则b=()A.5B.10C.10D.52.下列命题中,正确的是()A.若a>b,c>d,则a>c B.若ac>bc,则a>bC.若<,则a<b D.若a>b,c>d,则ac>bd3.设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣75.若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2ab B. C.D.6.数列{a n}中,a1=1,a2=2,a n+2=a n+1﹣a n,则{a n}的前51项和S51=()A.1 B.2 C.3 D.47.在△ABC中,b=3,c=3,B=30°,则a的值为()A.3 B.23 C.3D.28.已知0<x<1,a=2,b=1+x,c=,则其中最大的是()A.a B.b C.c D.不确定9.在△ABC中,cos2B>cos2A是A>B的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件10.实数x,y满足不等式组,则ω=的取值范围是()A.[﹣,]B.[﹣1,] C.[﹣1,1)D.[﹣,1)11.已知等差数列{a n}的前n项和为S n,若,且A、B、C三点共线(该直线不过原点O),则S200=()A.100 B.101 C.200 D.20112.设a>0,b>0,且不等式++≥0恒成立.则实数k的最小值等于()A.4 B.0 C.﹣2 D.﹣4二、填空题:(共4小题,每小题5分,共20分)13.在等比数列{a n}中,若a4=5,a8=6,则a2a10=.14.不等式﹣6x2﹣x+2≤0的解集是.15.已知x>0,y>0,x+2y=16,则xy的最大值为.16.设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为6,则的最小值为.三、解答题:(本题共6小题,共70分.)17.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.18.在△ABC中,角A、B、C所对的边分别为a、b、c,且a=2,cosB=.(1)若b=4,求sinA的值;(2)若△ABC的面积S△ABC=4,求b、c的值.19.设等差数列{a n}第10项为24,第25项为﹣21.(1)求这个数列的通项公式;(2)设S n为其前n项和,求使S n取最大值时的n值.20.关于x的不等式:x2﹣(1+a)x+a>0.(1)当a=2时,求不等式的解集;(2)当a∈R时,解不等式.21.在△ABC中,角A、B、C的对边分别为a、b、c,面积为S,已知acos2+ccos2=b(1)求证:a、b、c成等差数列;(2)若B=,S=4求b.22.已知{a n}是公比为q的等比数列,且a1,a3,a2成等差数列.(Ⅰ)求q的值;(Ⅱ)设{b n}是以2为首项,q为公差的等差数列,其前n项和为S n,当n≥2时,比较S n与b n的大小,并说明理由.参考答案一、单项选择题1.A.2.C3.A.4.D5.D6.D7.C.8.C.9.C10.D.11.A12.D.二、填空题13.答案为:30.14.答案为:{x|x≥,或x≤﹣}.15.答案为32.16.答案为:三、解答题17.解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.18.解:(1)∵cosB=>0,且0<B<π,∴sinB==.由正弦定理得=,∴sinA===.(2)∵S△ABC=acsinB=×=4,∴c=5.由余弦定理得b2=a2+c2﹣2accosB=22+52﹣2×2×5×=17,∴b=.19.解:(1)∵等差数列{a n}第10项为24,第25项为﹣21,∴,解得a1=51,d=﹣3,∴a n=51+(n﹣1)×(﹣3)=﹣3n+54.(2)∵a1=51,d=﹣3,∴S n=51n+=﹣+=﹣(n﹣)2+,∴n=16,或n=17时,S n取最大值.20.解:(1)当a=2时,原不等式化为x2﹣3x+2>0,即(x﹣1)(x ﹣2)>0,解得x>2或x<1.∴原不等式的解集为{x|x>2或x<1}.(2)原式等价于(x﹣a)(x﹣1)>0,当a>1时,解得x>a或x<1,故解集是{x|x>a或x<1};当a=1时,不等式化为(x﹣1)2>0,故其解集是{x|x≠1};当a<1时,解得x>1或x<a,故解集是{x|x>1或x<a}.21.解:(1)由正弦定理得:sinAcos2+sinCcos2=sinB,即sinA•+sinC•=sinB,∴sinA+sinC+sinAcosC+cosAsinC=3sinB,即sinA+sinC+sin(A+C)=3sinB,∵sin(A+C)=sinB,∴sinA+sinC=2sinB,由正弦定理化简得:a+c=2b,∴a,b,c成等差数列;(2)∵S=acsinB=ac=4,∴ac=16,又b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac,由(1)得:a+c=2b,∴b2=4b2﹣48,即b2=16,解得:b=4.22.解:(1)由题意可知,2a3=a1+a2,即a(2q2﹣q﹣1)=0,∴q=1或q=﹣;(II)q=1时,S n=2n+=,∵n≥2,∴S n﹣b n=S n﹣1=>0当n≥2时,S n>b n.若q=﹣,则S n=,同理S n﹣b n=.∴2≤n≤9时,S n>b n,n=10时,S n=b n,n≥11时,S n<b n.河南省2020年高二数学上学期期中考试卷(五)(文科)(考试时间120分钟满分150分)一、单项选择题:本大题共12小题,每小题5分,共60分.1.不等式≥0的解集为()A.(﹣1,2]B.[﹣1,2]C.(﹣∞,﹣1)∪(2,+∞)D.(﹣∞,﹣1]∪(2,+∞)2.已知命题p:“∀x∈R,x+1≥0”的否定是“∀x∈R,x+1<0”;命题q:函数y=x﹣3是幂函数,则下列命题为真命题的是()A.p且q B.p或q C.¬q D.p且(¬q)3.已知在等差数列{a n}中,a2=6,a4=14,则数列{a n}前10项的和为()A.100 B.400 C.380 D.2004.若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形5.“a=﹣5”是“直线y=x+4与圆(x﹣a)2+(y﹣3)2=8相切”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数f(x)=(x2﹣1)2+2的极值点是()A.x=1 B.x=﹣1C.x=1或x=﹣1或x=0 D.x=07.已知数列{a n}满足log3a n+2=log3a n+1(n∈N*)且a2+a4+a6=9,则log(a5+a7+a9)的值是()A.﹣8 B.﹣ C.8 D.8.已知曲线+=1(k∈R)表示焦点在y轴上的椭圆,则k的取值范围是()A.(﹣∞,1)∪(3,+∞)B.(﹣∞,3)C.(1,+∞)D.(1,3)9.若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则n﹣m=()A.﹣5 B.﹣6 C.5 D.610.抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.811.已知实数4,m,9构成一个等比数列,则圆锥曲线的离心率为()A.B.C.或D.或712.已知定义在R上的函数f(x)、g(x)满足f(x)=a x g(x),且f′(x)g(x)<f (x)g′(x),且+=,若有穷数列{}(n∈N*)的前n项和等于,则n等于()A.3 B.4 C.5 D.6二、填空题:本大题共4个小题,每小题5分.、共20分.13.已知函数f(x)=lnx﹣f′(﹣1)x2+3x﹣4,则f′()=______.14.若点(2,1)是抛物线y2=2px(p>0)的一条弦的中点,且这条弦所在的直线的斜率为1,则p的值是______.15.若双曲线﹣=1(a>0,b>0)的一条渐近线的倾斜角为,离心率为e,最小值为______.16.已知函数f(x)=x3+ax2+2bx+c,函数f(x)在区间(0,1)内取极大值,在区间(1,2)内取极小值,则u=的取值范围是______.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.18.在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.19.已知函数f(x)=﹣2x2+lnx,其中a为正常数.(1)若a=1,求函数f(x)的单调区间;(2)若函数f(x)在区间[2,4]上为单调递增函数,求实数a的取值范围.20.设抛物线C:y2=4x,F为C的焦点,过F的直线L与C相交于A、B两点.(1)设L的斜率为2,求|AB|的大小;(2)求证:•是一个定值.21.已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.22.如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且,.(1)求椭圆的标准方程;(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F 恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.参考答案一、单项选择题1.A.2.B 3.D.4.C 5.A.6.C.7.A.8.D.9.B.10.C.11.C.12.C.二、填空题13.解:∵f(x)=lnx﹣f′(﹣1)x2+3x﹣4,∴f′(x)=﹣2f′(﹣1)x+3∴f′(﹣1)=﹣1+2f′(﹣1)+3,∴f′(﹣1)=﹣2,∴f′()=2﹣2×(﹣2)×+3=7,故答案为:7.14.解:设A(x1,y1),B(x2,y2),则y12=2px1,y22=2px2,两式相减,得(y1﹣y2)(y1+y2)=2p(x1﹣x2),依题意x1≠x2,∴k AB==1,于是y1+y2=2p=2,因此p=1.故答案为:1.15.解:双曲线﹣=1的渐近线方程为y=±x,由题意可得﹣=tan=﹣,即有b=a,c=2a,e==2,则==(a+)≥•2=.当且仅当a=2时,取得最小值.故答案为:.16.解:f(x)=x3+ax2+2bx+c,∴f′(x)=x2+ax+2b,∵函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值∴f′(x)=x2+ax+2b=0在(0,1)和(1,2)内各有一个根f′(0)>0,f′(1)<0,f′(2)>0即,画出满足条件的平面区域,如图示:,由,解得:A(﹣3,1),则u=的几何意义表示平面区域内的点与(1,2)的直线的斜率,而K AB=,K BC=1,故u∈,故答案为:.三、解答题17.解:(I)设等差数列{a n}的公差为d∵a7=4,a19=2a9,∴解得,a1=1,d=∴=(II)∵==∴s n===18.解:(Ⅰ)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故.又由正弦定理得.19.解:(1)若a=1,则f(x)=3x﹣2x2+ln x,该函数的定义域为(0,+∞),f′(x)=﹣4x+3==(x>0).…当x∈(0,1),f′(x)>0时,函数f(x)=3x﹣2x2+ln x单调递增.当x∈(1,+∞),f′(x)<0时,函数f(x)=3x﹣2x2+ln x单调递减.故函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).…(2)f′(x)=﹣4x+,若函数f(x)在区间[2,4]上为单调递增函数,即在区间[2,4]上,f′(x)=﹣4x+≥0,即﹣4x+≥0在[2,4]上恒成立.…即≥4x﹣.令h(x)=4x﹣,因为函数h(x)在[2,4]上单调递增,所以,即≥,…解之得,∴实数a的取值范围为.…20.解:(1)依题意得F(1,0),∴直线L的方程为y=2(x﹣1),设直线L与抛物线的交点A(x1,y1),B(x2,y2),联立消去y整理得x2﹣3x+1=0,∴x1+x2=3,x1x2=1.法一:|AB|==•=.法二:|AB|=|AF|+|BF|=x1+x2+p=3+2=5.(2)证明:设直线L的方程为x=ky+1,设直线L与抛物线的交点A(x1,y1),B(x2,y2),由消去x整理得y2﹣4ky﹣4=0.∴y1+y2=4k,y1y2=﹣4,∵═(x1,y1)•(x2,y2)=x1x2+y1y2=(ky1+1)(ky2+1)+y1y2=k2y1y2+k(y1+y2)+1+y1y2=﹣4k2+4k2+1﹣4=﹣3.∴是一个定值为﹣3.21.解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∴g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.22.解.(1)如图建系,设椭圆方程为,则c=1又∵即(a+c)•(a﹣c)=1=a2﹣c2,∴a2=2故椭圆方程为(2)假设存在直线l交椭圆于P,Q两点,且F恰为△PQM的垂心,则设P(x1,y1),Q(x2,y2),∵M(0,1),F(1,0),故k PQ=1,于是设直线l为y=x+m,由得3x2+4mx+2m2﹣2=0,又F为△PQM的垂心,则MP⊥FQ,故又y i=x i+m(i=1,2)得x1(x2﹣1)+(x2+m)(x1+m﹣1)=0即2x1x2+(x1+x2)(m﹣1)+m2﹣m=0由韦达定理得解得或m=1(舍)经检验符合条件,此时直线l的方程为y=x﹣.河南省2020年高二数学上学期期中考试卷(六)(考试时间120分钟满分150分)一、单项选择题:本大题共12小题,每小题5分,共60分.1.已知集合M={x|﹣4≤x≤7},N={x|x2﹣x﹣12>0},则M∩N为()A.{x|﹣4≤x<﹣3或4<x≤7} B.{x|﹣4<x≤﹣3或4≤x<7}C.{x|x≤﹣3或x>4} D.{x|x<﹣3或x≥4}2.已知等比数列{a n}的公比为正数,且a3•a9=2a52,a2=1,则a1=()A.B.C.D.23.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9=()A.63 B.45 C.36 D.274.有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题;其中真命题为()A.①②B.①③ C.②③ D.③④5.在△ABC中,“A>30°”是“sinA>”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也必要条件6.设命题P:∃n∈N,n2>2n,则¬P为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n7.在△ABC中,a=2,b=2,B=,则A等于()A.B.C.或D.或8.若x、y满足条件,则z=﹣2x+y的最大值为()A.1 B.﹣C.2 D.﹣59.已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.910.已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C 的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=111.已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,若△ABF2为正三角形,则该椭圆的离心率e是()A.B.C.D.12.若x,y∈R+,且2x+8y﹣xy=0,则x+y的最小值为()A.12 B.14 C.16 D.18二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上。
海南中学2020-2021学年高二上学期期中考试 数学试题(含答案)
海南中学2020-2021学年高二上学期期中考试化学试题(本试卷总分150分,总时量120分钟)一、单项选择题:本题共8小题,每小题5分,共40分. 1. 椭圆22:416C x y +=的焦点坐标为( )A .(±B .(±C .(0,±D .(0,±2. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )A .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==3. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )A .顶点B .焦点C .离心率D .长轴和短轴4. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( ) A .1-或3B .1或3-C .3-D .15. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )A .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<6. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A B . C .12 D .7. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( ) A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=8. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )A .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( ) A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=10. 已知直线:10l y -+=,则下列结论正确的是( )A .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过2)与直线l 40y --=11. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( ) A .1y x =+B .2y =C .430x y -=D .210x y -+=12. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )A .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当m =时,ABF 为直角三角形D .当1m =时,ABF三、填空题:本题共4小题,每小题5分,共20分.13. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .14. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .15. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .16. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程.18. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)点(,)P x y 在轨迹C 上,求2yx -的最小值.19. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小.20. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且45||MN =,求m 的值.21. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD⊥平面ABCD.(2)在下列①②③三个条件中任选一个,补充在下面问题处,若问题中的四棱锥存在,求AB的长度;若问题中的四棱锥不存在,说明理由.①CF与平面PCD所成角的正弦值等于15;②DA与平面PDF所成角的正弦值等于34;③P A与平面PDF所成角的正弦值等于3.问题:若点F是AB的中点,是否存在这样的四棱锥,满足?(注:如果选择多个条件分别解答,按第一个解答计分.)22.(12分)已知椭圆2222:1(0)x yM a ba b+=>>的离心率为223,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+42.(1)求椭圆M的方程;(2)设直线:l x ky m=+与椭圆M交于A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.参考答案一、单项选择题:本题共8小题,每小题5分,共40分. 23. 椭圆22:416C x y +=的焦点坐标为( )CA .(±B .(±C .(0,±D .(0,±24. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )DA .