实验5 Matlab绘图操作实验报告
matlab实训报告总结
matlab实训报告总结Matlab实训报告总结摘要:本文总结了在Matlab实训中所学到的知识和经验,包括Matlab的基本操作、常用函数的使用、图形绘制和数据处理等方面。
通过实际操作和实验练习,我们深入了解了Matlab的强大功能和灵活性,在数据处理和科学计算方面取得了令人满意的结果。
1. 引言Matlab是一种强大的科学计算软件,广泛应用于工程、数学、物理和其他科学领域。
在Matlab实训中,我们学习了如何使用Matlab 进行数据处理、模拟实验和图形绘制等操作。
2. 实训内容在实训中,我们首先学习了Matlab的基本操作,包括变量的定义和赋值、数组和矩阵的创建和运算,以及条件语句和循环语句的使用。
这些基本操作是我们后续实验的基础。
接着,我们学习了常用函数的使用。
Matlab提供了许多内置函数,例如求解方程、插值、傅里叶变换等。
我们通过实际例子学习了这些函数的使用方法,并在实验中应用到了实际问题中。
在图形绘制方面,Matlab提供了丰富的绘图函数,可以绘制二维和三维图形。
我们学习了如何绘制线条、曲线、散点图和柱状图等,并通过实验练习提高了我们的图形绘制能力。
我们学习了数据处理的方法。
Matlab提供了强大的数据处理函数,可以对数据进行滤波、拟合、统计和分析等操作。
我们通过实验掌握了这些数据处理方法,并将其应用到了实际数据中。
3. 实训成果通过Matlab实训,我们取得了一些令人满意的成果。
首先,我们掌握了Matlab的基本操作,能够灵活运用各种语句和函数解决问题。
其次,我们学会了使用Matlab进行数据处理和图形绘制,能够对实验数据进行分析和展示。
最后,我们通过实验练习,提高了自己的问题解决能力和创新思维。
4. 实训心得在Matlab实训中,我们遇到了一些困难和挑战。
但是通过不断的尝试和学习,我们克服了这些困难,取得了一些进步。
在实训中,我们学会了如何提高自己的编程技巧和问题解决能力,培养了耐心和坚持的品质。
MATLAB实验报告
MATLAB实验报告一、实验目的本次 MATLAB 实验旨在深入了解和掌握 MATLAB 软件的基本操作和应用,通过实际编程和数据处理,提高解决问题的能力,培养编程思维和逻辑分析能力。
二、实验环境本次实验使用的是 MATLAB R2020a 版本,运行在 Windows 10 操作系统上。
计算机配置为英特尔酷睿 i5 处理器,8GB 内存。
三、实验内容(一)矩阵运算1、矩阵的创建使用直接输入、函数生成和从外部文件导入等方式创建矩阵。
例如,通过`1 2 3; 4 5 6; 7 8 9` 直接输入创建一个 3 行 3 列的矩阵;使用`ones(3,3)`函数创建一个 3 行 3 列元素全为 1 的矩阵。
2、矩阵的基本运算包括矩阵的加减乘除、求逆、转置等。
例如,对于两个相同维度的矩阵`A` 和`B` ,可以进行加法运算`C = A + B` 。
3、矩阵的特征值和特征向量计算通过`eig` 函数计算矩阵的特征值和特征向量,加深对线性代数知识的理解和应用。
(二)函数编写1、自定义函数使用`function` 关键字定义自己的函数,例如编写一个计算两个数之和的函数`function s = add(a,b) s = a + b; end` 。
2、函数的调用在主程序中调用自定义函数,并传递参数进行计算。
3、函数的参数传递了解值传递和引用传递的区别,以及如何根据实际需求选择合适的参数传递方式。
(三)绘图功能1、二维图形绘制使用`plot` 函数绘制简单的折线图、曲线等,如`x = 0:01:2pi; y = sin(x); plot(x,y)`绘制正弦曲线。
2、图形的修饰通过设置坐标轴范围、标题、标签、线条颜色和样式等属性,使图形更加清晰和美观。
3、三维图形绘制尝试使用`mesh` 、`surf` 等函数绘制三维图形,如绘制一个球面`x,y,z = sphere(50); surf(x,y,z)`。
(四)数据处理与分析1、数据的读取和写入使用`load` 和`save` 函数从外部文件读取数据和将数据保存到文件中。
MATLAB实验报告
MATLAB实验报告一、实验名称实验5图形绘制(2)二、实验目的:熟悉和掌握MA TLAB的多种二维和三维图形绘制函数。
三、实验内容:1.二维图形绘制函数x=-2:0.1:2; y=sin(x);subplot(221) %将图形窗口划分成2*2的四块,当前编辑第1块stairs(x,y) %绘制梯形图title('(a) stairs') %加标注subplot(222) %当前编辑2*2的图形窗口中的第2块compass(cos(x),y) %绘制罗盘图title('(b) compass')y1=randn(1,10000);subplot(223)hist(y,20) %绘制出柱状图title('(c) hist')subplot(224)[u,v]=meshgrid(-2:0.2:2,-1:0.15:1);%为三维绘图产生x,y数据矩阵z=u.*exp(-u.^2-v.^2);contour(u,v,z) %绘制矩阵的等高线title('(d) contour')2.误差限图绘制函数x=-2:0.2:2;y=sin(x);L=rand(1,length(x))/10;U=rand(1,length(x))/10; %产生数据errorbar(x,y,L,U,':') %绘制误差限图3.复数图绘制函数z=[2+3i,2+2i,1-2i,4i,-3];x=[2,2,1,0,-3];y=[3,2,-2,4,0]; %将复数输入subplot(1,2,1),compass(z,'r') %在一分为二的图形框中的左图绘制罗盘图subplot(1,2,2),feather(x,y,'b') %在图形框中的右图绘制速度向量图4.标准球面绘制程序。
