同底数幂的乘法重难点突破
同底数幂的乘法、幂的乘方、积的乘方(解析版)(重点突围)八年级数学上册重难点专题提优训练(人教版)
![同底数幂的乘法、幂的乘方、积的乘方(解析版)(重点突围)八年级数学上册重难点专题提优训练(人教版)](https://img.taocdn.com/s3/m/451ce25ba36925c52cc58bd63186bceb19e8ed98.png)
专题11 同底数幂的乘法、幂的乘方、积的乘方考点一 同底数幂相乘 考点二 同底数幂乘法的逆用考点三 幂的乘方运算 考点四 幂的乘方的逆用考点五 幂的混合运算 考点六 积的乘方运算考点七 积的乘方的逆用考点一 同底数幂相乘 例题:(2022·河南平顶山·七年级期末)计算:44a a ⋅=______.【答案】8a【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行运算即可.【详解】解:448a a a ⋅=,故答案为:8a .【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则并熟练计算.【变式训练】 1.(2022·湖南·新化县东方文武学校七年级期中)5a a -⋅=________________.【答案】6a -【分析】根据同底数的乘法进行计算即可求解.【详解】解:56a a a -⋅=-,故答案为:6a -.【点睛】本题考查了同底数幂相乘,掌握运算法则是解题关键.2.(2022·湖南省岳阳开发区长岭中学七年级期中)计算:2323m m ⋅= ____________.【答案】56m【分析】根据同底数幂乘法来进行计算求解.【详解】解:2323523236m m m m +⋅=⨯⨯=.答案为:56m .【点睛】本题主要考查了同底数幂乘法的运算法则,理解同底数幂相乘,底数不变,指点数相加是解答关键.3.(2022·山东·北辛中学七年级阶段练习)()()34--b a a b ⋅=_____.【答案】()7b a -【分析】根据同底数幂乘法的计算法则求解即可.【详解】解:()()34b a a b -⋅- ()()34b a b a =-⋅- ()7b a =-,故答案为:()7b a -.【点睛】本题主要考查了同底数幂乘法,熟知同底数幂乘法底数不变,指数相加减是解题的关键.考点二 同底数幂乘法的逆用例题:(2022·广东·高州市第一中学附属实验中学七年级阶段练习)已知 32m =,35n =,则3m n +=____【答案】10【分析】根据同底数幂的乘法的逆运算可得答案.【详解】解:32m =,35n =,3332510m n m n +∴=⨯=⋅=,故答案为:10.【点睛】本题考查了同底数幂的乘法的逆运算,解题的关键是掌握相应的运算法则.【变式训练】1.(2022·江苏·江阴市青阳初级中学七年级阶段练习)已知3,4a b x x ==,a b x +的值是_______.【答案】12【分析】根据同底数幂相乘的逆运算,即可求解.【详解】解:∵3,4a b x x ==,∵3412a b a b x x x +=⋅=⨯=.故答案为:12【点睛】本题主要考查了同底数幂相乘的逆运算,熟练掌握m nm n a a a a (其中m ,n 为正整数)是解题的关键.2.(2022·江苏·南师附中新城初中黄山路分校七年级期中)若5m a =,2n a =,则2m n a +=______.【答案】20【分析】根据m n a a a =m n +(m ,n 是正整数)可得22m n m n m n n a a a a a a +==,再代入5m a =,2n a =计算即可.【详解】解:2252220m n m n m n n a a a a a a +===⨯⨯=,故答案为:20.【点睛】此题主要考查了同底数幂的乘法,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.考点三 幂的乘方运算例题:(2022·湖南永州·七年级期中)计算()42=x ______. 【答案】8x【分析】根据幂的乘方法则求解即可.【详解】解:()42248x x x ⨯==. 故答案为:8x .【点睛】本题考查了幂的运算法则,掌握幂的乘方法则是解本题的关键.【变式训练】 1.(2022·福建·晋江市南侨中学八年级阶段练习)当24m =时,则8m =_____【答案】64【分析】先将8改成32,再用幂的乘方公式将8m 化为()32m ,最后将24m =代入计算即可;也可以利用24m =求出m ,代入8m 计算.【详解】解法一:∵24m =,∵()()33338222464m m m m =====. 解法二:∵2242m ==,∵2m =,∵28864m ==.故答案为:64.【点睛】本题考查幂的乘方公式,掌握幂的乘方公式是解题的关键.由于数字的特殊性导致m 的值可求,但解法一适用范围更广更需掌握.2.(2022·河北·顺平县腰山镇第一初级中学一模)已知2m =8n =4,则m =_____,2m+3n =_____.【答案】 2 16【分析】先求得m ,n 的值,再代入代数式计算即可.【详解】∵()33822nn n ==,242=, ∵32222m n ==,∵32m n ==,∵322422216m n ++===,故答案为:2;16.【点睛】本题考查了同底数幂的乘法和乘方,熟练掌握运算性质是解题的关键. 