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==25. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )CA .顶点B .焦点C .离心率D .长轴和短轴26. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( )B A .1-或3B .1或3-C .3-D .127. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )DA .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<28. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )AA B . C .12 D .29. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( )A A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=30. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )BA .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 31. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( )ABD A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=32. 已知直线:10l y -+=,则下列结论正确的是( )CDA .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过点2)且与直线l 40y --=33. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( )BC A .1y x =+B .2y =C .430x y -=D .210x y -+=34. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )ACDA .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当2m =时,ABF 为直角三角形D .当1m =时,ABF【解析】设椭圆的左焦点为F ',则||||AF BF '=,所以||||||||AF BF AF AF '+=+为定值6,A 正确;ABF ∆的周长为||||||AB AF BF ++,因为||||AF BF +为定值6,易知||AB 的范围是(0,6),所以ABF ∆的周长的范围是(6,12),B 错误;将y 与椭圆方程联立,可解得(A ,B ,又易知F ,所以2(60AF BF =+=,所以ABF ∆为直角三角形,C 正确;将1y =与椭圆方程联立,解得(A ,B ,所以112ABF S ∆=⨯=D 正确.三、填空题:本题共4小题,每小题5分,共20分.35. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .336. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .21537. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .34(,0,)55--38. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .【解析】直线()()21340m x m y m +-+--=化为 (3)240m x y x y --+--=,令30{ 240x y x y --=--=,解得1{2x y -=.=∴直线()()21340m x m y m +-+--=过定点12Q -(,). ∴点M 在以PQ 为直径的圆上,圆心为线段PQ 的中点11C --(,)线段MN 长度的最大值5CN r =+==线段MN 长度的最大值5CN r =-==故答案为5⎡+⎣.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 39. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程. 解:(1)设线段BC 的中点为D . 因为B(6,−7),C(0,−3), 所以BC 的中点D(3,−5),所以BC 边上的中线所在直线的方程为y−0−5−0=x−43−4, 即5x −y −20=0.(2)因为B(6,−7),C(0,−3), 所以BC 边所在直线的斜率k BC =−3−(−7)0−6=−23,所以BC 边上的高所在直线的斜率为32,所以BC 边上的高所在直线的方程为y =32(x −4), 即3x −2y −12=0.40. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)求2yx -的最小值. 解:(1)设动点M(x,y), 根据题意得,√(x+1)2+y 2√(x−2)2+y 2=12,化简得,(x +2)2+y 2=4,所以动点M 的轨迹方程为(x +2)2+y 2=4. (2)设过点(2,0)的直线方程为y =k(x −2), 圆心到直线的距离d =√k 2+1≤2,解得−√33≤k ≤√33, 所以yx−2的最小值为−√33.41. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小. (1)证明:∵F,G 分别为PB,EB 中点,∴FG PE ∥,,FG PED PE PED ⊄⊂平面平面,FG PED ∴平面∥. (2)解:EA ABCD EA PD ⊥平面,∥,PD ABCD ∴⊥平面. 又ABCD 四边形为矩形,,,DA DC DP ∴两两垂直.故以D 为坐标原点,DA,DC,DP 所在直线分别为x,y,z 轴建立空间直角坐标系,、则1(0,0,2),(2,2,0),(0,2,0),(2,0,1),(1,1,1),(2,1,),(0,1,1)2P B C E F G H ,(0,2,2),(2,0,0)PC CB =-=设平面PBC 的法向量为(,,)n x y z =,则0n PC n CB ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x -=⎧⎨=⎩,所以可取(0,1,1)n =,同理可取平面FGH 的法向量为(0,1,0)m =,设平面FGH 与平面PBC 的夹角为θ, 则||2cos ||||m n m n θ⋅==⋅,又[0,]2πθ∈,∴平面FGH 与平面PBC 夹角为4π.42. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且||MN =,求m 的值. 解:(1)把圆x 2+y 2−8x −12y +36=0, 化为标准方程得(x −4)2+(y −6)2=16, 所以圆心坐标为(4,6),半径为R =4,则两圆心间的距离d =√(42+(6−2)2=5, 因为两圆的位置关系是外切,所以d =R +r ,即4+√5−m =5,解得m =4, 故m 的值为4;(2)因为圆心C 的坐标为(1,2), 所以圆心C 到直线l 的距离d =√5=√55, 所以(√5−m)2=(12|MN|)2+d 2=(2√55)2+(√55)2,即5−m =1,解得m =4, 故m 的值为4.43. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD ⊥平面ABCD .(2)在下列①②③三个条件中任选一个,补充在下面问题 处,若问题中的四棱锥存在,求AB 的长度;若问题中的四棱锥不存在,说明理由.①CF 与平面PCD 所成角的正弦值等于15; ②DA 与平面PDF 所成角的正弦值等于34; ③P A 与平面PDF 所成角的正弦值等于3. 问题:若点F 是AB 的中点,是否存在这样的四棱锥,满足 ? (注:如果选择多个条件分别解答,按第一个解答计分.) (1)证明:=90PAB ∠,AB PA ∴⊥, ∵底面ABCD 为矩形,∴AB AD ⊥, 又,PA AD PAD ⊂平面,且PAAD A =,AB PAD ∴⊥平面,又AB ABCD ⊂平面,故平面PAD ⊥平面ABCD.(2)解:取AD 中点为O ,∵4PA PD AD ===,∴OA ⊥OP ,以O 为原点,OA,OP 所在直线分别为x,z 轴建立空间直角坐标系,设2(0)AB a a =>, 则(1,0,0),(1,0,0),(0,0,3),(1,2,0),(1,2,0),(1,,0)A D P B a C a F a --, 选①:(2,,0),(0,2,0),(1,0,3)CF a DC a DP =-==,设平面PCD 的法向量为(,,)n x y z =,则00n DC n DP ⎧⋅=⎪⎨⋅=⎪⎩,即2030ay x z =⎧⎪⎨+=⎪⎩,∴可取(3,0,1)n =-,设CF 与平面PCD 所成角为θ,则2||315sin 5||||4CF n CF n aθ⋅===⋅+,解得1a =, ∴符合题意的四棱锥存在,此时22AB a ==. 选②:(2,0,0),(1,0,3)(2,,0)DA DP DF a ===,,设平面PDF 的法向量为(,,)n x y z =,则00n DP n DF ⎧⋅=⎪⎨⋅=⎪⎩,即3020x z x ay ⎧+=⎪⎨+=⎪⎩,∴可取(3,)n a a =--,设DA 与平面PDF 所成角为θ, 则||3sin 4||||2DA n DA n θ⋅===⋅,解得3a =, ∴符合题意的四棱锥存在,此时26AB a ==. 选③:易知P A 与平面PDF 所成角小于APD ∠,设P A 与平面PDF 所成角为θ,则sin sin sin32APD πθ<∠==,故不存在符合题意的四棱锥.44. (12分)已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为(1)求椭圆M 的方程;(2)设直线:l x ky m =+与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的 右顶点C ,求m 的值.解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+4√2, 所以2a +2c =6+4√2,又椭圆的离心率为2√23, 即c a =2√23, 所以c =2√23a , 所以a =3,c =2√2.所以b =1, 椭圆M 的方程为x 29+y 2=1;(Ⅱ)由{x =ky +m x 29+y 2=1消去x 得(k 2+9)y 2+2kmy +m 2−9=0,设A(x 1,y 1),B(x 2,y 2),则有y 1+y 2=−2km k +9,y 1y 2=m 2−9k +9.①因为以AB 为直径的圆过点C ,所以CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.由CA ⃗⃗⃗⃗⃗ =(x 1−3,y 1),CB ⃗⃗⃗⃗⃗ =(x 2−3,y 2), 得(x 1−3)(x 2−3)+y 1y 2=0. 将x 1=ky 1+m ,x 2=ky 2+m 代入上式, 得(k 2+1)y 1y 2+k(m −3)(y 1+y 2)+(m −3)2=0. 将①代入上式,解得m =125或m =3.。
高二数学第一学期期中试卷参考答案
淮安市高中校协作体2020~2021学年第一学期高二年级期中考试数学试卷参考★答案★考试时间:120分钟 总分:150分 命题人:蒋法宝一、单项选择题(本大题共有8小题,每题5分,共40分)”1. “0a =”是“函数221y ax x =++与x 轴只有一个交点”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 【★答案★】C2.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .13【★答案★】B3.椭圆2214x y m +=的焦距为2,则m 的值等于( )A .3B .5C .8D . 5或3【★答案★】D 4.已知0x <,函数4y x x=+的最大值是( ) A .4B .-4C .-6D .-8【★答案★】B5.双曲线mx 2+y 2=1的虚轴长是实轴长的3倍,则m 的值为( ) A .9B .-9C .19D .-19【★答案★】D6.已知等比数列{}n a 中,17a =,435a a a =,则7a =( ) A .19B .17C .13D .7【★答案★】B7.一元二次不等式2201920200x x --<的解集为( ) A .(2020,1)- B .(1,2020)- C .(,1)(2020,)-∞-+∞ D .(,2020)(1,)-∞-+∞【★答案★】B8.设等差数列{}n a 的公差10,4d a d ≠=,若k a 是1a 与2k a 的等比中项,则k=( )A .3或6B .3 或-1C .6D .3【★答案★】D二、多项选择题(本大题共有4小题,每题5分,共20分。
在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.) 9.下列说法正确的是( )A .命题“(2,)x ∃∈-+∞,24x ≤”的否定是“(2,)x ∀∈-+∞,24x >”B .命题“x ∀∈R ,22x >-”的否定是“x ∃∈R ,22x <-”C .“22x y >”是“x y >”的必要而不充分条件D .“0m >”是“关于x 的方程2x 2x m 0--=有一正一负根”的充要条件 【★答案★】AD10.下列说法正确的有( ) A .若a b >,则22ac bc >B .若22a bc c>,则a b > C .若a b >,则22a b > D .若a b >,则22a b > 【★答案★】BD11.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B . 2392n n nS -= C .36n a n =-D .2n a n =【★答案★】BC12.若正实数a ,b 满足1a b +=,则下列说法正确的是( ) A .14ab ≥B .114a b+≥ C . 2a b +≤D .2212a b +≥【★答案★】BCD三、填空题(本大题共有4小题,每题5分,共20分) 13.已知{}n a 为等差数列,a 3+a 8=25,a 6=11,则a 5= _______ 【★答案★】1414.已知点P 为双曲线C :2213664x y -=上的动点,点()10,0A -,点()10,0B .若16PA =,则PB =_______【★答案★】28或4 15.计算:111113355720192021++++=⨯⨯⨯⨯__________.【★答案★】1010202116.设a ,b 为正数,若22a b +=,当a 取值为__________时12a b+取最小值为________ 【★答案★】12,4 四、解答题(本大题共有6小题,第17题10分,其余每题12分,共70分) 17.已知命题p :“方程210x mx -+=有两个不相等的实根”,命题p 是真命题. (1)求实数m 的取值集合M ;(2)设不等式()(4)0x a x a ---<的解集为N ,若x ∈N 是x ∈M 的充分条件,求a 的取值范围. 解:(1) 命题p :方程210x mx +=-有两个不相等的实根,240m ∴∆=->,解得2m >,或2m <-.M={m|2m >,或2m <-}. ………………………………5分 (2) 因为x ∈N 是x ∈M 的充分条件,所以N M ⊆ N={|4}x a x a <<+42a +≤-或2,a ≥综上,6a ≤-或2a ≥ ………………………………10分 18.已知在等差数列{}n a 中,1344,3a a a +==;{}n b 是各项都为正数的等比数列,1113b a =,3141b a =.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n T .解:(1)由134a a +=,得224a =即22a =, 所以等差数列{}n a 的公差42321222a a d --=== 则数列{}n a 的通项公式为211(2)2(2)122n a a n d n n =+-=+-=+ …………3分所以1111313322b a ==⨯= 由3141b a =,得381b ⨯=,即318b =, 由0q >所以等比数列{}n b 的公比3112b q b ==, 所以数列{}n b 的通项公式为1112nn n b b q-⎛⎫== ⎪⎝⎭.………………………………6分 (2)由数列{}n n a b 的前n 项和为n T =112233n n a b a b a b a b ++++ ①得12n T =1223341n n a b a b a b a b +++++ ②由①-②得12n T =11231n n n a b db db db a b +++++-=1111[1()]311142(1)12222212n n n -+-⨯+⨯-+-=113111[1()](1)44222n n n -++--+ =2412n n ++-所以n T =1422n n ++- ………………………………12分19.(1)求焦点在x 轴上,长轴长为8,焦距为4的椭圆标准方程; (2)求一个焦点为()5,0,渐近线方程为43yx 的双曲线标准方程. 解:(1)设椭圆标准方程为:()222210x y a b a b+=>>由长轴长知:28a =4a ∴=由焦距知:24c =222162c a b b ∴=-=-=,解得:212b =∴椭圆标准方程为:2211612x y += ………………………………6分 (2)双曲线焦点在x 轴上 ∴可设双曲线标准方程为()222210,0x ya b a b-=>>∴双曲线渐近线方程为:43b y x x a =±=±43b a ∴= 又焦点为()5,022221659a b a a ∴+=+=,解得:29a =216b ∴= ∴双曲线标准方程为:229116x y -= ………………………………12分20.已知函数9()(1)1f x x x x =+>- (I )求函数()f x 的最小值; (II )若不等式()71tf x t ≥++恒成立,求实数t 的取值范围. 解:(I )110x x >∴-> 99()1111f x x x x x ∴=+=-++-- 92(1)171x x ≥-⋅+=- 当且仅当911x x -=-即4x =时上式取得等号 当4x =时,函数()f x 的最小值是7. ………………………………6分 (II )由(I )知,当1x >时,()f x 的最小值是7, 要使不等式()71t f x t ≥++恒成立,只需771t t ≥++ 01tt ∴≤+ 解得10t -<≤实数的取值范围是(1,0]- ………………………………12分 21.已知数列{}n a 的前n 项和n S 满足:2n n S a =-. (1)求{}n a 的通项公式;(2)设41n n c a =+,求数列{}n c 的前n 项和n T .解:(1)当1n =时,112S a =-,得11a =. 当2n ≥时,由2n n S a =-,① 得112n n S a --=-,②①—②,得12n n a a -=,又110a =≠,∴0n a ≠,∴()1122n n a n a -=≥, ∴{}n a 是等比数列,∴112n n a -⎛⎫= ⎪⎝⎭ ………………………………6分(2)由112n n a -⎛⎫= ⎪⎝⎭,则1141412n n n c a -⎛⎫=+=⨯+ ⎪⎝⎭,则123n n T c c c c =++++()1234n a a a a n =+++++31112481212n n n n -=⨯+=+---………………………………12分 22.已知不等式2364ax x -+>的解集为{1x x <或}x b >. (1)求,a b(2)解不等式2()0ax at b x bt -++<.解:(1)因为不等式2364ax x -+>的解集为{1x x <或}x b >, 所以x 1=1与x 2=b 是方程2320ax x -+=的两个实数根,且b >1.由根与系数的关系,得3121b ab a ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得12a b =⎧⎨=⎩; ……………………………6分(2)原不等式化为:2(t 2)20x x t -++<,即(2)()0x x t --<,①当2t >时,不等式的解集为{}2x x t <<,……………………………8分 ②当2t <时,不等式的解集为{}2x t x <<,……………………………10分t=时,不等式的解集为∅.……………………………12分③当2感谢您的下载!快乐分享,知识无限!。
湖北省部分中学2020年秋高二数学上学期期中联考试卷附答案解析
D.
