小学阴影部分面积计算方法归类

合集下载

小学数学图形求阴影部分面积十大方法总结(附例题)

小学数学图形求阴影部分面积十大方法总结(附例题)

小学数学图形求阴影部分面积十大方法总结(附例题)_2023.9小学阶段的学生通常在学习上存在着总结归纳能力欠缺等问题,为了很好地帮助孩子系统地掌握小学阶段的数学知识,老师把小学求图形面积的十大方法给大家做了总结,各位家长,快给孩子收藏起来吧!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算。

如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例题分析例1、如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2、如下图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积。

一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米。

解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3、两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决求面积十大方法01相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积02相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差. 例如:下图,求阴影部分的面积。

小学“阴影面积计算”的数学策略和方法

小学“阴影面积计算”的数学策略和方法

小学“阴影面积计算”的数学策略和方法小学阴影面积计算的数学策略和方法如下:
1. 理解阴影的概念:阴影是指物体在阳光或光源下面被遮挡形
成的暗影部分。

在面积计算中,这部分面积也需要被计算进去。

2. 观察图形:首先要观察图形,了解图形的大小、形状、位置
等信息,并且根据题目中的要求标出重点,比如标记需要求的面积、已知面积或边长等。

3. 分析图形:认真分析图形的性质和特征,如果是复杂图形,
可以将其分解成简单图形,然后求出每个简单图形的阴影面积,最
后将它们加起来即可得到总的阴影面积。

4. 运用公式计算:面积计算常用的公式有正方形、矩形、三角形、圆等。

如果题目中已经给出了公式,则只需代入数值计算即可。

如果没有给出公式,可以根据题目中的信息自己推导出公式。

5. 记得转换单位:在计算阴影面积时,有可能需要将单位进行
转换。

比如,从厘米换算成米、从平方米换算成平方公分等。

转换
单位时,要注意保证计算的精度和正确性。

6. 检查计算结果:计算结束后,一定要仔细检查计算结果是否
正确,并且根据题目的要求进行单位转换,最后再把答案写在答题
纸上。

四种方法求阴影部分面积

四种方法求阴影部分面积

四种方法求阴影部分面积首先,我们可以使用几何方法来求解阴影部分的面积。

设阴影部分的形状为矩形,其底边的长度为a,高度为h。

阴影的边界可以用两条直线来表示,设直线1与x轴的交点为A,直线2与x轴的交点为B。

两条直线与x轴的交点之间的距离为b。

则阴影部分的面积可以用以下公式表示:A=(a+b)*h/2第二种方法是通过将阴影部分分割成多个小矩形来求解。

首先,我们将阴影部分分割成n个小矩形,每个小矩形的底边长度为ai,高度为hi。

则阴影部分的面积可以表示为以下公式的和:A = ∑(ai * hi)其中i的范围从1到n。

第三种方法是使用积分来求解。

假设阴影部分的形状可以用函数y=f(x)来表示。

要求阴影部分的面积,我们需要找到函数f(x)的定义域上的积分区间[a,b]。

A = ∫[a, b] f(x) dx最后一种方法是使用统计学方法来求解。

假设我们已经获得了一组阴影部分的随机样本,符合一定的分布规律。

我们可以使用这组样本数据来进行统计分析,得出阴影部分的面积的估计值。

首先,我们可以计算出这组样本数据的平均值和标准差。

然后,使用均值加减一个标准差的方法,来计算阴影部分的上下边界。

根据阴影部分的上下边界和样本数据的分布,我们可以得到阴影部分面积的估计值。

需要注意的是,这种方法求得的阴影部分面积只是一个估计值,可能存在一定的误差。

综上所述,我们可以用几何法、分割法、积分法和统计法来求解阴影部分的面积。

每种方法都有自己的优缺点和适用范围,选择合适的方法取决于具体情况和问题要求。

小学数学图形求阴影部分面积十大方法情况总结(附例题)

小学数学图形求阴影部分面积十大方法情况总结(附例题)

小学数学图形求阴影部分面积十大方法总结(附例题)_2023.9小学阶段的学生通常在学习上存在着总结归纳能力欠缺等问题,为了很好地帮助孩子系统地掌握小学阶段的数学知识,老师把小学求图形面积的十大方法给大家做了总结,各位家长,快给孩子收藏起来吧!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算。

如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例题分析例1、如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2、如下图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积。

