中考数学试卷及答案解析完整版
2024年安徽省中考真题数学试卷含答案解析
安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。
2024年上海市中考数学试卷及解析
2024年上海市初中学业水平考试数学试卷一、选择题(每题4分,共24分)1.如果x y >,那么下列正确的是()A.55x y +<+B.55x y -<- C.55x y> D.55x y->-2.函数2()3xf x x -=-的定义域是()A.2x = B.2x ≠ C.3x = D.3x ≠3.以下一元二次方程有两个相等实数根的是()A.260x x -=B.290x -=C.2660x x -+= D.2690x x -+=4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.()种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A.甲种类B.乙种类C.丙种类D.丁种类5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为()A.菱形B.矩形C.直角梯形D.等腰梯形6.在ABC ∆中,3AC =,4BC =,5AB =,点P 在ABC ∆内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是()A.内含B.相交C.外切D.相离二、填空题(每题4分,共48分)7.计算:()324x=___________.8.计算()()a b b a +-=______.9.1=,则x =___________.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =uur r,若2AE EC =,则DC = ___________(结果用含a ,b的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人.17.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.18.对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为__________.三、简答题(共78分,其中第19-22题每题10分,第23,24题每题12分,第25题14分)19.计算:102|124(1++-.20.解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.21.在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h .(1)求:①两个直角三角形的直角边(结果用h 表示)②小平行四边形的底、高和面积(结果用h 表示)(2)请画出同学拼出的另一种符合题意的图,要求①不与给定的图形状相同②画出三角形的边.23.如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC=⋅(2)F 为线段AE 延长线上一点,且满足12EF CF BD ==,求证:CE AD =.24.在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式(2)直线x m =(0m >)与新抛物线交于点P,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.25.在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥(2)已知1AD AE ==①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长②如图3所示,如果点M 在边BC 上,联结EM ,DM ,EC ,DM 与EC 交于N,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.2024年上海市初中学业水平考试数学试卷一、选择题.题号123456答案CDDBAB6.【解析】解: 圆A 半径为1,圆P 半径为3,圆A 与圆P 内切∴圆A 含在圆P 内,即312PA =-=P ∴在以A 为圆心,2为半径的圆与ABC 边相交形成的弧上运动,如图所示∴当到P '位置时,圆P 与圆B 圆心距离PB 最大,= 325<+=∴圆P 与圆B 相交故选:B .二、填空题.7.【答案】664x 8.【答案】22b a -9.【答案】110.【答案】3810⨯11.【答案】减小12.【答案】57︒13.【答案】450014.【答案】315.【答案】23a b-【解析】解: 四边形ABCD 是平行四边形DC AB ∴∥,DC AB =.E 是AC 上一点,2AE EC =23AE AC ∴=23AB AE EB AE BE b=+=-=- ∴23DC a b=- 故答案为:23a b -.16.【答案】200017.【答案】27或47【解析】解:当C '在AB 之间时,作下图根据::1:3:7AC AB BC '=,不妨设1,3,7AC AB BC '===由翻折的性质知:FCD FC D ''∠=∠CD 沿直线l 翻折至AB 所在直线BC F FC D FCD FBA '''∴∠+∠=∠+∠BC F FBA '∴∠=∠。
2024年长春市中考数学试卷及答案
2024年长春市中考数学试卷一、选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据有理数加法法则,计算()23+-过程正确的是()A.()32++ B.()32+- C.()32-+ D.()32--2.南湖公园是长春市著名旅游景点之一,图①是公园中“四角亭”景观的照片,图②是其航拍照片,则图③是“四角亭”景观的().A.主视图B.俯视图C.左视图D.右视图3.在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为()A.54oB.60C.70D.72 4.下列运算一定正确的是()A.236a a a ⋅= B.236a a a ⋅= C.()222ab a b = D.()235a a =5.不等关系在生活中广泛存在.如图,a ,b 分别表示两位同学的身高,c 表示台阶的高度.图中两人的对话体现的数学原理是()A.若a b >,则a c b c +>+B.若a b >,b c >,则a c>C.若a b >,0c >,则ac bc >D.若a b >,0c >,则a b c c>6.2024年5月29日16时12分,“长春净月一号”卫星搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点A 时,位于海平面R 处的雷达测得点R 到点A 的距离为a 千米,仰角为θ,则此时火箭距海平面的高度AL 为()A.sin a θ千米B.sin a θ千米C.cos a θ千米D.cos a θ千米7.如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心,BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心,DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是()A.AOM B∠=∠ B.180OMC C ∠+∠= C.AM CM = D.12OM AB =8.如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0k y k x x =>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0k y k x x =>>的图象交于点C .若BC =,则点B 的坐标是()A.(B.()0,3C.()0,4D.(0,二、填空题:本题共6小题,每小题3分,共18分.9.单项式22a b -的次数是_____.10.计算=____.11.若抛物线2y x x c =-+(c 是常数)与x 轴没有交点,则c 的取值范围是________.12.已知直线y kx b =+(k ,b 是常数)经过点()1,1,且y 随x 的增大而减小,则b 的值可以是________.(写出一个即可)13.一块含30︒角的直角三角板ABC 按如图所示的方式摆放,边AB 与直线l 重合,12cm AB =.现将该三角板绕点B 顺时针旋转,使点C 的对应点C '落在直线l 上,则点A 经过的路径长至少为________cm .(结果保留π)14.如图,AB 是半圆的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,DB 交AC 于点G ,连结AD .给出下面四个结论:①ABD DAC ∠=∠;②AF FG =;③当2DG =,3GB =时,2FG =;④当 2BD AD =,6AB =时,DFG .上述结论中,正确结论的序号有________.三、解答题:本题共10小题,共78分.15.先化简,再求值:32222x x x x ---,其中x =.16.2021年吉林省普通高中开始施行新高考选科模式,此模式有若干种学科组合,每位高中生可根据自己的实际情况选择一种.一对双胞胎姐妹考入同一所高中且选择了相同组合,该校要将所有选报这种组合的学生分成A ,B ,C 三个班,其中每位学生被分到这三个班的机会均等.用画树状图(或列表)的方法,求这对双胞胎姐妹被分到同一个班的概率.17.《九章算术》被历代数学家尊为“算经之首”.下面是其卷中记载的关于“盈不足”的一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何?这段话的意思是:今有人合伙买金,每人出400钱,会剩余3400钱;每人出300钱,会剩余100钱.合伙人数、金价各是多少?请解决上述问题.18.如图,在四边形ABCD 中,90A B ∠=∠=︒,O 是边AB 的中点,AOD BOC ∠=∠.求证:四边形ABCD 是矩形.19.某校为调研学生对本校食堂的满意度,从初中部和高中部各随机抽取20名学生对食堂进行满意度评分(满分10分),将收集到的评分数据进行整理、描述和分析.下面给出了部分信息:a .高中部20名学生所评分数的频数分布直方图如下图:(数据分成4组:67x ≤<,78x ≤<,89x ≤<,910x ≤≤)x≤<这一组的是:b.高中部20名学生所评分数在898.08.18.28.28.48.58.68.78.8c.初中部、高中部各20名学生所评分数的平均数、中位数如下:平均数中位数初中部8.38.5高中部8.3m根据以上信息,回答下列问题:(1)表中m的值为________;(2)根据调查前制定的满意度等级划分标准,评分不低于8.5分为“非常满意”.①在被调查的学生中,设初中部、高中部对食堂“非常满意”的人数分别为a,b,则a________b;(填“>”“<”或“=”)②高中部共有800名学生在食堂就餐,估计其中对食堂“非常满意”的学生人数.20.图①,图②,图③均是33⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A,B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作四边形ABCD ,使其是轴对称图形且点C ,D 均在格点上.(1)在图①中,四边形ABCD 面积为2;(2)在图②中,四边形ABCD 面积为3;(3)在图③中,四边形ABCD 面积为4.21.区间测速是指在某一路段前后设置两个监控点,根据车辆通过两个监控点的时间来计算车辆在该路段上的平均行驶速度.小春驾驶一辆小型汽车在高速公路上行驶,其间经过一段长度为20千米的区间测速路段,从该路段起点开始,他先匀速行驶112小时,再立即减速以另一速度匀速行驶(减速时间忽略不计),当他到达该路段终点时,测速装置测得该辆汽车在整个路段行驶的平均速度为100千米/时.汽车在区间测速路段行驶的路程y (千米)与在此路段行驶的时间x (时)之间的函数图象如图所示.(1)a 的值为________;(2)当112x a ≤≤时,求y 与x 之间的函数关系式;(3)通过计算说明在此区间测速路段内,该辆汽车减速前是否超速.(此路段要求小型汽车行驶速度不得超过120千米/时)22.【问题呈现】小明在数学兴趣小组活动时遇到一个几何问题:如图①,在等边ABC 中,3AB =,点M ,N 分别在边AC ,BC 上,且AM CN =,试探究线段MN 长度的最小值.【问题分析】小明通过构造平行四边形,将双动点问题转化为单动点问题,再通过定角发现这个动点的运动路径,进而解决上述几何问题.【问题解决】如图②,过点C ,M 分别作MN ,BC 的平行线,并交于点P ,作射线AP .在【问题呈现】的条件下,完成下列问题:(1)证明:AM MP =;(2)CAP ∠的大小为________度,线段MN 长度的最小值为________.【方法应用】某种简易房屋在整体运输前需用钢丝绳进行加固处理,如图③.小明收集了该房屋的相关数据,并画出了示意图,如图④,ABC 是等腰三角形,四边形BCDE 是矩形,2AB AC CD ===米,30ACB ∠=︒.MN 是一条两端点位置和长度均可调节的钢丝绳,点M 在AC 上,点N 在DE 上.在调整钢丝绳端点位置时,其长度也随之改变,但需始终保持AM DN =.钢丝绳MN 长度的最小值为多少米.23.如图,在ABC 中,5AB AC ==,6BC =.点D 是边BC 上的一点(点D 不与点B ,C 重合),作射线AD ,在射线AD 上取点P ,使AP BD =,以AP 为边作正方形APMN ,使点M 和点C 在直线AD 同侧.(1)当点D 是边BC 的中点时,求AD 的长;(2)当4BD =时,点D 到直线AC 的距离为________;(3)连结PN ,当PN AC ⊥时,求正方形APMN 的边长;(4)若点N 到直线AC 的距离是点M 到直线AC 距离的3倍,则CD 的长为________.(写出一个即可)24.在平面直角坐标系中,点O 是坐标原点,抛物线22y x x c =++(c 是常数)经过点()2,2--.点A ,B 是该抛物线上不重合的两点,横坐标分别为m ,m -,点C 的横坐标为5m -,点C 的纵坐标与点A 的纵坐标相同,连结AB ,AC .(1)求该抛物线对应的函数表达式;(2)求证:当m 取不为零的任意实数时,tan CAB ∠的值始终为2;(3)作AC 的垂直平分线交直线AB 于点D ,以AD 为边,AC 为对角线作菱形ADCE ,连结DE .①当DE 与此抛物线的对称轴重合时,求菱形ADCE 的面积;②当此抛物线在菱形ADCE 内部的点的纵坐标y 随x 的增大而增大时,直接写出m 的取值范围.2024年长春市中考数学试卷答案一、选择题.1.【答案】D2.【答案】B3.【答案】D4.【答案】C5.【答案】A6.【答案】A7.【答案】D8.【答案】B【解析】解:如图,过点A 作x 轴的垂线交x 轴于点E,过点C 作y 轴的垂线交y 轴于点D,则AE y ∥轴∵()4,2A∴4OE =,OA ==∴sinOE OAE OA ∠===.∵()4,2A 在反比例函数的图象上∴428k =⨯=.∴将直线OA 向上平移若干个单位长度后得到直线BC∴OA BC∥∴OAE BOA∠=∠∵AE y ∥轴∴DBC BOA∠=∠∴DBC OAE∠=∠∴5sin si 25n CD DBC OAE BC ∠===∠∴2555CD=,解得:2CD =,即点C 的横坐标为2将2x =代入8y x =,得4y =∴C 点的坐标为()2,4∴2CD =,4OD =∴221BD BC CD =-=∴413OB OD BD =-=-=∴()0,3B 故选:B .二、填空题.9.【答案】310.【答案】311.【答案】14c >12.【答案】2(答案不唯一)13.【答案】203π14.【答案】①②③【解析】解:如图:连接DC∵D 是 AC 的中点∴ AD DC=∴ABD DAC ∠=∠,即①正确;∵AB 是直径∴90ADB ∠=︒∴90DAC AGD ∠+∠=︒∵DE AB⊥∴90BDE ABD Ð+Ð=°∵ABD DAC∠=∠∴BDE AGD∠=∠∴DF FG=∵90BDE ABD Ð+Ð=°,90BDE ADE ∠+∠=︒∴ADE ABD∠=∠∵ABD DAC∠=∠∴ADE DAC∠=∠∴AF FD=∴AF FG =,即②正确;在ADG △和BDA△90ADG BDA DAG DBA∠=∠=︒⎧⎨∠=∠⎩∴ ∽ADG BDA ∴AD GD BD AD =,即AD GD DG BG AD =+∴223AD AD =+,即AD =∴AG ==∵AF FG=∴11422FG AG ==,即③正确;如图:假设半圆的圆心为O,连接,,OD CO CD∵ 2BD AD =,6AB =,D 是AC 的中点∴ 1,3AD DC AB ==∴60AOD DOC ∠=∠=︒∵OA OD OC==∴,AOD ODC 是等边三角形∴6OA AD CD OC OD =====,即ADCO 是菱形∴1302DAC OAC DAO ∠=∠=∠=︒∵90ADB ∠=︒∴tan tan 30DG DAC AD ∠=︒=,即36DG =,解得:DG =∴11622ADG S AD DG =⋅=⨯⨯= ∵AF FG=∴12DFG ADG S S == ,即④错误.故答案为:①②③.三、解答题.15.【答案】2x ,216.【答案】1317.【答案】共33人合伙买金,金价为9800钱18.证明:∵O 是边AB 的中点∴OA OB=在AOD △和BOC 中,90A B OA OB AOD BOC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴AOD BOC≌△△∴AD BC=∵90A B ∠=∠=︒∴AD BC∥∴四边形ABCD 是平行四边形∵90A B ∠=∠=︒∴四边形ABCD 是矩形.19.【答案】(1)8.3(2)①>;②估计其中对食堂“非常满意”的学生人数为360人【小问1详解】解:由题意知,高中部评分的中位数为第1011,位数的平均数,即8.28.48.32m +==故答案为:8.3;【小问2详解】①解:由题意知,初中部评分的中位数为8.5,高中部评分的中位数为8.3∴a b>故答案为:>;②解:∵4580036020+⨯=∴估计其中对食堂“非常满意”的学生人数为360人.20.【小问1详解】解:如图①:四边形ABCD 即为所求;(不唯一).【小问2详解】解:如图②:四边形ABCD 即为所求;(不唯一).【小问3详解】解:如图③:四边形ABCD 即为所求;(不唯一).21.【答案】(1)15(2)11902125y x x ⎛⎫=+≤≤ ⎪⎝⎭(3)没有超速【小问1详解】解:由题意可得:10020a =,解得:15a =.故答案为:15.【小问2详解】解:设当11125x ≤≤时,y 与x 之间的函数关系式为()0y kx b k =+≠则:11761205k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:902k b =⎧⎨=⎩∴11902125y x x ⎛⎫=+≤≤ ⎪⎝⎭.【小问3详解】解:当112x =时,19029.512y =⨯+=∴先匀速行驶112小时的速度为:19.5114/12÷=(千米时)∵114120<∴辆汽车减速前没有超速.22.【答案】问题解决:(1)见解析(2)30,32;方法应用:线段MN 长度的最小值为362米【解析】解:问题解决:(1)证明:过点C ,M 分别作MN ,BC 的平行线,并交于点P ,作射线AP ∴四边形MNCP 是平行四边形NC MP MN PC\==,AM NC= AM MP ∴=;(2)在等边ABC 中,60ACB ∠=︒MP CN∥60PMC ACB \Ð=Ð=°AM MP= 30CAP MPA \Ð=Ð=°;当CP AP ⊥时,CP 最小,此时MN 最小在Rt ACP 中,3,30AC CAP =Ð=°13322CP \=´=∴线段MN 长度的最小值为32;方法应用:过点D ,M 分别作MN ,ED 的平行线,并交于点H ,作射线AH ,连接AD ∴四边形MNDH 是平行四边形,ND MH MN DH MH ED\==,∥AM ND= AM MH∴= 四边形BCDE 是矩形,90BC ED BCD \Ð=°∥BC MH\∥30ACB CMH \Ð=Ð=°AM MH= 15MAH \Ð=°3m,120AC CD ACD ACB BCD ==Ð=Ð+Ð=° 30DAC ∴∠=︒45DAH ∴∠=︒∴当DH AH ⊥时,DH 最小,此时MN 最小作CR AD ⊥于点R在Rt ACR 中,3,30AC CAR =Ð=°13322CR \=´=2AR \=2AD AR \==在Rt ADH 中,45AD DAH =Ð=°23622DH AH \===∴线段MN 长度的最小值为2米.23.【答案】(1)4(2)85(3)177(4)256或259【小问1详解】解:根据题意可知: 5AB AC ==ABC ∴ 为等腰三角形,故点D 是边BC 的中点时,AD BC ⊥;在Rt ADC 中,4AD ====;【小问2详解】根据题意作DH AC ⊥,如图所示;当4BD =时,则2CD =设点D 到直线AC 的距离为DH h =1124522ACD S h =⨯⨯=⨯⨯ 解得:85h =;【小问3详解】如图,当NP AC ⊥时,点M 落在AC 上设AP x =,则BD x =,6CD x =-过点D 作DH AC ⊥于Q 则()33655CQ CD x ==-,()44655DQ CD x ==-()44655AQ DQ CD x ===-AQ CQ AC+= ()()3466555x x ∴-+-=解得:177x =故177=AP 所以正方形APMN 的边长为177;【小问4详解】如图,M ,N 在AC 异侧时;设MQ m =,3NQ m =,则4AN m =ANQ ∴ 三边的比值为3:4:5AQN C∴∠=∠CAD C∴∠=∠∴CDE ANQ∽CE CD NQ AQ=∴5525326CD =⨯=当M ,N 在AC 同侧设MQ m =,则3AN AP m ==,2PQ m =APO ∴ 三边比为2:3:AQD ∴三边比为2:设CD x =,则35CH x =,45DH x =,3425AH x =⨯3345525x x ∴+⨯=解得:259CD x ==综上所述:CD 的长为256或25924.【答案】(1)222y x x =+-(2)见详解(3)①9ADCE S =菱形;②3m ≤-或10m -≤<或0413m <≤-【小问1详解】解:将()2,2--代入22y x x c =++得:442c -+=-解得:2x =-∴抛物线表达式为:222y x x =+-;【小问2详解】解:过点B 作BH AC ⊥于点H,则90AHB ∠=︒由题意得:()()22,22,,22A m m m B m m m +----∴4A B BH y y m =-=,2A B AH x x m =-=∴在Rt AHB △中,4tan 22m BH CAB AH m ∠===;【小问3详解】解:①如图,记,AC DE 交于点M由题意得,()25,22C m m m -+-由2122b a -=-=-得:对称轴为直线:=1x -∵四边形ADCE 是菱形∴点A,C 关于DE 对称,2,2AC AM DE DM==∵DE 与此抛物线的对称轴重合∴512m m -+=-解得:12m =∴12A x =∴()13122AM =--=∴3AC =∵tan 232DM DM CAB AM ∠===∴3DM =,则6DE =∴192ADCE S DE AC =⨯=菱形;②记抛物线顶点为点F,把=1x -代入222y x x =+-,得:=3y -∴()1,3--F∵抛物线在菱形ADCE 内部的点的纵坐标y 随x 的增大而增大∴菱形中只包含在对称轴右侧的抛物线当0m >时,如图,符合题意当m 继续变大,直至当直线CD 经过点F 时,符合题意,如图:过点F 作FQ AC ⊥于点Q∵四边形ADCE 是菱形∴DA DC=∴CAD FCQ∠=∠∴tan tan 2FQ FCQ CAD CQ ∠=∠==∴()()2223215m m m +---=---解得:4m =4m =+(舍)∴04m <≤-当4m>,如图,发现此时菱形包含了对称轴左侧的抛物线,不符合题意;当0m<时,如图,符合题意:m=-,符合题意,如图:当m继续变小,直至点A与点F重合,此时1∴10m-≤<;当m继续变小,直至直线AE经过点F时,也符合题意,如图:过点F 作FQ AC ⊥于点Q,同上可得tan 2FQ FAQ AQ∠==∴()222321m m m+---=--解得:3m =-或1m =-(舍)当m 继续变小时,仍符合题意,如图:∴3m ≤-综上所述,m 的取值范围为:3m ≤-或10m -≤<或0413m <≤-.。
2022年贵州省贵阳市中考数学试卷-含答案详解