subplot(2,2,1) %将图形窗口划分成2*2的四块,当前编辑第1块sphere(3); %绘制球形图,图形由2*2块组成title('n=3') %加标题axis equal %让绘制图形的各个坐标轴等长subplot(2,2,2) %当前编辑第2块sphere(6); %绘制球形图,图形由6*6块组成title('n=6')axis equalsubplot(2,2,3)sphere(10)title('n=10')axis equalsubplot(2,2,4)sphere(15);title('n=15')axis equal5.绘制三维网格图绘制下面给出的二元函数的网格图。
(最新版)MATLAB实验报告
(最新版)MATLAB实验报告实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink 仿真环境常规模板。
3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
用鼠标点击simulink下的“Sinks”,就进入输出方式模块库,通常选用“Scope”的示波器图标,将其用左键拖至新建的“untitled”窗口。
Matlab实验报告
实验一:Matlab操作环境熟悉一、实验目的1.初步了解Matlab操作环境。
2.学习使用图形函数计算器命令funtool及其环境。
二、实验内容熟悉Matlab操作环境,认识命令窗口、内存工作区窗口、历史命令窗口;学会使用format命令调整命令窗口的数据显示格式;学会使用变量和矩阵的输入,并进行简单的计算;学会使用who和whos命令查看内存变量信息;学会使用图形函数计算器funtool,并进行下列计算:1.单函数运算操作。
求下列函数的符号导数(1)y=sin(x); (2) y=(1+x)^3*(2-x);求下列函数的符号积分(1)y=cos(x);(2)y=1/(1+x^2);(3)y=1/sqrt(1-x^2);(4)y=(x1)/(x+1)/(x+2)求反函数(1)y=(x-1)/(2*x+3); (2) y=exp(x); (3) y=log(x+sqrt(1+x^2));代数式的化简(1)(x+1)*(x-1)*(x-2)/(x-3)/(x-4);(2)sin(x)^2+cos(x)^2;(3)x+sin(x)+2*x-3*cos(x)+4*x*sin(x);2.函数与参数的运算操作。
从y=x^2通过参数的选择去观察下列函数的图形变化(1)y1=(x+1)^2(2) y2=(x+2)^2(3) y3=2*x^2 (4) y4=x^2+2 (5) y5=x^4 (6)y6=x^2/23.两个函数之间的操作求和(1)sin(x)+cos(x) (2) 1+x+x^2+x^3+x^4+x^5乘积(1)exp(-x)*sin(x) (2) sin(x)*x商(1)sin(x)/cos(x); (2) x/(1+x^2); (3) 1/(x-1)/(x-2);求复合函数(1)y=exp(u) u=sin(x) (2) y=sqrt(u) u=1+exp(x^2)(3) y=sin(u) u=asin(x) (4) y=sinh(u) u=-x实验二:MATLAB基本操作与用法一、实验目的1.掌握用MATLAB命令窗口进行简单数学运算。
matlab实验心得总结
matlab实验心得总结在通过完成一系列的Matlab实验后,我对这个强大的数学计算软件有了更深入的认识。
通过这些实验,我不仅学到了如何使用Matlab进行数据处理和分析,还体会到了它在科学研究和工程应用中的广泛使用。
实验一:Matlab基础操作在第一次接触Matlab时,我首先学习了它的基本操作。
Matlab提供了友好的用户界面和丰富的命令工具,使得数据处理变得简单且高效。
在实验中,我学会了如何定义变量、进行基本的数学运算和使用矩阵操作等。
这些基础操作为后续的实验打下了坚实的基础。
实验二:数据可视化数据可视化在科学研究和工程领域中起着重要的作用。
在这个实验中,我学会了如何利用Matlab绘制各种图形,如折线图、散点图和柱状图等。
通过调整图形的样式和颜色,使得数据更加直观和易于理解。
同时,我还学会了如何添加标题、坐标轴标签和图例,使得图形具有更好的可读性。
实验三:模拟与仿真Matlab不仅可以进行数据处理和图形绘制,还可以进行模拟和仿真。
在这个实验中,我学会了如何使用Matlab进行数学模型的建立和仿真。
通过设定合适的参数和方程,我可以模拟出各种现实世界中的物理、生物和工程现象。
这对于科学研究和工程设计具有重要的意义。
实验四:信号处理信号处理是Matlab的一个重要应用领域。
在这个实验中,我学会了如何使用Matlab对信号进行分析和处理。
通过应用不同的滤波器,我可以去除信号中的噪声和干扰,提取出感兴趣的信息。
同时,我还学会了如何进行频域分析,通过傅里叶变换将信号转换到频率域,进一步分析信号的频谱特性。
实验五:数值计算Matlab还提供了强大的数值计算功能。