一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米。

解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3、两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决求面积十大方法01相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积02相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差. 例如:下图,求阴影部分的面积。

小学阴影部分面积计算方法归类

小学阴影部分面积计算方法归类

5cm阴影部分面积计算方法归类一、与差法:分割、合并、倍数比 例1、求阴影部分得面积。

例2、大、小两个正方形得边长分别就是8厘米与6厘米, 求阴影部分得面积。

例3、两个相同得直角三角形如图重叠在一起, 求阴影部分得面积。

例4、求阴影部分面积。

例5、图中长方形ABCD 中AB=5厘米,BC=8比三角形ABF(乙)得面积大8平方厘米。

求DE 得长。

二、运动法:例6、在三角形ABC 中,DC=2BD,CE=3AE,三角形ADE 8平方厘米。

求三角形ABC 得面积。

例7、四边形ABCD 中,AC 与BD 互相垂直,AC=20厘米三、等积变换法:等底、等高则等积;等积、等高则等底;例8、在四边形ABCD 中,∠C=45°,∠B=90°,∠D=90°, AD=4cm,BC=12cm 。

求四边形ABCD 得面积。

例9、AF=2cm,AB=4cm,CD=5cm,DE=8cm,∠B=∠E=90°。

求四边形ACDF 得面积。

3cm4cm6cmAD 10cm 45°AB CDA BCDE F4cm 8cm2cm例10、已知大正方形比小正方形边长多2厘米,大正方形比小正方形得面积大10平方厘米。

求大、小正方形得面积各数多少平方厘米。

练习1、图中两个正方形得边长就是10厘米与7厘米, 求阴影部分得面积(如图)练习2、如下图,在三角形ABC 中,AD=BD,CE=3BE 。

若三角形BED 得面积 就是1平方厘米,则三角形ABC 得面积就是多少平方厘米?练习3、三角形ABC 就是直角三角形,阴影部分①得面积比阴影部分②得面积小28平方厘米、 AB 长40厘米, BC 长多少厘米、 练习4、在右图中(单位:厘米),两个阴影部分面积得与 就是 平方厘米、练习5、ABC 就是等腰直角三角形、 D 就是半圆周得中点, BC 就是半圆 得直径,已知:AB=BC=10,那么阴影部分得面积就是多少? 练习6、已知右图中大正方形边长就是6厘米,中间小正方形边长 就是4厘米、求阴影部分得面积、 练习7、右图中三角形就是等腰直角三角形, 阴影部分得面积就是 (平方厘米)、练习8、如右图,阴影部分得面积就是 、练习9、如图所求,圆得周长就是16、4厘米,圆得面积与长方形得面积正好相等、图中阴影部分得周长就是 厘米、练习10、ABC 就是等腰直角三角形、 D 就是半圆周得中点, BC 就是半圆得直径,已知: AB=BC=10,那么阴影部分得面积就是多少?练习11、在四边形ABCD 中,∠C=135°,∠D=90°。

小学数学图形求阴影部分面积十大方法总结(附例题)

小学数学图形求阴影部分面积十大方法总结(附例题)

小学数学图形求阴影部分面积十大方法总结(附例题)_2023.9小学阶段的学生通常在学习上存在着总结归纳能力欠缺等问题,为了很好地帮助孩子系统地掌握小学阶段的数学知识,老师把小学求图形面积的十大方法给大家做了总结,各位家长,快给孩子收藏起来吧!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算。

如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例题分析例1、如下图,甲、乙两图形都是正方形,它们的边长分别是10 厘米和12 厘米. 求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2、如下图,正方形ABCD 的边长为 6 厘米,△ABE、△ADF 与四边形AECF 的面积彼此相等,求三角形AEF 的面积。

一句话:因为△ABE、△ADF 与四边形AECF 的面积彼此相等,都等于正方形ABCD 面积的三分之一,也就是12 厘米。

解:S△ABE=S △ADF=S 四边形AECF=12在△ABE 中,因为AB=6. 所以BE=4,同理DF=4,因此CE=CF=2 ,∴△ECF 的面积为2×2÷2=2 。

所以S△AEF=S 四边形AECF-S △ECF=12-2=10 (平方厘米)。

例3、两块等腰直角三角形的三角板,直角边分别是10 厘米和 6 厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S △BEF,S△ABG 和S△BEF 都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决求面积十大方法01相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积02相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差. 例如:下图,求阴影部分的面积。