3.(2022·江西抚州·七年级期中)已知:23m =,325n =,则52m n +=______.【答案】15【分析】利用同底数幂的乘法法则的逆运算及幂的乘方的法则对式子进行整理,再代入相应的值运算即可.【详解】解:∵23m =,53225n n ==,∵552223515m n m n +=⨯=⨯=;故答案为:15.【点睛】本题主要考查幂的乘方,同底数幂的乘法的逆运算,解答的关键是对相应的运算法则的掌握.考点四 幂的乘方的逆用例题:(2022·广东·佛山市顺德区勒流育贤实验学校七年级期中)已知93m =,274n =,则233m n +=( ) A .24B .36C .48D .12【答案】D【分析】利用幂的乘方的法则对已知条件进行整理,再利用同底数幂的乘法的法则对所求的式子进行运算即可.【详解】解:∵93m =,274n =,∵233m =,334n =∵2323333m n m n +=⨯34=⨯ 12=.故选:D .【点睛】本题主要考查同底数幂的乘法,幂的乘方,解答的关键是熟记相应的运算法则并灵活运用.【变式训练】 1.(2021·河北·石家庄市藁城区尚西中学八年级阶段练习)已知5x a =,250xy a ,则y a =( ) A .10B .5C .2D .40 【答案】C【分析】逆向运用同底数幂的乘法法则可得22xy x y a a a ,再根据幂的乘方运算法则求解即可. 【详解】解:∵5x a =,250xy a , ∵22250x y x y x y a a a a a ,∵2550y a ,∵25052y a .故选:C .【点睛】本题考查了同底数幂的乘法以及幂的乘方.掌握幂的运算法则是解答本题的关键.2.(2021·浙江·嵊州市马寅初初级中学七年级期中)已知3181a =,4127b =,619c =,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>【答案】A【分析】根据幂的乘方是逆运算将各数的底数变为相同的数字,进而比较即可.【详解】解:∵3181a ==962=3124,4127b ==3123,619c ==3122,∵a >b >c ,故选:A .【点睛】此题考查了幂的乘方的运算法则,熟记法则是解题的关键.考点五 幂的混合运算例题:(2022·安徽阜阳·八年级期末)计算:()()4273342a a a a -⋅-÷; 【答案】0【分析】先计算积的乘方与幂的乘方,再计算同底数除法,然后计算整式的减法即可得.【详解】解:原式273121616a a a a ⋅-÷=991616a a -=0=.【点睛】本题考查了积的乘方与幂的乘方,再计算同底数除法,等知识点,熟练掌握各运算法则是解题关键.【变式训练】 1.(2021·上海市民办新复兴初级中学七年级期末)计算:()()23222n n n a a a ⎡⎤-⋅+-⎣⎦. 【答案】0【分析】先根据幂的乘方计算,计算同底数幂,最后合并,即可求解.【详解】解:原式426660n n n n n a a a a a =⋅-=-=.【点睛】本题主要考查了幂的混合运算,熟练掌握相关幂的运算法则是解题的关键.2.(2022·江苏·七年级专题练习)计算:(1)()3242a a a ⋅+-; (2)()()()345222a a a ⋅÷-; (3)432()()()p q q p p q -÷-⋅-.【答案】(1)0(2)4a -(3)3()p q --【分析】(1)根据同底数幂的乘法和幂的乘方以及合并同类项的计算法则求解即可;(2)根据幂的乘方和同底数幂的除法计算法则求解即可;(3)根据同底数幂的乘除法计算法则求解即可.(1)解:()3242a a a ⋅+- ()66a a =+-66a a =-0=;(2)解:()()()345222a a a ⋅÷- ()6810a a a =⋅÷-4a =-;(3)解:432()()()p q q p p q -÷-⋅-432()()()q p q p q p =-÷-⋅-3()q p =-()3p q =--.【点睛】本题主要考查了幂的混合运算,熟知相关计算法则是解题的关键.考点六 积的乘方运算 例题:(2022·湖南·测试·编辑教研五七年级期末)计算()232x y 的结果是( )A .8x 6 y 2B .4 x 6 y 2C .4 x 5 y 2D .8 x 5 y 2【答案】B【分析】根据幂的乘方、积的乘方进行运算即可.【详解】解:()()22323226422x y x y x y ==. 故选B .【点睛】本题主要考查了幂的乘方、积的乘方等知识点,掌握相关运算法则是解答本题的关键.【变式训练】 1.(2022·安徽·合肥新华实验中学七年级期中)计算423(3)a b -的结果是( )A .1269a b -B .7527a b -C .1269a bD .12627a b - 【答案】D【分析】根据积的乘方运算法则,进行计算即可解答.【详解】解:126423(73)2b a a b --=,故选:D .【点睛】本题考查了积的乘方,熟练掌握积的乘方运算法则是解题的关键.2.(2021·黑龙江·哈尔滨顺迈学校八年级阶段练习)下列计算正确的是( )A .3332b b b ⋅=B .()326ab ab = C .()2510a a = D .()2349a a a ⋅= 【答案】C【分析】分别根据同底数幂的乘法法则幂的乘方与积的乘方运算法则逐一判断即可.