在这个实验中,我学会了如何使用Matlab进行数值计算和优化。
通过使用不同的数值求解方法,我可以解决复杂的数学方程和优化问题,得到精确的计算结果。
这对于科学研究和工程计算具有重要的价值。
总结起来,通过这些实验,我对Matlab的应用能力有了明显的提升。
matlab实验五报告
实验五数据可视化一、实验目的掌握MATLAB 二维、三维图形绘制,掌握图形属性的设置和图形修饰。
二、实验内容(1)二维图形绘制。
(2)三维曲线和三维曲面绘制。
三、实验步骤1.二维图形绘制(1) 二维图形绘制主要使用函数plot。
(2)函数plot 的参数也可以是矩阵。
(3) 选用绘图线形和颜色(4) 添加文字标注。
(5) 修改坐标轴范围。
6) 子图和特殊图形绘制。
2. 三维曲线和三维曲面绘制(1) 三维曲线绘制使用plot3 函数。
绘制一条空间螺旋线:z=0:0.1:6*pi;x=cos(z);y=sin(z);plot3(x,y,z);(2) 三维曲面图的绘制:MATLAB 绘制网线图和曲面图的函数分别是mesh( )和surf( ),其具体操作步骤是:①用函数meshgrid( )生成平面网格点矩阵[X,Y];②由[X,Y]计算函数数值矩阵Z;③用mesh( )绘制网格图,用surf( )绘制曲面图。
绘制椭圆抛物面:clear all,close all;x=-4:0.2:4;y=x;[X,Y]=meshgrid(x,y);Z=X.^2/9+Y.^2/9;mesh(X,Y,Z);title('椭圆抛物面网格图')figure(2)surf(X,Y,Z);title('椭圆抛物面曲面图')绘制阔边帽面:clear all,close all;x=-7.5:0.5:7.5;y=x;[X,Y]=meshgrid(x,y);R=sqrt(X.^2+Y.^2)+eps; %避开零点,以免零做除数Z=sin(R)./R;mesh(X,Y ,Z);title('阔边帽面网格图')figure(2)surf(X,Y ,Z);title('阔边帽面曲面图')四、练习:1、写出图 A2 的绘制方法。
提示:按照以下的步骤进行(1)产生曲线的数据(共有 3组数据);(2)选择合适的线形、标记、颜色(正弦曲线为红色,余弦曲线为青色);(3)添加图例及文字说明信息;(4)添加坐标轴说明与图标题。
Matlab实验报告
实验结果及分析实验1:程序如下x=1:10y=2*x;plot(x,y)仿真结果:实验结果分析:仿真结果是条很规则的直线,X轴和Y轴一一对应,清楚明了,而序又特别简单。
所以用Maltab 软件很方便地画出规则的直线,方便研究。
实验结果及分析1、A=2、A=1A=实验结果及分析实验三 Matlab在信号与系统中的应用实验名称实验1、掌握信号与系统课程中基本知识的Matlab编程、仿真方法目的实验原理实验1程序:b=[1];a=[1 1];p=;t=0:p:5;x=exp(-3*t);subplot(1,2,1);impulse(b,a,0:p:5);title('冲激响应');subplot(1,2,2);step(b,a,0:p:5);title('阶跃响应');实验内容<设计性实验>1、用MATLAB在时域中编程求解y′(t)+y(t)=f(t), f(t)= exp(-3t)ε(t)的冲激响应、阶跃响应。
在simulink仿真环境下,设计系统框图,分析系统的冲激响应、阶跃响应。
<设计性实验>(选做)2、用MATLAB在时域中编程求解y′(t)+y(t)=f(t), f(t)=(1+exp(-3t))ε(t)的冲激响应、阶跃响应,要求用conv编程实现系统响应。
在simulink仿真环境下,设计系统框图,分析系统的冲激响应、阶跃响应。
实验结果及分析实验1仿真结果:simulink仿真环境下冲激响应阶跃响应实验名称实验四 Matlab在数字信号处理中的应用实验结果及分析实验1仿真结果:6khz12kHZ。
MATLAB实验报告绘图
68 54 35;
45 25 12;
48 68 45;
68 54 69];
x=sum(t);
h=pie(x);
textobjs=findobj(h,'type','text');
str1=get(textobjs,{'string'});
val1=get(textobjs,{'extent'});
运行图像
4、采用模型 画一组椭圆
输入程序:th = [0:pi/50:2*pi]';
a = [0.5:.5:4.5];
X = cos(th)*a;
Y = sin(th)*sqrt(25-a.^2);
plot(X,Y),axis('equal'),xlabel('x'), ylabel('y')
title('A set of Ellipses')
oldext=cat(1,val1{:});
names={'商品一;'商品二';'商品三'};
str2=strcat(names,str1);
set(textobjs,{'string'},str2)
val2=get(textobjs,{'extent'});
newext=cat(1,val2{:});
xlable('sin(t)'),ylable('cos(t)'),zlable('t');
gridon;
输出图像
9、用MATLAB绘制饼图
Matlab 绘图作业实验报告