4.微专题 三种方法求阴影部分面积

4.微专题  三种方法求阴影部分面积
第4题图
综合训练
1. 如图,在半径为4的⊙O 中,CD 是直径,AB是弦,且CD⊥AB,垂足为点E, ∠AOB=90°,则阴影部分的面积是___2_π____. 2. 如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E.若∠AOC=60°,OC=2,则 阴影部分的面积是__2__- __2___3_c_m__2__.
针对训练 2. 如图,正方形ABCD的边长为4,以BC为直径的半圆O交对角线线BD于点E, 则阴影部分的面积为__8_-__π___.
第2题图
二、构造和差法 先设法将不规则阴影部分与空白部分组合或将阴影部分进行分割,构造规则图形, 再进行面积和差计算.如图:
针对训练 3. 如图,在扇形AOB 中,∠AOB=90°,正方形CDEF的顶点C是 »AB 的中点, 点D在OB上,点E在OB的延长线上.当正方形CDEF的边长为2 2 时,则图中 阴影部分的面积为_2_π__-__4__.第1题图第2题图
3. 如图,菱形ABCD的边长为2,∠A=60°,B»D是以点A为圆心,AB长为半径的 弧,C»D 是以点B为圆心,BC长为半径的弧,则阴影部分的面积为___3_____cm2. 4. 如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4 2 ,O是AB的中点, 以O为圆心,线段OC的长为半径画圆心角为90°的扇形EOF,E¼F 经过点C,则阴 影部分的面积为__2_π_-__4__.
第3题图
第4题图
微专题 三种方法求阴影部分面积
方法1 公式法 所求阴影部分的面积是规则图形,直接用扇形的面积公式求解. 如图:
针对训练 1. 如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是 ___3_π____.
第1题图

小学数学图形求阴影部分面积十大方法总结(附例题)

小学数学图形求阴影部分面积十大方法总结(附例题)

小学数学图形求阴影部分面积十大方法总结(附例题)_2023.9小学阶段的学生通常在学习上存在着总结归纳能力欠缺等问题,为了很好地帮助孩子系统地掌握小学阶段的数学知识,老师把小学求图形面积的十大方法给大家做了总结,各位家长,快给孩子收藏起来吧!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算。

如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例题分析例1、如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2、如下图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积。

一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米。

解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3、两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决求面积十大方法01相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积02相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差. 例如:下图,求阴影部分的面积。

小学数学图形求阴影部分面积十大方法总结

小学数学图形求阴影部分面积十大方法总结

小学数学图形求阴影部分面积十大方法总结(附例题)_小学阶段的学生通常在学习上存在着总结归纳能力欠缺等问题,为了很好地帮助孩子系统地掌握小学阶段的数学知识,老师把小学求图形面积的十大方法给大家做了总结,各位家长,快给孩子收藏起来吧!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算。

如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例题分析例1、如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2、如下图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。

一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD 面积的三分之一,也就是12厘米。

解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3、两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决求面积十大方法01相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积02相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如:下图,求阴影部分的面积。