0,1 2
二、选择题:本题共 4 小题,每小题 5 分,共 20 分,在每小题给出的选项中有多项符合题目要求,全部选 对的得 5 分,有选错的得 0 分,部分选对的得 3 分
9.下列说法正确的是( )
A.命题“ x R , x2 1 ”的否定是“ x0 R , x02 1”
B.命题“ x0 (3, ) , x02 9 ”的否定是“ x (3, ) , x2 9 ” C.“ m 0 ”是“关于 x 的方程 x2 2x m 0 有一正一负根”的充分不必要条件 D.“ a 5 ”是命题“ x R, x2 ax a 0 ”为假命题的充分不必要条件
湖北省部分中学 2020 年秋高二数学上学期期中联考试卷
第 I 卷(选择题)
一、选择题:本题共 8 小题,每小题 5 分,共 40 分,在每小题给出的四个选项中只有一项是符合题目要 求的
1.已知点 A(-3, 2) , B(0, 1) ,则直线 AB 的倾斜角为( )
A. 300
B. 450
C.1350
10.抛掷一枚骰子 1 次,记“向上的点数是 4,5,6”为事件 A,“向上的点数是 1,2”为事件 B,“向上的点 数是 1,2,3”为事件 C,“向上的点数是 1,2,3,4”为事件 D,则下列关于事件 A,B,C,D 判断正确的是 ()
A.A 与 B 是互斥事件但不是对立事件
B.A 与 C 是互斥事件也是对立事件
所以“ m ”是“ m l ”的充要条件 故选 C
5.【答案】B
【解析】由圆的几何性质两圆在点 A 处的切线互相垂直,且过对方圆心 O2O1.则
在 Rt△O2AO1 中,|O1A|= 5 |O2A|= 20 ,斜边上的高为半弦,用等积法易 得: AB 5 5 20 ⇒|AB|=4.故答案为:B
湖北省2020学年高二数学上学期期中试题(含解析)
高二数学上学期期中试题(含解析)一、选择题(本大题共12小题)1.已知命题:0P x ∀>,总有(1)1xx e +>,则p ⌝为( )A. 00x ∃≤ 使得00(1)xx e +1≤B. 00x ∃> 使得00(1)xx e +1≤C. 0x ∀> 总有(1)1xx e +≤ D. 0x ∀≤,总有(1)1xx e +≤【答案】B 【解析】 【分析】利用全称命题的否定解答即得解.【详解】根据全称命题的否定为特称命题可知,¬p 为∃x 0>0,使得(x 0+1)0e x ≤1, 故选B .【点睛】本题主要考查全称命题的否定,意在考查学生对该知识的理解掌握水平.2.一直平面内的定点A ,B 和动点P ,则“动点P 到两定点A ,B 的距离之和为为一定值”是动点P 的轨迹是以A ,B 为焦点的椭圆的( ) A. 必要不充分条件 B. 充分不必要条件 C. 充要条件 D. 既不充分也不必要【答案】A 【解析】 【分析】结合椭圆的定义,利用充分条件和必要条件的定义进行判断.【详解】若点P 的轨迹是以A 、B 为焦点的椭圆,则根据椭圆的定义可知动点P 到两定点A ,B 的距离之和2PA PB a += (0a >,且a 为常数)成立是定值.若动点P 到两定点A ,B 的距离之和2PA PB a += (0a >,且a 为常数),当2a AB ≤,此时的轨迹不是椭圆.∴“动点P 到两定点A ,B 的距离之和为为一定值”是动点P 的轨迹是以A ,B 为焦点的椭圆的必要不充分条件. 故选:A【点睛】本题主要考查充分条件和必要条件的判断,结合椭圆的定义是解决本题的关键. 3.直线l 经过2(2,1),(3,)()A B t t R ∈两点,则直线l 的倾斜角的取值范围是( )A. π[0,)2∪3[,)4ππ B. [0,π) C. [0,]4πD. [0,]4π∪(,)2ππ【答案】A 【解析】 【分析】 先通过2121y y k x x -=-求出两点的斜率,再通过tan k α=求出倾斜角α的值取值范围.【详解】2213tan 1,,tan [1,[0,)2)[,)324t k t t R παααππ-===-∈⇒∈-+∞⋃⇒∈-故选A.【点睛】已知直线上两点求斜率利用公式2121tan y y x x α-=-.需要注意的是斜率不存在的情况.4.已知直线y kx b =+沿x 轴负方向平移3个单位长度,再沿y 轴正方向平移1个单位长度后,又回到原位置,则斜率k =( ). A. 13- B. 3-C.13D. 3【答案】A 【解析】 【分析】由函数图像的平移,求平移后的解析式,再求参数的值即可.【详解】解:将直线y kx b =+沿x 轴负方向平移3个单位长度,再沿y 轴正方向平移1个单位长度后,所得直线方程为(3)131y k x b kx b k =+++=+++ , 由题意可知310k +=,解得13k =-, 故选A.【点睛】本题考查了函数图像的平移,属基础题.5.已知椭圆22221(0)x y a b a b+=>>的短轴长为4,上顶点A ,左顶点B ,焦点1F ,2F 分别是椭圆左右焦点,且1F AB的面积为4- )B.C.D.【答案】C 【解析】 【分析】由题意可知2b =,且()142S a c b =-=-,列方程组求2c . 【详解】解:椭圆22221(0)x y a b a b+=>>的短轴长为4,可得2b =,上顶点A ,左顶点B ,焦点1F ,2F 分别是椭圆左右焦点,且1F AB的面积为4-, 可得()142a c b -=-()1242a c -⨯=-4a c -=-224a c -=,可得4a =,c =,椭圆的焦距为: 故选:C【点睛】本题考查椭圆的简单性质的应用,是基本知识的考查,是基础题.6.已知实数,x y 满足{0134x y x y≥≥+≤,则231x y x +++的取值范围是( )A. 2[,11]3B. [3,11]C. 3[,11]2D. [1,11]【答案】C 【解析】232(1)1.11x y y x x +++=+++其中11y x ++表示两点(,)x y 与(1,1)--所确定直线的斜率,由图知,min max 10114,5,13410PB PA k k k k ----======----所以11y x ++的取值范围是1[,5],4231x y x +++的取值范围是3[,11].2选C.7.过点作圆224x y +=的两条切线,切点分别为A 、B ,O 为坐标原点,则OAB ∆的外接圆方程是A. 22(2)(1)5x y -+-= B. 22(4)(2)20x y -+-= C. 22(2)(1)5x y +++= D. 22(4)(2)20x y +++=【答案】A 【解析】【详解】由题意知,OA⊥PA,BO⊥PB, ∴四边形AOBP 有一组对角都等于90°, ∴四边形AOBP 的四个顶点在同一个圆上,所以此圆的直径是OP ,OP 的中点为(2,1),5, ∴四边形AOBP 的外接圆的方程为22(2)(1)5x y -+-=, ∴△AOB 外接圆的方程为22(2)(1)5x y -+-=, 故选 A .8.椭圆22221(0)x y a b a b+=>>的左右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为( )31+ 31C.2251- 【答案】B 【解析】【分析】根据椭圆的定义可知12||||2PF PF a +=,又1PF 恰好与圆2F 相切于点P ,可知2||PF c =且12PF PF ⊥,即可列出方程求椭圆的离心率.【详解】由1PF 恰好与圆2F 相切于点P ,可知2||PF c =,且 12PF PF ⊥, 又12||||2PF PF a +=,可知1||2PF a c =-, 在12Rt PF F ∆中,222(2)4a c c c -+=, 即2222a ac c -= 所以2220,(0,1)e e e +-=∈,解得212e -+==, 故选:B【点睛】本题主要考查了椭圆的定义,椭圆的简单几何性质,圆的切线的性质,属于中档题. 9.唐代诗人李欣的是《古从军行》开头两句说“百日登山望烽火,黄昏饮马傍交河”诗中隐含着一个有缺的数学故事“将军饮马”的问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从()2,0A 出发,河岸线所在直线方程40x y +-=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )B. 1C.1【答案】B 【解析】 【分析】先求出点A 关于直线4x y +=的对称点'A ,点'A 到圆心的距离减去半径即为最短. 【详解】设点A 关于直线4x y +=对称点(,)A a b ','2AA bk a =-, AA '的中点为2,22a b +⎛⎫⎪⎝⎭,故122422b a a b ⎧=⎪⎪-⎨+⎪+=⎪⎩解得4a =,2b =,要使从点A 到军营总路程最短,即为点f A 到军营最短的距离, 即为点'A 和圆上的点连线的最小值,为点'A 和圆心的距离减半径, “将军饮马”的最短总路程为4161251+-=-,故选:B【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.10.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,(点P 与点,A B 不重合),则PAB △的面积最大值是( ).A. 25B.52C. 55【答案】B 【解析】 【分析】先求出0m =时,交点(0,3)P ,131322PABS =⨯⨯=;当0m ≠时,利用基本不等式求PAB △的面积最大值,综合得解.【详解】动直线0x my +=,令0y =,解得0x =, 因此此直线过定点(0,0)A .动直线30mx y m --+=,即()130m x y -+-=, 令10x -=,30y -=, 解得1x =,3y =, 因此此直线过定点()1,3B .0m =时,两条直线分别为0x =,3y =,交点(0,3)P ,131322PABS=⨯⨯=. 0m ≠时,两条直线的斜率分别为:1m-,m , 则11m m-⨯=-, 因此两条直线相互垂直.22211115()1024442PAB S PA PB PA PB AB ∆=⋅⋅≤+=⋅=⋅=当PA PB ==PAB △的面积取得最大值52. 综上可得:PAB △的面积最大值是52. 故选B .【点睛】本题主要考查直线的位置关系,考查利用基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.设椭圆C :2211612x y +=上的一点P 到两条直线4y =和8x =的距离分别是1d ,2d ,则122d d +的最小值( )A. 5B. 6C. 7D. 8【答案】D 【解析】 【分析】设()4P cos θθ,02θπ≤<,由题意可得:1222484d d cos θθ+=-+-,利用三角函数的单调性、和差公式即可得出结论.【详解】解:设()4P cos θθ,02θπ≤<, 由题意可得:122248416416816886d d cos cos sin πθθθθθ⎛⎫+=-+-=--=-+≥-= ⎪⎝⎭.当且仅当816sin πθ⎛⎫+= ⎪⎝⎭时取等号. 122d d ∴+的最小值为8.故选:D【点睛】本题考查了椭圆的标准方程及其参数方程、三角函数的单调性、和差公式,考查了推理能力与计算能力,属于中档题.12.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,点P 是椭圆C 上一点,椭圆C 内一点Q 满足:点Q 在2PF 的延长线上1.QF QP ⊥若13sin 5F PQ ∠=,则该椭圆离心率的取值范围是( )A. 1,32⎛ ⎝⎭B. 1,13⎛⎫⎪⎝⎭C. ⎫⎪⎪⎝⎭D.2⎝⎭【答案】A 【解析】 【分析】由1QF QP ⊥,可得点Q 在以12F F 为直径,原点为圆心的圆上,由点Q 在椭圆的内部,可得以12F F 为直径的圆在椭圆内,可得c b <;于是e <,再根据临界值,由点P 的位置建立不等式,确定即可得出e 的范围. 【详解】解:1QF QP ⊥,∴点Q 在以12F F 为直径,原点为圆心的圆上,点Q 在椭圆的内部,∴以12F F 为直径的圆在椭圆内,c b ∴<;222c a c ∴<-,222c a ∴<,故202e <<. 13sin 5F PQ ∠=,14cos 5F PQ ∠=,设1PF m =,2PF n =,222142cos c m n mn F PQ ∴=+-⋅∠,()2222818424455c m n mn mn c a mn ∴=+--⇒=- ,222184445mn a c b ∴=-=,① 12113sin 210PF F S mn F PQ mn ∆=⋅∠=,由已知可知,点Q 在以12F F 为直径的圆上,不包含1F ,2F 两个点,当点Q 与2F 重合时,此时22b PF a =,12PF F S ∆的最大值是1222122PF F b b cS c a a ∆=⋅⋅= 由图象可知其他满足条件的Q 满足条件时,需满足2310b cmn a < ②由①②可知2109mn b = ,2103b cmn a<⋅ 22101093b c b a∴<⋅,解得:13ca>,综上可知:1232e<<.故选:A【点睛】本题考查了椭圆的标准方程及其性质、数形结合方法,考查了推理能力与计算能力,属于中档题,本题的关键是根据满足条件的点P的位置确定,建立面积条件的12PF F∆的不等关系,求出离心率的范围.二、填空题(本大题共4小题)13.已知直线l过点(1,2),且原点到直线l的距离为1,则直线l方程为__________.【答案】x=1或3x﹣4y+5=0【解析】【分析】分两种情况,当斜率不存在时,验证是否满足题意;当斜率存在时,设出点斜式方程,再由点到直线的距离公式求出斜率即可求解.【详解】直线l的斜率不存在时,可得直线l的方程为:x=1,满足题意;直线l的斜率存在时,可设直线l的方程为:y﹣2=k(x﹣1),化为:kx﹣y+2﹣k=0.2211kk-=+,解得:k34=,∴直线l的方程为:y﹣234=(x﹣1),化为:3x﹣4y+5=0,综上可得:直线l的方程为:x=1或3x﹣4y+5=0,故答案为:x=1或3x﹣4y+5=0.【点睛】本题主要考查直线的点斜式方程、点到直线的距离公式,注意斜率不存在的情况,考查分类讨论的思想,属于基础题14.若椭圆2214x y m+=的焦距为1,则m =______.【答案】154或174【解析】 【分析】讨论焦点的位置,然后利用21c =,求m 的值.【详解】解:椭圆2214x y m+=的焦距为1,当焦点在x 轴时,24a =,2b m =21c ∴=== ,解得:154m =当焦点在y 轴时,2a m =,24b =,21c ∴===,解得:174m =. 故答案为:154或174. 【点睛】本题考查根据椭圆方程的形式求参数,是基础题,解题时要认真审题,注意椭圆的性质的合理运用.15.