MATLAB绘图作业作业内容:1、请用三种不同的方法将三条曲线同时绘制在一个figure窗口(提示:其中有一种是用subplot),并在每一条曲线的旁边加上曲线的公式,这三条曲线的公式、颜色和线形均由你们定,但是,横轴,也就是x轴都是[-10,10],间隔为0.5。
法一:x=-10:0.5:10;y=sin(x);z=cos(x);w=tan(x);subplot(1,3,[1,2,3]);plot(x,y,'r-',x,z,'b--',x,w,'g+')gtext('sin(x)');gtext('cos(x)');gtext('tan(x)');法二:x=-10:0.5:10;y=sin(x);z=cos(x);w=tan(x);plot(x,y,'r-');hold on;plot(x,z,'b--');hold on;plot(x,w,'k+');gtext('sin(x)');gtext('cos(x)');gtext('tan(x)');法三:x=-10:0.5:10;y=sin(x);z=cos(x);w=tan(x);plot(x,y,'r-',x,z,'b--',x,w,'c+');gtext('sin(x)');gtext('cos(x)');gtext('tan(x)');2、还是这道题,不使用subplot方法将三条曲线绘制在同一个figure窗口中,然后为它们增加标注、标题、横坐标、纵坐标的名称(随便你们想),再加上网格。
x=-10:0.5:10;y=sin(x);z=cos(x);w=tan(x);plot(x,y,'r-',x,z,'b--',x,w,'c+');title('图形');xlabel('横坐标');ylabel('纵坐标');grid on;legend('正弦','余弦','正切','location','northeastoutside');gtext('sin(x)');gtext('cos(x)');gtext('tan(x)');3、x=[-20, 20], 间隔1,函数y=2x2-3x+10,请用fplot函数来绘制该曲线,函数名由你来定。
MATLAB实验报告(绘图)
MATLAB实验报告(绘图)MATLAB实验报告——MATLAB绘图学号:学院:班级:姓名:1、绘制y = e x 3sin 3x (x ∈ 0,4π ) 的图像,要求用蓝色的星号画图;并且画出其包络线y = ±e x 3 的图像,用红色的点划线画图. MATLAB Code: x = 0:pi/50:4*pi;y = exp(x/3).*sin(3*x);z(1,:) = exp(x/3);z(2,:) = -exp(x/3);plot(x,y,'b*',x,z(1,:),'r-.',x,z(2,:),'r-.');2、用fplot 和ezplot 命令绘出函数y = e2t 3sin ?(1+2t ) 在区间[1,10]上的图像.MATLAB Code:subplot(1,2,1),fplot(@(t)exp(-2*t/3).*sin(1+2*t),[1,10]); title('fplot');xlabel('t');subplot(1,2,2),ezplot('exp(-2*t/3).*sin(1+2*t)',[1,10]); title('ezplot');3、在同一图形窗口画三个字图,要求使用指令gtext,axis,legend,title,xlabel,ylabel:(1)y=xcosx,x∈(?π,π)(2) y=xtan1xsin x3,x∈(π,4π)(3) y=e 1sin x,x∈[1,8]MATLAB Code:subplot(2,2,1),x1 = -pi:pi/50:pi;y1 = x1.*cos(x1);plot(x1,y1,'r'),axisequal,legend('x*cosx'),title('f1'),xlabel('x'),ylabel('y'); subplot(2,2,2),x2 = pi:pi/50:4*pi;y2 = x2.*tan(1./x2).*sin(x2.^3);plot(x2,y2,'b'),axisequal,legend('x*tan(1/x)*sin(x^3)'),title('f2'),xlabel('x') ,ylabel ('y');subplot(2,2,3:4),x3 = 1:0.01:8;y3 = exp(1./x3).*sin(x3);plot(x3,y3,'g'),legend('exp(1/x)*sinx'),title('f3'),xlabel( '时间'),ylabel('位移');gtext('x*cosx');4、使用合适的单轴对数坐标函数绘制函数y=e x2的图像(其中1≤x≤10)MATLAB Code:x = 1:0.01:10;y = exp(x.^2);semilogy(x,y,'b-.');xlabel('x'),ylabel('y');5、绘制圆锥螺线的图像并添加各种标注,圆锥螺线的参数方程为:x =tcos πt y =tsin π6t z =2t(0≤t ≤20π) MATLAB Code:t = 0:pi/50:20*pi;x = t.*cos(pi/6*t);y = t.*sin(pi/6*t);z = 2*t;plot3(x,y,z,'b'),grid on;title('圆锥螺线');xlabel('x = tcost');ylabel('y = tsint');zlabel('z = 2t');6、在同一个图形窗口画半径为1的球面、柱面x2+y2=1以及极sin4t,t∈[0,2π].