四种方法求阴影部分面积

四种方法求阴影部分面积

四种方法求阴影部分面积计算阴影面积是在几何学和物理学中的一个常见问题。

在这个问题中,我们需要找到两个或多个图形之间的重叠部分的面积。

这些图形可以是任何形状,包括圆形、矩形、三角形等。

在本文中,我将介绍四种不同的方法来计算阴影面积。

这些方法分别是几何法、分割法、积分法和数值法。

每种方法都有其优点和局限性,适用于不同类型的图形和场景。

1.几何法:几何法是最常见和直观的方法之一,适用于简单的图形。

它的基本思想是将图形转化为几何体,然后计算这些几何体的体积或面积。

对于平面图形,可以使用面积公式来计算。

例如,对于矩形,可以直接计算两个方向上的长度乘积;对于圆形,可以使用圆的半径和π来计算面积。

然后,通过找到两个图形的重叠部分,并计算其面积,可以得到阴影面积。

2.分割法:分割法是一种基于图形分割的方法,适用于复杂的图形。

它的思想是将图形分割成简单的几何体,然后计算这些几何体的面积,并将它们加在一起。

这种方法一般使用数学建模软件来进行计算。

例如,对于一个复杂的图形,可以将其分割成多个矩形或三角形,并计算它们的面积,然后将它们加在一起来得到阴影面积。

3.积分法:积分法是一种基于微积分的方法,适用于连续变化的图形。

它的基本思想是使用积分来计算曲线下面积。

对于阴影面积的计算,可以将两个图形的边界曲线表示为一个函数的形式,并计算它们之间的积分。

这种方法需要具备一定的数学知识和计算能力,但可以得到更准确的结果。

4.数值法:数值法是一种通过数值逼近的方法,适用于复杂的图形和场景。

它的思想是将图形离散化成有限个点或网格,并计算每个点或网格的面积,并将它们加在一起。

这种方法可以使用计算机程序进行计算,但结果的准确性依赖于离散化的精度。

通常情况下,离散化的精度越高,计算结果越准确。

综上所述,四种方法分别是几何法、分割法、积分法和数值法。

它们适用于不同类型的图形和场景,并具有不同的优点和局限性。

在实际应用中,我们可以根据具体情况选择合适的方法来计算阴影面积。

小学阴影面积求解技巧和方法

小学阴影面积求解技巧和方法

小学阴影面积求解技巧和方法小学阴影面积求解是数学中的一个重要内容,掌握好这个技巧和方法可以帮助我们更好地理解和应用数学知识。

下面,我将为您介绍一些小学阴影面积求解的技巧和方法。

一、认识阴影面积的概念阴影面积是指物体挡住光线后所产生的面积。

在数学中,我们通常通过几何图形的形状和位置关系去计算阴影面积。

二、常见的几何图形阴影面积计算方法1. 长方形和正方形的阴影面积计算方法:当光线垂直照射在长方形或正方形上时,阴影面积等于图形的面积,即长度乘以宽度。

2. 三角形的阴影面积计算方法:当三角形的一条边平行于光线且与地面平行时,阴影面积等于三角形的面积的一半。

阴影面积 = 三角形面积 / 23. 梯形的阴影面积计算方法:当梯形的两条平行边平行于光线且与地面平行时,阴影面积等于梯形的面积的一半。

阴影面积 = 梯形面积 / 24. 圆形的阴影面积计算方法:当光线垂直照射在圆形上时,阴影面积等于圆形的面积。

阴影面积 = 圆形面积5. 正方体和长方体的阴影面积计算方法:当正方体或长方体在某一面上完全阻挡光线时,阴影面积等于这个面的面积。

阴影面积 = 长方体面积或正方体面积三、实例分析1. 某正方形的一角被光线照射,求阴影面积。

解法:由于正方形的一角被光线照射,那么这个阴影的形状是一个直角三角形。

因此,阴影面积等于正方形面积的一半。

2. 光线从上方照射到一个梯形上,求阴影面积。

解法:由于梯形的两条平行边平行于光线且与地面平行,所以阴影面积等于梯形面积的一半。

3. 光线从侧面照射到一个直角三角形上,求阴影面积。

解法:由于光线从侧面照射,那么这个阴影的形状是一个等腰直角三角形。

根据三角形的性质可知,阴影面积等于三角形面积的一半。

四、综合运用在实际问题中,我们可能会遇到需要计算复杂几何图形的阴影面积。

此时,我们可以将复杂图形分解成基本几何图形,然后再根据基本几何图形的阴影面积计算方法进行计算。

最后,将各个部分的阴影面积相加,得到整个复杂图形的阴影面积。

小学五年级阴影部分面积大全

小学五年级阴影部分面积大全

小学五年级阴影部分面积大全本文档将详细介绍小学五年级数学中与阴影部分面积相关的知识点及解题方法。

1. 直线和曲线的阴影面积计算方法- 直线的阴影面积计算方法:根据直线的长度和阴影部分的宽度,使用公式 `面积 = 长度 ×宽度` 计算阴影部分的面积。

- 曲线的阴影面积计算方法:根据曲线的形状,可以将曲线分割为多个形状简单的图形,然后计算每个图形的阴影面积,最后将它们相加得到整个曲线的阴影面积。

2. 常见图形的阴影面积计算方法2.1. 矩形和正方形- 矩形和正方形的阴影面积计算方法:使用公式 `面积 = 长度 ×宽度` 计算阴影部分的面积。

2.2. 三角形- 三角形的阴影面积计算方法:使用公式 `面积 = 底边长度 ×高 / 2` 计算阴影部分的面积。

2.3. 圆形- 圆形的阴影面积计算方法:使用公式 `面积= π × 半径^2` 计算阴影部分的面积。

其中,π 的近似值为 3.14。

3. 综合应用题考虑到小学五年级学生的能力和研究内容,以下是一道综合应用题,旨在综合运用以上所学知识:题目:一个长方形的长为8 cm,宽为5 cm,上面有个三角形,底边长为 4 cm,高为 3 cm,求阴影部分的面积。

