第二章 力系的简化
第二章 力系的等效与简化
M M O (F ) M O (F ' ) F aO F ' bO F (aO bO) Fd
力偶矩的大小只与组成力偶的力的大小、力偶臂的长短及力偶 在作用面内的转向有关,与矩心的位置无关。 平面力偶矩定义为M=±Fd,
正负号表示其转向规定: 逆时针转向为正; 反之为负。单位为: N· m。 同平面内力偶的等效定理:作用在同一平面内的两个力偶,如 果其力偶矩相等,则两个力偶彼此等效 注意: 两个力偶矩相等,不仅指力偶矩大小相等,还包括其转 向相同。
根据推论1可知: 力偶M对梁的作用效果与其在梁上的位置 无关。因此图3-9(b)中A、B两处的约束力同图(a)的结 果相等。 M FA FB l
例:
第二章 作业
• • • • 2-3; 2-5; 2-8; 2-11;
§2-5 平面力系的简化
平面一般力系向一点简化
• 平面一般力系向一点简化
F F F F Fi Fi
' R ' 1 ' 2 ' n '
Mo Mo (F1 ) Mo (F2 ) Mo (Fn ) Mo (F )
平面任意力系向O点简化的结果:
y
推广之,可得到如下结论: 任意个力偶组成的平面力偶系可以 合成为一个合力偶,合力偶矩等于各个力偶矩的代数和。
M Mi
i 2
n
三、平面力偶系的平衡条件 平面力偶系平衡的充要条件:平面力偶系中各力偶矩的代数 和为零。
M
i 1
n
i
0
上式为平面力偶系的平衡方程。
§2-5 平面力系的简化
平面一般力系向一点简化
离d称为力偶臂,两力作用线所决定的平面称为力偶作用面。
工程力学:第2章 力系的简化
F1sin45 F2sin45 0 FAsin30 F1cos45 cos30 F2 cos45 cos30 0 FAcos30 F1cos45 sin30 F2cos45 sin30 P 0
B FB1
相同的均质杆围成正方形,求绳EF的拉力。
要求:
用最少的方 程求出绳EF受 的力
FAy
FAx
A
E
P
FDy
FDx
D
G
P
B
F
P
C
FDy FDx
D
G
P
FDy FDx
D
FCy FCx
C
FBx FT
G
P
FBy
B
F
P
C
例3-3
q
FAx A
M B
2a
P
FAy
4a
FB
ll
30
F
M
3l P
q
例3-4
F
体等效于只有一个力偶的作用,因为力偶可以在刚体平
面内任意移动,故这时,主矩与简化中心O无关。
③ FR≠0,MO =0,即简化为一个作用于简化中心的合力。这时,
简化结果就是合力(这个力系的合力), FR FR 。(此时
与简化中心有关,换个简化中心,主矩不为零)
④ FR 0, MO 0 ,为最一般的情况。此种情况还可以继续 简化为一个合力 FR 。
FAy
B FB1x
C
M
B
D
Cr
•
E
A
300 F E
FA
FT
C
F A1
FA
求:销钉A所受的力
M
B D
FD D C
第二章 力系的等效简化(陆)
F
A
A
A
A
作用在刚体上的力,可以等效地平移到刚体上任一指定点, 但必须在该力与指定点所确定的平面内附加一个力偶,附加力偶 的力偶矩等于原力对指定点的力矩。
HOHAI UNIVERSITY
HOHAI UNIVERSITY
§2-3
力系的简化
FR 3
一、 汇交力系的简化 1. 汇交力系合成的几何法
FR与MO同方向,则称为右手螺旋;如FR与MO方向相 反,则称为左手螺旋。
HOHAI UNIVERSITY
例2-4 将图所示的力系向O点简化,求主矢量和主矩。已知 F1=50N,F2=100N,F3=200N。图中长度单位为m。
解:为了下面计算方便,先将各力沿坐标轴分解:
F1 50 i F2 ( 3 / 45 ) 100 i ( 6 / 45 ) 100 k 44.7i 89.4k
2 2 2 R Rx Ry Rz Rx R R Ry R R Rz R R
y
FR
z
x
如果所研究的力系是 平面汇交力系,取力系所 在平面为平面,则该力系 的合力的大小和方向只需 将 FRz=0代入上式中便可 求得。
HOHAI UNIVERSITY
例2-1 用解析法求图2-14所示平面汇交力系的合力。已知 F1=500N,F2=1000N,F3=600N,F4=2000N。
(2) 若FR≠0, MO≠0,而FR⊥MO , 表明力偶MO与FR在同一平面内,可进一步 简化为一个合力。 合力的位置必须满足: 合理矩定理:
M (F ) M
0 R
i0
M (F ) M
x R
ix
HOHAI UNIVERSITY
第二章力系的简化
A
x
i j k
y
F
MA r F l 2l 0 对点A的力矩: F sin 0 F cos 2Fl cosi Fl cosj 2Fl sin k
15
三.力偶 1.力偶定义 两个等值、反向、不共线的平行力。记为 ( F , F ) 力偶不能合成为一个力,故也不能与 一个力平衡,因此力和力偶都是基本力学 F 量。 F M 静止时力偶 M 与F 平衡吗? 力偶只能使物体转动,用力偶矩衡量
22
2.主矢与主矩——原力系的特征量 1)定义
' 主矢:(各力的矢量和)FR Fi Fi' ,与简化中心无关
主矩: (各力对O点取矩的矢量和)
MO MO (Fi ) ,与简化中心有关
2)简化结果 一般力系向某一点简化,可以得到一个力和一 个力偶,该力作用在简化中心,其大小,方向与原 力系主矢相同;该力偶矩等于原力系对简化中心的 主矩。
F
三要素:
大小、力偶作用面方位、转向.