坐标图形ρ=12MATLAB Code:subplot(1,2,1),sphere(100);hold on;cylinder;hold on;t = 0:pi/50:2*pi;r = 0.5*sin(4*t);subplot(1,2,2);polar(t,r);title('r = 0.5*sin4t');7、用mesh与surf命令绘制三维曲面z=x2+3y2的图像,并使用不同的着色效果及光照效果.MATLAB Code:t = -3:0.1:3;[x,y] = meshgrid(t);z = x.^2+3*y.^2;subplot(1,2,1),mesh(x,y,z),title('网格z = x^2+3y^2'),shading flat;light('position',[10,10,2]);subplot(1,2,2),surf(x,y,z),title('表面z = x^2+3y^2');shading interp; light('position',[5,-4,-2]);8、绘制由函数x 29+y216+z24=1形成的立体图,并通过改变观测点获得该图形在各个坐标平面的投影.MATLAB Code:t = 0:pi/50:2*pi;[x,y] = meshgrid(t,t);X = 3*sin(y).*cos(x);Y = 4*sin(y).*sin(x);Z = 2*cos(y); subplot(2,2,1);mesh(X,Y,Z);title('x^2/9+y^2/16+z^2/4=1');subplot(2,2,2);mesh(X,Y,Z);view(90,0);title('x^2/9+y^2/16+z^2/4=1在yoz面投影'); subplot(2,2,3);mesh(X,Y,Z);view(0,0);title('x^2/9+y^2/16+z^2/4=1在xoz面投影'); subplot(2,2,4);mesh(X,Y,Z);view(0,90);title('x^2/9+y^2/16+z^2/4=1在xoy面投影');9、画三维曲面z=5?x2?y2?2≤x,y≤2与平面z=3的交线. MATLAB Code:t = -2:0.01:2;[x,y] = meshgrid(t);z1=(5-x.^2-y.^2);z2 = 3*ones(length(t));r0 = (abs(z1-z2)<=0.03);zz = r0.*z2;yy = r0.*y;xx = r0.*x;plot3(xx(r0~=0),yy(r0~=0),zz(r0~=0),'b.');xlabel('x'),ylabel('y'),zlabel('z');title('z = 5-x^2-y^2 与 z = 3的交线');10(附加)、利用迭代复函数z n+1=z n2+c,c∈C构造Mandelbrot集. Mandelbrot集定义为:M: =c∈C| |c|≤2,|c2+c|≤2,|(c2+c)2+c|≤2…….MATLAB Code:%最大迭代数网格细度%本次作图取maxloopNum = 100,Eps = 0.05function drawMandelbrot(maxloopNum,Eps)t = -2:Eps:2;[x,y] = meshgrid(t);z = x+i*y;isMandel = zeros(length(t));for j = 1:length(z)for k = 1:length(z)iter = 0;current = z(j,k);temp = current;while abs(temp)<=2 && iter<maxloopnum< p="">temp = temp^2+current;iter = iter + 1;endif iter == maxloopNumisMandel(j,k) = 1;endendendplot(z.*isMandel,'.');axis equal;title('MandelBrot set');legend('loop = 100,eps = 0.05','Location','northwest'); xlabel('x'),ylabel('iy');end</maxloopnum<>。
matlab实验报告
matlab实验报告实验报告:Matlab实验分析1. 实验目的本实验旨在通过Matlab软件完成一系列数值计算和数据分析的任务,包括绘制曲线、解方程、矩阵运算等,以加深对Matlab软件的理解和掌握。
2. 实验内容2.1 绘制函数曲线首先,我们通过在Matlab中输入函数的表达式来绘制函数曲线。
例如,我们可以输入y = sin(x)来绘制正弦函数的曲线。
另外,我们还可以设置曲线的颜色、线型和坐标轴范围等。
2.2 解方程接下来,我们使用Matlab来解方程。
对于一元方程,我们可以使用solve函数来求出方程的解。
例如,我们输入syms x; solve(x^2 - 2*x - 8)来解方程x^2 - 2x - 8 = 0。
而对于多元方程组,我们可以使用solve函数的向量输入形式来求解。
例如,我们输入syms x y; solve(x^2 + y^2 - 1, x - y - 1)来求解方程组x^2 + y^2 - 1 = 0和x - y - 1 = 0的解。