解答:首先计算矩形的面积,根据公式 `面积 = 长度 ×宽度`,可得矩形的面积为 40 平方厘米。

然后计算三角形的面积,根据公式 `面积 = 底边长度 ×高 / 2`,可得三角形的面积为 6 平方厘米。

最后将两个面积相减,得到阴影部分的面积为 34 平方厘米。

通过以上的示例题目,希望能够帮助学生理解和掌握阴影部分面积的计算方法,提高数学解题能力。

4. 总结本文档介绍了小学五年级阴影部分面积的计算方法,涵盖了直线、曲线、矩形、正方形、三角形和圆形等常见图形。

通过综合应用题的实例,帮助学生加深理解和运用所学知识,提高解题能力。

希望本文档能够对小学五年级的数学学习有所帮助。

小学数学9种“求图形阴影面积”的方法

小学数学9种“求图形阴影面积”的方法

小学数学9种“求图形阴影面积”的方法在数学几何考试中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算,一般我们称这样的图形为不规则图形。

对于这类不规则图形,考试常考的就是求图形中的阴影面积。

“几何”问题不仅是小学数学的重点,到了初高中数学学习中也占很大比重,内容是循序渐进的,所以基础一定要打好。

下面9种方法就是王老师今天分享给大家的内容,家长们赶紧收藏让孩子在单元考试前好好掌握吧!相信只要孩子掌握了这9种求面积的方法,数学考试再也不怕了!一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积二、相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.三、直接求法这种方法是根据已知条件,从整体出发直接求出不规则图形面积四、重新组合法这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可五、辅助线法这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可六、割补法这种方法是把原国形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决七、平移法这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积八、旋转法这种方法是将图形中某部分切割下来之后,使之沿某一点或某一轴旋转定角度贴补在另一图形的圆,从而组合成一个新的基本规则的图形,便于求出面积九、对称添补法这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形原来图形面积就是这个新图形面积的半.。

小学数学图形求阴影部分面积十大方法总结(附例题)

小学数学图形求阴影部分面积十大方法总结(附例题)

小学数学图形求阴影部分面积十大方法总结(附例题)_2023.9小学阶段的学生通常在学习上存在着总结归纳能力欠缺等问题,为了很好地帮助孩子系统地掌握小学阶段的数学知识,老师把小学求图形面积的十大方法给大家做了总结,各位家长,快给孩子收藏起来吧!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算。

如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例题分析例1、如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2、如下图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积。

一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米。

解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3、两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决求面积十大方法01相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积02相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如:下图,求阴影部分的面积。