2022年贵州省贵阳市中考数学试卷及答案解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共36分.1.(3分)(2022•贵阳)下列各数为负数的是()A.﹣2B.0C.3D.√52.(3分)(2022•贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.3.(3分)(2022•贵阳)中国科学技术大学利用“墨子号”科学实验卫星,首次实现在地球上相距1200公里的两个地面站之间的量子态远程传输,对于人类构建全球化量子信息处理和量子通信网络迈出重要一步,1200这个数用科学记数法可表示为()A.0.12×104B.1.2×104C.1.2×103D.12×1024.(3分)(2022•贵阳)如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是()A.40°B.60°C.80°D.100°5.(3分)(2022•贵阳)代数式√x−3在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3C.x≤3D.x<36.(3分)(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是()A.1:√2B.1:2C.1:3D.1:47.(3分)(2022•贵阳)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是()A.小星抽到数字1的可能性最小B.小星抽到数字2的可能性最大C.小星抽到数字3的可能性最大D.小星抽到每个数的可能性相同8.(3分)(2022•贵阳)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.169.(3分)(2022•贵阳)如图,已知∠ABC=60°,点D为BA边上一点,BD=10,点O 为线段BD的中点,以点O为圆心,线段OB长为半径作弧,交BC于点E,连接DE,则BE的长是()A.5B.5√2C.5√3D.5√510.(3分)(2022•贵阳)如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有三点在反比例函数y =k x(k >0)的图象上.根据图中四点的位置,判断这四个点中不在函数y =k x 的图象上的点是( )A .点PB .点QC .点MD .点N11.(3分)(2022•贵阳)小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是( )A .5,10B .5,9C .6,8D .7,812.(3分)(2022•贵阳)在同一平面直角坐标系中,一次函数y =ax +b 与y =mx +n (a <m<0)的图象如图所示.小星根据图象得到如下结论:①在一次函数y =mx +n 的图象中,y 的值随着x 值的增大而增大;②方程组{y −ax =b y −mx =n的解为{x =−3y =2; ③方程mx +n =0的解为x =2;④当x =0时,ax +b =﹣1.其中结论正确的个数是( )A .1B .2C .3D .4二、填空题:每小题4分,共16分.13.(4分)(2022•贵阳)因式分解:a2+2a=.14.(4分)(2022•贵阳)端午节到了,小红煮好了10个粽子,其中有6个红枣粽子,4个绿豆粽子.小红想从煮好的粽子中随机捞一个,若每个粽子形状完全相同,被捞到的机会相等,则她捞到红枣粽子的概率是.15.(4分)(2022•贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”.如:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程x+4y=23,则表示的方程是.16.(4分)(2022•贵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,AC=BC =6cm,∠ACB=∠ADB=90°.若BE=2AD,则△ABE的面积是cm2,∠AEB =度.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(12分)(2022•贵阳)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.18.(10分)(2022•贵阳)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择统计图更好(填“条形”或“折线”);(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是万亿元;(3)写出一条关于我国货物进出口总额变化趋势的信息.19.(10分)(2022•贵阳)一次函数y=﹣x﹣3的图象与反比例函数y=kx的图象相交于A(﹣4,m),B(n,﹣4)两点.(1)求这个反比例函数的表达式;(2)根据图象写出使一次函数值小于反比例函数值的x的取值范围.20.(10分)(2022•贵阳)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?21.(10分)(2022•贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.22.(10分)(2022•贵阳)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF =7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.(参考数据:√3≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)23.(12分)(2022•贵阳)如图,AB为⊙O的直径,CD是⊙O的切线,C为切点,连接̂于点F,交BC于点P,连接BF,CF.BC.ED垂直平分OB,垂足为E,且交BC(1)求证:∠DCP=∠DPC;(2)当BC平分∠ABF时,求证:CF∥AB;(3)在(2)的条件下,OB=2,求阴影部分的面积.24.(12分)(2022•贵阳)已知二次函数y =ax 2+4ax +b .(1)求二次函数图象的顶点坐标(用含a ,b 的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x 轴交于A ,B 两点,AB =6,且图象过(1,c ),(3,d ),(﹣1,e ),(﹣3,f )四点,判断c ,d ,e ,f 的大小,并说明理由;(3)点M (m ,n )是二次函数图象上的一个动点,当﹣2≤m ≤1时,n 的取值范围是﹣1≤n ≤1,求二次函数的表达式.25.(12分)(2022•贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在▱ABCD 中,AN 为BC 边上的高,AD AN =m ,点M 在AD 边上,且BA=BM ,点E 是线段AM 上任意一点,连接BE ,将△ABE 沿BE 翻折得△FBE .(1)问题解决:如图①,当∠BAD =60°,将△ABE 沿BE 翻折后,使点F 与点M 重合,则AM AN = ;(2)问题探究:如图②,当∠BAD=45°,将△ABE沿BE翻折后,使EF∥BM,求∠ABE的度数,并求出此时m的最小值;(3)拓展延伸:当∠BAD=30°,将△ABE沿BE翻折后,若EF⊥AD,且AE=MD,根据题意在备用图中画出图形,并求出m的值.2022年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共36分.1.(3分)(2022•贵阳)下列各数为负数的是()A.﹣2B.0C.3D.√5【分析】根据小于0的数是负数即可得出答案.【解答】解:A.﹣2<0,是负数,故本选项符合题意;B.0不是正数,也不是负数,故本选项不符合题意;C.3>0,是正数,故本选项不符合题意;D.√5>0,是正数,故本选项不符合题意;故选:A.【点评】本题主要考查了负数的定义.解题的关键是掌握负数的定义,要注意0既不是正数,也不是负数.2.(3分)(2022•贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆,故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.3.(3分)(2022•贵阳)中国科学技术大学利用“墨子号”科学实验卫星,首次实现在地球上相距1200公里的两个地面站之间的量子态远程传输,对于人类构建全球化量子信息处理和量子通信网络迈出重要一步,1200这个数用科学记数法可表示为()A.0.12×104B.1.2×104C.1.2×103D.12×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1200=1.2×103.故选:C.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2022•贵阳)如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是()A.40°B.60°C.80°D.100°【分析】根据菱形的对边平行,以及两直线平行,内错角相等即可求解.【解答】解:∵菱形的对边平行,∴由两直线平行,内错角相等可得∠1=80°.故选:C.【点评】本题考查了菱形的性质,全等图形,平行线的性质,关键是熟悉菱形的对边平行的知识点.5.(3分)(2022•贵阳)代数式√x−3在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3C.x≤3D.x<3【分析】直接利用二次根式的定义得出x﹣3≥0,进而求出答案.【解答】解:∵代数式√x−3在实数范围内有意义,∴x﹣3≥0,解得:x≥3,∴x的取值范围是:x≥3.故选:A .【点评】此题主要考查了二次根式有意义的条件,正确得出x ﹣3的取值范围是解题关键.6.(3分)(2022•贵阳)如图,在△ABC 中,D 是AB 边上的点,∠B =∠ACD ,AC :AB =1:2,则△ADC 与△ACB 的周长比是( )A .1:√2B .1:2C .1:3D .1:4【分析】根据相似三角形的周长之比等于相似比可以解答本题.【解答】解:∵∠B =∠ACD ,∠CAD =∠BAC ,∴△ACD ∽△ABC ,∴C △ACDC △ABC =AC AB =12, 故选:B .【点评】本题考查相似三角形的判定与性质,解答本题的关键是明确相似三角形的周长之比等于相似比.7.(3分)(2022•贵阳)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是( )A .小星抽到数字1的可能性最小B .小星抽到数字2的可能性最大C .小星抽到数字3的可能性最大D .小星抽到每个数的可能性相同【分析】根据概率公式求出小星抽到各个数字的概率,然后进行比较,即可得出答案.【解答】解:∵3张同样的纸条上分别写有1,2,3,∴小星抽到数字1的概率是13,抽到数字2的概率是13,抽到数字3的概率是13, ∴小星抽到每个数的可能性相同;故选:D .【点评】此题考查了基本概率的计算及比较可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.8.(3分)(2022•贵阳)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.16【分析】根据题意和题目中的数据,可以计算出小正方形的边长,然后即可得到小正方形的周长.【解答】解:由题意可得,小正方形的边长为3﹣1=2,∴小正方形的周长为2×4=8,故选:B.【点评】本题考查正方形的性质、有理数的加减法,解答本题的关键是明确题意,利用数形结合的思想解答.9.(3分)(2022•贵阳)如图,已知∠ABC=60°,点D为BA边上一点,BD=10,点O 为线段BD的中点,以点O为圆心,线段OB长为半径作弧,交BC于点E,连接DE,则BE的长是()A.5B.5√2C.5√3D.5√5【分析】根据题意和等边三角形的判定,可以得到BE的长.【解答】解:连接OE,由已知可得,OE=OB=12BD=5,∵∠ABC=60°,∴△BOE是等边三角形,∴BE=OB=5,故选:A.【点评】本题考查等边三角形的判定与性质、与圆相关的知识,解答本题的关键是明确题意,求出△OBE的形状.10.(3分)(2022•贵阳)如图,在平面直角坐标系中有P,Q,M,N四个点,其中恰有三点在反比例函数y=kx(k>0)的图象上.根据图中四点的位置,判断这四个点中不在函数y=kx的图象上的点是()A.点P B.点Q C.点M D.点N【分析】根据反比例函数图象上点的坐标特征以及反比例函数的图象进行判断即可.【解答】解:如图,反比例函数y=kx的图象是双曲线,若点在反比例函数的图象上,则其纵横坐标的积为常数k,即xy=k,通过观察发现,点P、Q、N可能在图象上,点M不在图象上,故选:C.【点评】本题考查反比例函数图象上点的坐标特征,掌握反比例函数的图象以及图象上点的坐标特征是正确判断的前提.11.(3分)(2022•贵阳)小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是( )A .5,10B .5,9C .6,8D .7,8【分析】根据中位数和众数的定义确定中位数和众数分别是多少,然后即可确定答案.【解答】解:数据5,5,6,7,8,9,10的众数为5,中位数为7,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则5不能去掉,7不能去掉, 所以去掉可能是6,8,故选:C .【点评】本题考查了众数及中位数的定义,解题的关键是能够牢记方法并正确的计算.12.(3分)(2022•贵阳)在同一平面直角坐标系中,一次函数y =ax +b 与y =mx +n (a <m<0)的图象如图所示.小星根据图象得到如下结论:①在一次函数y =mx +n 的图象中,y 的值随着x 值的增大而增大;②方程组{y −ax =b y −mx =n的解为{x =−3y =2; ③方程mx +n =0的解为x =2;④当x =0时,ax +b =﹣1.其中结论正确的个数是( )A .1B .2C .3D .4【分析】①根据一次函数的函数的增减进行判断便可;②根据一次函数与二元一次方程组的关系判断便可;③根据一次函数图象与x 的交点坐标进行判断便可;④根据一次函数图象与y 轴交点坐标进行判断便可.【解答】解:①由函数图象可知,直线y =mx +n 从左至右呈下降趋势,所以y 的值随着x 值的增大而减小,故①错误;②由函数图象可知,一次函数y =ax +b 与y =mx +n (a <m <0)的图象交点坐标为(﹣3,2),所以方程组{y −ax =b y −mx =n的解为{x =−3y =2,故②正确; ③由函数图象可知,直线y =mx +n 与x 轴的交点坐标为(2,0),所以方程mx +n =0的解为x =2,故③正确;④由函数图象可知,直线y =ax +b 过点(0,﹣2),所以当x =0时,ax +b =﹣2,故④错误;故选:B .【点评】本题主要考查了一次函数的图象与性质,一次函数与二元一次方程的关系,关键是综合应用一次函数的图象与性质解题.二、填空题:每小题4分,共16分.13.(4分)(2022•贵阳)因式分解:a 2+2a = a (a +2) .【分析】直接提取公因式a ,进而分解因式得出答案.【解答】解:a 2+2a =a (a +2).故答案为:a (a +2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.(4分)(2022•贵阳)端午节到了,小红煮好了10个粽子,其中有6个红枣粽子,4个绿豆粽子.小红想从煮好的粽子中随机捞一个,若每个粽子形状完全相同,被捞到的机会相等,则她捞到红枣粽子的概率是 35 .【分析】用红枣粽子个数除以所有粽子的个数即可利用概率公式求得概率.【解答】解:∵共10个粽子,其中有6个红枣粽子,4个绿豆粽子,∴P (捞到红枣馅粽子)=610=35, 故答案为:35. 【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .15.(4分)(2022•贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”.如:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程x+4y=23,则表示的方程是x+2y=32.【分析】认真审题,读懂图中的意思,仿照图写出答案.【解答】解:根据题知:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,一个竖线表示一个,一条横线表示一十,所以该图表示的方程是:x+2y=32.【点评】本题考查根据图意列方程,解题的关键是读懂图的意思.16.(4分)(2022•贵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,AC=BC =6cm,∠ACB=∠ADB=90°.若BE=2AD,则△ABE的面积是(36﹣18√2)cm2,∠AEB=112.5度.【分析】过E作EH⊥AB于H,设AD=xcm,CE=ycm,则BE=2xcm,AE=(6﹣y)cm,由△AED∽△BEC,有6x=2x6−y,x2=18﹣3y①,在Rt△BCE中,62+y2=(2x)2②,可解得CE=(6√2−6)cm,AE=(12﹣6√2)cm,即得S△ABE=S△ABC﹣S△BCE=(36﹣18√2)cm2,由AC=BC=6,∠ACB=90°,可得△AEH是等腰直角三角形,故∠AEH =45°,AH=√2=(6√2−6)cm,从而知BH=6cm=BC,证明Rt△BCE≌Rt△BHE(HL),得∠BEH=∠BEC=12∠CEH=67.5°,即得∠AEB=∠AEH+∠BEH=45°+67.5°=112.5°.【解答】解:过E作EH⊥AB于H,如图:设AD=xcm,CE=ycm,则BE=2xcm,AE=(6﹣y)cm,∵∠ADB=∠ACB=90°,∠AED=∠CEB,∴△AED∽△BEC,∴BCAD =BEAE,即6x=2x6−y,∴x2=18﹣3y①,在Rt△BCE中,BC2+CE2=BE2,∴62+y2=(2x)2②,由①②得y=6√2−6(负值已舍去),∴CE=(6√2−6)cm,AE=(12﹣6√2)cm,∴S△ABE=S△ABC﹣S△BCE=12×6×6−12×6×(6√2−6)=(36﹣18√2)cm2,∵AC=BC=6,∠ACB=90°,∴∠CAB=45°,AB=6√2cm,∴△AEH是等腰直角三角形,∴∠AEH=45°,AH=√2=√2√2=(6√2−6)cm,∴∠CEH=180°﹣∠AEH=135°,BH=AB﹣AH=6√2−(6√2−6)=6cm,∴BH=6cm=BC,又BE=BE,∠BCE=90°=∠BHE,∴Rt△BCE≌Rt△BHE(HL),∴∠BEH=∠BEC=12∠CEH=67.5°,∴∠AEB=∠AEH+∠BEH=45°+67.5°=112.5°,故答案为:(36﹣18√2),112.5.【点评】本题考查等腰直角三角形性质及应用,涉及三角形全等的判定与性质,勾股定理及应用,三角形面积等知识,解题的关键是作辅助线,构造全等三角形.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(12分)(2022•贵阳)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a<b,ab<0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.【分析】(1)先根据数轴确定a、b的正负,再利用乘法法则确定ab;(2)根据方程的系数特点,选择配方法、公式法或因式分解法.【解答】解:(1)由数轴上点的坐标知:a<0<b,∴a<b,ab<0.故答案为:<,<.(2)①利用公式法:x2+2x﹣1=0,Δ=22﹣4×1×(﹣1)=4+4=8,∴x=−2±√b2−4ac2=−2±√82=−2±2√22=﹣1±√2.∴x1=﹣1+√2,x2=﹣1−√2;②利用因式分解法:x2﹣3x=0,∴x(x﹣3)=0.∴x1=0,x2=3;③利用配方法:x2﹣4x=4,两边都加上4,得x2﹣4x+4=8,∴(x﹣2)2=8.∴x﹣2=±2√2.∴x1=2+2√2,x2=2﹣2√2;④利用因式分解法:x2﹣4=0,∴(x+2)(x﹣2)=0.∴x1=﹣2,x2=2.【点评】本题考查了数轴、一元二次方程的解法,掌握数轴的意义、一元二次方程的解法是解决本题的关键.18.(10分)(2022•贵阳)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择折线统计图更好(填“条形”或“折线”);(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是 4.36万亿元;(3)写出一条关于我国货物进出口总额变化趋势的信息.【分析】(1)根据条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;(2)用2021年的出口总额减去进口总额即可;(3)根据折线统计图解答即可.【解答】解:(1)为了更好的表现出货物进出口额的变化趋势,我认为应选择折线统计图更好,故答案为:折线;(2)21.73﹣17.37=4.36(万亿元),即2021年我国货物进出口顺差是4.36万亿元;故答案为:4.36;(3)我国货物进出口总额逐年增加.(答案不唯一).【点评】本题考查的是条形统计图和折线统计图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.19.(10分)(2022•贵阳)一次函数y=﹣x﹣3的图象与反比例函数y=kx的图象相交于A(﹣4,m),B(n,﹣4)两点.(1)求这个反比例函数的表达式;(2)根据图象写出使一次函数值小于反比例函数值的x的取值范围.【分析】(1)把点A的坐标代入一次函数表达式,求出m的值,再把点A的坐标代入反比例函数表达式求出k的值;(2)反比例函数图象在一次函数图象上方时x的取值范围就是一次函数值小于反比例函数值x的取值范围.【解答】解:(1)∵一次函数y=﹣x﹣3过点A(﹣4,m),∴m=﹣(﹣4)﹣3=1.∴点A的坐标为(﹣4,1).∵反比例函数y=kx的图象过点A,∴k=xy=﹣4×1=﹣4.∴反比例函数的表达式为y=−4 x.(2)∵反比例函数y=−4x过点B(n,﹣4).∴﹣4=−4n,解得n=1.∵一次函数值小于反比例函数值,∴一次函数图象在反比例函数图象的下方.∴在y轴左侧,一次函数值小于反比例函数值x的取值范围为:﹣4<x<0;在第四象限内,一次函数值小于反比例函数值x的取值范围为:x>1.∴一次函数值小于反比例函数值的x取值范围为:﹣4<x<0或x>1.【点评】本题考查了一次函数与反比例函数图象的综合问题,根据两个函数图象确定其对应不等式的解时,首先应确定函数图像的交点坐标,其次要注意函数图象的位置.20.(10分)(2022•贵阳)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?【分析】设每辆小货车的货运量是x吨,则每辆大货车的货运量是(x+4)吨,根据用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设每辆小货车的货运量是x吨,则每辆大货车的货运量是(x+4)吨,依题意得:80x+4=60x,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=12+4=16.答:每辆大货车的货运量是16吨,每辆小货车的货运量是12吨.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(10分)(2022•贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.【分析】(1)首先利用正方形的性质可以得到AB=AD,∠BAE=90°,然后利用MF∥AD可以得到∠MFN=90°,进一步得到∠FMN=∠MBO,最后利用全等三角形的判定方法即可求解;(2)通过证明△BOM ∽△BAE ,可得OM :AE =BO :BA ,可求OM 的长,即可求解. 【解答】解:(1)∵四边形ABCD 为正方形, ∴AB =AD ,AB ∥CD ,∠A =∠D =90°, 又∵MF ∥AD ,∴四边形AMFD 为矩形, ∴∠MFD =∠MFN =90°, ∴AD =MF , ∴AB =MF ,∵BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O , ∴∠MFN =∠BAE =90°,∠FMN +∠BMO =∠BMO +∠MBO =90°, ∴∠FMN =∠MBO , 在△ABE 和△FMN 中, {∠A =∠MFNAB =MF ∠ABO =∠FMN∴△ABE ≌△FMN (ASA );(2)∵∠MOB =∠A =90°,∠ABE 是公共角, ∴△BOM ∽△BAE , ∴OM :AE =BO :BA , ∵AB =8,AE =6, ∴BE =√AB 2+AE 2=10, ∴OM :6=5:8, ∴OM =154, ∵△ABE ≌△FMN , ∴NM =BE =10, ∴ON =MN ﹣MO =254.【点评】本题主要考查了正方形的性质,垂直平分线的性质相似三角形的判定与性质,综合性比较强,对于学生的要求比较高.22.(10分)(2022•贵阳)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF =7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.(参考数据:√3≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)【分析】(1)根据题意可得:∠CAD=25°,∠EBF=60°,CE=DF=750米,然后在Rt△ACD中,利用锐角三角函数的定义求出AD的长,再在Rt△BEF中,利用锐角三角函数的定义求出BF的长,最后根据AB=AD+DF﹣BF进行计算即可解答;(2)先求出汽车的行驶速度,进行比较即可解答.【解答】解:(1)由题意得:∠CAD=25°,∠EBF=60°,CE=DF=750米,在Rt△ACD中,CD=7米,∴AD=CDtan25°≈70.5=14(米),在Rt△BEF中,EF=7米,∴BF=EFtan60°=√3≈4.1(米),∴AB=AD+DF﹣BF=14+750﹣4.1≈760(米),∴A,B两点之间的距离约为760米;(2)小汽车从点A行驶到点B没有超速,理由:由题意得:760÷38=20米/秒,∵20米/秒<22米/秒,∴小汽车从点A行驶到点B没有超速.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.23.(12分)(2022•贵阳)如图,AB为⊙O的直径,CD是⊙O的切线,C为切点,连接BC.ED垂直平分OB,垂足为E,且交BĈ于点F,交BC于点P,连接BF,CF.(1)求证:∠DCP=∠DPC;(2)当BC平分∠ABF时,求证:CF∥AB;(3)在(2)的条件下,OB=2,求阴影部分的面积.【分析】(1)连接OC,由CD是⊙O的切线得∠OCB+∠DCP=90°,又DE⊥OB,有∠OBC+∠BPE=90°,可得∠DCP=∠BPE,即得∠DCP=∠DPC;(2)连接OF,根据ED垂直平分OB,可得△BOF是等边三角形,有∠FOB=∠ABF=60°,∠FCB=12∠FOB=30°,而BC平分∠ABF,有∠ABC=12∠ABF=30°,故∠FCB=∠ABC,知CF∥AB;(3)连接OF、OC,由∠ABC=∠CBF=30°,得∠COF=2∠CBF=60°,即得S扇形COF=2π3,而OC=OF,∠COF=60°,可得△COF是等边三角形,有CF=OF=OB=2,在Rt△FEB中,EF=√BF2−BE2=√3,可得S△COF=12CF•EF=12×2×√3=√3,从而S阴影=S扇形COF﹣S△COF=2π3−√3.【解答】(1)证明:连接OC,如图:。