2.3 矩阵运算Matlab也可以进行矩阵运算。
我们可以使用矩阵相乘、相加和取逆等运算。
例如,我们可以输入A = [1 2; 3 4]和B = [5 6;7 8]来定义两个矩阵,然后使用A * B来计算它们的乘积。
3. 实验结果与分析在本实验中,我们成功完成了绘制函数曲线、解方程和矩阵运算等任务。
通过Matlab软件,我们可以快速、准确地进行数值计算和数据分析。
使用Matlab的高级函数和工具箱,我们可以更方便地处理复杂的数值计算和数据分析问题。
4. 实验总结通过本次实验,我们进一步加深了对Matlab软件的理解和掌握。
Matlab提供了丰富的函数库和工具箱,适用于各种不同的数值计算和数据分析任务。
在日常科研和工程实践中,Matlab是一个非常强大和方便的工具,可以帮助我们更高效地完成任务。
MATLAB 绘图实验报告
实验报告课程名称:MATLAB上机实验实验项目:matlab绘图实验地点:专业班级:学号学生姓名:指导教师:年月日MATLAB绘图一.实验环境计算机 MATLAB软件二.实验目的1.掌握MATLAB的基本绘图命令。
2.掌握运用MATLAB绘制一维,二维,三维图形的方法。
3.绘图形加以修饰。
三.预备知识1.基本图形命令plot2. 线型和颜色3. 特殊的二维图形颜色四.实验内容和步骤1.创建一个5×5魔方矩阵,并画出表示这个矩阵的图形。
>>A=magic(5);>>plot(A)1 1.52 2.53 3.54 4.552.在同一个坐标轴里绘出y=sin(x),z=cos(x)两条曲线。
>> x=linspace(0,2*pi,50); >> y=sin(x); >> plot(x,y); >> hold on; >> z=cos(x); >> plot(x,z) >> hold off1234567-1-0.8-0.6-0.4-0.200.20.40.60.813.画出y=x^2的曲线(x ∈(-5,5))。
在这曲线上加入相同区间里的y=x^(1/3)的曲线,并且要求采用绿色折线标识。
>> close all>> x=linspace(-5,5,100);>> y=x.^2; >> plot(x,y) >> hold on >> z=x.^(1/3); >> plot(x,z,'g--') >> hold off-5-4-3-2-101234505101520254.在同一个窗口,不同坐标系里分别绘出y1=sinx,y2=cosx,y3=sinh(x),y4=cosh(x)4个图形。
matlab__函数图形绘制实验报告
实验报告课程名称:数学实验学院名称:数学与统计学院班级:姓名:学号:2012-2013—学年第_________ 学期数学与统计学院制Plot(x,y) grid;图像:(二)参数方程作图3x(t)=2cos t x(t)=2(t—sint)例2 :画出星形线{y(t)=2sin3t及旋轮线{y(t)=2(1-cost)的图形解:输入以下命令:%星形线作图t=li nspace(0,2*pi,5000);x=2*(cos(t)).A3;y=2*(si n(切八3;plot(x,y),grid;结果:%旋轮线作图t=li nspace(0,4*pi,5000); x=2*(t-si n( t));y=2*(1-cos(t)); plot(x,y),axis equal; axis(0,8*pi,0,5);grid;结果:(三)极坐标方程图形例3:画出四叶玫瑰线的图形。
知其极坐标方程:p=acos (2二)解:取a=5做图。
在命令窗口输入下命令theta=li nspace(0,2*pi); r=2*cos(2*theta); polar(theta,r)结果:z=(u.A2-v.A2)./4;surf(x,y,z);bix on;结果:(五)空间曲线在坐标平面上的投影曲面和投影柱面x 二lOcosty"Osint, f R在xOz面上的正投影曲线例5:画出螺旋线{z 二2t的图形。
x=10cost解:化为参数方程{z=2t ,运行下列程序t=lin space(-2*pi,2*pi);x=10*cos(t);z=2*t;h=plot(x,z);grid; xlabel('x');ylabel('z');set(h,'linewidth' ,2);结果:o实验分析:(一)在本次实验中我们初步了解了matlab。
(二)学会了一些简单绘图。
(三)在编制中我们要很明确点乘的重要性”。
Matlab实验报告MATLAB绘图参考模板
实验目的1.掌握MATLAB的基本绘图命令。
2.掌握运用MATLAB绘制一维、二维、三维图形的方法。
3.给图形加以修饰。
一、预备知识1.基本绘图命令plotplot绘图命令一共有三种形式:⑴ plot(y)是plot命令中最为简单的形式,当y为向量时,以y的元素为纵坐标,元素相应的序列号为横坐标,绘制出连线;若y为实矩阵,则按照列绘出每列元素和其序列号的对应关系,曲线数等于矩阵的列数;当y为复矩阵时,则按列以每列元素的实部为横坐标,以虚部为纵坐标,绘出曲线,曲线数等于列数。
⑵ plot(x,y,[linspec])其中linspec是可选的,用它来说明线型。
当x和y为同维向量时,以x为横坐标,y为纵坐标绘制曲线;当x是向量,y是每行元素数目和x维数相同的矩阵时,将绘出以x为横坐标,以y中每行元素为纵坐标的多条曲线,曲线数等于矩阵行数;当x为矩阵,y为相应向量时,使用该命令也能绘出相应图形。