六年级求阴影部分面积大全

六年级求阴影部分面积大全

求阴影面积是数学考试的重点,那么一般求阴影面积的题都应该怎么算呢?
面积求解类型
1、从整体图形中减去局部;
2、割补法:将不规则图形通过割补,转化成规则图形。

3、平移法:平移法是指把一些不规则的几何图形沿水平或垂直方向移动,拼成一个规则的几何图形,从而求出面积的方法。

4、旋转法是指把一些几何图形绕某一点沿顺时针(或逆时针)方向转动一定的角度,使分散的、不规则的几何图形合并成一个规则的几何图形,从而求出面积的方法。

5、等分法是指把一个几何图形平均分成若干个完全相同的小图形,然后根据大图形与小图形面积之间的倍数关系进行求解的方法。

重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。

能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。

一些几何图形的面积
正方形的面积=边长×边长。

长方形的面积=长×宽。

平行四边形的面积=底×高。

三角形的面积=底×高/2。

梯形的面积=(上底+下底)×高/2。

圆的面积=π×半径的平方。

[论文]求阴影部分面积的几种常用方法

[论文]求阴影部分面积的几种常用方法

总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:44221=⨯⨯。

四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

六年级必考阴影面积知识点

六年级必考阴影面积知识点

六年级必考阴影面积知识点阴影面积知识点是六年级必考的内容,本文将介绍与阴影面积相关的知识点和计算方法。

一、阴影面积的定义和计算方法阴影面积是指物体挡住光线所形成的影子所占据的区域面积。

计算阴影面积通常有两种方法:直接测量和间接计算。

1. 直接测量法直接测量法是通过使用工具(如尺子、量角器等)直接测量阴影的边长或角度,然后根据具体形状计算出阴影面积。

例如,在计算一个矩形阴影面积时,我们可以测量出矩形的长和宽,然后通过长度乘以宽度即可得到阴影面积。

2. 间接计算法间接计算法是通过已知的几何形状和相关参数来计算阴影面积。

常见的几何形状包括矩形、三角形和圆形等。

对于矩形和三角形,我们可以利用其所占据的平行四边形或直角三角形的面积来计算阴影面积。

而对于圆形,则可以利用半径或直径等参数进行计算。

二、矩形阴影面积的计算矩形是最简单的几何形状之一,因此计算矩形阴影面积也是比较容易的。

1. 公式法矩形的阴影面积可以通过公式直接计算,公式为:面积 = 长 ×宽。

其中,长和宽分别表示矩形的边长。

2. 分割法分割法是将矩形分割成多个平行四边形或三角形,然后计算每个平行四边形或三角形的面积,最后将所有面积相加即可得到阴影面积。

三、三角形阴影面积的计算三角形是常见的几何形状之一,在计算三角形阴影面积时,我们可以利用其底边和高来进行计算。

1. 公式法三角形的阴影面积可以通过公式直接计算,公式为:面积 = 底边 ×高 ÷ 2。

其中,底边表示三角形的底边长度,高表示三角形的高度。

2. 两边夹角法如果已知三角形两边的长度和夹角的大小,我们可以利用正弦定理或余弦定理来计算三角形的阴影面积。

四、圆形阴影面积的计算圆形是一种特殊的几何形状,在计算圆形阴影面积时,我们需要知道其半径或直径。

1. 公式法圆形的阴影面积可以通过公式直接计算,公式为:面积= π × r²。

其中,π(pi)表示一个常数,约等于3.14,r表示圆的半径。

六年级上册数学求阴影面积的七种类型归纳

六年级上册数学求阴影面积的七种类型归纳

六年级上册数学求阴影面积的七种类型归纳
以下是六年级上册数学求阴影面积的七种类型归纳:
1.直接计算法:当阴影部分是一个规则图形时,可以直接使用相应图形的面积公式进行计算。

2.相减法:当阴影部分是由两个或多个规则图形组成时,可以将阴影部分的面积看作是这些规则图形面积的差。

3.割补法:将阴影部分通过切割、平移、旋转等方式,拼成一个规则图形,然后计算其面积。

4.等积变形法:根据等积原理,将阴影部分与一个已知面积的规则图形进行等积变换,然后计算阴影部分的面积。

5.比例法:当阴影部分与某个规则图形之间存在比例关系时,可以利用比例关系求出阴影部分的面积。

6.方程法:通过建立方程来求解阴影部分的面积。

7.实际问题法:将阴影部分的面积问题与实际生活中的问题相结合,通过分析实际问题来求解阴影部分的面积。

需要注意的是,在解决具体问题时,需要根据具体情况选择合适的方法。

同时,要注意单位的统一和计算的准确性。

人教版六年级求阴影部分部分面积计算归类

人教版六年级求阴影部分部分面积计算归类

人教版六年级求阴影部分面积和图形计算归类1、求下图零件的体积。

(单位:厘米)(2分)。

2、下图是在一个棱长为10厘米的正方体中切一个最大的圆柱,请计算切得的圆柱的表面积和体积。

(表面积和体积各2分,共4分)3、如图,一个圆的周长是18.84厘米。

长方形的面积是多少?(2分)(2分)5、求阴影部分的面积。

(单位:厘米)6、长方形的面积和圆的面积相等,已知圆的半径是3cm ,求阴影部分的周长和面积。

7、正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)(2分)8、如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少平方厘米?(3分)9、求阴影部分的面积。