16
F
2.力偶矩矢
A
rB A
F
F
B
h
rA
M
M
rB
O
定 义: 而
MO F ,F rA F rB F
F ' F
rA rB rB A
M0 F , F (rA rB ) F rBA F rAB F M
5
力矩的解析表达式:
由于F Fx i Fy j Fz k
M O (F ) r F x Fx i
r xi y j zk
第二章 力系的简化
第二章 力系的简化将复杂力系等效地化为最简力系在理论分析和工程中都具有重要意义。
前一章将汇交力系和力偶系分别合成为一个力和一个力偶,是力系简化的例子。
力系简化的前提是等效。
等效力系是指不同力系对同一物体所产生的运动效应相同。
力系的简化是指用简单的力系等效地替换一个复杂力系。
力系简化而得到的最简单力系称为力系简化的结果,可以是平衡、一个力、一个力偶,或者一个力和一个力偶。
力系的简化结果可以导出力系平衡条件,将在下章中详细讨论。
力系简化并不局限于静力学。
例如,飞行中的飞机受到升力、牵引力、重力、空气阻力等分布在飞机不同部位力作用,为确定飞机运动规律可以先进行力系的简化。
因此,力系简化也是动力学分析的基础本章首先引入主矢和主矩两个力系的基本特征量,作为力系等效简化的依据。
然后讨论力系简化,力系简化的基础是力线平移,由此力系可向任意一点简化,并进而分析力系的几种最简形式。
最后,考虑平行力系的简化,并叙述重心、质心和形心的概念与计算公式。
§2.1 力系的基本特征量:主矢与主矩为讨论力系的等效和简化问题,引入力系的两个基本特征量:主矢和主矩。
设刚体受到力系F i (i=1, 2,…,n )作用,诸作用点相对固定点O 的矢径依次为r i (i=1, 2,…,n )。
力系F i 的矢量和,称为力系的主矢。
记为F R ,即∑==ni i 1R F F (2.1.1)主矢仅取决于力系中各力的大小和方向,而不涉及作用点,是一个自由矢量。
主矢通常不是力。
计算力系F i 对固定点O 的力矩的矢量和,称为力系对点O 的主矩。
记为M O ,即 ∑=⨯=ni iiO 1F r M (2.1.2)它不仅取决于力系中各力的大小、方向和作用点,还取决于矩心O 的选择。
因此,主矩是定位矢量。
利用动力学理论,可以证明,不同力系对刚体运动效应相同的条件是不同力系的主矢以及对相同点的主矩对应相等。
因此,主矢和主矩的引入为判断力系的等效提供了依据。
第二章 力系的简化
大小: 大小 R' = R'x + R' y = (∑ X ) + (∑ Y )
2 2 2 2
主矢 R ′ (移动效应)方向 移动效应 方向:
α =tg−1
Ry Y −1 ∑ =tg Rx ∑X
简化中心 (与简化中心位置无关) [因主矢等于各力的矢量和]
④ R ′ ≠0,MO ≠0,为最一般的情况。此种情况还可以继续 可以继续 简化为一个合力 R 。
合力 R 的大小等于原力系的主矢 合力 R 的作用线位置
MO d= R
综合上述, 综合上述,有:
合力偶M 平面任意力系的简化结果 :①合力偶 O ; ②合力 注意: (1)由于力系向任一点简化其主失都等于诸力的矢量和, )由于力系向任一点简化其主失都等于诸力的矢量和, 故主失与简化中心的选择无关。 故主失与简化中心的选择无关。 (2)主矩一般与简化中心有关,故提到主矩,应说明是 )主矩一般与简化中心有关,故提到主矩, 对哪一点的主矩。 对哪一点的主矩。 (3)主失(大小、方向)与合力(三要素)是两个不同 )主失(大小、方向)与合力(三要素) 的概念。 的概念。
二、平面一般力系向一点简化
向一点简化 一般力系(任意力系) 汇交力系+力偶系 一般力系(任意力系) 汇交力系 力偶系 (未知力系) (已知力系) 汇交力系 力偶系 力 , R'(主矢 , (作用在简化中心) 主矢) 主矢 力偶 ,MO (主矩 , (作用在该平面上) 主矩) 主矩
主 R' = F + F + F +…= ∑F 矢 1 2 3 i
材料力学 第2章 力系简化
而合力的作用点即平行力系的中心:
n
xC
lim
n
Fi xi
i 1 n
l
q( x) xdx
0 l
lim
n
i 1
Fi
0 q(x)dx
分布力对点A之矩
分布力包围的面积
结论:分布力的合力的大小等于分布力载荷图的面积,合
力的作用线通过载荷图的形心。
2.2 物体的重心、质心和形心
例2-5 如图所示,已知q、l, 求分布力对A点之矩。
2.2 物体的重心、质心和形心
xC
ΣFi xi ΣFi
,yC
ΣFi yi ΣFi
,zC
ΣFi zi ΣFi
3、平行力系中心的性质
平行力系的中心位置只与各平行力的大小和作用点的 位置有关,与平行力的方向无关。