已知O 为坐标原点,椭圆T :22221x y a b +=()0,1B ,过椭圆上一点P 的两条直线PA ,PC 分别与椭圆交于A ,C ,设PA ,PC 的中点分别为D ,E ,直线PA ,PC 的斜率分别是1k ,212(,0)k k k <,若直线OD ,OE 的斜率之和为2,则124k k +的最大值为______. 【答案】94- 【解析】 【分析】首先根据待定系数法求椭圆方程,再利用点差法求OD k 和OE k 与12,k k 的斜率关系,最后利用基本不等式求最值.【详解】不妨设a b >,根据题意可知22221c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得:1,1a b c ===∴椭圆方程是2212x y +=设()()()112233,,,,,P x y A x y B x y221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得()2222121202x x y y -+-= 整理为:()()()()1212121202x x x x y y y y +-++-=当120x x +≠,且120x x -≠时,12121212102y y y y x x x x +-+⨯=+-, 1102OD k k ∴+⋅=,即112OD k k =-,同理:212OE k k =-, 1211222k k ∴--=,即12114k k +=- ,()21121212124111144544k k k k k k k k k k ⎛⎫⎛⎫⎛⎫∴+=-⨯++=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭211245144k k k k ⎛⎫=--+ ⎪⎝⎭12,0k k <,122140,0k kk k ∴>>,211244k k k k ∴+≥= ,21124114k k k k ⎛⎫∴-+≤- ⎪⎝⎭21124515914444k k k k ⎛⎫∴--+≤--=- ⎪⎝⎭.当且仅当21124k kk k=时等号成立,即212k k=时,故124k k+的最大值是94-.故答案为:94-【点睛】考查点差法求斜率关系式,和利用基本不等式求最值,意在考查推理能力和计算能力,属于中档题型,本题的关键是利用点差法求斜率间的关系.16.已知直线0x y b-+=与圆229x y+=交于两点A,B,若24OA OB AB+≥(其中O 为坐标原点),则实数b的取值范围______【答案】(32,22,32--⋃【解析】【分析】利用平行四边形法则,转化为224OD AB≥,借助于弦长公式22194OD AB+=,求得219OD≤<,利用点到直线的距离求b的取值范围.【详解】解:设AB中点为D,则OD AB⊥,2OA OB AB+≥,224OD AB∴≥,42.AB OD∴≤221||94OD AB+=,2||1OD∴≥.直线0x y b-+=与圆229x y+=交于不同的两点A、B,2||9OD ∴<. 21||9OD ∴≤<,则219≤<.b ∴-≤b ≤<即实数b的取值范围是(.-⋃故答案为:(.-⋃【点睛】本题考查向量知识的运用,考查直线与圆的位置关系,考查学生的推理和计算能力,属于中档题.三、解答题(本大题共6小题)17.已知1:210l x y -+=和2:20l x y +-=的交点为P . (1)求经过点P 且与直线3:3450x l y -+=垂直的直线的方程(2)直线l '经过点P 与x 轴、y 轴交于A 、B 两点,且P 为线段AB 的中点,求OAB ∆的面积.【答案】(1)4370x y +-=;(2)2 【解析】 【分析】(1)联立两条直线的方程,解方程组求得P 点坐标,根据3l 的斜率求得与其垂直直线的斜率,根据点斜式求得所求直线方程.(2)根据(1)中P 点的坐标以及P 为AB 中点这一条件,求得,A B 两点的坐标,进而求得三角形OAB 的面积.【详解】解:(1)联立21020x y x y -+=⎧⎨+-=⎩,解得交点P 的坐标为()1,1,∵l 与3l 垂直, ∴l 的斜率3143k k =-=-, ∴l 的方程为()4113y x -=--,即4370x y +-=. (2)∵P 为AB 的中点,已知(2,0)A ,(0,2)B ,即2OA OB ==,∴1122222OAB S OA OB ∆=⋅⋅=⨯⨯= 【点睛】本小题主要考查两条直线交点坐标的求法,考查两条直线垂直斜率的关系,考查直线的点斜式方程,考查三角形的面积公式以及中点坐标,属于基础题.18.已知P :方程2222220x y x my m m +++-++=表示圆心在第三象限的圆,q :方程2231x my +=表示焦点在y 轴上的椭圆.()1若p ⌝为真命题,求实数m 的取值范围;()2若“p q ∧”为假,“p q ∨为真”,求m 的取值范围.【答案】(1)(] ,1-∞;(2)][()0,13,⋃+∞. 【解析】 【分析】(1)首先求p 为真命题时,m 的取值范围,再求其补集,就是p ⌝为真时,m 的取值范围; (2)求出命题q 为真时m 的取值范围,利用“p q ∧”为假,“p q ∨为真”时p 、q 一真一假;从而列不等式求得实数m 的取值范围.【详解】解:()1方程2222220x y x my m m +++-++=可化为222(1)()21x y m m m +++=--;若P 为真命题,则20210m m m -<⎧⎨-->⎩,解得1m >;所以p ⌝为真命题时,实数m 的取值范围是(],1-∞;()2命题q :方程2231x my +=表示焦点在y 轴上的椭圆,若q 为真命题时,03m <<;由“p q ∧”为假,“p q ∨为真”,则p 、q 一真一假; 当p 真q 假时,103m m m >⎧⎨≤≥⎩或,即3m ≥;当p 假q 真时,103m m ≤⎧⎨<<⎩,即01m <≤;综上知,实数m 的取值范围是][()0,13,⋃+∞.【点睛】本题考查了圆的方程与椭圆的标准方程应用问题,也考查了简单的复合命题真假性判断问题,是基础题.19.若直线34120x y -+=与x 轴,y 轴的交点分别为,A B ,圆C 以线段AB 为直径. (Ⅰ)求圆C 的标准方程;(Ⅱ)若直线l 过点3,44⎛⎫- ⎪⎝⎭,与圆C 交于点,M N ,且120MCN ∠=,求直线l 的方程.【答案】(Ⅰ)()22325224x y ⎛⎫++-= ⎪⎝⎭;(Ⅱ)34x =-或1216730x y -+=.【解析】 【分析】(1)本题首先根据直线方程确定A 、B 两点坐标,然后根据线段AB 为直径确定圆心与半径,即可得出圆C 的标准方程;(2)首先可根据题意得出圆心C 到直线l 的距离为54,然后根据直线l 的斜率是否存在分别设出直线方程,最后根据圆心到直线距离公式即可得出结果.【详解】(1)令方程34120x y -+=中的0x =,得3y =,令0y =,得4x =-. 所以点,A B 的坐标分别为()()4,0,0,3A B -.所以圆C 的圆心是32,2⎛⎫- ⎪⎝⎭,半径是52r , 所以圆C 的标准方程为()22325224x y ⎛⎫++-= ⎪⎝⎭.(2)因为120MCN ∠=,圆C 的半径为52,所以圆心C 到直线l 的距离为54.若直线l 的斜率不存在,直线l 的方程为34x =-,符合题意. 若直线l 的斜率存在,设其直线方程为344y k x ⎛⎫=++ ⎪⎝⎭,即3404kx y k -++=.圆C 的圆心到直线l的距离54d ==,解得34k =. 则直线l 的方程为33444y x ⎛⎫=++ ⎪⎝⎭,即1216730x y -+=.综上,直线l 的方程为34x =-或1216730x y -+=.【点睛】本题考查圆的标准方程与几何性质,考查直线和圆的位置关系,当直线与圆相交时,半径、弦长的一半以及圆心到直线距离可构成直角三角形,考查计算能力,在计算过程中要注意讨论直线l 的斜率是否存在,是中档题.20.如图,1l ,2l 是通过某城市开发区中心O 的两条南北和东西走向的街道,链接M ,N 两地之间的铁路是圆心在2l 上的一段圆弧,若点M 在O 正北方向,且3MO km =,点N 到1l ,2l 距离分别为4km 和5km .()1建立适当的坐标系,求铁路线所在圆弧的方程;()2若该城市的某中学拟在O 点正东方向选址建分校,考虑环境问题,要求校址到点O 的距离大于4km ,并且铁路线上任意一点到校址的距离不能少于29km ,求该校址距离点O 的最近距离.(注:校址视为一个点)【答案】(1)()22(4)2504,53x y x y -+=≤≤≥≥ (2)距O 最近6km 的地方. 【解析】 【分析】()1建立坐标系,利用圆心在弦的垂直平分线上求圆心坐标,再求半径,进而写出圆的方程. ()2据条件列出不等式,运用函数单调性解决恒成立问题.【详解】解:()1分别以2l 、1l 为x 轴,y 轴建立如图坐标系.据题意得()0,3M ,()4,5N ,531402MN k -∴==-, MN 中点为()2,4,∴线段MN 的垂直平分线方程为:()422)y x -=--,故圆心A 的坐标为()4,0,半径5R ==.∴弧MN 的方程为:()22(4)2504,53x y x y -+=≤≤≥≥()2设校址选在(),0(4)B a a >,04x ≤≤恒成立.04x ≤≤恒成立()﹡ 整理得:()282200a x a -+-≥,对04x ≤≤恒成立().﹡令()()28220f x a x a =-+-.4a >,820a ∴-<,()f x ∴在[]0,4上为减函数.()()244824200a f a a >⎧⎨=-⨯+-≥⎩, 解得6a ≥,即校址选在距O 最近6km 的地方.【点睛】本题主要考查求圆的方程的方法,函数的恒成立问题,利用二次函数在闭区间上的单调性求函数的值域,意在考查抽象和概括,将实际问题转化为数学问题,属于中档题.21.已知椭圆C :22221(0)x y a b a b +=>>的离心率3,连接椭圆的四个顶点得到的菱形的面积为.()1求椭圆C 的方程;()2如图所示,该椭圆C 的左、右焦点1F ,2F 作两条平行的直线分别交椭圆于A ,B ,C ,D 四个点,试求平行四边形ABCD 面积的最大值.【答案】(1)22 132x y +=;(2) 最大值为33. 【解析】 【分析】()1由题意离心率可得6a =,再结合面积求解a ,b 的值,则椭圆方程可求; ()2由()1知,()11,0F -,且直线AB 的斜率不为0,设直线AB 的方程为1x ty =-,联立直线方程与椭圆方程,把平行四边形ABCD 的面积用三角形OAB 的面积表示,然后利用换元法结合单调性求最值.【详解】解:()1由题意,3c e a ==,则22213a b a -=,即6a =. 又122262a b ⋅⋅=3a ∴=2b = ∴椭圆C 的方程为22132x y +=;()2由()1知,()11,0F -,且直线AB 的斜率不为0,设直线AB 的方程为1x ty =-,()11,A x y ,()22,B x y ,联立221132x ty x y =-⎧⎪⎨+=⎪⎩,消去x 得:()2223440t y ty +--=.得122423t y y t +=+,122423y y t -=+. 四边形ABCD 是平行四边形,根据对称性可知,A C 和,B D 关于点O 对称,∴1121442OABABCD S SOF y y ==⋅⋅-=四边形== 令21m t =+,则1m ≥,ABCD S ∴==四边形 1m ≥,且函数144y m m=++在[)1,+∞上单调递增, ∴当1m =,即0t =时,平行四边形ABCD .【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,训练了利用换元法与函数的单调性求最值,是中档题.22.已知ABC 的两个顶点为()0,2B -,()0,2C ,平面内P ,Q 同时满足0PA PB PC ++=①;QA QB QC ==②;//PQ BC ③.()1求顶点A 的轨迹E 的方程;()2过点()F 作两条互相垂直的直线1l ,2l ,直线1l ,2l 被点A 的轨迹E 截得的弦分别为11A B ,22A B ,设弦11A B ,22A B 的中点分别为M ,.N 试问:直线MN 是否恒过一个顶点?若过定点,请求出该顶点,若不过定点,请说明理由.【答案】(1)()2210124x y x +=≠;(2)直线MN 过定点,0.2⎛⎫ ⎪ ⎪⎝⎭【解析】 【分析】()1由已知向量等式可知P 为三角形ABC 的重心,设(),A x y ,则,33x y P ⎛⎫⎪⎝⎭,再由QA QB QC ==,知Q 是三角形ABC 的外心,结合//PQ BC 得,03x Q ⎛⎫ ⎪⎝⎭, 由QC QA =列式求解顶点A 的轨迹E 的方程;()2设出直线1l 的方程,与椭圆方程联立求得M 的坐标,同理求得N 的坐标,求得MN 的斜率,写出直线方程的点斜式,整理后利用线系方程说明直线MN 过定点.⎫⎪⎪⎝⎭【详解】解:()10PA PB PC ++=,P ∴为三角形ABC 的重心,设(),A x y ,则,33x y P ⎛⎫ ⎪⎝⎭, 由QA QB QC ==,知Q 是三角形ABC 的外心,Q ∴在x 轴上, 又//PQ BC ,,0.3x Q ⎛⎫∴ ⎪⎝⎭由QC QA=,得=221124x y +=. A ,B ,C 三点不共线,∴顶点A 的轨迹方程为()2210124x y x +=≠; ()2由()1知,()F 为A 的轨迹E 的右焦点, 设()111,A x y ,()122,B xy , 由221124x ty x y ⎧=+⎪⎨+=⎪⎩,得()22340t y ++-=.则12y y +=,12243y y t -=+, ()1212x x t y y ∴+=++=由中点坐标公式得22,33M t t ⎛⎫- ⎪ ⎪++⎝⎭,同理可求得222,.3131N t t ⎛⎫ ⎪ ⎪++⎝⎭则当21t ≠时,()2431MN t k t ==-. ∴直线MN的方程为()2431t y x t ⎛= -⎝⎭. 即()()22244431)3131t t t y x x t t t ⎛⎛==- ---⎝⎭⎝⎭. ∴直线MN过定点.2⎛⎫ ⎪ ⎪⎝⎭【点睛】本题考查圆锥曲线方程的求法,考查平面向量的应用,考查直线与圆锥曲线位置关系的应用,考查计算能力,是中档题.1、在最软入的时候,你会想起谁。
人教版高二上册数学期中数学试卷带答案