⑶plot(x1,y1,x2,y2,x3,y3……)能够绘制多条曲线,每条曲线分别以x和y为横纵坐标,各条曲线互不影响。
线型和颜色MATLAB可以对线型和颜色进行设定,线型和颜色种类如下:线:—实线:点线—.虚点线——折线点:.圆点 +加号 *星号 x x型 o 空心小圆颜色:y 黄 r 红 g 绿 b 蓝 w 白 k 黑 m 紫 c 青特殊的二维图形函数表5 特殊2维绘图函数[1] 直方图在实际中,常会遇到离散数据,当需要比较数据、分析数据在总量中的比例时,直方图就是一种理想的选择,但要注意该方法适用于数据较少的情况。
直方图的绘图函数有以下两种基本形式。
·bar(x,y) 绘制m*n 矩阵的直方图。
其中y 为m*n 矩阵或向量,x 必须单向递增。
·bar(y) 绘制y 向量的直方图,x 向量默认为x=1:mclose all; %关闭所有的图形视窗。
x=1:10;y=rand(size(x));bar(x,y); %绘制直方图。
MATLAB实验报告_6
MATLAB课程实验报告******学号:B********专业:电气工程及其自动化日期:2015年11月18实验一:MATLAB的绘图功能练习一实验目的:1、掌握绘制多条线或者三维图形的常用函数。
2、熟悉利用图形对象进行绘图操作的方法。
3、掌握绘制图形的辅助操作。
二:实验内容1.多条线型在同一图形中可以绘制多条线型,基本命令格式如下。
Plot(x1,y1,x2,y2,...x n,y n)例如:x=0:0.1:2*pi;plot(x,sin(x),’^g’,x,cos(x),’pr’)输出曲线如图所示:2.三维图形的绘制与二维图形相对应,MATLAB提供了plot3()函数,它能够在一个三维空间内绘制出三维的曲线,该函数的调用格式为:plot3(x,y,z,选项)例如:x=-8:0.5:8;y=x;[x,y]=meshgrid(x,y)z=-sqrt(x.^2+y.^2)z=-z.*z;surf(x,y,z);pause;Mesh(x,y,z);三、实验收获与体会第一次的MATLAB实验课程使我们认识了这个软件,了解了MATLAB这门课程,熟悉了该软件的基本功能,也知道了该软件在我们生活中的重要地位。
随着社会的不断发展,计算机的普及,它也被应用在越来越多的方面。
实验二:晶闸管三相桥式整流器的仿真一实验目的:1、掌握绘制晶闸管三相桥式整流器的仿真绘图。
2、熟悉利用图形对象进行绘图操作的方法。
3、掌握绘制图形的辅助操作。
二:实验内容晶闸管三相桥式整流器是交流——直流交换的一种典型变换器,应用较为广泛。
根据三相桥式整流器电路结构,在模型窗口中建立主电路仿真模型,加入同步装置和脉冲触发器等建立三相桥式整流器的仿真模型,如下图:主回路负载的选择,这里为了模拟直流电动机模型,选择电阻、电感与直流反电动势构成、电阻、电感模型选择RLC 串联分支实现。
三相交流电源通过三个频率50HZ、幅值220V、相位滞后120°交流电压源实现。
MATLAB的基本绘图实验报告
实习报告课程名称多媒体实验实习题目基本图形绘制实验专业通信工程班级08通信(2)班学号学生姓名实习成绩指导教师吴娱2011年4月基本图形绘制实验一、实验目的:1、掌握MATLAB的基本绘图函数。
2、掌握绘图函数的用法、简单图形标注、简单颜色设定。
二、实验要求:独立进行实验,完成实验报告。
三、实验内容:1、MATLAB简介:MATLAB语言丰富的图形表现方法,使得数学计算结果可以方便地、多样性地实现了可视化,这是其它语言所不能比拟的。
2、MATLAB的绘图功能:(1)二维绘图:A、plot——最基本的二维图形指令:1. 单窗口单曲线绘图;2. 单窗口多曲线绘图;3. 单窗口多曲线分图绘图;4. 多窗口绘图;5.可任意设置颜色与线型;6.图形加注功能;7.fplot——绘制函数图函数;8.ezplot——符号函数的简易绘图函数B、fill——基本二维绘图函数:绘制二维多边形并填充颜色C、(选做)特殊二维绘图函数:bar——绘制直方图;polar——绘制极坐标图;hist——绘制统计直方图;stairs——绘制阶梯图;stem——绘制火柴杆图;rose——绘制统计扇形图;comet——绘制彗星曲线;errorbar——绘制误差棒图;compass——复数向量图(罗盘图);feather——复数向量投影图(羽毛图);quiver——向量场图;area——区域图;pie——饼图;convhull——凸壳图;scatter——离散点图。
(2)三维绘图:A、三维线图:plot3——基本的三维图形指令B、三维网格图:mesh——三维网线绘图函数C、三维表面图:surf——三维曲面绘图函数,与网格图看起来一样D、三维轮廓图:contour——三维轮廓绘图函数E、三维混合图:surfc——三维混合绘图函数四、作业:1、(1)在同一幅图上的(-pi,pi)区间,用0.5的间隔绘制sinx的红色曲线,用0.1的间隔绘制sin(x+0.5)的绿色曲线,用0.01的间隔绘制sin(x+1)的蓝色曲线。
MATLAB绘画实验报告
MATLAB绘画实验报告MATLAB绘画实验报告引言:MATLAB是一种强大的科学计算软件,它不仅可以进行数值计算、数据分析和模拟仿真等工作,还可以用于绘制各种图形。
在本次实验中,我将通过使用MATLAB进行绘画,探索其绘图功能的强大之处。
一、绘制基本图形首先,我使用MATLAB绘制了一些基本图形,如直线、曲线和点等。