2.2 物体的重心、质心和形心
二、物体的重心、质心和形心
1、重心
n个小体积ΔVi
坐标xi、yi、zi
(2)实验测定方法 悬挂法
称重法
l
A
C
B
xC G
FNB
二力平衡 两次悬挂
2.2 物体的重心、质心和形心
三、分布力
工程上存在大量分布力的情况,通常需要确定这些分布力
的合力的大小及其合力作用线的位置。对于图示的线分布力,
可以视为由无穷个集中力所构成的平行力系,
其合力的大小:FR
l
q ( x)dx
0
FP1 450kN,FP2 200kN
F1 300kN ,F2 70kN
求:
(1)力系向点 O 简化的结果;
(2)力系简化的最终结果。
2.1 力系简化
解:(1)确定简化中心为O点
工程力学 第2章 力系的等效与简化
第2章 力系的等效与简化 作用在实际物体上的力系各式各样,但是,都可用归纳为两大类:一类是力系中的所有力的作用线都位于同一平面内,这类力系称为平面力系;另一类是力系中的所有力的作用线位于不同的平面内,称为空间力系。
这两类力系对物体所产生的运动效应是不同的。
同一类力系,虽然其中所包含的力不会相同,却可能对同一物体产生相同的作用效应。
在就是前一章中提到的力系等效的概念。
本章将在物理学的基础上,对力系的基本特征量加以扩展,引入力系主矢与主矩的概念;以此为基础,导出力系等效定理;进而应用力向一点平移定理以及力偶的概念对力系进行简化。
力系简化理论与方法将作为分析所有静力学和动力学问题的基础。
§2-1 力系等效定理 2-1-1 力系的主矢和主矩 2-1-2 力系等效定理 §2-2 力偶与力偶系 2-2-1 力偶与力偶系 2-2-2 力偶的性质 2-2-3 力偶系的合成 §2-3 力系的简化 2-3-1 力向一点平移定理 2-3-2 空间一般力系的简化 2-3-3 力系简化在固定端约束力分析中的应用 §2-4 结论和讨论 2-4-1 关于力矢、主矢、力矩矢、力偶矩矢以及 主矩矢的矢量性质 2-4-2 关于合力之矩定理及其应用 2-4-3 关于力系简化的最后结果 2-4-4 关于实际约束的简化模型 2-4-5 关于力偶性质推论的应用限制 习 题 本章正文 返回总目录第2章 力系的等效与简化 §2-1 力系等效定理 物理学中,关于质点系运动特征量已有明确论述,这就是:质点系的线动量和对某一点的角动量。
物理学中还指明线动量对时间的变化率等于作用在质点系上的合外力;角动量对时间的变化率等于作用在质点系上外力对同一点的合力矩。
这里的合外力,实际上只有大小和方向,并未涉及作用点或作用线。
因而,需要将其中的合外力与外力的合力矩扩展为力系的主矢和主矩。
2-1-1 力系的主矢和主矩 主矢:一般力系(F 1,F 2,…,F n )中所有力的矢量和(图2—1),称为力系的主矢量,简称为主矢(principal vector ),即∑=ni i1R FF =(2-1)图2-1力系的主矢其中F R 为力系主矢;F i 为力系中的各个力。
华北电力大学理论力学第二章 力系简化理论
第二章力系简化理论◆力的平移定理◆力系的主矢和主矩◆力系向一点简化◆力系简化结果分析§2–2 主矢和主矩·力系向一点的简化∑∑⨯==ii i O O F r )F (M M R i ix iy ix F F F i F j F k'==++∑∑∑∑ 称为该力系对O 点的主矩(principal moment )称为该力系的主矢(principal vector )式中, 分别表示各力对x ,y ,z 轴的矩。
(),(),()x y z M F M F M F空间任意力系的n 个力的矢量和1. 力系的主矢、主矩取任意点O , n 个力对O 点之矩的矢量和kF M j F M i F M M i z i y i x O ∑∑∑++=)()()(由F 1、F 2组成的空间力系,已知:F 1 = F 2 = F 。
试求力系的主矢F R 以及力系对O 、A 、E 三点的主矩。
1. 计算力系主矢令i 、j 、k 为x 、y 、z 方向的单位矢量,则力系中的二力可写成力系的主矢为:)43(51j i F +=F)43(52j i F -=FiF F F F F i i R 562121=+==∑= 例:求主矢、主矩解:解: 2. 计算主矩应用矢量叉乘方法,力系对O 、A 、E 三点的主矩分别为:()2211M M F r F O O i i i i i ====⨯∑∑2211F r F r ⨯+⨯=)43(53j i k +⨯=F )43(54j i j -⨯+F)12912(5k j i -+-=F)43(51j i F +=F)43(52j i F -=F∑=⨯+⨯=⨯=2121i EC EA i i E F r F r F r M )12912(5k j i ---=F)12912(k j i +--=F)43(5)34(j i k j -⨯-=F )43(53)43(54j i k j i j -⨯-+⨯-=FF 2210F r F r M ⨯+=⨯=∑=AC i i i A 对O 点对A 三点对E 点其中,各 ,各i iF F '= ()i o i M M F =该汇交力系与力偶系与原任意力系等效。