2020-2021学年高二(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1. 已知a>b,c>d>0,则()A.1 a <1bB.a−c>b−dC.ac>bdD.dc<d+4c+42. 关于x的不等式x+1x−2≥0的解集为()A.(−∞, −1]∪(2, +∞)B.[−1, 2)C.(−∞, −1]∪[2, +∞)D.[−1, 2]3. 设等差数列{a n}的前n项和为S n,公差d=1,且S6−S2=10,则a3+a4=()A.2B.3C.4D.54. 若不等式ax2+bx−1<0的解集为{x|−1<x<2},则a+b的值为()A.−14B.0 C.12D.15. 已知等比数列{a n}中,a2a3a4=1,a6a7a8=64,则a5=()A.±2B.−2C.2D.46. 已知在数列{a n}中,a1=2,a n+1=nn+1a n,则a2020的值为()A.1 2020B.12019C.11010D.110097. 已知a>0,b>0,a+b=3,则y=4a +1b+1的最小值为()A.9 8B.94C.92D.98. 已知数列{b n}满足b n=2λ(−12)n−1−n2,若数列{b n}是单调递减数列,则实数λ的取值范围是()A.(−1, 103) B.(−12, 103) C.(−1, 1) D.(−12, 1)二、多项选择题:本大题共4小题,每小题5分,共20分在每小题给出的四个选项中,都有多个选项是正确的,全部选对得5分,选对但不全的得3分,选错或不答的得0分.请把正确的选项填涂在答题卡相应的位置.上.)9. 下列说法正确的有()A.“a=b”是“ac=bc”的充分不必要条件B.“1a >1b”是“a<b”的既不充分又不必要条件C.“a≠0”是“ab≠0”的必要不充分条件D.“a>b>0”是“a n>b n(n∈N, n≥2)”的充要条件10. 已知等差数列{a n}的前n项和为S n,且a1>0,2a5+a11=0,则()A.a8<0B.当且仅当n=7时,S n取得最大值C.S4=S9D.满足S n>0的n的最大值为1211. 已知a,b均为正实数,且a+b=1,则()A.a2+b2的最小值为12B.ab+1ab的最小值为2C.√a+√b的最大值为√2D.1a +1b的最大值为412. 对于数列{a n},定义:b n=a n−1a n(n∈N∗),称数列{b n}是{a n}的“倒差数列”.下列叙述正确的有()A.若数列{a n}单调递增,则数列{b n}单调递增B.若数列{b n}是常数列,数列{a n}不是常数列,则数列{a n}是周期数列C.若a n=1−(−12)n,则数列{b n}没有最小值D.若a n=1−(−12)n,则数列{b n}有最大值三、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置.上.)13. 命题“∃x∈R,x2−2x+m≤0”的否定是________.14. 在等比数列{a n }中,已知a 3⋅a 8=10,则a 53⋅a 7的值为________.15. 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.16. 大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.大衍数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题,其前10项依次是0,2,4,8,12,18,24,32,40,50,则此数列第19项的值为________,此数列的通项公式a n = {n 2−12(n)n 22(n).四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.)17. 在①f(x +1)−f(x)=2ax ,②f(x)的对称轴为x =12,③f(1)=2这三个条件中任选一个,补充在下面问题中,并回答下面问题.已知二次函数f(x)=ax 2+bx +1,若_____,且不等式f(x)≥0对任意的x ∈R 恒成立,试求实数a 的取值范围.18. 已知数列{a n }是公比q >1的等比数列,若a 1+a 2+a 3=14,且a 2+1是a 1,a 3的等差中项.(1)求数列{a n }的通项公式;(2)设b n =log 2a n ,数列{1b n b n+1}的前n 项和为T n ,若T n <m 2−1对n ∈N ∗恒成立,求满足条件的自然数m 的最小值.19. 已知数列{a n }中,a 1=2,且满足a n+1−2a n =2n+1(n ∈N ∗).(1)求证:数列{a n2n }是等差数列,并求数列{a n }的通项公式;(2)求证:对于数列{b n },b 1+2b 2+...+nb n =a n 的充要条件是b n =(n+1)2n−1n.20. 已知函数f(x)=a⋅2x +12x −1,a ∈R .(1)当a =1时,求不等式f(x)>3的解集;(2)若不等式|f(2x)−f(x)|≤1对任意x∈[1, 2]恒成立,求实数a的取值范围.21. 如图,某森林公园内有一条宽为2百米的笔直的河道(假设河道足够长),现拟在河道内围出一块直角三角形区域养殖观赏鱼.三角形区域记为△ABC,A到河两岸距离AE,AD相等,B,C分别在两岸上,AB⊥AC.为方便游客观赏,拟围绕△ABC区域在水面搭建景观桥,桥的总长度(即△ABC的周长)为l.设EC=x百米.(1)试用x表示线段BC的长度;(2)求l关于x的函数解析式f(x),并求f(x)的最小值.22. 已知数列{a n}为等差数列,公差为d,前n项和为S n.(1)若a1=0,d=2,求S100的值;,8)内,求d的取值范围;(2)若a1=−1,{a n}中恰有6项在区间(12(3)若a1=1,S2=3,集合A={a n|n∈N∗},问能否在集合A中抽取到无穷多个不全相等的元素组成一个新数列{b n},使得此新数列{b n}满足从第二项开始,每一项都等于它的前一项和后一项的调和平均数.若能,请举例说明;若不能,请说明理由.(注:叫作数a和数b的调和平均数).数2aba+b参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.【答案】D【解析】由不等式的性质逐一判断即可.2.【答案】C【解析】根据题意,原不等式变形可得(x+1)(x−2)>0或x+1=0,解可得x的取值范围,即可得答案.3.【答案】B【解析】先根据求和公式和等差数列的性质可得a5+a4=5,即可求出a3+a4.4.【答案】B【解析】不等式ax2+bx−1<0的解集是{x|−1<x<2},故−1,2是方程ax2+bx−1=0的两个根,由根与系数的关系求出a,b.5.【答案】C【解析】设等比数列{a n}的公比为q,由a2a3a4=1,a6a7a8=64,可得(q4)3=64,解得q2.又(a1q2)3=1,解得a1.利用通项公式即可得出.6.【答案】C【解析】直接利用递推关系式的应用求出数列的通项公式,进一步求出结果.7.【答案】B【解析】利用“乘1法”与基本不等式的性质即可得出.8.【答案】A【解析】)n−2n−1<0,分类讨论,根据数列的根据函数为递减数列可得b n+1−b n=6λ(−12函数特征即可求出.二、多项选择题:本大题共4小题,每小题5分,共20分在每小题给出的四个选项中,都有多个选项是正确的,全部选对得5分,选对但不全的得3分,选错或不答的得0分.请把正确的选项填涂在答题卡相应的位置.上.9.【答案】A,B,C【解析】利用不等式的基本性质、简易逻辑的判定方法即可判断出正误.10.【答案】A,C,D【解析】2a5+a11=0利用通项公式可得:a1=−6d.根据a1>0,可得d<0,利用通项公式和求和公式进而判断出结论.11.【答案】A,C,D【解析】由已知结合基本不等式分别检验各选项即可判断.12.【答案】B,D【解析】对于A,根据函数f(x)=x−1在(−∞, 0)和(0, +∞)上单调递增,但在整个定义域上不x是单调递增,即可判断;=t,通过数列的递推关系可得数列{a n}是以2为周期的周期数对于B,设b n=a n−1a n列,)n,分了n为奇数和偶数,利用数列的单调性即可判断.对于CD,若a n=1−(−12三、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置.上.13.【答案】∀x∈R,x2−2x+m>0【解析】根据含有量词的命题的否定即可得到结论.14.【答案】100【解析】根据等比数列的性质即可求出.15.【答案】6【解析】此题暂无解析16.【答案】180【解析】直接利用数据求出数列的关系式和通项公式.四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.【答案】选①f(x+1)−f(x)=2ax,∵f(x)=ax2+bx+1,∴a(1+x)2+b(1+x)+1−ax2−bx−1=2ax,整理可得,2ax+a+b=2ax,∴a+b=0,∵f(x)=ax2−ax+1≥0对任意的x∈R恒成立,当a=0时,1≥0对任意的x∈R恒成立,∴{a>0a2−4a≤0,解得0<a≤4,故0≤a≤4;选②:f(x)的对称轴为x=12,∴−b2a =12,∴b=−a,∵f(x)=ax2−ax+1≥0对任意的x∈R恒成立,当a=0时,1≥0对任意的x∈R恒成立,∴{a>0a2−4a≤0,解得0<a≤4,故0≤a≤4;选③:f(1)=2,∴a+b+1=2即b=1−a,∵f(x)=ax2+(1−a)x+1≥0对任意的x∈R恒成立,当a=0时,x+1≥0不恒成立,当a≠0时,{a>0(1−a)2−4a≤0,解得3−2√2≤a≤3+2√2,故3−2√2≤a≤3+2√2.【解析】选①:f(x+1)−f(x)=2ax,结合已知二次函数代入可得a+b=0,然后由不等式恒成立,结合二次函数的性质可求;选②:f(x)的对称轴为x=12,结合已知二次函的对称轴方程可得a+b=0,然后由不等式恒成立,结合二次函数的性质可求;选③:f(1)=2,直接代入可得b=1−a,然后由不等式恒成立,结合二次函数的性质可求.18.【答案】数列{a n}是公比q>1的等比数列,若a1+a2+a3=14,且a2+1是a1,a3的等差中项.所以{a1+a2+a3=142(a2+1)=a1+a3,整理得{a1+qa1+a1⋅q2=142(a1⋅q+1)=a1+a1⋅q2,解得{a1=2q=2,故a n=2n.由于b n=log2a n=n,所以1b n b n+1=1n(n+1)=1n−1n+1,所以T n=1−12+12−13+⋯+1n−1n+1=1−1n+1<1,若T n<m2−1对n∈N∗恒成立,只需满足m2−1≥1即可,故m≥4,即满足条件的自然数m的最小值为4.【解析】(1)直接利用已知条件和关系式的应用求出数列的通项公式.(2)利用裂项相消法和恒成立问题的应用求出数列的和及m的最小值.19.【答案】数列{a n}中,a1=2,且满足a n+1−2a n=2n+1(n∈N∗).整理得a n+12n+1−a n2n=1(常数),所以数列{a n2n}是以1为首项,1为公差的等差数列.所以a n2n=1+(n−1)=n,所以a n=n⋅2n.证明:由于a n=n⋅2n,所以b1+2b2+...+nb n=n⋅2n①,当n=1时,b1=2,当n≥2时,b1+2b2+⋯+(n−1)b n−1=(n−1)⋅2n−1②,①-②得:nb n=n⋅2n−(n−1)⋅2n2=(n+1)⋅2n2,所以b n=(n+1)2n−1n,(首项符合通项),所以b n=(n+1)2n−1n,即数列{b n },b 1+2b 2+...+nb n =a n 的充要条件是b n =(n+1)2n−1n.【解析】(1)直接利用构造新数列的应用求出数列的通项公式; (2)利用数列的递推关系式的应用求出结果. 20. 【答案】当a =1时,f(x)=2x +12x −1,由f(x)>3,即2x +12x −1>3,化为2−2x2x −1>0, 即1<2x <2,可得0<x <1, 则解集为(0, 1); f(x)=a⋅2x +12x −1=a +a+12x −1,则f(2x)−f(x)=a+122x −1−a+12x −1=(a +1)⋅−2x22x −1,令t =2x ,因为x ∈[1, 2],可得t ∈[2, 4], 由题意可得|a +1|≤22x −12x=2x −12x=t −1t恒成立,即有|a +1|≤(t −1t )min ,而g(t)=t −1t 在[2, 4]递增,可得g(t)min =g(2)=32, 则|a +1|≤32,解得−52≤a ≤12, 则a 的取值范围是[−52, 12]. 【解析】(1)由题意可得f(x)=2x +12x −1,由指数不等式的解法和指数函数的单调性,可得所求解集;(2)计算f(2x)−f(x),令t =2x ,t ∈[2, 4],由题意可得|a +1|≤22x −12x=2x −12x =t −1t恒成立,即有|a +1|≤(t −1t)min ,运用g(t)=t −1t在[2, 4]的单调性,可得最小值,再由绝对值不等式的解法可得所求范围. 21.【答案】∵ AB ⊥AC ,∴ ∠EAC +∠BAD =90∘,在Rt △ABD 中,∠ABD +∠BAD =90∘,∴ ∠EAC =∠ABD ,则Rt △CAE ∽Rt △ABD , ∴ ACAB =ECAD .∵ EC =x ,AC =√AE 2+EC 2=√1+x 2,AD =1,∴AB=1×√1+x2x =√1+x2x,则BC=√AB2+AC2=√1+x2+1+x2x2=√x2+2+1x2=x+1x;f(x)=√1+x2+√1+x2x +x+1x,x>0.∵x>0,∴f(x)≥2√√1+x2⋅√1+x2x +2√x⋅1x=2√1x+x+2≥2√2+2.当且仅当√1+x2=√1+x2x ,且1x=x,即x=1时取“=”.∴f(x)min=2√2+2,故景观桥总长的最小值为(2√2+2)百米.【解析】(1)由已知证明Rt△CAE∽Rt△ABD,得ACAB =ECAD,由EC=x,得AC=√AE2+EC2=√1+x2,AD=1,再由勾股定理求BC;(2)写出f(x)的表达式,然后利用基本不等式求最值.22.【答案】因为a1=0,d=2,又因为S n=na1+n(n−1)2⋅d,所以S100=100×0+12×100×99×2=9900;设从第m(m∈N∗, m≥2)项开始在(12, 8)内,则{a m>12 a m−1≤12a m+5<8 a m+6≥8,即有{−1+(m−1)d>12−1+(m−2)d≤12−1+(m+4)d<8−1+(m+5)d≥8,解得{32(m−1)<d≤32(m−2)9m+5≤d<9m+4,所以{32(m−1)<9m+49 m+5≤32(m−2),解得m∈(2, 175],所以m=3,所以d∈[98, 97 );因为a1=1,S2=a1+a2=3,所以a2=2,d=a2−a1=1,所以a n=n,①新数列{b n}中有两个相同和一个不同项a m,a n,a m,若a n=2a m a ma m+a m=a m,矛盾;若a m=2a n a ma n+a m,解得a m=a n,所以a n,a m是两个不同项,且a m≥1,a n≥1,所以a n≠a m,所以新数列{b n}中有两个相同和一个不同项是不成立的;②新数列{b n}中有三个不同项a m,a n,a r,设m=a m,n=a n,r=a r,且m<n<r,b1=m,b2=n,则a n=2a m a ra m+a r ,即n=2mrm+r,解得r=mn2m−n ,设第四项为p,则r=2npn+p,即p=nr2n−r =mn22m−n2n−mn2m−n=mn3m−2n,设第五项为t,则p=2rtr+t ,即t=rp2r−p=mn2m−n⋅mn3m−2n2mn2m−n−mn3m−2n=mn4m−3n,由数学归纳法可得b n=b1b2(n−1)b1−(n−2)b2,即(n−1)b1>(n−2)b2,b1b2>n−2n−1,当n非常大时,n−2n−1趋向于1,则b1b2≥1,即b1≥b2(与假设矛盾),故三项不同的数列{b n}也不存在.综上可得,{b n}不存在.【解析】(1)运用等差数列的通项公式和求和公式,可得所求和;(2)设从第m(m∈N∗, m≥2)项开始在(12, 8)内,运用等差数列的通项公式可得m,d的不等式组,解不等式可得所求范围;(3)分别讨论①新数列{b n}中有两个相同和一个不同项a m,a n,a m;②新数列{b n}中有三个不同项a m,a n,a r,推理论证即可判断存在性.试卷第11页,总11页。