中考数学试卷真题及答案
中考数学试卷真题及答案1. 选择题1) 单选题:A. 若 a + b = 2,a×b = 1,则 a² + b² = ?A) 4 B) 3 C) 2 D) 1B. 如果 6x - 2y = 10 且 3x + 4y = 8,则 x 的值是多少?A) 4 B) 2 C) 1 D) -1C. 已知正方形 ABCD 的边长为 a,若 AB = 2a - 1,则 BC 的长度是多少?A) a + 1 B) a - 1 C) 2a + 1 D) 2a - 12) 多选题:A. 若 a、b、c 为实数,且a ≠ 0,那么下列命题中正确的有:A) 若 a × b = a × c,则 b = c;B) 若 a × b = a × c,则 b - c = 0;C) 若 a × b = a × c,则 b + c = 2a;D) 若 a × b = 0,则 a = 0 或 b = 0;B. 下列四个集合中,至少有一个集合是互斥事件的是:A) A:取到一张黑桃牌;B) B:取到一张红心牌;C) C:取到一张梅花牌;D) D:取到一张方块牌;C. 能同时整除3和7的两位数是:A) 14 B) 21 C) 42 D) 632. 解答题1) 简答题:请问任意一个正方形的对角线长度与边长的关系是什么?请给出你的计算过程。
解答:正方形的对角线可以通过勾股定理来计算。
设正方形的边长为a,则正方形的一个对角线可以看作是边长为 a 的直角三角形的斜边,所以对角线的长度 d 可以表示为d = √(a² + a²),即d = √(2a²)。
然后,我们可以继续化简这个式子:d = √(2a²) = a√2。
因此,任意一个正方形的对角线长度与边长的关系为:对角线长度等于边长乘以根号2。
2) 计算题:已知函数 f(x) = x² - 5x + 6,求 f(x) = 0 的解。
2024年河南省中考数学真题试卷及答案
2024年河南省中考数学真题试卷一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的) 1. 如图,数轴上点P 表示的数是( )A. 1-B. 0C. 1D. 22. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A. 8578410⨯B. 105.78410⨯C. 115.78410⨯D. 120.578410⨯ 3. 如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为( )A. 60︒B. 50︒C. 40︒D. 30︒4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A. B. C. D. 5. 下列不等式中,与1x ->组成的不等式组无解的是( )A. 2x >B. 0x <C. <2x -D. 3x >-6. 如图,在ABCD 中,对角线AC ,BD 相交于点O,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A. 12 B. 1 C. 43 D. 27. 计算3()a a a a a ⋅⋅⋅个的结果是( )A. 5aB. 6aC. 3a a +D. 3a a 8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 139. 如图,O 是边长为ABC 的外接圆,点D 是BC 的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多二、填空题(每小题3分,共15分) 11. 请写出2m 的一个同类项:_______.12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为___________分.13. 若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为___________. 14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20-,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.15. 如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.三、解答题(本大题共8个小题,共75分)16. (1)计算(01 (2)化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭. 17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1⨯-,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好. 18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象. (3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥BE DC 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.图1 图2(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m .参考数据 1.73≈). 21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A,B 两种食品各多少包? (2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品? 22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由. 23. 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30︒和45︒角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质. 如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.∠写出图中相等的角,并说明理由∠若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m,n,θ的式子表示).(3)拓展应用如图3,在Rt ABC △中,90B ,3AB =,4BC =,分别在边BC ,AC 上取点M,N,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.2024年河南省中考数学真题试卷答案一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的) 1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】A5. 【答案】A6. 【答案】B7. 【答案】D8. 【答案】D9. 【答案】C10. 【答案】C【解析】解∠根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意 根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意故选:C .二、填空题(每小题3分,共15分)11. 【答案】m (答案不唯一)12. 【答案】913. 【答案】1214. 【答案】()3,1015.【答案】 ∠. 1 ∠. 1【解析】解:∠90ACB ∠=︒,3CA CB == ∠190452BAC ABC ∠=∠=⨯︒=︒∠线段CD 绕点C 在平面内旋转,1CD =∠点D 在以点C 为圆心,1为半径的圆上∠BE AE ⊥∠90AEB ∠=︒∠点E 在以AB 为直径的圆上在Rt ABE △中,cos AE AB BAE =⋅∠∠AB 为定值∠当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小 ∠当AE 与C 相切于点D,且点D 在ABC 内部时,BAE ∠最小,AE 最大,连接CD ,CE ,如图所示:则CD AE ⊥∠90ADE CDE ∠=∠=︒∠AD ==∠AC AC =∠45CED ABC ==︒∠∠∠90CDE ∠=︒∠CDE 为等腰直角三角形∠1DE CD ==∠1AE AD DE =+=+即AE 的最大值为1当AE 与C 相切于点D,且点D 在ABC 外部时,BAE ∠最大,AE 最小,连接CD ,CE ,如图所示:则CD AE ⊥∠90CDE ∠=︒∠AD ==∠四边形ABCE 为圆内接四边形 ∠180135CEA ABC =︒-=︒∠∠∠18045CED CEA =︒-=︒∠∠∠90CDE ∠=︒∠CDE 为等腰直角三角形∠1DE CD ==∠1AE AD DE =-=-即AE 的最小值为1故答案为:1;1.三、解答题(本大题共8个小题,共75分) 16. 【答案】(1)9(2)2a +17. 【答案】(1)甲 29(2)甲 (3)乙队员表现更好 18. 【答案】(1)6y x= (2)见解析 (3)92【小问1详解】解:反比例函数k y x =的图象经过点()3,2A ∠23k = ∠6k = ∠这个反比例函数的表达式为6y x =【小问2详解】解:当1x =时,6y =当2x =时,3y =当6x =时,1y =∠反比例函数6y x=的图象经过()1,6,()2,3,()6,1 画图如下:【小问3详解】解:∠()6,4E 向左平移后,E 在反比例函数的图象上∠平移后点E 对应点的纵坐标为4当4y =时,64x=解得32x = ∠平移距离为39622-=.故答案为:92.19. 【答案】(1)见解析(2)见解析【小问1详解】解:如图【小问2详解】证明:∠ECM A∠=∠∠CM AB∥∠∥BE DC∠四边形CDBF是平行四边形∠在Rt ABC△中,CD是斜边AB上的中线∠12 CD BD AB ==∠平行四边形CDBF是菱形.20. 【答案】(1)见解析(2)塑像AB的高约为6.9m 【小问1详解】证明:如图,连接BM.则AMB APB∠=∠.∠AMB ADB∠>∠∠APB ADB ∠>∠.【小问2详解】解:在Rt AHP 中,60APH ∠=︒,6PH =. ∠tan AH APH PH∠=∠tan 606AH PH =⋅︒==∠30APB ∠=︒∠603030BPH APH APB ∠=∠-∠=︒-︒=︒.在Rt BHP △中,tan BH BPH PH ∠=∠tan 306BH PH =⋅︒==∠()4 1.73 6.9m AB AH BH =-==≈⨯≈.答:塑像AB 的高约为6.9m .21. 【答案】(1)选用A 种食品4包,B 种食品2包(2)选用A 种食品3包,B 种食品4包【小问1详解】解:设选用A 种食品x 包,B 种食品y 包根据题意,得7009004600,101570.x y x y +=⎧⎨+=⎩解方程组,得4,2.x y =⎧⎨=⎩答:选用A 种食品4包,B 种食品2包.【小问2详解】解:设选用A 种食品a 包,则选用B 种食品()7-a 包根据题意,得()1015790a a +-≥.∠3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+-=-+.∠2000-<∠w 随a 的增大而减小.∠当3a =时,w 最小.∠7734a -=-=.答:选用A 种食品3包,B 种食品4包.22. 【答案】(1)010v (2)()20m /s(3)小明的说法不正确,理由见解析【小问1详解】解:205h t v t =-+220051020v v t ⎛⎫=--+ ⎪⎝⎭ ∠当010v t =时,h 最大 故答案为:010v 【小问2详解】解:根据题意,得 当010v t =时,20h = ∠20005201010v v v ⎛⎫-⨯+⨯= ⎪⎝⎭∠()020m /s v =(负值舍去)【小问3详解】解:小明的说法不正确.理由如下:由(2),得2520h t t =-+当15h =时,215520t t =-+解方程,得11t =,23t =∠两次间隔的时间为312s -=∠小明的说法不正确.23. 【答案】(1)∠∠ (2)∠ACD ACB ∠=∠.理由见解析;∠2cos m n θ+(3)5或7 【小问1详解】解:观察图知,图∠和图∠中不存在对角互补,图2和图4中存在对角互补且邻边相等 故图∠和图∠中四边形是邻等对补四边形故答案为:∠∠【小问2详解】解:∠ACD ACB ∠=∠,理由:延长CB 至点E,使BE DC =,连接AE∠四边形ABCD 是邻等对补四边形∠180ABC D ∠+∠=︒∠180ABC ABE ∠+∠=︒∠ABE D ∠=∠∠AB AD =∠()SAS ABE ADC ≌∠E ACD ∠=∠,AE AC =∠E ACB ∠=∠∠ACD ACB ∠=∠∠过A 作AF EC ⊥于F∠AE AC = ∠()()1112222m n CF CE BC BE BC DC +==+=+= ∠2BCD θ∠=∠ACD ACB θ∠=∠=在Rt AFC △中,cos CF θAC= ∠cos 2cos CF m n AC θθ+== 【小问3详解】解:∠90B ,3AB =,4BC =∠5AC∠四边形ABMN 是邻等对补四边形 ∠180ANM B ∠+∠=︒∠90ANM =︒当AB BM =时,如图,连接AM ,过N 作NH BC ⊥于H∠22218AM AB BM =+=在Rt AMN 中222218MN AM AN AN =-=- 在Rt CMN 中()()22222435MN CM CN AN =-=--- ∠()()22218435AN AN -=--- 解得 4.2AN = ∠45CN = ∠90NHC ABC ∠=∠=︒,C C ∠=∠ ∠NHC ABC ∽534∠1225NH =,1625CH = ∠8425BH =∠BN ==当AN AB =时,如图,连接AM∠AM AM =∠Rt Rt ABM ANM ≌ ∠BM NM =,故不符合题意,舍去 当AN MN =时,连接AM ,过N 作NH BC ⊥于H∠90MNC ABC ∠=∠=︒,C C ∠=∠ ∠CMN CAB ∽△△ ∠CN MN BC AB =,即543CN CN -= 解得207CN =∠90NHC ABC ∠=∠=︒,C C ∠=∠ ∠NHC ABC ∽534∠127NH =,167CH = ∠127BH =∠BN ==当BM MN =时,如图,连接AM∠AM AM =∠Rt Rt ABM ANM ≌ ∠AN AB =,故不符合题意,舍去综上,BN 的长为5或7.。
2022年湖南省株洲市中考数学试卷和答案解析
2022年湖南省株洲市中考数学试卷和答案解析一.选择题(本大题共10小题,每小题有且只有一个正确答案,每小题4分,共40分)1.(4分)﹣2的绝对值等于()A.2B.C.﹣D.﹣2 2.(4分)在0、、﹣1、这四个数中()A.0B.C.﹣1D.3.(4分)不等式4x﹣1<0的解集是()A.x>4B.x<4C.x>D.x<4.(4分)某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67、63、69、55、65,则该组数据的中位数为()A.63B.65C.66D.695.(4分)下列运算正确的是()A.a2•a3=a5B.(a3)2=a5C.(ab)2=ab2D.=a3(a≠0)6.(4分)在平面直角坐标系中,一次函数y=5x+1的图象与y轴的交点的坐标为()A.(0,﹣1)B.(﹣,0)C.(,0)D.(0,1)7.(4分)对于二元一次方程组,将①式代入②式,消去y 可以得到()A.x+2x﹣1=7B.x+2x﹣2=7C.x+x﹣1=7D.x+2x+2=7 8.(4分)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC 与⊙O分别交于点D、E上一点,且与D、E不重合,则∠DFE 的度数为()A.115°B.118°C.120°D.125°9.(4分)如图所示,在菱形ABCD中,对角线AC与BD相交于点O,下列结论不一定正确的是()A.OB=CE B.△ACE是直角三角形C.BC=AE D.BE=CE10.(4分)已知二次函数y=ax2+bx﹣c(a≠0),其中b>0、c>0,则该函数的图象可能为()A.B.C .D .二.填空题(本大题共8小题,每小题4分,共32分)11.(4分)计算:3+(﹣2)=.12.(4分)因式分解:x2﹣25=.13.(4分)某产品生产企业开展有奖促销活动,将每6件产品装成一箱,且使得每箱中都有2件能中奖.若从其中一箱中随机抽取1件产品.(用最简分数表示)14.(4分)A市安排若干名医护工作人员援助某地新冠疫情防控工作,人员结构统计如下表:人员领队心理医生专业医生专业护士4%★56%占总人数的百分比则该批医护工作人员中“专业医生”占总人数的百分比为.15.(4分)如图所示,点O在一块直角三角板ABC上(其中∠ABC =30°),OM⊥AB于点M,若OM=ON,则∠ABO=度.16.(4分)如图所示,矩形ABCD顶点A、D在y轴上,顶点C在第一象限,且矩形ABCD的面积为6.若反比例函数y=的图象经过点C.17.(4分)如图所示,已知∠MON=60°,正五边形ABCDE的顶点A、B在射线OM上,则∠AEO=度.18.(4分)中国元代数学家朱世杰所著《四元玉鉴》记载有“锁套吞容”之“方田圆池结角池图”.“方田一段,一角圆池占之.”意思是说:“一块正方形田地,在其一角有一个圆形的水池(其中圆与正方形一角的两边均相切)”问题:此图中,正方形一条对角线AB与⊙O相交于点M、N(点N在点M的右上方),若AB的长度为10丈,则BN的长度为丈.三.参考答案题(本大题共8小题,共78分)19.(6分)计算:(﹣1)2022+﹣2sin30°.20.(8分)先化简,再求值:(1+),其中x=4.21.(8分)如图所示,点E在四边形ABCD的边AD上,连接CE,已知AE=DE,FE=CE.(1)求证:△AEF≌△DEC;(2)若AD∥BC,求证:四边形ABCD为平行四边形.22.(10分)如图(Ⅰ)所示,某登山运动爱好者由山坡①的山顶点A处沿线段AC至山谷点C处(Ⅱ)所示,将直线l视为水平面,其高度AM为0.6千米,山坡②的坡度i=1:1,且CN=千米.(1)求∠ACB的度数;(2)求在此过程中该登山运动爱好者走过的路程.23.(10分)某校组织了一次“校徽设计“竞赛活动,邀请5名老师作为专业评委,50名学生代表参与民主测评专业评委给分(单位:分)①88②87③94④91⑤90(专业评委给分统计表)记“专业评委给分”的平均数为.(1)求该作品在民主测评中得到“不赞成”的票数;(2)对于该作品,问的值是多少?(3)记“民主测评得分”为,“综合得分”为S,若规定:①=“赞成”的票数×3分+“不赞成”的票数×(﹣1)分;②S=0.7+0.3.求该作品的“综合得分”S的值.24.(10分)如图所示,在平面直角坐标系xOy中,点A、B分别在函数y1=(x<0)、y2=(x>0,k>0)的图象上,点C在第二象限内,BC⊥y轴于点Q,连接AB、PQ(1)求点A的横坐标;(2)记四边形APQB的面积为S,若点B的横坐标为2,试用含k的代数式表示S.25.(13分)如图所示,△ABC的顶点A,B在⊙O上,边AC与⊙O 相交于点D,∠BAC=45°,已知OD∥BC.(1)求证:直线BC是⊙O的切线;(2)若线段OD与线段AB相交于点E,连接BD.①求证:△ABD∽△DBE;②若AB•BE=6,求⊙O的半径的长度.26.(13分)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,b=3,且该二次函数的图象过点(1,1);(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B(x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,且满足tan∠ABE=.①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;②若NP=2BP,令T=c,求T的最小值.阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=,x1x2=”.此关系通常被称为“韦达定理”.参考答案与解析一.选择题(本大题共10小题,每小题有且只有一个正确答案,每小题4分,共40分)1.【参考答案】解:﹣2的绝对值等于:|﹣2|=3.故选:A.【解析】此题主要考查了绝对值的含义以及求法,要熟练掌握,参考答案此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.【参考答案】解:∵﹣1<0<<,∴最小的数是﹣7,故选:C.【解析】本题考查了实数大小比较,掌握负数小于0,正数大于0是解题的关键.3.【参考答案】解:∵4x﹣1<2,∴4x<1,∴x<.故选:D.【解析】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1是解题的关键.4.【参考答案】解:将这组数据由小到大排列为:55,63,67,这组数据的中位数是65,故选:B.【解析】本题考查了中位数,将数据按照从小到大(或从大到小)的顺序排列是解题的关键.5.【参考答案】解:A.因为a2•a3=a7+3=a5,所以A选项运算正确,故A选项符合题意;B.因为(a2)2=a2×3=a6,所以B选项运算不正确,故B选项不符合题意;C.因为(ab)2=a7b2,所以C选项运算不正确,故C选项不符合题意;D.因为6﹣2=a2,所以D选项运算不正确,故D选项不符合题意.故选:A.【解析】本题主要考查了同底数幂乘除法,幂的乘方与积的乘方,熟练掌握同底数幂乘除法,幂的乘方与积的乘方运算法则进行求解是解决本题的关键.6.【参考答案】解:∵当x=0时,y=1,∴一次函数y=6x+1的图象与y轴的交点的坐标为(0,7),故选:D.【解析】本题考查了一次函数图象上点的坐标特征,掌握一次函数的图象与y轴的交点的横坐标是0是解题的关键.7.【参考答案】解:,将①式代入②式,得x+2(x﹣1)=2,∴x+2x﹣2=5,故选:B.【解析】本题考查了解二元一次方程组,掌握代入消元法解二元一次方程组是解题关键.8.【参考答案】解:四边形EFDA是⊙O内接四边形,∴∠EFD+∠A=180°,∵等边△ABC的顶点A在⊙O上,∴∠A=60°,∴∠EFD=120°,故选:C.【解析】本题考查了圆内接四边形的性质、等边三角形的性质,掌握两个性质定理的应用是解题关键.9.【参考答案】解:∵四边形ABCD是菱形,∴AO=CO=,AC⊥BD,∵CE∥BD,∴△AOB∽△ACE,∴∠AOB=∠ACE=90°,=,∴△ACE是直角三角形,OB=,AB=,∴BC=AE,故选:D.【解析】本题考查了菱形的性质,相似三角形的判定和性质,直角三角形的性质,掌握菱形的对角线垂直平分是解题的关键.10.【参考答案】解:∵c>0,∴﹣c<0,故A,D选项不符合题意;当a>8时,∵b>0,∴对称轴x=<7,故B选项不符合题意;当a<0时,b>0,∴对称轴x=>0,故C选项符合题意,故选:C.【解析】本题考查了二次函数的图象,熟练掌握二次函数的图象与系数的关系是解题的关键.二.填空题(本大题共8小题,每小题4分,共32分)11.【参考答案】解:3+(﹣2)=+(4﹣2)=1.故答案为:3【解析】本题主要考查了有理数的加法,熟练掌握法则是参考答案本题的关键.12.【参考答案】解:原式=(x+5)(x﹣5).故答案为:(x+2)(x﹣5).【解析】本题主要考查了因式分解﹣应用公式法,熟练掌握因式分解﹣应用公式法进行求解是解决本题的关键.13.【参考答案】解:∵所有可能出现的结果数为6,其中能中奖出现的结果为2,∴P(能中奖)==.故答案为:.【解析】本题考查了概率公式,掌握P(能中奖)=能中奖的结果数÷所有可能出现的结果数是解题的关键.14.【参考答案】解:1﹣4%﹣56%=40%,故答案为:40%.【解析】本题考查了统计表,掌握各种人员占总人数的百分比之和为1是解题的关键.15.【参考答案】解:方法一:∵OM⊥AB,ON⊥BC,∴∠OMB=∠ONB=90°,在Rt△OMB和Rt△ONB中,,∴Rt△OMB≌Rt△ONB(HL),∴∠OBM=∠OBN,∵∠ABC=30°,∴∠ABO=15°.方法二:∵OM⊥AB,ON⊥BC,又∵OM=ON,∴OB平分∠ABC,∴∠OBM=∠OBN,∵∠ABC=30°,∴∠ABO=15°.故答案为:15.【解析】本题考查了全等三角形的判定和性质,熟练掌握判定直角三角形全等特有的方法(HL)是解题的关键.16.【参考答案】解:设BC交x轴于E,如图:∵x轴为矩形ABCD的一条对称轴,且矩形ABCD的面积为6,∴四边形DOEC是矩形,且矩形DOEC面积是3,设C(m,n),CE=n,∵矩形DOEC面积是4,∴mn=3,∵C在反比例函数y=的图象上,∴n=,即k=mn,∴k=3,故答案为:7.【解析】本题考查反比例函数图象及应用,解题的关键是掌握反比例函数图象上点坐标的特征,理解y=中k的几何意义.17.【参考答案】解:∵五边形ABCDE是正五边形,∴∠EAB==108°,∵∠EAB是△AEO的外角,∴∠AEO=∠EAB﹣∠MON=108°﹣60°=48°,故答案为:48.【解析】本题考查的是正多边形,掌握多边形内角和定理、正多边形的性质、三角形的外角性质是解题的关键.18.【参考答案】解:如图,设正方形的一边与⊙O的切点为C,连接OC,则OC⊥AC,∵四边形是正方形,AB是对角线,∴∠OAC=45°,∴OA=OC=2,∴BN=AB﹣AN=10﹣2﹣4=(8﹣2,故答案为:(8﹣2).【解析】本题考查的是切线的性质、正方形的性质,掌握圆的切线垂直于过切点的半径是解题的关键.三.参考答案题(本大题共8小题,共78分)19.【参考答案】解:原式=1+3﹣7×=2+3﹣1=6.【解析】本题考查了实数的运算,特殊角的三角函数值,掌握(﹣1)的偶次幂等于1,(﹣1)的奇次幂等于﹣1是解题的关键.20.【参考答案】解:原式=(+)==;把x=4代入中,原式==.【解析】本题主要考查了分式的化简求值,熟练掌握分式的化简求值的方法进行求解是解决本题的关键.21.【参考答案】证明:(1)在△AEF和△DEC中,,∴△AEF≌△DEC(SAS);(2)∵△AEF≌△DEC,∴∠AFE=∠DCE,∴AB∥CD,∵AD∥BC,∴四边形ABCD为平行四边形.【解析】本题考查的是平行四边形的判定、全等三角形的判定和性质,掌握平行四边形的判定定理是解题的关键.22.【参考答案】解:(1)∵山坡②的坡度i=1:1,∴CN=BN,∴∠BCN=45°,∴∠ACB=180°﹣30°﹣45°=105°;(2)在Rt△ACM中,∠AMC=90°,AM=5.6千米,∴AC=2AM=2.2千米,在Rt△BCN中,∠BNC=90°,CN=,则BC==2(千米),∴该登山运动爱好者走过的路程为:1.2+7=3.2(千米),答:该登山运动爱好者走过的路程为3.2千米.【解析】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.23.【参考答案】解:(1)该作品在民主测评中得到“不赞成”的票数:50﹣40=10(张),答:该作品在民主测评中得到“不赞成”的票是10张;(2)=(88+87+94+91+90)÷5=90(分);答:的值是90分;(3)①=40×3+10×(﹣2)=110(分);②∵S=0.7+7.3=0.4×90+0.3×110=96(分).答:该作品的“综合得分”S的值为96分.【解析】本题考查了加权平均数、算术平均数,掌握这两种平均数的应用,其中读懂题意是解题关键.24.【参考答案】解:(1)∵点A在函数y1=(x<6)的图象上,∴﹣2=,解得x=﹣8,∴点A的横坐标为﹣1;(2)∵点B在函数y2=(x>8,点B的横坐标为2,∴B(2,),∴PC=OQ=,BQ=2,∵A(﹣6,﹣2),∴OP=CQ=1,AP=6,∴AC=2+,BC=3+2=3,∴S=S△ABC﹣S△PQC=AC•BC﹣﹣×4=3+k.【解析】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,三角形的面积,表示出线段的长度是解题的关键.25.【参考答案】(1)证明:∵∠BAC=45°,∴∠BOD=2∠BAC=90°,∵OD∥BC,∴∠OBC=180°﹣∠BOD=90°,∴OB⊥BC,又OB是⊙O的半径,∴直线BC是⊙O的切线;(2)①证明:由(1)知∠BOD=90°,∵OB=OD,∴△BOD是等腰直角三角形,∴∠BDE=45°=∠BAD,∵∠DBE=∠ABD,∴△ABD∽△DBE;②解:由①知:△ABD∽△DBE,∴=,∴BD2=AB•BE,∵AB•BE=7,∴BD2=6,∴BD=,∵△BOD是等腰直角三角形,∴OB=BD•sin∠BDO=×=,∴⊙O的半径的长度是.【解析】本题考查圆的综合应用,涉及三角形相似的判定与性质,等腰直角三角形性质及应用,圆的切线等知识,解题的关键是掌握切线的判定定理及圆的相关性质.26.【参考答案】解:(1)当a=1,b=3时7+3x+c,把x=1,y=2代入得,1=1+2+c,∴c=﹣3;(2)①方法(一)由ax2+bx+c=5得,x1=,x2=,∴AB=x4﹣x1=,∵抛物线的顶点坐标为:(﹣,),∴AE=,OM=,∵∠BAE=90°,∴tan∠ABE==,∴=,∴b3﹣4ac=9;(方法二)由ax6+bx+c=0得,∵x1+x6=,x1x2=,∴|x4﹣x2|===,下面过程相同;②∵b3﹣4ac=9,∴x8=,∵OP∥MN,∴,∴:=3,∴b=2,∴26﹣4ac=9,∴c=﹣,∴T=c=﹣=﹣﹣2)4﹣4,∴当=6时,T最小=﹣4,即a=时,T最小=﹣4.【解析】本题考查二次函数及其图象性质,二次函数和一元二次方程之间的关系,平行线分线段成比例定理,锐角三角函数定义等知识,解决问题的关键根据点的坐标表示出线段.。