第二章力系的简化
一、力的平移定理
M= MB(FA)=FA·a
FA
A B
FA
A
FB
a
B
FB´
M
A
FB
B
作用在刚体上的力,可以等效平移到刚体上任一指 定点,但必须在该力和指定点所确定的平面内附加一 力偶,附加力偶的力偶矩等于原力对指定点的矩。
注意:只有在研究力的运动效应时,力才能平行移动。
研究变形效应时一般是不能移动的。
FR MO O
FR FR
d
O
A
FR
d
O
A
主矢与主矩垂直,FR
FR M
可简化为一个合力
HOHAI UNIVERSITY ENGINEERING MECHANICS
(a) FR ⊥MO
表明FR与MO在同一平面,即共面
共面的力与力偶合成一个力。 FR
合力为F‘R,等于原力的合力FR
O
MO
作用线过新的简化中心
练习1:确定图示力系的合力大小及作用线位置。
z
4kN
6kN
2m
12kN 3m
y
Ox
x y FR Fy 0
Miy 0
Mix 0
解:
该力系为空间平行力 系,各力指向一致,可知 该力系简化为一个铅垂向 下的力。
FR 22kN
x 12 3 1.636m 22
y 6 2 0.545m 22
空间汇交力系
平面汇交力系
二、力偶系
平面力系
空间力系
HOHAI UNIVERSITY ENGINEERING MECHANICS
HOHAI UNIVERSITY ENGINEERING MECHANICS
第二章 力系的简化
4.2 平面任意力系的平衡 平面汇交力系平衡方程:
4.2.2 平面特殊力系平衡方程
平面汇交力系中,对汇交点建立力矩方程恒为零,所以, 平面汇交力系 平衡的充要条件
解析条件是:
Fx 0 F y 0
几何条件:
FR= 0 或 F =0
力系中所有各力在两个 坐标轴中每一轴上的投 影的代数和等于零。
力F3在各坐标轴上的投影: F3 y F3 cos30 cos 45 75 6 N
2.2 汇交力系的平衡
2.2.1 几何法
汇交力系平衡的几何条件:
汇交力系平衡的充分必要条件是:力系中各力矢构
成的力多边形自行封闭,或各力矢的矢量和等于零
FR Fi 0
i1 n
即
2.2 汇交力系的平衡
2.1.2 解析法
汇交力系的合力在某轴上的投
FR Fi
i1 n
影等于力系中各个分力在同一轴上投影的代数和。
由汇交力系合成的几何法知:
任取直角坐标系,则合力和分力的解析式为
FR FRxi FRy j FRz k
代入上式,得
Fi Fixi Fiy j Fizk
FRxi FRy j FRz k ( Fix )i ( Fiy ) j ( Fiz )k
4.2.1 平面任意力系平衡方程
M A F 0, M B F 0, Fx 0
条件: 连线AB不垂 直投影轴 x
4.2 平面任意力系的平衡 三矩式的平衡方程
4.2.1 平面任意力系平衡方程
M A F 0, M B F 0, M C F 0
P
第二章 力系的简化
【例3-2】 如图3-8(a)所示,在柱子的A点受有吊车梁传来的集中 】 力 F = 100kN。求将这力 F 平移到柱轴上O点时所应附加的力偶矩
M ,其中e=0.4m。
【解】 根据力的平移定理,力 F 由A点平移到O点,必须附加一力偶,
M = M B ( F ) = − F × e = −100kN × 0.4m = −40kN ⋅ m
又B处的支座反力垂直于支持面,要形成与已知力偶M反向的 力偶,B处的支座反力 FB 方向只能斜向上,A处的支座反力 FA 的方向斜向下,作用线与 FB 平行,且有 F = F A B 由平衡条件 ∑ M i = 0 ,得: i =1
n
FB × d − M = 0
FB × (4m × sin 30o ) − 20kN ⋅ m = 0
平面任意力系的平衡方程,除了这种基本形式以外,还有如 平面任意力系的平衡方程,除了这种基本形式以外, 下两种形式 。 二力矩式: 二力矩式:∑FX=0 ∑MA=0 条件: 连线不能垂直于X 条件:A、B连线不能垂直于X轴 ∑MB=0 三力矩式: 三力矩式: ∑MA=0 ∑MB=0 条件:A、B、C不能在一条直线上 条件: ∑MC=0 无论哪种形式的平衡方程,都只有三个独立的方程,所以,平 无论哪种形式的平衡方程,都只有三个独立的方程,所以, 面任意力系的平衡方程只能求解三未知量。 面任意力系的平衡方程只能求解三未知量。