2020学年高二(上)期中数学试卷带答案
2020学年高二(上)期中数学试卷一.填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)数列{n+2n}中的第4项是.2.(5分)抛物线x2=4y的准线方程为.3.(5分)若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是.4.(5分)已知等差数列{a n},其中a1=,a2+a5=4,a n=33,则n的值为.5.(5分)若x,y满足,则目标函数z=x+2y的最大值为.6.(5分)设等比数列{a n}的前n项和为S n,若27a3﹣a6=0,则=.7.(5分)若正数x,y满足x+3y=5xy,则3x+4y的最小值是.8.(5分)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.9.(5分)已知数列{a n}是等比数列,S n是它的前n项和,若a2•a3=2a1,且a4与2a7的等差中项为,求S5.10.(5分)已知椭圆:的焦距为4,则m为.11.(5分)若数列x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的取值范围是.12.(5分)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.13.(5分)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第100项,即a100=.14.(5分)若实数a,b满足a=+2,则a的最大值是.二.解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点(2,﹣6);(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.16.(14分)已知数列{a n}的通项公式是a n=n2+kn+4(1)若k=﹣5,则数列中有多少项是负数?n为何值时,a n有最小值.并求出最小值,(2)对于n∈N*,都有a n>a n,求实数k的取值范围.+117.(14分)某厂家计划在2016年举行商品促销活动,经调查测算,该商品的年销售量m万件与年促销费用x万元满足:m=3﹣,已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的1.5倍(生产成本由固定投入和再投入两部分资金组成).(1)将2016年该产品的利润y万元表示为年促销费用x万元的函数;(2)该厂2016年的促销费用投入多少万元时,厂家的利润最大?18.(16分)(1)解关于x的不等式:(a2+a﹣1)x>a2(1+x)+a﹣2(a∈R);(2)如果x=a2﹣4在上述不等式的解集中,求实数a的取值范围.19.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的焦距为2.(1)若椭圆C经过点(,1),求椭圆C的标准方程;(2)设A(﹣2,0),F为椭圆C的左焦点,若椭圆C上存在点P,满足=,求椭圆C的离心率的取值范围.20.(16分)已知递增数列{a n}的前n项和为S n,且满足a1=1,4S n﹣4n+1=a n2.设b n=,n∈N*,且数列{b n}的前n项和为T n.(1)求证:数列{a n}为等差数列;(2)试求所有的正整数m,使得为整数;(3)若对任意的n∈N*,不等式λT n<n+18(﹣1)n+1恒成立,求实数λ的取值范围.二.高二数学试题(第二卷)21.(5分)为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有辆.22.(5分)若随机安排甲乙丙三人在3天节日中值班,每人值班1天,则甲与丙都不在第一天的概率为.23.(5分)已知命题甲是“{x|≥0}”,命题乙是“{x|log3(2x+1)≤0}”,则甲是乙的条件.(从充分不必要、必要不充分、充要、既不充分也不必要中选填)24.(5分)下列四个命题:①命题“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;②若命题P:∃x∈R,x2+x+1<0,则﹁p:∀x∈R,x2+x+1≥0;③若命题“﹁p”与命题“p或q”都是真命题,则命题q一定是真命题;④命题“若0<a<1则log a(a+1)<”是真命题.其中正确命题的序号是.(把所有正确命题序号都填上)25.(10分)设命题p:函数y=kx+1在R上是增函数,命题q:∃x∈R,x2+(2k﹣3)x+1=0,如果p∧q是假命题,p∨q是真命题,求k的取值范围.26.(10分)将扑克牌4种花色的A,K,Q共12张洗匀.(1)甲从中任意抽取2张,求抽出的2张都为A的概率;(2)若甲已抽到了2张K后未放回,求乙抽到2张A的概率.参考答案与试题解析一.填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)数列{n+2n}中的第4项是20.【分析】根据题意,可得数列的通项a n=n+2n,将n=4代入通项计算可得答案.【解答】解:根据题意,数列{n+2n}的通项a n=n+2n,则其第4项a4=4+24=20;故答案为:20.【点评】本题考查数列的通项公式,涉及数列的表示方法,关键是理解数列通项公式的定义.2.(5分)抛物线x2=4y的准线方程为y=﹣1.【分析】由抛物线x2=2py(p>0)的准线方程为y=﹣即可求得抛物线x2=4y的准线方程.【解答】解:∵抛物线方程为x2=4y,∴其准线方程为:y=﹣1.故答案为:y=﹣1.【点评】本题考查抛物线的简单性质,掌握其几何性质是关键,属于基础题.3.(5分)若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是(0,2).【分析】因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,由此能求出a的取值范围.【解答】解:因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,解得0<a<2,故答案为:(0,2).【点评】本题考查二元一次不等式的几何意义,解题时要认真审题,注意公式的灵活运用.4.(5分)已知等差数列{a n},其中a1=,a2+a5=4,a n=33,则n的值为50.【分析】由已知求得等差数列的公差,代入a n=33可求n的值.【解答】解:在等差数列{a n},由a1=,a2+a5=4,得2a1+5d=4,即,.∴,由a n=33,得,解得:n=50.故答案为:50.【点评】本题考查了等差数列的通项公式,是基础的计算题.5.(5分)若x,y满足,则目标函数z=x+2y的最大值为3.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点B时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即B(1,1),代入目标函数z=x+2y得z=2×1+1=3故答案为:3.【点评】本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.6.(5分)设等比数列{a n}的前n项和为S n,若27a3﹣a6=0,则=28.【分析】设出等比数列的首项和公比,由已知求出公比,代入等比数列的前n 项和得答案.【解答】解:设等比数列{a n}的首项为a1,公比为q,由27a3﹣a6=0,得27a3﹣a3q3=0,即q=3,∴=.故答案为:28.【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.7.(5分)若正数x,y满足x+3y=5xy,则3x+4y的最小值是5.【分析】将方程变形,代入可得3x+4y=(3x+4y)()=×3,然后利用基本不等式即可求解.【解答】解:∵x+3y=5xy,x>0,y>0∴∴3x+4y=(3x+4y)()=×3=5当且仅当即x=2y=1时取等号故答案为:5【点评】本题主要考查了利用基本不等式求解最值问题,解题的关键是基本不等式的应用条件的配凑8.(5分)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.【分析】运用双曲线的渐近线方程为y=±,结合条件可得=,即可得到a 的值.【解答】解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.9.(5分)已知数列{a n}是等比数列,S n是它的前n项和,若a2•a3=2a1,且a4与2a7的等差中项为,求S5.【分析】由a2•a3=2a1=a1•a4,可得a4=2,再由a4与2a7的等差中项为,得a4 +2a7 =,故有a7 =.求出首项和公比,再利用等比数列的前n项和公式求出s5.【解答】解:数列{a n}是等比数列,S n是它的前n项和,若a2•a3=2a1=a1•a4,可得a4=2.再由a4与2a7的等差中项为,可得a4 +2a7 =,故有a7 =.∴q3==,∴q=,∴a1=16.∴s5==31.【点评】本题主要考查等差数列的定义和性质,等比数列的通项公式,等比数列的前n项和公式,属于中档题.10.(5分)已知椭圆:的焦距为4,则m为4或8.【分析】分焦点在x,y轴上讨论,结合焦距为4,可求m的值.【解答】解:由题意,焦点在x轴上,10﹣m﹣m+2=4,所以m=4;焦点在y轴上,m﹣2﹣10+m=4,所以m=8,综上,m=4或8.故答案为:m=4或8.【点评】本题考查椭圆的性质,考查学生对椭圆方程的理解,属于基础题.11.(5分)若数列x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的取值范围是[4,+∞)或(﹣∞,0] .【分析】由题意可知===++2.由此可知的取值范围.【解答】解:在等差数列中,a1+a2=x+y;在等比数列中,xy=b1•b2.∴===++2.当x•y>0时,+≥2,故≥4;当x•y<0时,+≤﹣2,故≤0.答案:[4,+∞)或(﹣∞,0]【点评】本题考查数列的性质和应用,解题时要认真审题,仔细思考.12.(5分)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.【分析】设出Q的坐标,利用对称知识,集合椭圆方程推出椭圆几何量之间的关系,然后求解离心率即可.【解答】解:设Q(m,n),由题意可得,由①②可得:m=,n=,代入③可得:,可得,4e6+e2﹣1=0.即4e6﹣2e4+2e4﹣e2+2e2﹣1=0,可得(2e2﹣1)(2e4+e2+1)=0解得e=.故答案为:.【点评】本题考查椭圆的方程简单性质的应用,考查对称知识以及计算能力.13.(5分)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第100项,即a100=5252.【分析】根据题意,分析所给的图形可得a n﹣a n﹣1=n+2(n≥2),结合a1的值,可得a100=a1+(a2﹣a1)+(a3﹣a2)+…+(a100﹣a99),代入数据计算可得答案.【解答】解:根据题意,分析相邻两个图形的点数之间的关系:a2﹣a1=4,a3﹣a2=5,…由此我们可以推断:a n﹣a n﹣1=n+2(n≥2),又由a1=5,所以a100=a1+(a2﹣a1)+(a3﹣a2)+…+(a100﹣a99)=5+4+5+…+102=5+=5252;即a100=5252;故答案为:5252.【点评】本题考查数列的表示方法,涉及归纳推理的运用,关键是依据图形,发现变化的规律.14.(5分)若实数a,b满足a=+2,则a的最大值是20.【分析】用换元法,设=x,=y,则x≥0,y≥0;求出b与a的解析式,由a=+2得出y与x的关系式,再根据其几何意义求出a的最大值.【解答】解:设=x,=y,且x≥0,y≥0;∴b=x2,4a﹣b=y2,即a==;∴a=+2可化为=y+2x,即(x﹣4)2+(y﹣2)2=20,其中x≥0,y≥0;又(x﹣4)2+(y﹣2)2=20表示以(4,2)为圆心,以2为半径的圆的一部分;∴a==表示圆上点到原点距离平方的,如图所示;∴a的最大值是×(2r)2=r2=20故答案为:20.【点评】本题考查了给出条件求最值的应用问题,主要考查了换元法和圆的方程的运用问题,考查了数形结合和运算能力,属于中档题.二.解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点(2,﹣6);(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.【分析】(1)设椭圆的标准方程为=1,或,a>b>0,由已知得a=2b,且椭圆过点(2,﹣6),由此能求出椭圆的标准的方程.(2)设椭圆的标准方程为=1,a>b>0,由已知条件推导出c=b=3,由此能求出椭圆的标准方程.【解答】解:(1)设椭圆的标准方程为=1,或,a>b>0,∵长轴长是短轴长的2倍,∴a=2b,①∵椭圆过点(2,﹣6),∴=1,或=1,②由①②,得a2=148,b2=37或a2=52,b2=13,故所求的方程为或.