(单位:厘米)(2分)10、求下图阴影部分的面积。

11、求直角三角形中阴影部分的面积。

12、 求下图阴影部分的面积。

求阴影部分的周长和面积。

(单位:分米)13、如图,已知直角梯形的上底是6cm ,下底是10cm ,面积是80平方厘米,求出阴影部分的面积。

(2分)643214、求阴影部分面积(单位:cm)(3分)。

15、求右面图中阴影部分的面积(单位:m)。

16、求图中阴影部分的面积。

17、如图是三个半圆,求阴影部分的周长和面积。

(单位:厘米)18、求下面正方形中阴影部分的面积。

(3分)19、如下图,已知平行四边形的面积是119㎡。

求阴影部分的面积。

20、求以竖线为轴旋一周后得到的圆锥的体积。

(单位:cm)(2分)21、如图,一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积将增加25.12平方厘米,求原来圆柱的体积。

(4分)22、图中圆与长方形面积相等,长方形的面积是16平方米。

阴影部分面积多少平方米?23、求下图的周长和面积。

(单位:厘米)(2分) 24、求下面图形的表面积和体积。

(单位:分米)26、图中阴影部分的面积是57平方厘米,求这个正方形的面积。

(3分)27、求阴影部分的面积(单位:厘米)(2分) 28、求下图的体积(单位:厘米)S圆=12.56平方厘米29、计算下面立体图形的体积,单位:厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阴影部分面积计算方法归类
一、和差法:分割、合并、倍数比
例1、求阴影部分的面积。

;
例2、大、小两个正方形的边长分别是8厘米和6厘米, 求阴影部分的面积。

例3、两个相同的直角三角形如图重叠在一起, 求阴影部分的面积。

例4、求阴影部分面积。

例5、图中长方形ABCD 中AB=5厘米,BC=8厘米。

三角形DEF (甲)的面积比三角形ABF (乙)的面积大8平方厘米。

求DE 的长。

3cm
4cm
6cm
/
2cm
12cm

A
B
C
(
E
F

A
D B
C 10cm 10cm
24cm
{
E
二、运动法:
$
例6、在三角形ABC 中,DC=2BD ,CE=3AE ,三角形ADE 的面积是 8平方厘米。

求三角形ABC 的面积。

(
例7、四边形ABCD 中,AC 和BD 互相垂直,AC=20厘米,BD=15厘米。

求四边形的面积。

三、等积变换法:等底、等高则等积;等积、等高则等底;等积、等底则等高。

例8、在四边形ABCD 中,∠C=45°,∠B=90°,∠D=90°, AD=4cm ,BC=12cm 。

求四边形ABCD 的面积。

&
例9、AF=2cm,AB=4cm,CD=5cm,DE=8cm,∠B=∠E=90°。

A
B
C
D
A C
45°
A
B
C
D
5cm
求四边形ACDF 的面积。

例10、已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大10平方厘米。

求大、小正方形的面积各数多少平方厘米。


练习1、图中两个正方形的边长是10厘米和7厘米, 求阴影部分的面积(如图)
练习2、如下图,在三角形ABC 中,AD=BD,CE=3BE 。

若三角形BED 的面积 是1平方厘米,则三角形ABC 的面积是多少平方厘米
<
练习3、三角形ABC 是直角三角形,阴影部分①的面积比阴影部分 ②的面积小28平方厘米. AB 长40厘米, BC 长多少厘米.

A
B C
D

F 4cm
8cm
2cm C


A
B
练习4、在右图中(单位:厘米),两个阴影部分面积的和是平方厘米.
练习5、ABC是等腰直角三角形. D是半圆周的中点, BC是半圆
的直径,已知:AB=BC=10,那么阴影部分的面积是多少
练习6、已知右图中大正方形边长是6厘米,中间小正方形边长
是4厘米.求阴影部分的面积.
练习7、右图中三角形是等腰直角三角形,
阴影部分的面积是(平方厘米).
练习8、如右图,阴影部分的面积是.
练习9、如图所求,圆的周长是厘米,圆的面积与长方形的面积正好
12
15
20
A
10

C
B
21
相等.图中阴影部分的周长是 厘米.)14.3(=π
练习10、ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知:

AB=BC=10,那么阴影部分的面积是多少
练习11、在四边形ABCD 中,∠C=135°,∠D=90°。

AD=5cm
BE=6cm 。

四边形ABCD 的面积是多少平方厘米
练习12、校园里有两块三角形空地,计划分别种上玫瑰和牡丹,玫瑰园和牡丹园一共占地多少平方米
方法归类
和差法:分割、合并、倍数比 运动法:
等积变换法:等底、等高则等积;等积、等高则等底;等积、等底则等高。

A 、
C
D
E 60。

相关文档
最新文档