通过设置不同的参数,我可以控制图形的形状、颜色和线条样式等。
这为我后续的绘图工作奠定了基础。
二、绘制二维图形接下来,我使用MATLAB绘制了一些二维图形,如折线图、散点图和柱状图等。
通过输入数据并选择合适的绘图函数,我可以将数据以直观的方式展示出来。
例如,我可以使用折线图来展示某个变量随时间的变化趋势,或者使用散点图来展示两个变量之间的关系。
三、绘制三维图形除了二维图形,MATLAB还可以绘制各种各样的三维图形。
我使用MATLAB绘制了一些三维曲面图和三维散点图。
通过设置坐标轴和数据,我可以将复杂的数据以立体的方式展示出来。
这对于研究三维数据的分布和趋势非常有帮助。
四、绘制动画除了静态图形,MATLAB还可以绘制动画。
我使用MATLAB编写了一些简单的动画程序,如小球的运动轨迹和图形的变换等。
通过控制时间和参数,我可以实现图形的动态变化,使得观察者可以更好地理解图形背后的规律和特点。
五、图形处理与分析MATLAB不仅可以绘制图形,还可以对图形进行处理和分析。
我使用MATLAB 对一些图形进行了平滑处理、噪声去除和边缘检测等操作。
这些图形处理技术可以帮助我们更好地理解图像中的信息,并提取出我们感兴趣的特征。
六、应用实例最后,我将MATLAB的绘图功能应用到了实际问题中。
我使用MATLAB绘制了一幅地形图,并通过设置不同的参数,展示了地形在不同条件下的变化。
这对于地质学家和地理学家来说非常有用,可以帮助他们更好地理解地球表面的形态和特征。
结论:通过本次实验,我深刻体会到了MATLAB绘图功能的强大之处。
matlab实验报告
matlab实验报告引言:Matlab(矩阵实验室)是一款功能强大的数值计算和科学计算软件,广泛应用于工程、科学和经济等领域。
本实验报告将探讨我在使用Matlab进行实验过程中的心得体会和实验结果。
实验一:图像处理在这个实验中,我使用Matlab对一张图像进行了处理,并应用了各种图像处理算法。
这包括图像增强、边缘检测和图像分割等技术。
通过Matlab的图像处理工具箱,我能够轻松调用各种算法函数,并对图像进行快速处理。
实验结果表明,Matlab图像处理工具箱提供了丰富的函数和算法,极大地方便了我们的图像处理工作。
实验二:模拟信号处理模拟信号处理是Matlab中的一个重要应用领域。
在这个实验中,我模拟了一个带噪声的正弦信号,并使用Matlab进行了噪声滤波和频谱分析。
通过使用Matlab的滤波函数,我能够有效地去除信号中的噪声,并还原出原始信号。
同时,Matlab提供了功能强大的频谱分析工具,我可以轻松地对信号的频率特性进行分析和可视化。
实验三:数据分析与统计数据分析与统计是Matlab的另一个重要应用领域。
在这个实验中,我使用Matlab对一组实验数据进行了分析和统计。
通过使用Matlab的统计函数和工具,我能够计算出数据的均值、方差、标准差等统计指标,并绘制出数据的直方图和散点图。
这些统计分析结果对我的实验研究提供了有力的支持,并帮助我更好地理解实验数据。
实验四:数值计算与优化数值计算与优化是Matlab的核心功能之一。
在这个实验中,我使用Matlab进行了一组数值计算和优化实验。
通过使用Matlab的数值计算函数和优化工具箱,我能够快速计算出复杂的数学问题,并找到最优解。
同时,在进行优化实验时,我可以设置各种约束条件和目标函数,从而得到最优解的参数值。
这些数值计算和优化工具极大地提高了我的研究效率和准确度。
结论:通过这些实验,我深刻认识到Matlab的强大功能和广泛应用领域。
无论是图像处理、信号处理、数据分析还是数值计算与优化,Matlab都提供了丰富的函数和工具,让我们能够快速高效地完成实验和研究工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tutorial 5 实验报告
实验名称:Matlab 绘图操作
实验目的:
1、 掌握绘制二维图形的常用函数;
2、 掌握绘制三维图形的常用函数;
3、 掌握绘制图形的辅助操作。
实验内容: 1. 设sin .cos x y x x ⎡⎤
=+
⎢⎥+⎣⎦
23051,在x=0~2π区间取101点,绘制函数的曲线。
2. 已知: y x =21,cos()y x =22,y y y =⨯312,完成下列操作: (1) 在同一坐标系下用不同的颜色和线性绘制三条曲线; (2) 以子图形式绘制三条曲线;
(3) 分别用条形图、阶梯图、杆图和填充图绘制三条曲线。
3.
已知:ln(x y x x ≤=⎨⎪+>⎪⎩0102
,在x -≤≤55区间绘制函数曲线。
4. 绘制极坐标曲线sin()a b n ρθ=+,并分析参数a 、b 、n 对曲线形状的影响。
5.在xy 平面内选择区域[][],,-⨯-8888,
绘制函数z =的三种三维曲面图。
6. 用plot 函数绘制下面分段函数的曲线。
,(),,x x f x x x x ⎧+>⎪
==⎨⎪+<⎩23
50
00
50
7. 某工厂2005年度各季度产值(单位:万元)分别为:450.6、395.9、410.2、450.9,试绘制柱形图和饼图,并说明图形的实际意义。
8. 在同一坐标轴中绘制下列两条曲线。
(1).y x =-205
(2)sin()cos ,sin()sin x t t
t y t t
π=⎧≤≤⎨
=⎩303
实验结果:
1.
2. (1)
(2)
(3)
3.
4.
5.
6.
7.
8.。