(2)设椭圆的标准方程为=1,a>b>0,∵在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6,如图所示,∴△A1FA2为一等腰直角三角形,OF为斜边A1A2的中线(高),且OF=c,A1A2=2b,∴c=b=3.∴a2=b2+c2=18.故所求椭圆的方程为.【点评】本题考查椭圆的标准方程的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.16.(14分)已知数列{a n}的通项公式是a n=n2+kn+4(1)若k=﹣5,则数列中有多少项是负数?n为何值时,a n有最小值.并求出最小值,>a n,求实数k的取值范围.(2)对于n∈N*,都有a n+1【分析】(1)将k=﹣5代入可知a n=(n﹣1)(n﹣4),进而令a n<0可得负数项,通过配方可得最小值;>a n化简得k>﹣2n﹣1,进而可知k>﹣2﹣1=﹣3.(2)通过a n+1【解答】解:(1)若k=﹣5,则a n=n2﹣5n+4=(n﹣1)(n﹣4),令a n<0,则1<n<4,∴数列中第2、3项共2项为负数,∵f(x)=x2﹣5x+4是开口向上,对称轴x=的抛物线,∴当n=2或3时,a n有最小值22﹣5×2+4=﹣2;(2)依题意,a n>a n,即(n+1)2+k(n+1)+4>n2+kn+4,+1整理得:k>﹣2n﹣1,>a n,又∵对于n∈N*,都有a n+1∴k大于﹣2n﹣1的最大值,∴k>﹣2﹣1=﹣3.【点评】本题考查数列的递推式,考查运算求解能力,注意解题方法的积累,属于基础题.17.(14分)某厂家计划在2016年举行商品促销活动,经调查测算,该商品的年销售量m万件与年促销费用x万元满足:m=3﹣,已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的1.5倍(生产成本由固定投入和再投入两部分资金组成).(1)将2016年该产品的利润y万元表示为年促销费用x万元的函数;(2)该厂2016年的促销费用投入多少万元时,厂家的利润最大?【分析】(1)由题目中,每件产品的销售价格为 1.5×(万元),则利润y=m[1.5×]﹣(8+16m+x),整理即可.(2)对(1)利润函数y=﹣[+(x+1)]+29(x≥0),利用基本不等式求最大值即可.【解答】解:(1)由题意知,每件产品的销售价格为1.5×(万元),∴利润函数y=m[1.5×]﹣(8+16m+x)=4+8m﹣x=﹣[+(x+1)]+29(x≥0).(2)因为利润函数y=﹣[+(x+1)]+29(x≥0),所以,当x≥0时,+(x+1)≥8,∴y≤﹣8+29=21,当且仅当=x+1,即x=3(万元)时,y max=21(万元).所以,该厂家2016年的促销费用投入3万元时,厂家的利润最大,最大为21万元.【点评】本题考查了商品利润函数模型的应用,也考查了基本不等式a+b≥2(a>0,b>0)的灵活运用,是中档题.目.18.(16分)(1)解关于x的不等式:(a2+a﹣1)x>a2(1+x)+a﹣2(a∈R);(2)如果x=a2﹣4在上述不等式的解集中,求实数a的取值范围.【分析】(1)把原不等式右边的未知项移项到左边进行合并,同时右边的式子分解因式,然后根据a﹣1大于0,a﹣1等于0及a﹣1小于0三种情况,根据不等式的基本性质把x的系数化为1,分别求出原不等式相应的解集即可;(2)解法一:分两种情况:a大于1时,根据相应的解集列出关于a的不等式组;同理a小于1时列出相应的不等式组,求出两不等式组解集的并集即可得到a的范围;解法二:把x=a2﹣4代入原不等式中化简,得到关于a的不等式,画出相应的图形,根据图形即可得到满足题意的a的取值范围.【解答】解:(1)(a2+a﹣1)x>a2(1+x)+a﹣2,(a2+a﹣1)x﹣a2x>a2+a﹣2,(a﹣1)x>a2+a﹣2,(a﹣1)x>(a﹣1)(a+2),当a>1时,解集为{x|x>a+2};当a=1时,解集为∅;当a<1时,解集为{x|x<a+2};(2)解法一:由题意,或,分别化为:或,解得:a>3或﹣2<a<1,则实数a的取值范围为(﹣2,1)∪(3,+∞);解法二:将x=a2﹣4代入原不等式,并整理得:(a+2)(a﹣1)(a﹣3)>0,根据题意画出图形,如图所示:根据图形得:实数a的取值范围为(﹣2,1)∪(3,+∞).【点评】此题考查了其他不等式的解法,利用了分类讨论及数形结合的思想,第二小题有两种解法:一种是利用转化的思想,讨论a大于1和a小于1,根据第一问求出的解集列出相应的不等式组;另一种是直接把x的值代入原不等式,借助图形来求解.19.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的焦距为2.(1)若椭圆C经过点(,1),求椭圆C的标准方程;(2)设A(﹣2,0),F为椭圆C的左焦点,若椭圆C上存在点P,满足=,求椭圆C的离心率的取值范围.【分析】(1)由题意可得a2﹣b2=1,代入已知点,可得a,b的方程,解方程即可得到所求椭圆方程;(2)设P(x,y),运用两点的距离公式,化简整理,即可得到P的轨迹方程,由题意和圆相交的条件,结合离心率公式,即可得到所求范围.【解答】解:(1)由题意可得c=1,即a2﹣b2=1,又代入点(,1),可得+=1,解方程可得a=,b=,即有椭圆的方程为+=1;(2)由题意方程可得F(﹣1,0),设P(x,y),由PA=PF,可得=•,化简可得x2+y2=2,由c=1,即a2﹣b2=1,由椭圆+=1和圆x2+y2=2有交点,可得b2≤2≤a2,又b=,可得≤a≤,即有离心率e=∈[,].【点评】本题考查椭圆的方程的求法,注意运用方程的思想,考查轨迹方程的求法,以及椭圆和圆相交的关系,考查运算能力,属于中档题.20.(16分)已知递增数列{a n}的前n项和为S n,且满足a1=1,4S n﹣4n+1=a n2.设b n=,n∈N*,且数列{b n}的前n项和为T n.(1)求证:数列{a n}为等差数列;(2)试求所有的正整数m,使得为整数;(3)若对任意的n∈N*,不等式λT n<n+18(﹣1)n+1恒成立,求实数λ的取值范围.【分析】(1)由已知条件推导出a n﹣2=a n﹣1(n≥2)或a n﹣2=﹣a n﹣1(n≥2),由此能证明数列{a n}为等差数列.(2)由a n=2n﹣1,知=1﹣,由此能求出所有的正整数m,使得为整数.(3)由a n=2n﹣1,知,由此利用裂项求和法结合已知条件能求出实数λ的取值范围.【解答】(1)证明:由,得,…(2分)所以,即,即(n≥2),所以a n﹣2=a n﹣1(n≥2)或a n﹣2=﹣a n﹣1(n≥2),即a n﹣a n﹣1=2(n≥2)或a n+a n﹣1=2(n≥2),…(4分)若a n+a n﹣1=2(n≥2),则有a2+a1=2,又a1=1,所以a2=1,则a1=a2,这与数列{a n}递增矛盾,所以a n﹣a n﹣1=2(n≥2),故数列{a n}为等差数列.…(6分)(2)解:由(1)知a n=2n﹣1,所以==,…(8分)因为,所以,又2m﹣1≥1且2m﹣1为奇数,所以2m﹣1=1或2m﹣1=3,故m的值为1或2.…(10分)(3)解:由(1)知a n=2n﹣1,则,所以T n=b1+b2+…+b n==,…(12分)从而对任意n∈N*恒成立等价于:当n为奇数时,恒成立,记,则≥49,当n=3时取等号,所以λ<49,当n为偶数时,恒成立.记,因为递增,所以g(n)min=g(2)=﹣40,所以λ<﹣40.综上,实数λ的取值范围为λ<﹣40.…(16分)【点评】本题考查等差数列的证明,考查满足条件的所有的正整数的求法,考查实数的取值范围的求法,解题时要注意裂项求和法的合理运用.二.高二数学试题(第二卷)21.(5分)为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有80辆.【分析】由频率分布直方图先求出时速在区间[40,60)内的汽车的频率,由此能求出时速在区间[40,60)内的汽车数量.【解答】解:由频率分布直方图得:时速在区间[40,60)内的汽车的频率为(0.01+0.03)×10=0.4.∴时速在区间[40,60)内的汽车有0.4×200=80(辆).故答案为:80.【点评】本题考查频数的求法,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.22.(5分)若随机安排甲乙丙三人在3天节日中值班,每人值班1天,则甲与丙都不在第一天的概率为.【分析】由甲与丙都不在第一天值班,得乙在第一天值班,由此能求出甲与丙都不在第一天值班的概率.【解答】解:随机安排甲乙丙三人在3天节日中值班,每人值班1天,∵甲与丙都不在第一天值班,∴乙在第一天值班,∵第一天值班一共有3种不同安排,∴甲与丙都不在第一天值班的概率p=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.23.(5分)已知命题甲是“{x|≥0}”,命题乙是“{x|log3(2x+1)≤0}”,则甲是乙的必要不充分条件.(从充分不必要、必要不充分、充要、既不充分也不必要中选填)【分析】利用不等式的解法分别化简甲乙命题,进而判断出结论.【解答】解:命题甲:≥0,化为x(x﹣1)(x+1)≥0,且x≠1,解得:﹣1≤x≤0,或x>1.命题乙:log3(2x+1)≤0,化为0<2x+1≤1,解得:0.则甲是乙的必要不充分条件.故答案为:必要不充分.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.24.(5分)下列四个命题:①命题“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;②若命题P:∃x∈R,x2+x+1<0,则﹁p:∀x∈R,x2+x+1≥0;③若命题“﹁p”与命题“p或q”都是真命题,则命题q一定是真命题;④命题“若0<a<1则log a(a+1)<”是真命题.其中正确命题的序号是②、③.(把所有正确命题序号都填上)【分析】利用命题的否定的形式判断出①错;利用含量词的命题的否定形式判断出②对;利用复合命题的真假与构成其简单命题的真假的关系判断出③对;利用对数函数的单调性判断出④错.【解答】解:对于①,由于否命题是对命题的条件、结论同时否定,①只否定了结论,条件没否定,故①错;对于②,由于含量词的命题有否定公式是:量词交换,结论否定,故②对;对于③,因为”¬p“为真,故p假;因为“p或q”为真,所以p,q有真,所以q 一定为真,故③对;对于④,因为0<a<1,y=log a x是减函数,∵∴,故④错.故答案为:②③【点评】本题考查命题的否定与命题的否命题的区别:命题的否定是将命题全盘否定,一般只将结论否定即可;二否命题是条件、结论同时否定.注意对数函数的单调性与底数的范围有关.25.(10分)设命题p:函数y=kx+1在R上是增函数,命题q:∃x∈R,x2+(2k ﹣3)x+1=0,如果p∧q是假命题,p∨q是真命题,求k的取值范围.【分析】分别求出p,q为真时的k的范围,根据p,q一真一假,得到关于k 的不等式组,解出即可.【解答】解:∵y=kx+1在R递增,∴k>0,由∃x∈R,x2+(2k﹣3)x+1=0,得方程x2+(2k﹣3)x+1=0有根,∴△=(2k﹣3)2﹣4≥0,解得:k≤或k≥,∵p∧q是假命题,p∨q是真命题,∴命题p,q一真一假,①若p真q假,则,∴<k<;②若p假q真,则,∴k≤0;综上k的范围是(﹣∞,0]∪(,).【点评】本题考查了复合命题的判断,考查一次函数以及二次函数的性质,是一道中档题.26.(10分)将扑克牌4种花色的A,K,Q共12张洗匀.(1)甲从中任意抽取2张,求抽出的2张都为A的概率;(2)若甲已抽到了2张K后未放回,求乙抽到2张A的概率.【分析】(1)甲从中任意抽取2张,基本事件总数n==66,抽出的2张都为A包含的基本事件个数m=,由此能求出抽出的2张都为A的概率.(2)甲已抽到了2张K后未放回,余下10张中抽出2张的方法有=45,抽出的两张都是A的方法有,由此能求出乙抽到2张A的概率.【解答】解:(1)将扑克牌4种花色的A,K,Q共12张洗匀.甲从中任意抽取2张,基本事件总数n==66,抽出的2张都为A包含的基本事件个数m=,∴抽出的2张都为A的概率p==.(2)甲已抽到了2张K后未放回,余下10张中抽出2张的方法有=45,抽出的两长都是A的方法有,∴乙抽到2张A的概率p==.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.。
吉林省2020学年高二数学上学期期中试题理(含解析)
命題 :若 ,则 .
命题 :若 ,则 .
(1)写出命题 的逆否命题;
(2)判断命题 , , 的真假,并说明理由.
【答案】(1)命题 的逆否命题为若 或 ,则 (2) 为假命题, 为真命题,理由见解析
【解析】
【分析】
(1)根据逆否命题的书写规则书写即可.
故选B.
【点睛】本题考查了抛物线的定义的应用,考查了两点之间的距离公式,属于基础题.
12.实轴长为 的双曲线 上恰有 个不同的点 满足 ,其中 , 分别是双曲线 的左、右顶点.则 的离心率的取值范围为( )
A. B. C. D.
【答案】A
【解析】
【分析】
先由题意,得到 , , ,设 ,根据 ,得 ,再与双曲线联立,消去 ,得到 ,根据双曲线上存在 个不同的点满足 ,得到只需 ,求出 ,进而可求出离心率的范围.
【答案】
【解析】
【分析】
过 分别作 , 的高,垂足分别为 , ,根据题意,得到 , , 两两垂直;以 为坐标原点, , , 分别为 轴的正方向,建立空间直角坐标系 ,求出 与 的坐标,再由向量数量积的坐标表示,即可得出结果.
【详解】如图.过 分别作 , 的高,垂足分别为 , ,
因为平面 平面 , ,平面 平面 ,
【详解】由题意可得: , ,设 是平面 一个法向量,则 ,即 ,令 ,得 .
设 与平面 所成角为 ,则 .
故选:A
【点睛】本题主要考查求直线与平面所成角的正弦值,熟记空间向量的方法求线面角即可,属于常考题型.
10.已知 , 分别为椭圆 : 的左顶点、下顶点,过点 且斜率为1的直线 与 的另一个公共点为 ,则 ()
2020-2021高二数学上期中试卷含答案
年份x
2014
2015
2016
2017
2018
储蓄存款y(千亿元)
5
6
7
8
10
为便于计算,工作人员将上表的数据进行了处理(令 ),得到下表:
时间t
1
2
3
4
5
储蓄存款z
0
1
2
3
5
(1)求z关于t的线性回归方程;
A.127B.128C.128.5D.129
8.某程序框图如图所示,若输出的结果是126,则判断框中可以是()
A. B. C. D.
9.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到200住在第一营区,从201到500住在第二营区,从501到600住在第三营区,三个营区被抽中的人数依次为().