2024年山东省滨州市中考数学试卷及答案
2024年山东省滨州市中考数学试卷及答案一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求。
1.(3分)﹣的绝对值是()A.2B.﹣2C.D.﹣【分析】直接根据绝对值的性质解答即可.【解答】解:|﹣|=.故选:C.【点评】本题考查的是绝对值,熟知负数的绝对值是它的相反数是解题的关键.2.(3分)如图,一个三棱柱无论怎么摆放,其主视图不可能是()A.B.C.D.【分析】根据不同的摆放方式,进行判断.【解答】解:∵三棱柱三个面分别为三角形,正方形,长方形,∴无论怎么摆放,主视图不可能是圆形,故选:A.【点评】本题考查了几何体的视图,掌握定义是关键.3.(3分)数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、是轴对称图形;故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)下列运算正确的是()A.(n3)3=n6B.(﹣2a)2=﹣4a2C.x8÷x2=x4D.m2•m=m3【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、(n3)3=n9,故A选项错误;B、(﹣2a)2=4a2,故B选项错误;C、x8÷x2=x6,故C选项错误;D、m2•m=m3,故D选项正确;故选:D.【点评】本题考查了合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.(3分)若点P(1﹣2a,a)在第二象限,那么a的取值范围是()A.B.C.D.【分析】P(1﹣2a,a)在第二象限,可得,即可解得答案.【解答】解:∵点P(1﹣2a,a)在第二象限,∴,解得:a>;故选:A.【点评】本题考查解一元一次不等式组和点的坐标,解题的关键是掌握各象限内横,纵坐标的符号,列出不等式组.6.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是()A.②③B.①③C.①②D.①②③【分析】根据众数、平均数及中位数的定义,结合表格数据进行判断即可.【解答】解:这些运动员成绩的平均数是×(1.50×2+1.60×3+1.65×2+1.70×3+1.75×4+1.80×1)≈1.67,第8位同学的成绩是1.70,故中位数是1.70;数据1.75出现的次数最多,故众数是1.75.∴上述结论中正确的是②③,故选:A.【点评】本题考查了众数、平均数及中位数的知识,属于基础题,关键是理解众数、平均数及中位数的定义.7.(3分)点M(x1,y1)和点N(x2,y2)在反比例函数y=为常数)的图象上,若x1<0<x2,则y1,y2,0的大小关系为()A.y1<y2<0B.y1>y2>0C.y1<0<y2D.y1>0>y2【分析】根据反比例函数图象上点的坐标特征解答即可.【解答】解:反比例函数y==中,(k﹣1)2+2>0,反比例函数图象分布在第一、三象限,∵x1<0<x2,∴点M在第三象限的图象上,点N在第一象限的图象上,∴y1<0<y2,故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是关键.8.(3分)刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt△ABC中,∠C=90°,AB,BC,CA的长分别为c,a,b.则可以用含c,a,b的式子表示出△ABC的内切圆直径d,下列表达式错误的是()A.d=a+b﹣c B.C.D.d=|(a﹣b)(c﹣b)|【分析】这是直角三角形内切圆的常考形式,直角三角形内切圆半径的常用形式有两个,分别是r=和r=,所以很快定位出选项A和选项B正确,而对于我们不熟悉的选项C和选项D可直接用特殊值法定位答案.【解答】方法一:本题作为选择题,用特殊值法则可快速定位答案.∵三角形ABC为直角三角形,∴令a=3,b=4,c=5.选项A:d=a+b﹣c=2,选项B:d==2,选项C:d==2,选项D:d=|(a﹣b)(c﹣b)|=1,很明显,只有D选项跟其他选项不一致,所以表达式错误的应是D选项.故答案选:D.方法二:如图,作OE⊥AC于点E,OD⊥BC于点D,OF⊥AB于点F.易证四边形OECD是正方形,设OE=OD=OF=r,则EC=CD=r,∴AE=AF=b﹣r,BD=BF=a﹣r,∵AF+BF=AB,∴b﹣r+a﹣r=c,∴r=,∴d=a+b﹣c.故选项A正确.=S△AOC+S△BOC+S△AOB,∵S△ABC∴ab=ar+br+cr,∴ab=r(a+b+c),∴r=,即d=.故选项B正确.∵由前面可知d=a+b﹣c,∴d2=(a+b﹣c)2=(a+b)2﹣2c(a+b)+c2=a2+2ab+b2﹣2ac﹣2bc+c2,∵a2+b2=c2,∴上述式子=2c2+2ab﹣2ac﹣2bc=2(c2+ab﹣ac﹣bc)=2[(c2﹣ac)+b(a﹣c)]=2(c﹣a)(c﹣b),∴d=,故选项C正确.排除法可知选项D错误.故答案选:D.【点评】本题考查三角形内切圆直径公式,结合中国古代数学成就来考是未来数学的一种趋势,掌握直角三角形内切圆的性质是解题的关键.二、填空题:本大题共8个小题,每小题3分,满分24分。
中考数学试卷及答案(解析版)
中考数学试卷一.选择题1.(2013菏泽)如果a的倒数是﹣1,那么a2013等于()A.1 B.﹣1 C.2013 D.﹣2013考点:有理数的乘方;倒数.分析:先根据倒数的定义求出a的值,再根据有理数的乘方的定义进行计算即可得解.解答:解:∵(﹣1)×(﹣1)=1,∴﹣1的倒数是﹣1,a=﹣1,∴a2013=(﹣1)2013=﹣1.故选B.点评:本题考查了有理数的乘方的定义,﹣1的奇数次幂是﹣1.2.(2013菏泽)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30° B.30°或45°C.45°或60°D.30°或60°考点:剪纸问题.分析:折痕为AC与BD,∠BAD=120°,根据菱形的性质:菱形的对角线平分对角,可得∠ABD=30°,易得∠BAC=60°,所以剪口与折痕所成的角a的度数应为30°或60°.解答:解:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°﹣∠BAD=180°﹣120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成的角a的度数应为30°或60°.故选D.点评:此题主要考查菱形的判定以及折叠问题,关键是熟练掌握菱形的性质:菱形的对角线平分每一组对角.3.(2013菏泽)下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.考点:展开图折叠成几何体.分析:根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.解答:解:A.另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B.折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C.折叠后能围成三棱柱,故本选项正确;D.折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.点评:本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,不能有两个侧面在两三角形的同一侧.4.(2013菏泽)在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65 B.1.70,1.70 C.1.65,1.70 D.3,4考点:众数;中位数.分析:根据中位数和众数的定义,第8个数就是中位数,出现次数最多的数为众数.解答:解:在这一组数据中1.65是出现次数最多的,故众数是1.65;在这15个数中,处于中间位置的第8个数是1.70,所以中位数是1.70.所以这些运动员跳高成绩的中位数和众数分别是1.70,1.65.故选A.点评:本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.5.(2013菏泽)如图,数轴上的A、B、C三点所表示的数分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点B与点C之间或点C的右边考点:数轴.分析:根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.解答:解:∵|a|>|b|>|c|,∴点A到原点的距离最大,点B其次,点C最小,又∵AB=BC,∴原点O的位置是在点C的右边,或者在点B与点C之间,且靠近点C的地方.故选D.点评:本题考查了实数与数轴,理解绝对值的定义是解题的关键.6.(2013菏泽)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过()A.第二、四象限 B.第一、二、三象限 C.第一、三象限 D.第二、三、四象限考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限即可.解答:解:∵k+b=﹣5、kb=6,∴k<0,b<0∴直线y=kx+b经过二、三、四象限,故选D.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.7.(2013菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19考点:相似三角形的判定与性质;正方形的性质.专题:计算题.分析:由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.解答:解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选B.点评:本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.8.(2013菏泽)已知b<0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.﹣2 B.﹣1 C.1 D.2考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线开口向上a>0,抛物线开口向下a<0,然后利用抛物线的对称轴或与y轴的交点进行判断,从而得解.解答:解:由图可知,第1、2两个图形的对称轴为y轴,所以x=﹣=0,解得b=0,与b<0相矛盾;第3个图,抛物线开口向上,a>0,经过坐标原点,a2﹣1=0,解得a1=1,a2=﹣1(舍去),对称轴x=﹣=﹣>0,所以b<0,符合题意,故a=1,第4个图,抛物线开口向下,a<0,经过坐标原点,a2﹣1=0,解得a1=1(舍去),a2=﹣1,对称轴x=﹣=﹣>0,所以b>0,不符合题意,综上所述,a的值等于1.故选C.点评:本题考查了二次函数y=ax2+bx+c图象与系数的关系,a的符号由抛物线开口方向确定,难点在于利用图象的对称轴、与y轴的交点坐标判断出b的正负情况,然后与题目已知条件b<0比较.二.填空题9.(3分)(2013菏泽)明明同学在“百度”搜索引擎输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为4680000,这个数用科学记数法表示为 4.68×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将4680000用科学记数法表示为4.68×106.故答案为:4.68×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(2013菏泽)在半径为5的圆中,30°的圆心角所对的弧长为(结果保留π).考点:弧长的计算.分析:直接利用弧长公式计算即可.解答:解:L===.点评:主要考查弧长公式L=.[常见错误]主要错误是部分学生与扇形面积公式S=混淆,得到π错误答案,或利用计算得到0.83π或0.833π的答案.11.(2013菏泽)分解因式:3a2﹣12ab+12b2=3(a﹣2b)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案.解答:解:3a2﹣12ab+12b2=3(a2﹣4ab+4b2)=3(a﹣2b)2.故答案为:3(a﹣2b)2.点评:本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.12.(2013菏泽)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是,(或介于和之间的任意两个实数)(写出1个即可).考点:等边三角形的性质.专题:新定义;开放型.分析:根据等边三角形的性质,(1)最长的面径是等边三角形的高线;(2)最短的面径平行于三角形一边,最长的面径为等边三角形的高,然后根据相似三角形面积的比等于相似比的平方求出最短面径.解答:解:如图,(1)等边三角形的高AD是最长的面径,AD=×2=;(2)当EF∥BC时,EF为最短面径,此时,()2=,即=,解得EF=.所以,它的面径长可以是,(或介于和之间的任意两个实数).故答案为:,(或介于和之间的任意两个实数).点评:本题考查了等边三角形的性质,读懂题意,弄明白面径的定义,并准确判断出等边三角形的最短与最长的面径是解题的关键.13.(2013菏泽)如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.考点:平行四边形的性质;等腰直角三角形;翻折变换(折叠问题).分析:如图,连接BB′.根据折叠的性质知△BB′E是等腰直角三角形,则BB′=BE.又B′E是BD的中垂线,则DB′=BB′.解答:解:∵四边形ABCD是平行四边形,BD=2,∴BE=BD=1.如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,则BB′=BE=.又∵BE=DE,B′E⊥BD,∴DB′=BB′=.故答案是:.点评:本题考查了平行四边形的性质,等腰三角形的判定与性质以及翻折变换(折叠的性质).推知DB′=BB′是解题的关键.14.(2013菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.三.解答题15.(12分)(2013菏泽)(1)计算:(2)解不等式组,并指出它的所有非负整数解.考点:解一元一次不等式组;实数的运算;零指数幂;负整数指数幂;一元一次不等式组的整数解;特殊角的三角函数值.分析:(1)求出每部分的值,再代入求出即可;(2)求出每个不等式的解集,根据找不等式组解集的规律找出即可.解答:解:(1)原式=﹣3×+1+2+=2+;(2)∵解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,∴不等式组的非负整数解为0,1,2.点评:本题考查了二次根式的性质,零整数指数幂,负整数指数幂,特殊角的三角函数值,解一元一次不等式,解一元一次不等式组的应用,解不等式的关键是能根据不等式的解集找出不等式组的解集,解第(1)小题的关键是求出各个部分的值.16.(2013菏泽)(1)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.(2)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.考点:全等三角形的判定与性质;分式方程的应用.专题:工程问题;证明题.分析:(1)①求出∠ABE=∠CBD,然后利用“边角边”证明△ABE和△CBD全等即可;②先根据等腰直角三角形的锐角都是45°求出∠CAB,再求出∠BAE,然后根据全等三角形对应角相等求出∠BCD,再根据直角三角形两锐角互余其解即可;(2)设甲工厂每天能加工x件产品,表示出乙工厂每天加工1.5x件产品,然后根据甲加工产品的时间比乙加工产品的时间多10天列出方程求解即可.解答:(1)①证明:∵∠ABC=90°,D为AB延长线上一点,∴∠ABE=∠CBD=90°,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵AB=CB,∠ABC=90°,∴∠CAB=45°,∵∠CAE=30°,∴∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,∵△ABE≌△CBD,∴∠BCD=∠BAE=15°,∴∠BDC=90°﹣∠BCD=90°﹣15°=75°;(2)解:设甲工厂每天能加工x件产品,则乙工厂每天加工1.5x件产品,根据题意得,﹣=10,解得x=40,经检验,x=40是原方程的解,并且符合题意,1.5x=1.5×40=60,答:甲、乙两个工厂每天分别能加工40件、60件新产品.点评:本题(1)考查了全等三角形的判定与性质,是基础题;(2)考查了分式方程的应用,找出等量关系为两工厂的工作时间的差为10天是解题的关键.17.(2013菏泽)(1)已知m是方程x2﹣x﹣2=0的一个实数根,求代数式的值.(2)如图,在平面直角坐标系xOy中,一次函数y=﹣x的图象与反比例函数的图象交于A、B两点.①根据图象求k的值;②点P在y轴上,且满足以点A、B、P为顶点的三角形是直角三角形,试写出点P所有可能的坐标.考点:反比例函数与一次函数的交点问题;分式的化简求值.分析:(1)根据方程的解得出m2﹣m﹣2=0,m2﹣2=m,变形后代入求出即可;(2)①求出A的坐标,代入反比例函数的解析式求出即可;②以A或B为直角顶点求出P的坐标是(0,2)和(0,﹣2),以P为直角顶点求出P的坐标是(0,),(0,﹣).解答:解:(1)∵m是方程x2﹣x﹣2=0的根,∴m2﹣m﹣2=0,m2﹣2=m,∴原式=(m2﹣m)(+1)=2×(+1)=4.(2)①把x=﹣1代入y=﹣x得:y=1,即A的坐标是(﹣1,1),∵反比例函数y=经过A点,∴k=﹣1×1=﹣1;②点P的所有可能的坐标是(0,),(0,﹣),(0,2),(0,﹣2).点评:本题考查了一次函数与反比例函数的交点问题和直角三角形的判定的应用,主要考查学生的计算能力,用了分类讨论思想.18.(2013菏泽)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)OC=CP,AB=6,求CD的长.考点:切线的判定与性质;解直角三角形.分析:(1)连接AO,AC(如图).欲证AP是⊙O的切线,只需证明OA⊥AP即可;(2)利用(1)中切线的性质在Rt△OAP中利用边角关系求得∠ACO=60°.然后在Rt△BAC、Rt△ACD中利用余弦三角函数的定义知AC=2,CD=4.解答:(1)证明:连接AO,AC(如图).∵BC是⊙O的直径,∴∠BAC=∠CAD=90°.∵E是CD的中点,∴CE=DE=AE.∴∠ECA=∠EAC.∵OA=OC,∴∠OAC=∠OCA.∵CD是⊙O的切线,∴CD⊥OC.∴∠ECA+∠OCA=90°.∴∠EAC+∠OAC=90°.∴OA⊥AP.∵A是⊙O上一点,∴AP是⊙O的切线;(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP==,∴∠P=30°.∴∠AOP=60°.∵OC=OA,∴∠ACO=60°.在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,∴AC==2,又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD===4.点评:本题考查了切线的判定与性质、解直角三角形.注意,切线的定义的运用,解题的关键是熟记特殊角的锐角三角函数值.19.(2013菏泽)某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为a,b,c,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为A,B,C.(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总1 000吨生活垃圾,数据统计如下(单位:吨):试估计“厨余垃圾”投放正确的概率.考点:列表法与树状图法.分析:(1)根据题意画出树状图,由树状图可知总数为9,投放正确有3种,进而求出垃圾投放正确的概率;(2)由题意和概率的定义易得所求概率.解答:解:(1)三类垃圾随机投入三类垃圾箱的树状图如下:由树状图可知垃圾投放正确的概率为;(2)“厨余垃圾”投放正确的概率为.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比20.(2013菏泽)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.考点:根的判别式;解一元二次方程-公式法.专题:证明题.分析:(1)根据一元二次方程定义得k≠0,再计算△=(4k+1)2﹣4k(3k+3),配方得△=(2k﹣1)2,而k是整数,则2k﹣1≠0,得到△=(2k﹣1)2>0,根据△的意义即可得到方程有两个不相等的实数根;(2)先根据求根公式求出一元二次方程kx2﹣(4k+1)x+3k+3=0 的解为x=3或x=1+,而k是整数,x1<x2,则有x1=1+,x2=3,于是得到y=3﹣(1+)=2﹣.解答:(1)证明:k≠0,△=(4k+1)2﹣4k(3k+3)=(2k﹣1)2,∵k是整数,∴k≠,2k﹣1≠0,∴△=(2k﹣1)2>0,∴方程有两个不相等的实数根;(2)解:y是k的函数.解方程得,x==,∴x=3或x=1+,∵k是整数,∴≤1,∴1+≤2<3.又∵x1<x2,∴x1=1+,x2=3,∴y=3﹣(1+)=2﹣.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了利用公式法解一元二次方程.21.(2013菏泽)如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=x+3的图象与y轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.(1)试求b,c的值,并写出该二次函数表达式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?考点:二次函数综合题.分析:(1)根据一次函数解析式求出点A.点C坐标,再由△ABC是等腰三角形可求出点B坐标,根据平行四边形的性性质求出点D坐标,利用待定系数法可求出b、c的值,继而得出二次函数表达式.(2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,再由△APQ∽△CAO,利用对应边成比例可求出t的值,继而确定点P的位置;②只需使△APQ的面积最大,就能满足四边形PDCQ的面积最小,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽CAO,利用对应边成比例得出h的表达式,继而表示出△APQ的面积表达式,利用配方法求出最大值,即可得出四边形PDCQ的最小值,也可确定点P的位置.解答:解:(1)由y=﹣x+3,令x=0,得y=3,所以点A(0,3);令y=0,得x=4,所以点C(4,0),∵△ABC是以BC为底边的等腰三角形,∴B点坐标为(﹣4,0),又∵四边形ABCD是平行四边形,∴D点坐标为(8,3),将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,可得,解得:,故该二次函数解析式为:y=x2﹣x﹣3.(2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴△APQ∽△CAO,∴=,即=,解得:t=.即当点P运动到距离A点个单位长度处,有PQ⊥AC.②∵S四边形PDCQ+S△APQ=S△ACD,且S△ACD=×8×3=12,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽CAO可得:=,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为.点评:本题考查了二次函数的综合,涉及了待定系数法求函数解析式、平行四边形的性质、相似三角形的判定与性质,解答本题的关键是找到满足题意时的相似三角形,利用对应边成比例的知识得出有关线段的长度或表达式,难度较大.。