)、平面任意力系平衡的情形 (3)、平面任意力系平衡的情形 )、 R′=0 ,M0′=0 则原力系是平衡力系, 则原力系是平衡力系,这种情形将在下一节中讨论
情况 向O点简化的结果 主矢R 主矩M 分类 主矢R′ 主矩MO 1 2 3 4 R′=0 R'=0 R′≠0 ′ R′≠0 ≠ MO=0 MO≠0 MO=0 MO≠0
第二章力系的简化理论
z
F1
x
O
F3
a
C
b
y
0
A
B
M O ( Fa Fc)i Fbj
15
2-3 力偶
16
1. 力在轴上投影是代数量,力对轴之矩是代数量。 2. 刚体上的力是滑移矢量;
力对点之矩是定位矢量;
力偶矩矢是自由矢量。
16
2-3 力偶
17
作业:P7 2;P8 5
17
18
2-4 力系的简化理论
(2)对轴
M x (FR ) M x (Fi )
合力对任一点(轴)之矩等于各分力对 同一点(轴)之矩的矢量(代数)和。
8
2-3 力偶
1.力偶的概念 1)定义: 两个等值、反向、不共线平行力,记为 (F , F ) 2)实例:
9
F
F
力偶不能合成为一个力,也不能与一个力平 衡,是产生转动效果的度量,是一个基本力学量。
23
1.空间一般力系向任一点简化 (1)过程: 选O点为简化中心
z
z
Fn
rn r2 O r1
F2
MOn
y
Fn
x
O
F1
MO2 F2 F1 M O1
y
x
z
空间汇交力系:
FR
O
Fi Fi
空间力偶系: M Oi M O ( Fi )
y
MO
合力 力偶
Fi Fi FR
M O M Oi M O ( Fi )
y
500 N
0.8 m 80 N m
100 N 0.6 m
O
1m 200 N
1m
理论力学:第2章 力系的简化
2-3 沿着直棱边作用五个力,如题 2-3 图所示。已知 F1=F3=F4=F5=F,F2= 2 F,
OA=OC=a,OB=2a。试将此力系简化。
解:将所有力向 O 点简化
Fy=0 Fz=F2sin45F4=0
Fx=F1F2cos45=0
M ox | OC | F | OB | F 3aF
Si xi Si
4
2
2.5
0.75
6.25
11 6
4 2.5 6.25
1.67(m)
yc
Si yi Si
4
0.5
2.5
3.5
6.25
8 3
4 2.5 6.25
2.15(m)
所以有 xC 1.67 m, yC 2.15 m 。
2-12 题 2-12 图所示由正圆柱和半球所组成的物体内挖去一正圆锥,求剩余部分物体 的重心。
6)
圆锥: V3
1 3
π
5 2
2
4
题 2-12 图
zc
Vi zi Vi
2 3
5 2
3 10.9375源自 5 2
2
(4
6)
5
5 2
2
4 3
2 3
5 2
3
5 2
2
(4
此力系简化结果。
工程力学
力系简化的基础是力向一点平移定理。
工程力学
第2章 力系的简化
§2–2 力向一点平移定理
力向一点平移定理 作用于刚体上的力可从原来的作用点 平行移动任一点而不改变对刚体的作用效应,但须附加一 个力偶,附加力偶的矩等于原力对新作用点的矩。
F B h
F
F = B h
F
F
A
A
=
M=Fh B A
第2章 力系的简化
求如图所示平面共点力系的合力。其中:F1 = 200 N, y F2 = 300 N,F3 = 100 N,F4 = 250 N。 F2
解: 根据合力投影定理,得合力在轴
x,y上的投影分别为:
FRx F1 cos 30 F2 cos 60 F3 cos 45 F4 cos 45 129 .3 N
FR=FR,但其作用线不过简化中心O。
FR
MO O
FR
= O
d
FR
FR
A
= O
d
FR
A
M 0 m0 ( FR ) d FR ' FR '
把各力矢首尾相接,连接第一个力的始端与最后一个力的终 端的矢量就是合力FR,力系中各力称为合力FR的分力。 F2 F1 F3 F2 F3 F
O
4
F1
FR
F4 • 得到的多边形,称为力多边形,合力就是力多边形的封闭边。
• 用力多边形求解合力的方法称为力的多边形法则。
工程力学 c F3 d F4 c F1 a
加减平衡力系原理
力偶
[证明]
力F
M o M o ( F ) Fh
力系F,F',F''
力系的简化
j
k
MC(F) a·Sinθ a·CosθCosα a·Sinα =- a·CosθCosαi+FaSin θj