组号
分组
回答正确的人数
回答正确的人数占本组的频率
第 组
第 组
第 组
第 组
第 组
(1)分别求出 的值;
(2)从第 组回答正确的人中用分层抽样的方法抽取 人,求第 组每组抽取的人数;
(3)在(2)中抽取的 人中随机抽取 人,求所抽取的人中恰好没有年龄段在 的概率
【参考答案】***试卷处理标记,请不要删除
本题选择D选项.
点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.
4.A
解析:A
【解析】
【分析】
根据互斥事件的和的概率公式求解即可.
陕西省2020年高二数学上学期期中考试卷附答案题库(共八套)
范文陕西省2020年高二数学上学期期中考试卷附答案1/ 8题库(共八套)陕西省 2020 年高二数学上学期期中考试卷(一)(考试时间120 分钟满分 150 分)一.单项选择题(每小题 5 分,共 60 分)1.不等式<0 的解集为() A.{x|﹣2<x<3} B.{x|x<﹣2} C . {x|x <﹣ 2 或 x > 3} D.{x|x>3} 2.等差数列{an}中,a7+a9=16,a4=1,则 a12=() A.15 B.30 C.31 D.64 3.已知点 P(x0,y0)和点 A(1,2)在直线 l:3x+2y﹣8=0 的异侧,则() A.3x0+2y0>0 B.3x0+2y0<0 C.3x0+2y0<8 D.3x0+2y0>8 4.已知等差数列{an}的前 n 项和为 Sn,a2=﹣2,S4=﹣4,若Sn 取得最小值,则 n 的值为() A.n=2 B.n=3 C.n=2 或 n=3 D.n=4 5.在△ABC 中,a= ,b= ,A=30°,则角 B 等于()A.90°B.60°或120° C.120° D.60° 6.设 0<a<b,则下列不等式中正确的是() A.a<b<< B.a<<<b C.a<<b< D.<a<<b 7.在△ABC 中,a=2,b=3,,则其外接圆的半径为() A. B. C. D.9 8.不等式 ax2+5x+c>0 的解集为{x| <x< },则 a,c 的值为()A.a=6,c=1 B.a=﹣6,c=﹣1C.a=1,c=6 D.a=﹣1,c=﹣6 9.设△ABC,bcosC+ccosB=asinA,则△ABC 的形状为() A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 10.数列 1 ,3 ,5 ,7 ,…,(2n﹣1)+ ,…的前 n 项和 Sn 的值为() A.n2+1﹣ B.2n2﹣n+1﹣ C.n2+1﹣ D.n2﹣n+1﹣ 11.若不等式(a ﹣2)x2+2(a﹣2)x﹣4<0 对一切x∈R 恒成立,则实数 a 取值的集合() A.{a|a≤2} B.{a|﹣2<a<2} C.{a|﹣2<a≤2} D.{a|a≤﹣ 2} 12.已知 f(x)=log2(x﹣2),若实数 m,n 满足 f(m)+f(n)=3,则 m+n 的最小值为() A.5 B.7 C.4+4 D.9 二.填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13.在等差数列{an}中,S10=10,S20=30,则 S30= . 14.在△ABC 中,若∠B=30°,,AC=2,求S△ABC. 15.设 x,y 满足约束条件,则目标函数 z=3x﹣y 的最大值为. 16.已知二次函数 f(x)=ax2﹣x+c(x∈R)的值域为[0,+∞),则 + 的最小值为.3/ 8三.解答题(共 70 分) 17.求下列不等式的解集.(1)(2)x2+(2﹣a)x﹣2a≥0. 18.等差数列{an}的前 n 项和记为 Sn,已知 a10=30,a20=50.(1)求通项{an};(2)令 Sn=242,求 n. 19.如图所示,我艇在 A 处发现一走私船在方位角45°且距离为 12 海里的 B 处正以每小时 10 海里的速度向方位角105°的方向逃窜,我艇立即以 14 海里/小时的速度追击,求我艇追上走私船所需要的最短时间. 20 .已知 a , b , c 分别为△ ABC 内角 A ,B , C 的对边,且.(1)求 A 的值.(2)若 a=2,△ABC 的面积为,求 b,c 的值. 21.已知等差数列{an}满足 an+1>an,a1=1,且该数列的前三项分别加上 1,1,3 后顺次成为等比数列{bn}的前三项.(1)求数列{an},{bn}的通项公式;(2)令 cn=an?bn,求数列{cn}的前 n 项和 Sn.22.已知函数,数列{an}满足.(1)求证:数列{ }是等差数列;(2)求数列{an}的通项公式;(3)记Sn=a1a2+a2a3+…+anan+1,求 Sn.5/ 8参考答案一.单项选择题 1. A 2. A.3. D.4. C.5. B 6. B 7. C.8. B.9. B.10. A 11. C.12. C.二.填空题 13.解:若数列{an}为等差数列则 Sm,S2m﹣Sm,S3m﹣S2m 仍然成等差数列.所以 S10,S20﹣S10,S30﹣S20 仍然成等差数列.因为在等差数列{an}中有S10=10,S20=30,所以S30=60.故答案为60. 14.解:∵∠B=30°,>AC=2,∴由正弦定理可得:sinC= = =,∴由 0<C<π 及大边对大角可得:∠C= .∴∠A=π﹣∠B﹣∠C= ,∴S△ABC= AB?AC= =2 . 15.解:由约束条件作出可行域如图,联立,解得:B(2,1),化 z=3x﹣y 为 y=3x﹣z,由图可知,当直线 y=3x﹣z 过 B(2,1)时 z 有最大值为3×2﹣1=5.故答案为:5. 16.解:∵二次函数 f(x)=ax2﹣x+c 的值域为[0,+∞),∴ ,解得 a>0,c>0,ac= .∴ + ≥2 =8,当且仅当 a=c= 时取等号,∴ + 的最小值为 8,故答案为:8 三.解答题 17.解:(1)由得,,化简得,,等价于(x+1)(x﹣1)<0,解得﹣1<x<1,∴不等式的解集是(﹣1,1);7/ 8(2)由 x2+(2﹣a)x﹣2a≥0 得,(x+2)(x﹣a)≥0,①当 a=﹣2 时,不等式的解集是 R;②当 a>﹣2 时,不等式的解集是(﹣∞,﹣2]∪[a,+∞);③当 a<﹣2 时,不等式。
山东省临沂市2020_2021学年高二数学上学期期中试题含解析
设圆半径为 ,如此 ,解得 .
船宽 ,假如这条船能从桥下通过,如此此船水面以上最高高度为 ,
,如此 ,解得 .
故答案为:13;7.
四、解答题:此题共6小题.解答应写出文字说明、证明过程或演算步骤.
17. 直线 过定点 .
〔1〕假如直线 与直线 垂直,求直线 的方程;
A. 公共弦 所在直线方程为
B. 线段 中垂线方程为
C. 公共弦 的长为
D. 在过 , 两点的所有圆中,面积最小的圆是圆
【答案】AD
【解析】
【分析】
根据题意,依次分析选项:对于 ,联立两个圆的方程,分析可得公共弦 所在直线方程,可判断 ,对于 ,有两个圆的方程求出两圆的圆心坐标,分析可得直线 的方程,即可得线段 中垂线方程,可判断 ,对于 ,分析圆 的圆心 和半径,分析可得圆心 在公共弦 上,即可得公共弦 的长为圆 的直径,可判断 ,对于 ,由于圆心 在公共弦 上,在过 , 两点的所有圆中,即可判断 .
D. 假如直线 沿 轴向左平移3个单位长度,再沿 轴向上平移2个单位长度后,回到原来的位置,如此该直线 的斜率为
【答案】ACD
【解析】
【分析】
代入点的坐标判断A,求出纵截距判断B,求出斜率得倾斜角,判断C,写出平移直线后的方程,与原方程一致,由此求得 ,判断D.
【详解】 ,所以点 在直线上,A正确;
【详解】解:根据题意,依次分析选项:
对于 ,圆 与圆 ,联立两个圆的方程可得 ,即公共弦 所在直线方程为 , 正确,
对于 ,圆 ,其圆心 为 , ,圆 ,其圆心 为 ,直线 的方程为 ,即线段 中垂线方程 , 错误,
对于 ,圆 ,即 ,其圆心 为 , ,半径 ,圆心 , 在公共弦 上,如此公共弦 的长为 , 错误,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.光伏发电是将光能直接转变为电能的一种技术,具有资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位,2015年起,国家能源局、国务院扶贫办联合在6省的30个县开展光伏扶贫试点,在某县居民中随机抽取50户,统计其年用量得到以下统计表.以样本的频率作为概率.
用电量(单位:度)
5.B
解析:B
【解析】
【分析】
根据表格中的数据,求得样本中心为 ,代入回归直线方程,求得 ,得到回归直线的方程为 ,即可作出预测,得到答案.
【详解】
由题意,根据表格中的数据,可得 ,
即样本中心为 ,代入回归直线方程 ,即 ,
解得 ,即回归直线的方程为 ,
当 时, ,故选B.
【点睛】
本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,求得回归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.
(1)求直方图中a的值;
(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿;
(3)求该校学生上学路上所需的平均时间.
26.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值.
则甲同学收到李老师或张老师所发活动通知的信息的概率为 .
故选C.
【点睛】
本题考查相互独立事件的概率,考查对立事件的概率.在求两个事件中至少有一个发生的概率时一般先求其对立事件的概率,即两个事件都不发生的概率.这样可减少计算,保证正确.
10.B
解析:B
【解析】
试题分析:抽样比是 ,所以样本容量是 .
考点:分层抽样
15.一盒中有6个乒乓球,其中4个新的,2个旧的,从盒子中任取3个球来用,用完后装回盒子中,此时盒中旧球个数X是一个随机变量,则 的值为___________.
16.执行如图所示的程序框图,若输入的A,S分别为0,1,则输出的S=____________.
17.下方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为 ,乙组数据的平均数为 ,则 的值为__________.
A.7B.15C.25D.35
11.从一批产品中取出三件产品,设事件 为“三件产品全不是次品”,事件 为“三件产品全是次品”,事件 为“三件产品不全是次品”,则下列结论正确的是( )
A.事件 与 互斥B.事件 与 互斥
C.任何两个事件均互斥D.任何两个事件均不互斥
12.为计算 ,设计了下面的程序框图,则在空白框中应填入
2020年高二数学上期中试卷附答案
一、选择题
1.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是
A.8号学生B.200号学生C.616号学生D.815号学生
2.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是
户数
7
8
15
13
7
(Ⅰ)在该县居民中随机抽取10户,记其中年用电量不超过600度的户数为 ,求 的数学期望;
(Ⅱ)在总结试点经验的基础上,将村级光伏电站稳定为光伏扶贫的主推方式.已知该县某自然村有居民300户.若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度的价格进行收购.经测算每千瓦装机容量的发电机组年平均发电1000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接受益多少元?
y(微克)
x(千克)
3
38
11
10
374
-121
-751
其中
(I)根据散点图判断, 与 ,哪一个适宜作为蔬菜农药残量 与用水量 的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)若用解析式 作为蔬菜农药残量 与用水量 的回归方程,求出 与 的回归方程.(c,d精确到0.1)
(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据 )
23.袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为 ,第二次取出的小球标号为 .
(1) 记事件 表示“ ”,求事件 的概率;
(2) 在区间 内任取2个实数 , 记 的最大值为 ,求事件“ ”的概率.
24.为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.
(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;
18.已知函数 满足对任意的实数 ,都有 成立,则实数 的取值范围为______________;
19.在平面直角坐标系中,横坐标与纵坐标都在集合A={0,1,2,3,4,5}内取值的点中任取一个点,此点正好在直线 上的概率为________.
20.正四面体的4个面上分别写着1、2、3、4,将3个这样均匀的正四面体同时投掷于桌面上,与桌面接触的3个面上的3个数的乘积能被4整除的概率是_____________.
所以第一组抽到6号,且每组抽到的学生号构成等差数列 ,公差 ,
所以 ,
若 ,则 ,不合题意;若 ,则 ,不合题意;
若 ,则 ,符合题意;若 ,则 ,不合题意.故选C.
【点睛】
本题主要考查系统抽样.
2.B
解析:B
【解析】
设正方形边长为 ,则圆的半径为 ,正方形的面积为 ,圆的面积为 .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是 ,选B.
解得 .
故选:C.
【点睛】
本题考查利用样本中心点坐标满足回归直线方程求参数值,以及由回归方程进行预测值得求解,属中档题.
7.A
解析:A
【解ቤተ መጻሕፍቲ ባይዱ】
试题分析:由程序框图知第一次运行 ,第二次运行 ,第三次运行 ,第四次运行 ,输出 ,所以判断框内为 ,故选C.
考点:程序框图.
8.C
解析:C
【解析】
由题意可得:
三、解答题
21.为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民生产粮食的积极性,从2014年开始,国家实施了对种粮农民直接补贴的政策通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额x(单位:亿元)与该地区粮食产量y(单位:万亿吨)之间存在着线性相关关系,统计数据如下表:
每个实数都大于 的概率为 ,
则3个实数都大于 的概率为 .
本题选择C选项.
9.C
解析:C
【解析】
【分析】
甲同学收到李老师或张老师所发活动通知的信息的对立事件是甲同学既没收到李老师的信息也没收到张老师的信息,李老师的信息与张老师的信息是相互独立的,由此可计算概率.
【详解】
设甲同学收到李老师的信息为事件A,收到张老师的信息为事件B,A、B相互独立, ,
年份
2014
2015
2016
2017
2018
补贴额x/亿元
9
10
12
11
8
粮食产量y/万亿
25
26
31
37
21
(1)请根据上表所给的数据,求出y关于x的线性回归直线方程 ;
(2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴7亿元,请根据(1)中所得到的线性回归直线方程,预测2019年该地区的粮食产量.
A. B. C. D.
9.某学校 位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织 位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给 位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )
A. B. C. D.
10.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为
A. B. C. D.
5.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据:
天数 (天)
3
4
5
6
繁殖个数 (千个)
2.5
3
4.5
由最小二乘法得 与 的线性回归方程为 ,则当 时,繁殖个数 的预测值为( )
A.4.9B.5.25
C.5.95D.6.15
6.一组数据如下表所示:
1
2
3
4
A.
B.
C.
D.
二、填空题
13.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________
14.某人向边长分别为5,12,13的三角形区域内随机丢一粒芝麻,假设芝麻落在区域内的任意一点是等可能的,则其恰落在离三个顶点距离都大于2的地方的概率为__.