初中中考数学试卷及解析
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 1答案:C解析:绝对值是指一个数去掉符号的值,绝对值最小的数是0。
2. 下列函数中,y是x的一次函数的是()A. y = 2x^2 + 1B. y = 3x - 4C. y = x^3 + 1D. y = 2/x答案:B解析:一次函数是指函数的图像是一条直线,且自变量x的最高次数为1。
在选项中,只有B项满足这个条件。
3. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^2答案:A解析:这是一个完全平方公式,根据公式展开,得到(a + b)^2 = a^2 + 2ab + b^2。
4. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°答案:C解析:三角形内角和为180°,所以∠C = 180° - ∠A - ∠B = 180° - 60° - 45° = 75°。
5. 已知直线l:y = 2x + 1,点P(1,2)到直线l的距离是()A. 1B. 2C. 3D. 4答案:A解析:点到直线的距离公式为:d = |Ax + By + C| / √(A^2 + B^2),将直线l 的方程代入,得到d = |21 + 12 + 1| / √(2^2 + 1^2) = 1。
6. 已知a、b、c是等差数列,且a + b + c = 12,b = 4,则a + c的值是()A. 6B. 8C. 10D. 12答案:B解析:由等差数列的性质可知,a + c = 2b,将b = 4代入,得到a + c = 24 = 8。
2022年浙江省丽水市中考数学试题及答案解析
2022年浙江省丽水市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.实数2的相反数是( )A. 2B. 12C. −12D. −22.如图是运动会领奖台,它的主视图是( )A.B.C.D.3.老师从甲、乙、丙、丁四位同学中任选一人去学校劳动基地浇水,选中甲同学的概率是( )A. 15B. 14C. 13D. 344.计算−a2⋅a的正确结果是( )A. −a2B. aC. −a3D. a35.如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段AB=3,则线段BC的长是( )A. 23B. 1 C. 32D. 26.某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50002x=4000x−30,则方程中x表示( )A. 足球的单价B. 篮球的单价C. 足球的数量D. 篮球的数量7.如图,在△ABC中,D,E,F分别是BC,AC,AB的中点.若AB=6,BC=8,则四边形BDEF的周长是( )A. 28B. 14C. 10D. 78.已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是( )A. R至少2000ΩB. R至多2000ΩC. R至少24.2ΩD. R至多24.2Ω9.某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2√3m,则改建后门洞的圆弧长是( )A. 5π3m B. 8π3m C. 10π3m D. (5π3+2)m10.如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分∠EAD交CD于点F,FG//AD交AE于点G.若cosB=14,则FG的长是( )A. 3B. 83C. 2√153D. 52二、填空题(本大题共6小题,共24.0分)11.分解因式:a2−2a=______.12. 在植树节当天,某班的四个绿化小组植树的棵数如下:10,8,9,9.则这组数据的平均数是______.13. 不等式3x >2x +4的解集是______.14. 三个能够重合的正六边形的位置如图.已知B 点的坐标是(−√3,3),则A 点的坐标是______.15. 一副三角板按图1放置,O 是边BC(DF)的中点,BC =12cm.如图2,将△ABC 绕点O顺时针旋转60°,AC 与EF 相交于点G ,则FG 的长是______cm .16. 如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE =a ,DE =b ,且a >b . (1)若a ,b 是整数,则PQ 的长是______; (2)若代数式a 2−2ab −b 2的值为零,则S 四边形ABCDS矩形PQMN的值是______.三、解答题(本大题共8小题,共66.0分)17.计算:√9−(−2022)0+2−1.18.先化简,再求值:(1+x)(1−x)+x(x+2),其中x=1.219.某校为了解学生在“五⋅一”小长假期间参与家务劳动的时间t(小时),随机抽取了本校部分学生进行问卷调查.要求抽取的学生在A,B,C,D,E五个选项中选且只选一项,并将抽查结果绘制成如下两幅不完整的统计图,请根据图中信息回答问题:(1)求所抽取的学生总人数;(2)若该校共有学生1200人,请估算该校学生参与家务劳动的时间满足3≤t<4的人数;(3)请你根据调查结果,对该校学生参与家务劳动时间的现状作简短评述.20.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.21.因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km,货车行驶时的速度是60km/ℎ.两车离甲地的路程s(km)与时间t(ℎ)的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(ℎ)的函数表达式;(3)问轿车比货车早多少时间到达乙地?22.如图,将矩形纸片ABCD折叠,使点B与点D重合,点A落在点P处,折痕为EF.(1)求证:△PDE≌△CDF;(2)若CD=4cm,EF=5cm,求BC的长.23.如图,已知点M(x1,y1),N(x2,y2)在二次函数y=a(x−2)2−1(a>0)的图象上,且x2−x1=3.(1)若二次函数的图象经过点(3,1).①求这个二次函数的表达式;②若y1=y2,求顶点到MN的距离;(2)当x1≤x≤x2时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.24.如图,以AB为直径的⊙O与AH相切于点A,点C在AB左侧圆弧上,弦CD⊥AB交⊙O于点D,连结AC,AD.点A关于CD的对称点为E,直线CE交⊙O于点F,交AH于点G.(1)求证:∠CAG=∠AGC;(2)当点E在AB上,连结AF交CD于点P,若EFCE =25,求DPCP的值;(3)当点E在射线AB上,AB=2,以点A,C,O,F为顶点的四边形中有一组对边平行时,求AE的长.答案和解析1.【答案】D【解析】解:实数2的相反数是−2.故选:D.相反数的概念:只有符号不同的两个数叫做互为相反数.本题考查了相反数,掌握相反数的定义是解答本题的关键.2.【答案】A【解析】解:从正面看,可得如下图形:故选:A.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【答案】B【解析】解:∵老师从甲、乙、丙、丁四位同学中任选一人去学校劳动基地浇水,事件的等可能性有4种,选中甲同学的可能性有一种,∴选中甲同学的概率是1,4故选:B.利用事件概率的意义解答即可.本题主要考查了概率的公式,熟练应用概率的公式是解题的关键.4.【答案】C【解析】解:−a2⋅a=−a3,故选:C.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.据此判断即可.本题考查了同底数幂的乘法,掌握幂的运算法则是解答本题的关键.5.【答案】C【解析】解:过点A作平行横线的垂线,交点B所在的平行横线于D,交点C所在的平行横线于E,则ABBC =ADDE,即3BC=2,解得:BC=32,故选:C.过点A作平行横线的垂线,交点B所在的平行横线于D,交点C所在的平行横线于E,根据平行线分线段成比例定理列出比例式,计算即可.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.6.【答案】D【解析】解:设篮球的数量为x个,足球的数量是2x个.根据题意可得:50002x =4000x−30,故选:D.设篮球的数量为x个,足球的数量是2x个,列出分式方程解答即可.此题主要考查了由实际问题抽象出分式方程,得到相应的关系式是解决本题的关键.7.【答案】B【解析】解:∵D、E分别为BC、AC中点,∴DE=BF=12AB=3,∵E、F分别为AC、AB中点,∴EF=BD=12BC=4,∴四边形BDEF的周长为:2×(3+4)=14,故选:B.根据三角形中位线定理、平行四边形的判定定理解答即可.本题考查了三角形的中位线定理,熟练掌握三角形中位线定理是解题的关键.8.【答案】A【解析】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=UR.∵已知电灯电路两端的电压U为220V,∴I=220R.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴220R≤0.11,∴R≥2000.故选:A.利用已知条件列出不等式,解不等式即可得出结论.本题主要考查了反比例函数的应用,利用已知条件列出不等式是解题的关键.9.【答案】C【解析】解:连接AC,BD,AC和BD相交于点O,则O为圆心,如图所示,由题意可得,CD=2m,AD=2√3m,∠ADC=90°,∴tan∠DCA=ADCD =2√32=√3,AC=√CD2+AD2=4(m),∴∠ACD=60°,OA=OC=2m,∴∠ACB=30°,∴∠AOB=60°,∴优弧ADCB所对的圆心角为300°,∴改建后门洞的圆弧长是:300π×2180=10π3,故选:C.先作出合适的辅助线,然后根据题意和图形,可以求得优弧所对的圆心角的度数和所在圆的半径,然后根据弧长公式计算即可.本题考查弧长公式、勾股定理、圆周角定理、矩形的性质,解答本题的关键是求出优弧所对的圆心角的度数和所在圆的半径.10.【答案】B【解析】解:如图,过点A作AH⊥BE于点H,过点F作FQ⊥AD于点Q,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cosB=BHAB =14,∴BH=1,∴AH=√AB2−BH2=√42−12=√15,∵E是BC的中点,∴BE=CE=2,∴EH=BE−BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,∵AF平分∠EAD,∴∠DAF=∠FAG,∵FG//AD,∴∠DAF=∠AFG,∴∠FAG=∠AFG,∴GA=GF,设GA=GF=x,∵AE=CD,FG//AD,∴DF=AG=x,cosD=cosB=DQDF =14,∴DQ=14x,∴FQ=√DF2−DQ2=√x2−(14x)2=√154x,∵S梯形CEAD =S梯形CEGF+S梯形GFAD,∴12(2+4)×√15=12(2+x)×(√15−√154x)+12(x+4)×√154x,解得x=83,则FG的长是83.故选:B.过点A作AH⊥BE于点H,过点F作FQ⊥AD于点Q,根据cosB=BHAB =14,可得BH=1,所以AH=√15,然后证明AH是BE的垂直平分线,可得AE=AB=4,设GA=GF=x,根据S梯形CEAD=S梯形CEGF+S梯形GFAD,进而可以解决问题.本题考查了菱形的性质,解直角三角形,解决本题的关键是掌握菱形的性质.11.【答案】a(a−2)【解析】解:a2−2a=a(a−2).故答案为:a(a−2).观察原式,找到公因式a,提出即可得出答案.提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.【答案】9【解析】解:这组数据的平均数是14×(10+8+9+9)=9.故答案为:9.算术平均数:对于n个数x1,x2,…,x n,则1n(x1+x2+⋯+x n)就叫做这n个数的算术平均数.本题考查了算术平均数,掌握平均数的计算方法是解答本题的关键.13.【答案】x>4【解析】解:3x>2x+4,3x−2x>4,x>4,故答案为:x>4.先移项,再合并同类项即可.本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.14.【答案】(√3,−3)【解析】解:因为点A和点B关于原点对称,B点的坐标是(−√3,3),所以A点的坐标是(√3,−3),故答案为:(√3,−3).根据正六边形的性质可得点A和点B关于原点对称,进而可以解决问题.本题考查了正六边形的性质,中心对称图形,解决本题的关键是掌握关于原点对称的点的坐标特征.15.【答案】(3√3−3)【解析】解:如图,设EF与BC交于点H,∵O是边BC(DF)的中点,BC=12cm.如图2,∴OD=OF=OB=OC=6cm.∵将△ABC绕点O顺时针旋转60°,∴∠BOD=∠FOH=60°,∵∠F=30°,∴∠FHO=90°,OF=3cm,∴OH=12∴CH=OC−OH=3cm,FH=√3OH=3√3cm,∵∠C=45°,∴CH=GH=3cm,∴FG=FH−GH=(3√3−3)cm.故答案为:(3√3−3).OF=3cm,利用设EF与BC交于点H,根据旋转的性质证明∠FHO=90°,可得OH=12含30度角的直角三角形可得CH =OC −OH =3cm ,FH =√3OH =3√3cm ,然后证明△CHG 的等腰直角三角形,可得CH =GH =3cm ,进而可以解决问题.本题考查了旋转的性质,含30度角的直角三角形,解决本题的关键是掌握旋转的性质.16.【答案】a −b 3+2√2【解析】解:(1)由图可知:PQ =a −b ; 故答案为:a −b ; (2)∵a 2−2ab −b 2=0,∴a 2−b 2=2ab ,(a −b)2=2b 2, ∴a =b +√2b(负值舍),∵四个矩形的面积都是5.AE =a ,DE =b , ∴EP =5a ,EN =5b ,则S 四边形ABCDS矩形PQMN=(a+b)(5a +5b )(a−b)(5b −5a)=(a+b)⋅5b+5a ab (a−b)⋅5a−5bab=a 2+2ab+b 2a 2−2ab+b 2=a 2b 2=(√2+1)2b 2b 2=3+2√2.故答案为:3+2√2.(1)直接根据线段的差可得结论;(2)先把b 当常数解方程:a 2−2ab −b 2=0,a =b +√2b(负值舍),根据四个矩形的面积都是5表示小矩形的宽,最后计算面积的比,化简后整体代入即可解答.本题主要考查了矩形的性质,矩形的面积,并结合方程进行解答,正确通过解关于a 的方程表示a 与b 的关系是解本题的关键.17.【答案】解:原式=3−1+12=2+12 =52.【解析】分别根据算术平方根的定义,任何非零数的零次幂等于1以及负整数指数幂的意义计算即可.本题考查了实数的运算,掌握相关定义与运算法则是解答本题的关键.18.【答案】解:(1+x)(1−x)+x(x +2)=1−x 2+x 2+2x=1+2x ,当x =12时,原式=1+2×12=1+1=2.【解析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =12代入计算即可.本题考查了整式的混合运算,掌握相关公式与运算法则是解答本题的关键.19.【答案】解:(1)18÷36%=50(人),故所抽取的学生总人数为50人; (2)1200×50−5−18−15−250=240(人),答:估算该校学生参与家务劳动的时间满足3≤t <4的人数为240人;(3)由题意可知,该校学生在“五⋅一”小长假期间参与家务劳动时间在1≤t <2占最多数,中位数位于2≤t <3这一组(答案不唯一). 【解析】(1)用B 类别的人数除以B 类别所占百分比即可; (2)用1200乘D 所占比例即可; (3)根据统计图的数据解答即可.本题主要考查了用样本估计总体、扇形统计图、条形统计图的综合应用,解题的关键是明确题意,利用数形结合的思想解答问题.20.【答案】解:(1)如图1,CD 为所作;(2)如图2,(3)如图3,△CDE 为所作.【解析】(1)把点B 、A 向作平移1个单位得到CD ; (2)作A 点关于BC 的对称点D 即可;(3)延长CB 到D 使CD =2CB ,延长CA 到E 点使CE =2CA ,则△CED 满足条件.本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了相似三角形的判定与平移变换.21.【答案】解:(1)∵货车的速度是60km/ℎ,∴a =9060=1.5(ℎ);(2)由图象可得点(1.5,0),(3,150),设直线的表达式为s =kt +b ,把(1.5,0),(3,150)代人得: {1.5k +b =03k +b =150, 解得{k =100b =−150,∴s =100t −150;(3)由图象可得货车走完全程需要33060+0.5=6(ℎ), ∴货车到达乙地需6ℎ, ∵s =100t −150,s =330, 解得t =4.8,∴两车相差时间为6−4.8=1.2(ℎ), ∴货车还需要1.2ℎ才能到达, 即轿车比货车早1.2ℎ到达乙地.【解析】(1)根据路程、时间、速度三者之间的关系即可解决问题;(2)设直线的表达式为s =kt +b ,然后利用待定系数法求一次函数解析式解答即可解决问题;(3)根据时间=路程÷速度分别求出货车与小轿车到达终点的时间,即可解决问题. 本题考查了一次函数的应用,主要利用了待定系数法求函数解析式,路程、时间、速度三者之间的关系,从图中准确获取信息是解题的关键.22.【答案】(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =∠B =∠C =90°,AB =CD ,由折叠得:AB =PD ,∠A =∠P =90°,∠B =∠PDF =90°, ∴PD =CD , ∵∠PDF =∠ADC , ∴∠PDE =∠CDF ,在△PDE和△CDF中,{∠P=∠C=90°PD=CD∠PDE=∠CDF,∴△PDE≌△CDF(ASA);(2)解:如图,过点E作EG⊥BC于G,∴∠EGF=90°,EG=CD=4,在Rt△EGF中,由勾股定理得:FG=√52−42=3,设CF=x,由(1)知:PE=AE=BG=x,∵AD//BC,∴∠DEF=∠BFE,由折叠得:∠BFE=∠DFE,∴∠DEF=∠DFE,∴DE=DF=x+3,在Rt△CDF中,由勾股定理得:DF2=CD2+CF2,∴x2+42=(x+3)2,∴x=76,∴BC=2x+3=73+3=163.【解析】(1)根据ASA证明两个三角形全等即可;(2)如图,过点E作EG⊥BC于G,由勾股定理计算FG=3,设CF=x,在Rt△CDF中,由勾股定理得:DF2=CD2+CF2,列方程可解答.本题考查了矩形的性质,折叠的性质,勾股定理,全等三角形的判定和性质,灵活运用这些性质进行推理是本题关键.23.【答案】解:(1)①∵二次函数y =a(x −2)2−1(a >0)经过(3,1),∴1=a −1, ∴a =2,∴二次函数的解析式为y =2(x −2)2−1;②∵y 1=y 2,∴M ,N 关于抛物线的对称轴对称, ∵对称轴是直线x =2,且x 2−x 1=3, ∴x 1=12,x 2=72,当x =12时,y 1=2(12−2)2−1=72,∴当y 1=y 2时,顶点到MN 的距离=72+1=92;(2)设抛物线与X 轴的交点为A(m,0),B(n,0)(m >n).∵x 1≤x ≤x 2时,二次函数的最大值与最小值的差为1,点M ,N 在对称轴的异侧, 又∵二次函数y 的最小值为−1,∴x =x 1或x 2时,y 的值为0,点M ,点N 在x 轴上或在x 轴的下方, ∴AB ≥3, ∴m −n ≥3,令y =0,可得a(x −2)2−1=0, ∴m =2√a,n =2√a , ∴(2+√a)−(2−√a)≥3,∴√a≥3,又∵a >0, ∴0<a ≤49.【解析】(1)①把点(3,1)代入二次函数的解析式求出a 即可;②判断出M ,N 关于抛物线的对称轴对称,求出点M 的纵坐标,可得结论;(2)设抛物线与X 轴的交点为A(m,0),B(n,0)(m >n).判断出AB ≥3,把问题转化为不等式解决即可.本题属于二次函数综合题,考查了二次函数的性质,轴对称等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考压轴题.24.【答案】(1)证明:∵AH是⊙O的切线,∴AH⊥AB,∴∠GAB=90°,∵A,E关于CD对称,AB⊥CD,∴点E在AB上,CE=CA,∴∠CEA=∠CAE,∵∠CAE+∠CAG=90°,∠AEC+∠AGC=90°,∴∠CAG=∠AGC;(2)解:∵AB是直径,AB⊥CD,∴AC⏜=AD⏜,∴AC=AD,∴∠ACD=∠ADC,∵∠CAD=∠ECD,∴∠ADC=∠ECD,∴CF//AD,∴DPCP =ADCF,∵CE=AC=AD,∴DPCP =CECF,∵EFCE =25,∴CECF =57,∴DPCP =57;(3)解:如图1中,当OF//AC时,连接OC,BF,设CD交AB于点J,设CE=CA=x,BE=y.∵OF//CA,∴∠FOE=∠CAE=∠CEA,∴FO=EF=1,∵∠EFB+∠CFB=180°,∠EAC+∠CFB=180°,∴∠EFB=∠EAC,∵∠FEB=∠AEC,∴△EFB∽△EAC,∴EF:EA=EB:EC,∴1⋅x=y⋅(2+y),∴x=y(2+y)①,∵CE=CA.AJ⊥AE,∴AJ=EJ=12(2+y),∵CJ2=OC2−OJ2=CE2−EJ2,∴12−(2+y2−1)2=x2−(2+y2)2,∴2+y=x2②,由①②可得x=y⋅x2,∴x=1y,∴2+y=1y2,∴y3+2y2−1=0,∴(y3+1)+2(y2−1)=0,∴(y+1)(y2−y+1)+2(y+1)(y−1)=0,∴(y +1)(y 2+y −1)=0, ∵y +1≠0, ∴y 2+y −1=0, ∴y =√5−12或−√5−12(舍去), ∴BE =√5−12, ∴AE =AB +BE =2+√5−12=3+√52.【解析】(1)根据等角的余角相等证明即可; (2)证明CF//AD ,推出DPCP =AD CF,可得结论;(3)如图1中,当OF//AC 时,连接OC ,BF ,设CD 交AB 于点J ,设CE =CA =x ,BE =y.利用相似三角形的性质,勾股定理,构建方程组求解即可.本题属于圆综合题,考查了切线的性质,垂径定理,轴对称的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考压轴题.。
中考数学试卷及答案解析