=
0
0
0
令CB=b 则CB =bSinαj + bSinαk
e CB CB
b sin j
sin j cos k
b2 sin 2 b2 cos2
故MC(F)在AB轴上得投影
MAB(F)=MC(F )eCB=FaSinαSinθ
三. 力系向一点的简化
(一). 空间汇交力系的简化(将其简化为一合力)
力的作用线在空间任意分布的力系成为空间任 意力系。各力作用线汇于一点的空间力系,成为空 间汇交力系。
空间汇交力系的合理等于各分力的矢量和(满足 平行四边形法则),合力作用线通过汇交点,即
FR=F1+F2+…… 又由于+FFni=xii+yij+zik
合力偶对各坐标轴得方向余弦:
cos(M,i)= Mx 0.6786 M cos(M,i)= M z 0.2811 M cos(M,i)= M z 0.6786 M
(三). 空间任意力系得简化
FacSinSin
a2 b2
例2.2 作用于手柄上的力F=100N,求①力F 对x轴的
矩 ②力F 对原点o的矩.
解:画出r , r =0.1i+0.4k
又有
z y
o
F = 100(Sin60°cos45°i+Sin60°sin45°j
-cos60°k)
x
100
2i 4
2 4
j
3k 4
0.4m
第二章 力系的简化
右手定则:
第2章 力系的简化
16 第2章 力系的简化 2.1 主要内容2.1.1 汇交力系汇交力系合成为通过汇交点的合力,合力的大小、方向等于各分力的矢量和F F R ∑=或 汇交力系的合力在轴上的投影等于各分力在同一轴上的投影的代数和,称之为合力投影定理,即R R R 111,,nnnx xi y yi z zi i i i F F F F F F ======∑∑∑2.1.2 力偶系力偶系合成结果为一合力偶,其力偶矩M 等于各力偶矩的矢量和:∑==ni i1MM合力偶矩矢在各直角坐标轴上的投影:∑∑∑======ni ziz ni yi y ni xi x MM MM MM 111,,或 k j i M iz iy ix M M M ∑+∑+∑=平面力偶系可合成为一合力偶,合力偶矩等于各分力偶矩的代数和:i M M ∑=2.1.3 任意力系力的平移定理作用在刚体上的力,可平行移动到刚体上任一点,平移时需附加一力偶,附加力偶的矩等于原作用力对平移点之矩,称为力的平移定理。
该定理表明,一个力可以等效于一个力和一个力偶。
其逆定理表明,可将平面内的一个力和一个力偶等效于一个力。
用一简单力系等效地替代一复杂力系称为力系的简化或合成,应用力的平移定理,将力系向一点简化的方法是力系简化的普遍方法。
kj i F z y x F F F ∑+∑+∑=R17力系向一点简化·主矢和主矩力系向任一点O (称简化中心)简化,得到通过简化中心的一个力及一个力偶。
力系中各力的矢量和称为力系的主矢量。
即F F ∑='R主矢与简化中心位置无关力系中各力对简化中心之矩的代数和称为力系对简化中心的主矩。
即)(F O O M M ∑=主矩与简化中心位置有关。
力系的简化结果归结为计算两个基本物理量——主矢和主矩。
它们的解析表达式分别为R1111()nni i i i n nO i O i i i ====⎫''==⎪⎪⎬⎪==⎪⎭∑∑∑∑F F F M M M F 力的大小、方向等于力系的主矢量,力偶矩矢等于力系对O 点的主矩。
第二章力系简化
例 在图示长方体的顶点B处作 用一力F,F=700N。分别求力F 对各坐标轴之矩,并写出力F对 点O之矩矢量Mo(F)。 解1:力F矢量作用点坐标为: B( x, y, z ) B(2,3,0) 力F矢量在三个坐标轴的投影为:
( Fx , Fy , Fz ) ( 100 14,150 14,50 14)
F2
z
M1 M3
45°
F2 F3 O F1
y
M2
F3 F1
O
45°
y
x
x
M x M 1x M 2 x M 3 x 0
M y M 1 y M 2 y M 3 y 11.2 N m
M z M 1z M 2 z M 3 z 41.2 N m
3. 平面力偶系的合成与平衡
作为空间力偶系的特例,平面力偶系合成的结果 是位于各分力偶作用平面内的一个合力偶, 该合力偶矩等于各分力偶矩的代数和。即
M M1 M 2 M n M i
代数和
平面力偶系平衡的必要和充分条件是:各分力偶 的代数和等于零。即
M Mi 0
[ M O ( F )]x M x ( F ) [ M O ( F )] y M y ( F ) [ M O ( F )]z M z ( F )
力矩关系定理: 力对点之矩矢量 在过该点之轴上 的投影等于该力 对该轴之矩.