中考数学试卷及答案解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)下列实数中,是无理数的是()A.0B.﹣3C.D.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、0是有理数,故A错误;B、﹣3是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确;故选:D.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.(3分)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=()A.50°B.45°C.40°D.30°【分析】根据垂直的定义和余角的定义列式计算得到∠3,根据两直线平行,内错角相等可得∠3=∠1.【解答】解:∵直线a∥b,∠1=50°,∴∠1=∠3=50°,∵直线AB⊥AC,∴∠2+∠3=90°.∴∠2=40°.故选:C.【点评】本题考查了平行线的性质,余角角的定义,熟记性质并准确识图是解题的关键.3.(3分)如图是一个L形状的物体,则它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(3分)下列计算正确的是()A.2a+a=2a2B.(﹣a)2=﹣a2C.(a﹣1)2=a2﹣1D.(ab)2=a2b2【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.【解答】解:A、2a+a=3a,故此选项错误;B、(﹣a)2=a2,故此选项错误;C、(a﹣1)2=a2﹣2a+1,故此选项错误;D、(ab)2=a2b2,正确.故选:D.【点评】此题主要考查了合并同类项以及积的乘方运算、完全平方公式,正确掌握相关运算法则是解题关键.5.(3分)矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.6.(3分)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分8177■808280■则被遮盖的两个数据依次是()A.80,80B.81,80C.80,2D.81,2【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【解答】解:根据题意得:80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.【点评】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.7.(3分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15B.﹣=15C.﹣=20D.﹣=20【分析】设原计划每天铺设钢轨x米,根据如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务可列方程.【解答】解:设原计划每天铺设钢轨x米,可得:,故选:A.【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数以时间为等量关系列出方程.8.(3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3B.3C.4D.2【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.9.(3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=()A.50B.60C.62D.71【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决.【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.10.(3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20B.﹣16C.﹣12D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.【点评】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现BD与BE的比是1:2是解题的关键.二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)分解因式:a2+2a=a(a+2).【分析】直接提公因式法:观察原式a2+2a,找到公因式a,提出即可得出答案.【解答】解:a2+2a=a(a+2).【点评】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.12.(3分)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24.【分析】根据菱形的对角线互相平分可得BO=DO,然后求出OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求出CD,然后根据菱形的周长公式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.【点评】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.13.(3分)我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有1400人.【分析】先根据及格人数及其对应百分比求得总人数,总人数乘以优秀对应的百分比求得其人数,继而用总人数乘以样本中优秀、良好人数所占比例.【解答】解:∵被调查的总人数为28÷28%=100(人),∴优秀的人数为100×20%=20(人),∴估计成绩为优秀和良好的学生共有2000×=1400(人),故答案为:1400.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.14.(3分)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m=﹣3或4.【分析】利用新定义得到[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,整理得到(2m﹣1)2﹣49=0,然后利用因式分解法解方程.【解答】解:根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,(2m﹣1)2﹣49=0,(2m﹣1+7)(2m﹣1﹣7)=0,2m﹣1+7=0或2m﹣1﹣7=0,所以m1=﹣3,m2=4.故答案为﹣3或4.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.15.(3分)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为6π.【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.16.(3分)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF 绕点A旋转,当∠ABF最大时,S△ADE=6.【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三、解答题(本题有9个小题,共72分)17.(5分)计算:(﹣1)3+|1﹣|+.【分析】原式利用乘方的意义,绝对值的代数意义,以及立方根定义计算即可求出值.【解答】解:原式=﹣1+﹣1+2=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)先化简,再求值:(1﹣)÷(﹣2),其中a=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(1﹣)÷(﹣2)===,当a=+1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(7分)如图,拦水坝的横断面为梯形ABCD,AD=3m,坝高AE=DF=6m,坡角α=45°,β=30°,求BC的长.【分析】过A点作AE⊥BC于点E,过D作DF⊥BC于点F,得到四边形AEFD是矩形,根据矩形的性质得到AE=DF=6,AD=EF=3,解直角三角形即可得到结论.【解答】解:过A点作AE⊥BC于点E,过D作DF⊥BC于点F,则四边形AEFD是矩形,有AE=DF=6,AD=EF=3,∵坡角α=45°,β=30°,∴BE=AE=6,CF=DF=6,∴BC=BE+EF+CF=6+3+6=9+6,∴BC=(9+6)m,答:BC的长(9+6)m.【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形和矩形,利用锐角三角函数的概念和坡度的概念求解.20.(7分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是.(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.【分析】(1)直接利用概率公式计算可得;(2)先画出树状图展示所有6种等可能的结果数,再找出恰好1个白球、1个黄球的结果数,然后根据概率公式求解;【解答】解:(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是,故答案为:;(2)画树状图为:,共有6种等可能的结果数,取出的两个球中恰好1个白球、1个黄球的有3种结果,所以取出的两个球中恰好1个白球、1个黄球的概率为.【点评】本题考查了列表法与树状图法:运用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.21.(7分)已知于x的元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.【分析】(1)根据根的判别式,可得到关于a的不等式,则可求得a的取值范围;(2)由根与系数的关系,用a表示出两根积、两根和,由已知条件可得到关于a的不等式,则可求得a的取值范围,再求其值即可.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.【点评】本题主要考查根与系数的关系及根的判别式,利用根的判别式求得k的取值范围是解题的关键,注意方程根的定义的运用.22.(8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【解答】解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BAC.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.【点评】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.23.(10分)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.(1)当31≤x≤50时,y与x的关系式为;(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.【分析】本题是通过构建函数模型解答销售利润的问题.(1)依据题意利用待定系数法,易得出当31≤x≤50时,y与x的关系式为:y=x+55,(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润w(元)与销售价x (元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.(3)要使第31天到第35天的日销售利润W(元)随x的增大而增大,则对称轴=≥35,求得a即可【解答】解:(1)依题意,当x=36时,y=37;x=44时,y=33,当31≤x≤50时,设y=kx+b,则有,解得∴y与x的关系式为:y=x+55(2)依题意,∵W=(y﹣18)•m∴整理得,当1≤x≤30时,∵W随x增大而增大∴x=30时,取最大值W=30×110+1100=4400当31≤x≤50时,W=x2+160x+1850=∵<0∴x=32时,W取得最大值,此时W=4410综上所述,x为32时,当天的销售利润W(元)最大,最大利润为4410元(3)依题意,W=(y+a﹣18)•m=∵第31天到第35天的日销售利润W(元)随x的增大而增大∴对称轴x==≥35,得a≥3故a的最小值为3.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).24.(10分)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E 三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG 的距离.【分析】(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF=,即可求解;(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解.【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE∴△ACD≌△BCE,∠DCE=α∴CD=CE∴∠CDE=故答案为:(2)AE=BE+CF理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE∴△ACD≌△BCE∴AD=BE,CD=CE,∠DCE=60°∴△CDE是等边三角形,且CF⊥DE∴DF=EF=∵AE=AD+DF+EF∴AE=BE+CF(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=5,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°∴AG==8∵AC2=AE2+CE2,∴(5)2=(8﹣CE)2+CE2,∴CE=7(不合题意舍去),CE=1若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.【点评】本题是几何变换综合题,考查了全等三角形的性质,旋转的性质,等边三角形的性质,勾股定理,利用勾股定理列出方程是本题的关键.25.(12分)已知抛物线y=a(x﹣2)2+c经过点A(﹣2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.【分析】(1)利用待定系数法,转化为解方程组即可解决问题.(2)可能.分三种情形①当DE=DF时,②当DE=EF时,③当DF=EF时,分别求解即可.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],构建二次函数求出△PBD的面积的最大值,再根据对称性即可解决问题.【解答】解:(1)由题意:,解得,∴抛物线的解析式为y=﹣(x﹣2)2+3,∴顶点D坐标(2,3).(2)可能.如图1,∵A(﹣2,0),D(2,3),B(6,0),∴AB=8,AD=BD=5,①当DE=DF时,∠DFE=∠DEF=∠ABD,∴EF∥AB,此时E与B重合,与条件矛盾,不成立.②当DE=EF时,又∵△BEF∽△ADE,∴△BEF≌△ADE,∴BE=AD=5③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA,△FDE∽△DAB,∴=,∴==,∵△B EF∽△ADE∴==,∴EB=AD=,答:当BE的长为5或时,△CFE为等腰三角形.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,∵﹣<0,∴n=4时,△PBD的面积的最大值为,∵=m,∴当点P在BD的右侧时,m的最大值==,观察图象可知:当0<m<时,满足条件的点P的个数有4个,当m=时,满足条件的点P的个数有3个,当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧).【点评】本题属于二次函数综合题,考查了待定系数法,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,学会用转化的思想思考问题,属于中考压轴题.。
河南省中考数学试卷(含解析答案)
河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“ ”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= .12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC 于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FB C的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= 2 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2 .【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB 上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S阴==π.【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4 .【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DB F为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DB F=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC 于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),。
数学试卷中考真题及答案
一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. 2.5B. -3/4C. √2D. 0答案:C解析:有理数包括整数、小数、分数和零,而√2是无理数,不属于有理数。
2. 若a、b是方程x^2 - 4x + 3 = 0的两个根,则a + b的值是()A. 1B. 2C. 3D. 4答案:B解析:根据一元二次方程的根与系数的关系,a + b = -b/a = -(-4)/1 = 4。
3. 在等差数列{an}中,a1 = 2,d = 3,则第10项an的值是()A. 29B. 28C. 27D. 26答案:A解析:等差数列的通项公式为an = a1 + (n - 1)d,代入a1 = 2,d = 3,n = 10,得an = 2 + (10 - 1)×3 = 29。
4. 已知函数f(x) = x^2 - 2x + 1,求f(2x)的值。
答案:f(2x) = (2x)^2 - 2×2x + 1 = 4x^2 - 4x + 1解析:将x替换为2x,得f(2x) = (2x)^2 - 2×2x + 1。
5. 已知等腰三角形ABC的底边AB = 4,腰AC = 6,求三角形ABC的面积。
答案:S = 1/2×AB×BC = 1/2×4×√(6^2 - (4/2)^2) = 1/2×4×√(36 - 4) = 1/2×4×√32 = 4√2解析:由勾股定理可知,BC = √(AC^2 - AB^2) = √(6^2 - 4^2) = √(36 - 16) = √20 = 2√5,三角形ABC的面积为S = 1/2×AB×BC = 1/2×4×2√5 = 4√2。
二、填空题(每题5分,共25分)1. 若x^2 - 5x + 6 = 0,则x的值为______。
2024年贵州省中考数学真题试卷及解析
2024年贵州省中考数学真题试卷一、选择题(本大题共12题,每题3分,共36分.每小题均有A ,B ,C,D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D. 3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A.B. C.D. 5. 一元二次方程220x x -=的解是( )A. 13x =,21x =B. 12x =,20x =C. 13x =,22x =-D. 12x =-,21x =- 6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 7. 为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A. 100人B. 120人C. 150人D. 160人 8. 如图,ABCD 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD ⊥ 9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则AB 的长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )甲 乙A. x y =B. 2x y =C. 4x y =D. 5x y =12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( )A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13. ________.14. 如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和 (2)先化简,再求值:()21122x x -⋅+,其中3x =. 18. 已知点()1,3在反比例函数k y x=的图象上. (1)求反比例函数的表达式(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒,8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件: ①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin320.52︒≈,cos320.84︒≈,tan320.62︒≈)23. 如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______(2)求证:OD AB ⊥(3)若2OA OE =,2DF =,求PB 的长.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.(1)求y 与x 的函数表达式(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .图① 图① 备用图(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度 (2)【问题探究】如图①,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA += (3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF 的值.2024年贵州省中考数学真题试卷答案解析一、选择题.1. 【答案】A2. 【答案】B3. 【答案】A4. 【答案】C5. 【答案】B6. 【答案】A7. 【答案】D8. 【答案】B9. 【答案】A10.【答案】C11. 【答案】C12. 【答案】D【解析】解∶ ①二次函数2y ax bx c =++的顶点坐标为()1,4- ∴二次函数图象的对称轴是直线=1x -,故选项A 错误∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3-,对称轴是直线=1x - ①二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误∵抛物线开口向下, 对称轴是直线=1x -∴当1x <-时,y 随x 的增大而增大,故选项C 错误设二次函数解析式为()214y a x =++把()3,0-代入,得()20314a =-++ 解得1a =-①()214y x =-++当0x =时,()20143y =-++=①二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确故选D . 二、填空题.13.14. 【答案】515. 【答案】2016.【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌△,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M ,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点AB BC CD AD ∴===,BE EC CF DF ===,D FCM ∠=∠,B D ∠=∠在ABE 和ADF △中AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABE ADF ≌∴AE AF =在ADF △和MCF △中D FCM DF CFAFD MFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ADF MCF ≌∴CM AD =,AF MF =5AE =5AE AF MF ∴===过E 点作EN AF ⊥交N 点90ANE ∴∠=︒4sin5EAF ∠=,5AE = 4EN ∴=,3AN =∴2NF AF AN =-=527MN ∴=+=在Rt ENM △中EM ==即12EM EC CM BC BC =+=+=AB BC CD AD ===AB BC ∴==故答案为. 三、解答题.17. 【答案】(1)见解析 (2)12x -,1 【解析】(1)解:选择①,②,③ 2022(1)+-+-421=++7=选择①,②,④212222+-+⨯ 421=++7=选择①,③,④()0212122+-+⨯ 411=++6=选择②,③,④()012122-+-+⨯ 211=++4=(2)解:()21122x x -⋅+ ()()11(1)21x x x =-+⋅+ 12x -= 当3x =时,原式3112-==. 18. .【答案】(1)3y x =(2)a c b <<,理由见解析【小问1详解】解:把()1,3代入k y x =,得31k = ∴3k = ∴反比例函数的表达式为3y x =【小问2详解】解:∵30k =>∴函数图象位于第一、三象限∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<< ∴0a c b <<<∴a c b <<.19. 【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误 (3)13【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26 故答案为:7.38,8.26【小问2详解】解:∵用时越少,成绩越好∴7.38是男生中成绩最好的,故小星的说法正确∵女生8.3秒为优秀成绩,8.328.3>∴有一人成绩达不到优秀,故小红的说法错误【小问3详解】列表为:由表格可知共有6种等可能结果,其中抽中甲的有2种故甲被抽中的概率为2163=. 20. 【答案】(1)见解析 (2)12【小问1详解】选择①证明:∵AB CD ∥,AD BC ∥∴ABCD 是平行四边形又∵90ABC ∠=︒∴四边形ABCD 是矩形选择②证明:∵AD BC =,AD BC ∥∴ABCD 是平行四边形又∵90ABC ∠=︒∴四边形ABCD 是矩形【小问2详解】解:∵90ABC ∠=︒∴4BC ===∴矩形ABCD 的面积为3412⨯=.21. 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5,6名学生 (2)至少种植甲作物5亩【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x ,y 名学生根据题意,得32272222x y x y +=⎧⎨+=⎩ 解得56x y =⎧⎨=⎩答:种植1亩甲作物和1亩乙作物分别需要5,6名学生【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a -亩根据题意,得:()561055a a +-≤解得5a ≥答:至少种植甲作物5亩.22. 【答案】(1)20cm(2)3.8cm【小问1详解】解:在Rt ABC 中,45A ∠=︒∴45B ∠=︒∴20cm BC AC ==【小问2详解】解:由题可知110cm 2ON EC AC ===∴10cm NB ON ==又∵32DON ∠=︒∴tan 10tan32100.62 6.2cm DN ON DON =⋅∠=⨯︒≈⨯=∴10 6.2 3.8cm BD BN DN =-=-=.23. 【答案】(1)DCE ∠(答案不唯一) (2)163 (3)163【小问1详解】解:∵DC DE =∴DCE DEC ∠=∠故答案为:DCE ∠(答案不唯一)【小问2详解】证明:连接OC∵PC 是切线∴OC CD ⊥,即90DCE ACO ∠+∠=︒∵OA OC =∴OAC ACO ∠=∠∵DCE DEC ∠=∠,AEO DEC ∠=∠∴90AEO CAO ∠+∠=︒∴90AOE ∠=︒∴OD AB ⊥【小问3详解】解:设OE x =,则2AO OF BO x ===∴EF OF OE x =-=,22OD OF DF x =+=+∴2DC DE DF EF x ==+=+在Rt ODC △中,222OD CD OC =+∴()()()2222222x x x +=++解得14x =,20x =(舍去)∴10OD =,6CD =,8OC = ∵tan OP OC D OD CD == ∴8106OP = 解得403OP = ∴163BP OP OB =-=. 24. 【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元 (3)2【小问1详解】解∶设y 与x 的函数表达式为y kx b =+把12x =,56y =;20x ,40y =代入,得12562040k b k b +=⎧⎨+=⎩ 解得280k b =-⎧⎨=⎩①y 与x 的函数表达式为280y x =-+【小问2详解】解:设日销售利润为w 元根据题意,得()10w x y =-⋅()()10280x x =--+22100800x x =-+-()2225450x =--+①当25x =时,w 有最大值为450①糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元【小问3详解】解:设日销售利润为w 元根据题意,得()10w x m y =--⋅()()10280x m x =---+()22100280080x m x m =-++--①当()100250222m m x ++=-=⨯-时,w 有最大值为()25050210028008022m m m m ++⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭①糖果日销售获得的最大利润为392元 ①()25050210028008039222m m m m ++⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭化简得2601160m m -+=解得12m =,258m =(舍去)∴m 的值为2.25.【答案】(1)画图见解析,90(2)见解析 (3)23或83【小问1详解】解:如图,PC 即为所求∵90AOB ∠=︒,PA OA ⊥,PC OB ⊥∴四边形OAPC 是矩形∴90APC ∠=︒故答案为:90【小问2详解】证明:过P 作PC OB ⊥于C由(1)知:四边形OAPC 是矩形∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB ⊥∴PA PC =∴矩形OAPC 是正方形∴OA AP PC OC ===,90APC ∠=︒∵PN PM ⊥∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =∴APM CPN △≌△∴AM CN =∴OM ON OM CN OC +=++OM AM AP =++OA AP =+2AP =【小问3详解】解:①当M 在线段AO 上时,如图,延长NM ,PA 相交于点G由(2)知2OM ON PA +=设OM x =,则3ON x =,2AO PA x ==∴AM AO OM x OM =-==∵90AOB MAG ︒∠=∠=,AMG OMN ∠=∠,∴()ASA AMG OMN ≌∴3AG ON x ==∵90AOB ∠=︒,PA OA ⊥∴AP OB ∥∴ONF PGF ∽∴33325OF ON x PF PG x x ===+ ∴53PF OF = ∴53833OP OF +== ②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形∴OA AP PC OC ===,90APC ∠=︒,PC AO ∥∵PN PM ⊥∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =∴APM CPN △≌△∴AM CN =∴ON OM -OC CN OM =+-AO AM OM =+-AO AO =+2AO =∵33ON OM x ==∴AO x =,2CN AM x ==∵PC AO ∥∴CGN OMN ∽ ∴CG CN OM ON=,即23CG x x x = ∴23CG x =∵PC AO∥∴OMF PGF∽∴3253OF OM xPF PG x x===+∴53 PF OF=∴53233 OPOF-==综上,OPOF的值为23或83.。
上海市2023年中考数学试卷及答案详解(图片版)
第4题图上海市2023年中考数学试卷答案详解(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列运算正确的是().A 523a a a ;.B 336a a a ;.C 235a a ;.D a .【参考答案】A .【解析过程】52523a a aa ,A 选项正确;3332a a a ,B 选项错误; 23326a a a ,C 选a ,D 选项错误;故选A .2.在分式方程2221521x x x x).A 2550y y ;.B 25y y .2510y y .【参考答案】D .【解析过程】221x y x ,2221510x y y x ;故选D .3.下列函数中,函数值y 随x 的增大而减小的是().A 6y x ;.B 6y x ;.C 6y x;.D 6y x.【参考答案】B .【解析过程】对于正比例函数6y x ,60k , 函数值y 随x 的增大而增大,A 选项错误;对于正比例函数6y x ,60k , 函数值y 随x 的增大而减小,B 选项正确;对于反比例函数6y x,60k , 在每一象限内,函数值y 随x 的增大而减小,C 选项错误;对于反比例函数6y x ,60k , 在每一象限内,函数值y 随x 的增大而增大,D 选项错误;故选B .4.某学校的数学兴趣小组统计了不同时间段的车流量如图所示,则下列说法正确的是().A 小车的车流量与公车的车流量稳定;.B 小车的车流量的平均数较大;.C 小车与公车车流量在同一时间段达到最小值;.D 小车与公车车流量的变化趋势相同.【参考答案】B .【解析过程】观察图像可知:小车的车流量起伏较大不稳定,A 选项错误;小车的车流量每个时间段都比公车大,因此平均数较大,B 选项正确;小车与公车车流量在不同时间段达到最小值,C 选项错误;小车车流量先增大再减小再增大,公车车流量先增大再减小,因此变化趋势不同,D 选项错误;故选B .5.在四边形ABCD 中,//AD BC ,AB CD ,下列说法能使四边形ABCD 为矩形的是().A //AB CD ;.B AD BC ;.C A B ;.D A D .【参考答案】C .【解析过程】//AD BC ,AB CD , 四边形ABCD 是平行四边形或等腰梯形.若//AB CD ,只能判定四边形ABCD 是平行四边形,A 选项错误;若AD BC ,只能判定四边形ABCD 是平行四边形,B 选项错误;若A B ,//AD BC ,90A B ,又AB CD ,由平行线间的距离处处相等,可知CD AD ,因此6.//DC ,AD .同学们得出以下两个结论,其中判断正确的是()①AC .A .C DO ,AD C 7.分解因式:29n.【参考答案】 33n n .【解析过程】 2229333n n n n .8.化简:2211xx x的结果为.【参考答案】2.【解析过程】 21222221111x x x x x x x.9.已知关于x 2 ,则x.【参考答案】18.214418x x (经检验,18x 是原方程的解).10.函数 123f x x的定义域为.【参考答案】23x .【解析过程】由分式的分母不为零,可得23023x x .11.已知关于x 的一元二次方程2610ax x 没有实数根,那么a 的取值范围是.【参考答案】9a .【解析过程】由题意,可得093640a a a.12.在不透明的盒子中装有1个黑球、2个白球、3个红球、4个绿球,这10个球除颜色外完全相同,那么从中随机摸出一个球是绿球的概率是.13.,那么这个正多边形的边数为.3601820.14.满足0a ,0b ,0c 即可)0,0c ,又其对称轴左侧的部分是上升21y x .15.如图,在ABC 中,D 、E 分别在边AB 、AC 上,2BD AD ,且//DE BC .设AB a ,AC b,那么DE.(用a 、b表示)【参考答案】1133a b.【解析过程】由题意,可知13DE AD BC AB ,故13DE BC1111133333BA AC AB AC a b a b .第15题图第16题图16.“垃圾分类”是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为吨.【参考答案】1500.【解析过程】由扇形统计图,可得可回收垃圾占比为150%29%1%20% ,故全市可收集的干垃圾总量为6050%10150020%吨.17.如图,在ABC 中,35C ,将ABC 绕点A 旋转 (0180 )度角,使点B 落在边BC 上的点D 处,若AD 平分BAC ,则 度.【参考答案】110.,,由三角形内角和得 ,18.在,⊙.又三、解答题:(本大题共7题,满分78分)19.(本题满分10分)2133.【参考答案】6.【解析过程】原式22936.20.(本题满分10分)解关于x的不等式组:36152x xxx.【参考答案】34x.【解析过程】3626333422103124152x xx x xxxx x x xx.即原不等式组的解为34x.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在⊙O中,弦AB的长为8,点C在BO的延长线上,且4cos5ABC,2OB OC.(1)求⊙O的半径;(2)求BAC的正切值.【参考答案】(1)5;(2)94.【解析过程】(1)如图所示,作OD AB于点D,由垂径定理可得142AD DB AB.在Rt ODB中,44cos cos5DBABC OBDOB OB,解得5OB ,即⊙O的半径为5.(2)如图所示,作CE AB于点E,可得//OD CE,因此OD DB OBCE BE CB.又3OD ,2OB OC,故342233OCCE BE OC,解得92CE ,6BE .在Rt ACE中,992tan864CECAEAE,即BAC的正切值为94.第21题图第23题图某加油站现有面值为1000元的会员卡,购买该卡可以打九折.若用此卡内的金额来加油,则每升油在原价的基础上还可以减价0.3元.某人购买了此会员卡,并将卡内金额一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)假设优惠后该人加油的实际单价为y 元/升,每升油的原价为x 元/升,请写出y 关于x 的函数关系式(不必写出定义域);(3)若每升油原价为7.3元/升,那么优惠后的实际单价与原价的差值为多少?【参考答案】(1)900(元);(2)0.90.27y x ;(3)1(元).【解析过程】(1)由题意,可得100090%900 (元),即他实际花了900(元)购买会员卡.(2)该人实际花费900(元),实际单价为y 元/升,购买油量为900y升;会员卡面值为1000(元),会员卡加油每升为 0.3x 元/升,购买油量为10000.3x 升;由油量相等可列方程90010000.3y x ,化简得0.90.27y x ,即y 关于x 的函数关系式为0.90.27y x .(3)当7.3x 时,可得0.97.30.27 6.3y ,7.3 6.31x y ,即优惠后的实际单价与原价的差值为1(元).23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在梯形ABCD 中,//AD BC ,点F 、E 分别在线段BC 、AC 上,且FAC ADE ,AC AD .(1)求证:FC AE ;(2)若ABC CDE ,求证:2AF BF CE .【参考答案】(1)证明如下;(2)证明如下.【解析过程】(1)如图所示,//AD BC ,ACF DAE ,又AC AD ,FAC ADE ,ACF DAE ≌(..A S A ),FC AE .(2)如图所示,由外角可得AFB ACF FAC ,CED DAE ADE ,又ACF DAE ,FAC ADE ,AFB CED .又ABC CDE ,AFB CED ∽,AF BFCE DE.又ACF DAE ≌,AF DE .可得AF BF CE AF,即2AF BF CE .如图,在平面直角坐标系xOy 中,直线364y x与x 轴交于点A ,与y 轴交于点B ,点C 在线段AB 上(不与点B 重合),以C 为顶点的抛物线2:M y ax bx c (0a )经过点B .(1)求点A 、B 的坐标;(2)求b 、c 的值;(3)平移抛物线M ,使得点C 平移至点P ,点B 平移至点D ,联结CD ,且//CD x 轴,如果点P 在x轴上,且新抛物线经过点B ,求新抛物线N 的表达式.【参考答案】(1) 8,0A , 0,6B ;(2)32b ,6c ;(3) 2316y x .时,解得8x ;当x (2)6 .在线段将a 242432.(3因为点 ,0P p 是由点3,64C t t平移得到的,因此抛物线M 向左或向右平移后再向下平移364t 个单位得到新抛物线N .又点D 是由点 0,6B 平移得到的,所以点D 的纵坐标为34t.又//CD x 轴,所以C D y y ,即364t 34t 4t .又3342416C b x t a a a,所以抛物线233:6162M y x x .设抛物线N 的顶点式为 2316y x p ,因为新抛物线经过点B ,将 0,6B 带入 2316y x p ,第25题图1第25题图2可得 236016p p ,故抛物线N 的表达式为 2316y x .25.(本题满分14分,第(1)小题4分,第(2)②小题5分,第(3)小题5分)已知在ABC 中,AB AC ,点O 在边AB 上,点F 为边OB 中点,以O 为圆心、OB 为半径的圆分别交BC 、AC 于点D 、E ,联结EF 交OD 于点G .(1)如图1,如果OG GD ,求证:四边形CEGD 为平行四边形;(2)如图2,联结OE ,如果90BAC 时,OFE DOE ,4AO ,求边OB 的长;(3)联结BG ,如果BGO 是以OB 为腰的等腰三角形,且AO OF ,求OGOD的值.【参考答案】(1)证明如下;(2)133【解析过程】(1)AB AC ,ABCOB OD ,OBD ODB .//ODB AC OD .又OG //BD .(2又 又90EAF OAE ,AFE AEO ∽,2AF AE AE AO AF AE AO.设OE OB x ,则1122OF OB x,1442AO AF x.又222216AE OE AO x ,因此221164423202x x x x.解得1x ,负舍,故1x .即边OB 的长为1(3)首先排除OB OG ,因为假如OB OG ,由OB OD ,可推得点G 、D 重合,从而推得G 、D 、C 、E 重合,此时点A 和点O 必重合,又点F 为边OB 中点,这与AO OF 矛盾,故舍.因此只能OB BG ,如图所示,倍长GF 至点'G ,由'GF FG ,'GFB G FO ,FB FO ,可得''GFB G FO GF G F ≌,'OG BG OB OE ,'OEG OG F .又//AC OD ,AO OF ,1'EG AOEG GF G F GF OF.由以上可得'OEG OG F OG OF ≌.又OF FB ,OD OB ,所以OG GD ,故12OG OD .。
贵州省遵义市中考数学试卷及答案(Word解析版)
贵州省遵义市中考数学试卷一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.(3分)(•遵义)如果+30m表示向东走30m,那么向西走40m表示为()A.+40m B.﹣40m C.+30m D.﹣30m考点:正数和负数.分析:此题主要用正负数来表示具有意义相反的两种量:向东走记为正,则向西走就记为负,直接得出结论即可.解答:解:如果+30米表示向东走30米,那么向西走40m表示﹣40m.故选B.点评:此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(•遵义)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.解答:解:如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选D.点评:本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.3.(3分)(•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3354万用科学记数法表示为:3.354×107.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•遵义)如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70°B.80°C.65°D.60°考点:平行线的性质;三角形的外角性质.分析:首先根据平行线的性质得出∠1=∠4=140°,进而得出∠5度数,再利用三角形内角和定理以及对顶角性质得出∠3的度数.解答:解:∵直线l1∥l2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°,∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°,∵∠3=∠6,∴∠3的度数是70°.故选:A.点评:此题主要考查了平行线的性质以及三角形内角和定理等知识,根据已知得出∠5的度数是解题关键.5.(3分)(•遵义)计算(﹣ab2)3的结果是()A.﹣a3b6B.﹣a3b5C.﹣a3b5D.﹣a3b6考点:幂的乘方与积的乘方.分析:利用积的乘方与幂的乘方的运算法则求解即可求得答案.解答:解:(﹣ab2)3=(﹣)3•a3(b2)3=﹣a3b6.故选D.点评:此题考查了积的乘方与幂的乘方.注意掌握指数的变化是解此题的关键.6.(3分)(•遵义)如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.考点:概率公式;利用轴对称设计图案.分析:由白色的小正方形有12个,能构成一个轴对称图形的有2个情况,直接利用概率公式求解即可求得答案.解答:解:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况,∴使图中黑色部分的图形构成一个轴对称图形的概率是:=.故选A.点评:此题考查了概率公式的应用与轴对称.注意概率=所求情况数与总情况数之比.7.(3分)(•遵义)P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y2考点:一次函数图象上点的坐标特征.分析:根据正比例函数图象的性质:当k<0时,y随x的增大而减小即可求解.解答:解:∵y=﹣x,k=﹣<0,∴y随x的增大而减小.故选D.点评:本题考查正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.8.(3分)(•遵义)如图,A、B两点在数轴上表示的数分别是a、b,则下列式子中成立的是()A.a+b<0 B.﹣a<﹣b C.1﹣2a>1﹣2b D.|a|﹣|b|>0考点:实数与数轴.分析:根据a、b两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.解答:解:a、b两点在数轴上的位置可知:﹣2<a<﹣1,b>2,∴a+b>0,﹣a>b,故A、B错误;∵a<b,∴﹣2a>﹣2b,∴1﹣2a>1﹣2b,故C正确;∵|a|<2,|b|>2,∴|a|﹣|b|<0,故D错误.故选C.点评:本题考查的是数轴的特点,根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.9.(3分)(•遵义)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()A.cm B.(2+π)cm C.cm D.3cm考点:弧长的计算;等边三角形的性质;旋转的性质.分析:通过观察图形,可得从开始到结束经过两次翻动,求出点B两次划过的弧长,即可得出所经过路径的长度.解答:解:∵△ABC是等边三角形,∴∠ACB=60°,∴∠AC(A)=120°,点B两次翻动划过的弧长相等,则点B经过的路径长=2×=π.故选C.点评:本题考查了弧长的计算,解答本题的关键是仔细观察图形,得到点B运动的路径,注意熟练掌握弧长的计算公式.10.(3分)(•遵义)二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A.3个B.2个C.1个D.0个考点:二次函数图象与系数的关系.专题:计算题.分析:根据图象得到x=﹣2时对应的函数值小于0,得到N=4a﹣2b+c的值小于0,根据对称轴在直线x=﹣1右边,利用对称轴公式列出不等式,根据开口向下得到a小于0,变形即可对于P作出判断,根据a,b,c的符号判断得出a+b﹣c的符号.解解:∵图象开口向下,∴a<0,答:∵对称轴在y轴左侧,∴a,b同号,∴a<0,b<0,∵图象经过y轴正半轴,∴c>0,∴M=a+b﹣c<0,当x=﹣2时,y=4a﹣2b+c<0,∴N=4a﹣2b+c<0,∵﹣>﹣1,∴<1,∴b>2a,∴2a﹣b<0,∴P=2a﹣b<0,则M,N,P中,值小于0的数有M,N,P.故选:A.点评:此题主要考查了二次函数图象与系数的关系,根据图象判断出对称轴以及a,b,c 的符号是解题关键.二、填空题(本题共8小题,每小题4分,共32分.答题请用黑色墨水笔或黑色签字笔直接在答题卡的相应位置上.)11.(4分)(•遵义)计算:0﹣2﹣1=.考点:负整数指数幂;零指数幂.分析:根据任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.解答:解:0﹣2﹣1,=1﹣,=.故答案为:.点评:本题考查了任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,是基础题,熟记两个性质是解题的关键.12.(4分)(•遵义)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25.考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b=﹣3,1﹣b=﹣1,再解方程可得a、b的值,进而算出a b的值.解答:解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴a+b=﹣3,1﹣b=﹣1,解得:b=2,a=﹣5,a b=25,故答案为:25.点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.13.(4分)(•遵义)分解因式:x3﹣x=x(x+1)(x﹣1).考点:提公因式法与公式法的综合运用.分析:本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.解答:解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).点评:本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.14.(4分)(•遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=52°度.考点:圆周角定理;垂径定理.分析:由OC是⊙O的半径,AB是弦,且OC⊥AB,根据垂径定理的即可求得:=,又由圆周角定理,即可求得答案.解答:解:∵OC是⊙O的半径,AB是弦,且OC⊥AB,∴=,∴∠BOC=2∠APC=2×26°=52°.故答案为:52°.点评:此题考查了垂径定理与圆周角定理.此题比较简单,注意掌握数形结合思想的应用.15.(4分)(•遵义)已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是3.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到﹣2•x1=﹣6,然后解一次方程即可.解答:解:设方程另一个根为x1,根据题意得﹣2•x1=﹣6,所以x1=3.故答案为3.