M O ( F ) M x ( F )i M y ( F ) j M z ( F )k
M D
30 30
B R C
A
E
解: 1.研究AB杆
M i 0
M FD AD 3R FD
M D
《理论力学》第二章-力系的简化试题及答案
第2章 力系的等效简化2-1 一钢结构节点,在沿OC 、OB 、OA 的方向受到三个力的作用,已知F 1=1kN ,F 2=2kN ,F 3=2kN 。
试求此力系的合力。
解答 此平面汇交力学简化为一合力,合力大小可由几何法,即力的多边形进行计算。
作力的多边形如图(a ),由图可得合力大小kN F R 1=,水平向右。
2-2 计算图中1F 、2F 、3F 三个力的合力。
已知1F =2kN ,2F =1kN ,3F =3kN 。
解答 用解析法计算此空间汇交力系的合力。
kN F F F F ix Rx 424.26.0126.0222221=´´+=´´+=S =kN F F F iy Ry 566.08.018.022222=´´=´´=S =kN F F F F iz Rz 707.313222223=´+=´+=S =kN F F F F Rz Ry Rx R 465.4222=++=合力方向的三个方向余弦值为830.0cos ,1267.0cos ,5428.0cos ======RRz R Ry R Rx F FF F F F g b a2-3已知 N F N F N F N F 24,1,32,624321====,F 5=7N 。
求五个力合成的结果(提示:不必开根号,可使计算简化)。
解答 用解析法计算此空间汇交力系的合力。
N F F F F F ix Rx 0.460cos 45cos 537550043=´´++-=S =N F F F F F iy Ry 0.460sin 45cos 547550042=´´+-=S =N F F F F F iz Rz 0.445sin 7625041=´++-=S =N F F F F Rz Ry Rx R 93.634222==++=合力方向角:4454),(),(),(¢°=Ð=Ð=Ðz F y F x F R R R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MO FR
O
将MO分解为MO 和MO
MO
MO
FR
O
FR MO
力螺旋
MO FR
d
O
A
MO FR
d
O
A
力螺旋
例3:已知F1=300kN、F2=400kN、F3=
500kN,试将该力系向柱底中心O简化,并 求出简化的最终结果。(AB=0.3m,BC =0.7m)
解:FR x
4 5
F3
400kN
FR y F1 300 kN
FR
§2-5 重心
Wi
z
O
C
W y
x W = Wi
一、重心的基本公式
由合力矩定理有:
xC
Wi xi W
yC
Wi yi W
zC
Wi zi W
C
y
Wi W
z
zc O
zi
x
x
Wi
C
z W
zi zc y
O
xi
yi
xc
yc
二、质心的公式、形心的公式
xC
Wi xi W
yC
Wi yi W
O
F1
F4
F2
F3
FR
FR F1 F2 Fn
几何法
§2-1 汇交力系的简化
O
F1
解析法:
Fi =Fix i+ Fiy j+ Fiz k
F4
F2
FR =Fix i+ Fiy j+ Fiz k
F3 FR
FR F1 F2 Fn
FRx =Fix FRy =Fiy
FRz =Fiz 矢量投影定理
FA
A B
FA
A
FB
a
B
FB´
M
A
FB
B
作用在刚体上的力,可以等效平移到刚体上任一指 定点,但必须在该力和指定点所确定的平面内附加一 力偶,附加力偶的力偶矩等于原力对指定点的矩。
2F
F
CF
F
CF M
2、空间力系的简化
FR =FRx i+ FRy j+ FRz k
F2 M1
F´2
O
F1
F´1 MO
-20×20
40
xC
Ai xi A大 x大 A小x小
A
A
12.5c m
C
10
30
x
ቤተ መጻሕፍቲ ባይዱ
(cm)
10
2. 复杂形体的重心
b.实验法
• 悬挂法 • 称重法 A
l
C
B
hW
FNB
h FNBl W
§2-6 平行分布力的简化
一、线分布力的简化
荷载图
集度单位长度、单位面积 F
或单位体积上所受到的力,