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.16.(4分)(•遵义)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=9cm.考点:三角形中位线定理;矩形的性质.分析:先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.解答:解:在Rt△ABC中,AC==10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=,AF=AD=BC=4cm,AE=AO=AC=,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.点评:本题考查了三角形的中位线定理、勾股定理及矩形的性质,解答本题需要我们熟练掌握三角形中位线的判定与性质.17.(4分)(•遵义)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).考点:扇形面积的计算.分析:若两个阴影部分的面积相等,那么△ABC和扇形ADF的面积就相等,可分别表示出两者的面积,然后列出方程即可求出AF的长度.解答:解:∵图中两个阴影部分的面积相等,∴S扇形ADF=S△ABC,即:=×AC×BC,又∵AC=BC=1,∴AF2=,∴AF=.故答案为.点评:此题主要考查了扇形面积的计算方法及等腰直角三角形的性质,能够根据题意得到△ABC和扇形ADF的面积相等,是解决此题的关键,难度一般.18.(4分)(•遵义)如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线y=(k>0)上一点,且在第一象限内,若△AOC 的面积为6,则点C的坐标为(2,4).考点:反比例函数与一次函数的交点问题.分析:把点B的坐标代入反比例函数解析式求出k值,再根据反比例函数图象的中心对称性求出点A的坐标,然后过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,设点C的坐标为(a,),然后根据S△AOC=S△COF+S梯形ACFE﹣S△AOE列出方程求解即可得到a的值,从而得解.解答:解:∵点B(﹣4,﹣2)在双曲线y=上,∴=﹣2,∴k=8,根据中心对称性,点A、B关于原点对称,所以,A(4,2),如图,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,设点C的坐标为(a,),则S△AOC=S△COF+S梯形ACFE﹣S△AOE,=×8+×(2+)(4﹣a)﹣×8,=4+﹣4,=,∵△AOC的面积为6,∴=6,整理得,a2+6a﹣16=0,解得a1=2,a2=﹣8(舍去),∴==4,∴点C的坐标为(2,4).故答案为:(2,4).点评:本题考查了反比例函数与一次函数的交点问题,反比例函数系数的几何意义,作辅助线并表示出△ABC的面积是解题的关键.三、解答题(本题共9小题,共88分.答题请用黑色墨水笔或黑色签字笔直接在答题卡的相应位置上.解答时应写出必要的文字说明、证明过程或盐酸步骤.)19.(6分)(•遵义)解方程组.考点:解二元一次方程组.专题:计算题.分析:由第一个方程得到x=2y+4,然后利用代入消元法其解即可.解答:解:,由①得,x=2y+4③,③代入②得2(2y+4)+y﹣3=0,解得y=﹣1,把y=﹣1代入③得,x=2×(﹣1)+4=2,所以,方程组的解是.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.20.(8分)(•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.考点:分式的化简求值.分析:先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a2+2a﹣15=0进行配方,得到一个a+1的值,再把它整体代入即可求出答案.解答:解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.点评:此题考查了分式的化简求值,关键是掌握分式化简的步骤,先进行通分,再因式分解,然后把除法转化成乘法,最后约分;化简求值题要将原式化为最简后再代值.21.(8分)(•遵义)我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).考点:解直角三角形的应用-仰角俯角问题.分析:首先过点C作CN⊥AM于点N,则点C,E,N在同一直线上,设AB=x米,则AN=x+(17﹣1)=x+16(米),则在Rt△AEN中,∠AEN=45°,可得EN=AN=x+16,在Rt△BCN中,∠BCN=37°,BM=17,可得tan∠BCN==0.75,则可得方程:,解此方程即可求得答案.解答:解:过点C作CN⊥AM于点N,则点C,E,N在同一直线上,设AB=x米,则AN=x+(17﹣1)=x+16(米),在Rt△AEN中,∠AEN=45°,∴EN=AN=x+16,在Rt△BCN中,∠BCN=37°,BM=17,∴tan∠BCN==0.75,∴,解得:x=1≈1.3.经检验:x=1是原分式方程的解.答:宣传牌AB的高度约为1.3m.点评:此题考查了俯角的定义.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键.22.(10分)(•遵义)“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有400人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是135度.(3)在条形统计图中,“非常了解”所对应的学生人数是62人;(4)若全校有1200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据参加调查的人中,不了解的占5%,人数是16+4=20人,据此即可求解;(2)利用360°乘以对应的比例即可求解;(3)利用总人数减去其它的情况的人数即可求解;(4)求得调查的学生总数,则对“校园安全”知识达到“非常了解”和“基本了解”所占的比例即可求得,利用求得的比例乘以1200即可得到.解答:解:(1)参与调查的学生及家长总人数是:(16+4)÷5%=400(人);(2)基本了解的人数是:73+77=150(人),则对应的圆心角的底数是:360×=135°;(3)“非常了解”所对应的学生人数是:400﹣83﹣77﹣73﹣54﹣31﹣16﹣4=62;(4)调查的学生的总人数是:62+73+54+16=205(人),对“校园安全”知识达到“非常了解”和“基本了解”的学生是62+73=135(人),则全校有1200名学生中,达到“非常了解”和“基本了解”的学生是:1200×≈790(人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(10分)(•遵义)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.考点:列表法与树状图法;概率公式.分析:(1)首先设口袋中黄球的个数为x个,根据题意得:=,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;(3)由若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;直接利用概率公式求解即可求得答案.解答:解:(1)设口袋中黄球的个数为x个,根据题意得:=,解得:x=1,经检验:x=1是原分式方程的解;∴口袋中黄球的个数为1个;(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:=;(3)∵摸到红球得5分,摸到黄球得3分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,∴乙同学已经得了7分,∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.24.(10分)(•遵义)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A 处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.考点:矩形的性质;勾股定理;翻折变换(折叠问题).分析:(1)由折叠的性质可得:∠ANM=∠CNM,由四边形ABCD是矩形,可得∠ANM=∠CMN,则可证得∠CMN=∠CNM,继而可得CM=CN;(2)首先过点N作NH⊥BC于点H,由△CMN的面积与△CDN的面积比为3:1,易得MC=3ND=3HC,然后设DN=x,由勾股定理,可求得MN的长,继而求得答案.解答:(1)证明:由折叠的性质可得:∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC,∴∠ANM=∠CMN,∴∠CMN=∠CNM,∴CM=CN;(2)解:过点N作NH⊥BC于点H,则四边形NHCD是矩形,∴HC=DN,NH=DC,∵△CMN的面积与△CDN的面积比为3:1,∴===3,∴MC=3ND=3HC,∴MH=2HC,设DN=x,则HC=x,MH=2x,∴CM=3x=CN,在Rt△CDN中,DC==2x,∴HN=2x,在Rt△MNH中,MN==2x,∴==2.点评:此题考查了矩形的性质、折叠的性质、勾股定理以及三角形的面积.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.25.(10分)(•遵义)4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设租用甲种货车x辆,表示出租用乙种货车为(16﹣x)辆,然后根据装运的粮食和副食品数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x 是正整数设计租车方案;(2)方法一:根据所付的费用等于两种车辆的燃油费之和列式整理,再根据一次函数的增减性求出费用的最小值;方法二:分别求出三种方案的燃油费用,比较即可得解.解答:解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,所以,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:组甲种货车5辆,乙种货车11辆;方案二:组甲种货车6辆,乙种货车10辆;方案三:组甲种货车7辆,乙种货车9辆;(2)方法一:由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得,y=1500x+1200(16﹣x),=300x+19200,∵300>0,∴当x=5时,y有最小值,y最小=300×5+19200=20700元;方法二:当x=5时,16﹣5=11,5×1500+11×1200=20700元;当x=6时,16﹣6=10,6×1500+10×1200=21000元;当x=7时,16﹣7=9,7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.点评:本题考查了一次函数的应用,一元一次不等式组的应用,读懂题目信息,找出题中不等量关系,列出不等式组是解题的关键.26.(12分)(•遵义)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P 从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t (单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.考点:相似形综合题.分析:根据勾股定理求得AB=5cm.(1)分类讨论:△AMP∽△ABC和△APM∽△ABC两种情况.利用相似三角形的对应边成比例来求t的值;(2)如图,过点P作PH⊥BC于点H,构造平行线PH∥AC,由平行线分线段成比例求得以t表示的PH的值;然后根据“S=S△ABC﹣S△BPH”列出S与t的关系式S=(t﹣)2+(0<t<2.5),则由二次函数最值的求法即可得到S的最小值.解答:解:∵如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.∴根据勾股定理,得=5cm.(1)以A,P,M为顶点的三角形与△ABC相似,分两种情况:①当△AMP∽△ABC时,=,即=,解得t=;②当△APM∽△ABC时,=,即=,解得t=0(不合题意,舍去);综上所述,当t=时,以A、P、M为顶点的三角形与△ABC相似;(2)存在某一时刻t,使四边形APNC的面积S有最小值.理由如下:假设存在某一时刻t,使四边形APNC的面积S有最小值.如图,过点P作PH⊥BC于点H.则PH∥AC,∴=,即=,∴PH=t,∴S=S△ABC﹣S△BPH,=×3×4﹣×(3﹣t)•t,=(t﹣)2+(0<t<2.5).∵>0,∴S有最小值.当t=时,S最小值=.答:当t=时,四边形APNC的面积S有最小值,其最小值是.点评:本题综合考查了相似三角形的判定与性质、平行线分线段成比例,二次函数最值的求法以及三角形面积公式.解答(1)题时,一定要分类讨论,以防漏解.另外,利用相似三角形的对应边成比例解题时,务必找准对应边.27.(14分)(•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.考点:二次函数综合题.专题:综合题.分析:(1)利用顶点式求得二次函数的解析式后令其等于0后求得x的值即为与x轴交点坐标的横坐标;(2)线段BC的长即为AP+CP的最小值;(3)连接ME,根据CE是⊙M的切线得到ME⊥CE,∠CEM=90°,从而证得△COD≌△MED,设OD=x,在RT△COD中,利用勾股定理求得x的值即可求得点D的坐标,然后利用待定系数法确定线段CE的解析式即可.解答:解:(1)由题意,设抛物线的解析式为y=a(x﹣4)2﹣(a≠0)∵抛物线经过(0,2)∴a(0﹣4)2﹣=2解得:a=∴y=(x﹣4)2﹣即:y=x2﹣x+2当y=0时,x2﹣x+2=0解得:x=2或x=6∴A(2,0),B(6,0);(2)存在,如图2,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小∵B(6,0),C(0,2)∴OB=6,OC=2∴BC=2,∴AP+CP=BC=2∴AP+CP的最小值为2;(3)如图3,连接ME∵CE是⊙M的切线∴ME⊥CE,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE∵在△COD与△MED中∴△COD≌△MED(AAS),∴OD=DE,DC=DM设OD=x则CD=DM=OM﹣OD=4﹣x则RT△COD中,OD2+OC2=CD2,∴x2+22=(4﹣x)2∴x=∴D(,0)设直线CE的解析式为y=kx+b∵直线CE过C(0,2),D(,0)两点,则解得:∴直线CE的解析式为y=﹣+2;点评:本题考查了二次函数的综合知识,特别是用顶点式求二次函数的解析式,更是中考中的常考内容,本题难度偏大.。
中考数学试卷及答案详解
1. 若a,b是方程x²-3x+2=0的两根,则a+b的值为()A. 2B. 3C. 4D. 5答案:B解析:根据韦达定理,方程x²-3x+2=0的两根之和为3,故选B。
2. 若m=3,则下列各式中正确的是()A. m²=9B. m³=27C. m⁴=81D. m⁵=243答案:A解析:将m=3代入各选项,可得m²=9,故选A。
3. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 120°C. 135°D. 150°答案:C解析:三角形内角和为180°,∠A+∠B+∠C=180°,代入已知角度,可得∠C=180°-60°-45°=75°,故选C。
4. 若a,b,c是等差数列,且a+b+c=12,则b的值为()A. 3B. 4C. 5D. 6答案:B解析:由等差数列的性质,可得a+c=2b,又因为a+b+c=12,所以3b=12,解得b=4,故选B。
5. 若函数f(x)=2x+1在x=1时的切线斜率为k,则k的值为()A. 2B. 3C. 4D. 5答案:B解析:函数f(x)=2x+1的导数为f'(x)=2,所以切线斜率k=2,故选B。
6. 若等比数列{an}的首项为a₁,公比为q,且a₁+a₂+a₃=12,a₁+a₂+a₃+a₄=48,则q的值为()A. 2B. 3C. 4D. 5答案:A解析:由等比数列的性质,可得a₂=a₁q,a₃=a₂q=a₁q²,a₄=a₃q=a₁q³,代入已知条件,可得a₁+a₁q+a₁q²=12,a₁+a₁q+a₁q²+a₁q³=48,解得q=2,故选A。
7. 若函数f(x)=x²-2x+1在x=1时的导数为f'(1),则f'(1)的值为()A. 0B. 1C. 2D. 3答案:A解析:函数f(x)=x²-2x+1的导数为f'(x)=2x-2,代入x=1,可得f'(1)=21-2=0,故选A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学试卷及答案解析HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】2012年北京市高级中等学校招生考试数 学 试 卷(答案)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1. 9-的相反数是A .19- B .19C .9-D .92. 首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为 A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯3. 正十边形的每个外角等于A .18︒B .36︒C .45︒D .60︒4. 右图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱5. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A.16B.13C.12D.236.如图,直线AB,CD交于点O,射线OM平分AOC∠,若76BOD∠=︒,则BOM∠等于A.38︒B.104︒C.142︒D.144︒7.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120140160180200户数23672则这20户家庭该月用电量的众数和中位数分别是A.180,160 B.160,180 C.160,160D.180,1808.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B 跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的A.点M B.点N C.点PD.点Q二、填空题(本题共16分,每小题4分)9.分解因式:269mn mn m++=.10.若关于x的方程220x x m--=有两个相等的实数根,则m的值是.11.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边40cmDE=,20cmEF=,测得边DF离地面的高度 1.5mAC=,8mCD=,则树高AB=m.12.在平面直角坐标系xOy 中,我们把横 、纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m .当3m =时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n (n 为正整数)时,m = (用含n 的代数式表示.)三、解答题(本题共30分,每小题5分)13.计算:()11π3182sin 458-⎛⎫-+-︒- ⎪⎝⎭.14.解不等式组:4342 1.x x x x ->⎧⎨+<-⎩,15.已知023a b =≠,求代数式()225224a ba b a b -⋅--的值.16.已知:如图,点E A C ,,在同一条直线上,AB CD ∥,AB CE AC CD ==,.求证:BC ED =.17.如图,在平面直角坐标系xOy 中,函数()40y x x=>的图象与一次函数y kx k =-的图象的交点为()2A m ,. (1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点, 且满足PAB △的面积是4,直接写出点P 的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,对角线AC BD ,交于点E ,22BE =.求CD 的长和四边形ABCD 的面积.20.已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O⊙的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 与O ⊙相切;(2)连结AD 并延长交BE 于点F ,若9OB =,2sin 3ABC ∠=,求BF 的长. 21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据; (2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米? (3)要按时完成截至2015年的轨道交通规划任务,从2011到2015这4年中,平均每年需新增运营里程多少千米?22.操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P '.点A B ,在数轴上,对线段AB 上的每个点进行上述操作后得到线段A B '',其中点A B ,的对应点分别为A B '',.如图1,若点A 表示的数是3-,则点A '表北京市轨道交通已开通线路 相关数据统计表(截至2010年开通时间 开通线路运营里程(千米)1971 1号线 31 1984 2号线 23200313号线 41八通线 192007 5号线 282008 8号线 510号线 25 机场线 28 2009 4号线 282010 房山线 22大兴线 22 亦庄线 23昌平线 2115号线 20示的数是 ;若点B '表示的数是2,则点B 表示的数是 ;已知线段AB 上的点E 经过上述操作后得到的对应点E '与点E 重合,则点E 表示的数是 ;(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每 个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(00m n >>,),得到正方形A B C D ''''及其内部的点,其中点A B ,的对应点分别为A B '',。
已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标。
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知二次函数23(1)2(2)2y t x t x =++++ 在0x =和2x =时的函数值相等。
(1) 求二次函数的解析式;(2) 若一次函数6y kx =+的图象与二次函数的图象都经过点(3)A m -,,求m 和k 的值; (3) 设二次函数的图象与x 轴交于点B C ,(点B在点C 的左侧),将二次函数的图象在点B C ,间的部分(含点B 和点C )向左平移(0)n n >个单位后得到的图象记为G ,同时将(2)中得到的直线6y kx =+向上平移n 个单位。
请结合图象回答:当平移后的直线与图象G 有公共点时,n 的取值范围。
24.在ABC △中,BA BC BAC =∠=α,,M 是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ 。
(1) 若α=60︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;(2) 在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明;(3) 对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围。
25.在平面直角坐标系xOy 中,对于任意两点111()P x y ,与222()P x y ,的“非常距离”,给出如下定义:若1212||||x x y y --≥,则点1P 与点2P 的“非常距离”为12||x x -; 若1212||||x x y y -<-,则点1P 与点2P 的“非常距离”为12||y y -. 例如:点1(12)P ,,点2(35)P ,,因为|13||25|-<-,所以点1P 与点2P 的“非常距离”为|25|3-=,也就是图1中线段1PQ 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 的交点)。
(1)已知点1(0)2A -,,B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值; (2)已知C 是直线334y x =+上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标。
2012年北京中考数学试卷分析一、各个知识板块所占分值二、各个知识板块考查的难易程度 三、试卷整体难度特点分析2012年北京中考数学刚刚结束, 今年试卷整体呈现出“新颖”的特点,与近几年中考试题以及今年一模、二模试题有比较大的差异。
总体难度与去年持平,但是最难的题目难度并没有去年高。
考生做起来会感觉不太顺手,此份试卷对于优秀学生的区分度将会比去年大,而对于中当学生的区分度将不会有太大变化。
此份试卷呈现出以下几个特点:1. 题目的背景和题型都比较新颖。
例如选择题的第8题、解答题第25题,尤其是25题第一次在代数题目中用到了定义新运算,题目很新颖,知识点融合度较高。
考察的方式都是平常同学们很少见到的题型。
2. 填空题第12题试题结构与往年不同,考察观察能力和精确作图能力。
本试卷的填空题第12题,需要同学们在试卷上画出比较精确的线段才能很好的发现其中的规律,而所体现的规律本身并不复杂,是一个等差数列问题。