若能简化为一合力,试确定合力作用线位置。
解:FRx =Fix =-333kN
F1 1m F2 F3
FRy =Fiy=-8020kN
FR FR2x FR2y 8027kN
yF
= 87.62º
W
10.7m 21m
MO = MiO= 6121kNm
x=0.763m (x轴的负方向)
F´R
O
MO x
MR
MO
FR FR
31.4kN m
M O 160 i 260 j 20k MO 305 .9kN m
例4:某桥墩顶部受到两边桥梁传来的铅直力F1=1940kN、
F2=800kN,水平力F3=193kN,桥墩重量W=5280kN,风 力的合力F=140kN。求将该力系向基底中心O简化的结果;
zC
Wi zi W
mi xgixi
ViVxiixi
xdV
V
mg
VV
V
mi yi
Vi yi
ydV V
m
V
V
mi zi
Vi zi
zdV V
m
V
V
x
Wi
C
z W
zi zc y
O
xi
yi
xc
yc
三、确定物体重心的方法 1. 简单形体的重心
2. 复杂形体的重心
a.组合法(分割法、负面积法)
例:如图一电厂的机器基础平面图, y 10
试计算重心的位置。
解: • 分割法:
yC 20cm
40 Ⅱ
xC
Ai xi 12.5cm A
C
10
Ⅲ
30
x
(cm)
10
2. 复杂形体的重心
a.组合法(分割法、负面积法)
例5:如图一电厂的机器基础平面图,
试计算重心的位置。
y 10
解:•负面积法:
yC 20cm
MO = Mz = Miz = MiO
➢ 空间平行力系的简化
z FR
F2 O
F1 y
x
MO
Fn
FR =FRz k
FRz =Fiz MO =Mx i+ My j
Mx = Mix My = Miy
§2-4 任意力系简化结果讨论
主矢 FR Fi
主矩 MO MOFi
可作进一步的简化,讨论如下:
§2-2 力偶系的简化(合力偶)
M M1 M2 Mn
Mi = Mix i+ Miy j+ Miz k M =Mix i+ Miy j+ Miz k
Mx =Mix My =Miy Mz =Miz
M2M2z
M M1
M1
O
x
Mn y
Mn
§2-3 任意力系的简化
一、力的平移定理
M= MB(FA)=FA·a
1. 简化为一个力偶:当 FR 0,MO 0 时
2. 简化为一个合力: 当 FR 0,MO 0 时, 合力 FR 经过O点 当 FR 0,MO 0 , FR MO 0 时, 可进一步简化:
FR MO O
FR FR
d
O
A
FR
FR
d
O
A
3. 简化为一个力螺旋: 当 FR 0,MO 0 , FR MO 0 时
例1:已知F1= F2 = F3= F4=100N,试求该力系的合力。
解:
FRx
F1cos60
F2cos45
F3
4 5
F4
FR F2
y
F1
40.71N
3 FRy F1sin60 F2sin45 5 F4
97.31N
45° 60° x
F3
O3
4
F4
FR FR2x FR2y 105.5N
称为分布力在该处的集度,
用q表示。
q
lim q
Mn
FRx =Fix
FR z
FRy =Fiy FRz =Fiz
MO = Mx i+ My j+ Mz k
F´n
M2 Fn
O
x
y
Mx =Mix My =Miy
Mz =Miz
z FR
x
MO y
3、平面力系的简化
z MO
y
O
F1
x F2
FR
Fn
F´R
FR =FRx i+ FRy j FRx =Fix FRy =Fiy
力系的分类
一、汇交力系 若力系中各力作用线汇交
于一点,则该力系称为汇交 力系
空间汇交力系
平面汇交力系
二、力偶系
A F2
F1
F3 F4
三、任意力系 若力系中各力作用线既不汇交于一点,也不全
部互相平行,则该力系称为任意力系
空间任意力系
平面任意力系 (平面力系)
平面平行力系 空间平行力系
§2-1 汇交力系的简化(合力)
FR z
F2
3 5
F3
100kN
FR 400 i 300 j 100 k FR 509 .9kN
简化最终结果:
Mx
F1
1
F2
0.2
3 5
F3
0.2
160kN m
My
F2
0.2
4 5
F3
1
3 5
F3
0.2
260kN m
Mz
F1
0.2
4 5
F3
0.2
20kN m
力螺旋
FR FR