【详解】解:A 、33632b b b b ⋅=≠,故本选项不合题意;B 、()32366ab a b ab =≠,故本选项不合题意; C 、()2510a a =,故本选项符合题意; D 、()234109a a a a ⋅=≠,故本选项不合题意; 故选:C .【点睛】本题主要考查同底数幂的乘法、幂的乘方与积的乘方运算,熟记幂的运算法则是解答本题的关键.考点七 积的乘方的逆用 例题:(2021·河南·鹤壁市外国语中学八年级开学考试)计算:(1)已知()3240n a =,求6n a 的值; (2)已知n 为正整数,且27n x =,求()()223234nn x x -的值. 【答案】(1)25(2)2891【分析】(1)由积的乘方公式解题;(2)由积的乘方公式解得()()223234n n x x -23229()4()n n x x =-,再利用整体代入法解题.(1)解:()3322n a =3=40n a 3=5n a ∴322()=5n a ∴6=25n a ∴.(2)()()223234n n x x -26434n n x x =-23229()4()n n x x =-27n x =∴原式3229747(634)72891=⨯-⨯=-⨯=.【点睛】本题考查积的乘方、幂的乘方等知识,是重要考点,难度一般,掌握相关知识是解题关键.【变式训练】1.(2021·江苏·南京钟英中学七年级阶段练习)若m n a a =(0a >且1a ≠,m 、n 是正整数),则m n =.利用上面结论解决下面的问题:(1)如果528162x x ÷⋅=,求x 的值;(2)如果212224x x +++=,求x 的值;(3)若53m x =-,425m y =-,用含x 的代数式表示y .【答案】(1)4x =;(2)2x =;(3)265y x x =---【分析】(1)先,将底数都化为2,再利用同底数幂的乘除法法则计算;(2)利用积的乘方逆运算解答;(3)利用等式的性质及幂的乘方逆运算将式子变形为35m x +=,24255m m y -==,即可得到x 与y 的关系式,由此得到答案.【详解】解:(1)∵528162x x ÷⋅=,∵3452222x x ÷⋅=,∵1345x x -+=,解得4x =;(2)∵212224x x +++=,∵2222224x x ⋅+⋅=,2(42)24x +=,2242x ==,2x =;(3)∵53m x =-,425m y =-,∵35m x +=,24255m m y -==,∵243)(x y +-=,∵223)654(x y x x +=--=--.【点睛】此题考查整式的乘法公式:同底数幂相乘、同底数幂相除、积的乘方以及幂的乘方的计算法则,熟记法则及其逆运算是解题的关键.2.(2020·吉林·长春市第十三中学校七年级期中)已知222()ab a b =,333()ab a b =, 444()ab a b =. (1)当1a =,2b =-时,5()ab = ,55a b = .(2)当1a =-,10b =时,6()ab = ,66a b = .(3)观察(1)和(2)的结果,可以得出结论:()n ab = (n 为正整数).一、选择题1.(2022·湖南·新田县云梯学校七年级阶段练习)下列运算正确的是( )A .235x x x +=B .3412a a a ⋅=C .44(2)8x x =D .()2362x y x y -= 【答案】D【分析】根据同底数幂的乘法、积的乘方与幂的乘方、合并同类项法则逐项判断即可得.【详解】解:A 、2x 与3x 不是同类项,无法合并,故错误;n m,即可求解.9,3159,315n m,n m.解得:3,5故选:B【点睛】本题考查了积的乘方的运用,关键是检查学生能否正确运用法则进行计算,题目比较好,但是一【点睛】本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解决问题的关键.三、解答题9.(2022·福建·晋江市南侨中学八年级阶段练习)计算:(1)322··x x x x + (2)34a a a +()()42242a a +-【答案】(1)2x 4(2)6a 8【分析】(1)先计算同底数幂的乘法,然后合并同类项计算即可;(2)先计算同底数幂的乘法,幂的乘方及积的乘方,然后合并同类项计算即可.(1)解:原式44x x =+42x =; (2)原式8884a a a =++86a =.【点睛】题目主要考查整式的加减运算,同底数幂的乘法,幂的乘方及积的乘方,熟练掌握运算法则是解题关键.10.(2022·重庆市第十一中学校七年级期中)计算:(1)()()3222332x x x x x ⋅⋅+-; (2)()()321422m m a a a +⎡⎤-+⋅⎢⎥⎣⎦. 【答案】(1)0;(2)3321648m m a a ++-+.【分析】(1)利用同底数幂的乘法法则、幂的乘方法则即可求解;(2)利用积的乘方法则、同底数幂的乘法法则即可求解.(1)解:原式=6662x x x +-6622x x =-0=;(2)解:原式=33264(24)m m a a a +-+⨯⋅42x,,()42)a a --()2 33b ⎛-+-⎝)63278b a b -102+≥,(14.(2022·山东济南·七年级期中)我们定义:三角形 =ab •ac ,五角星 =z •(xm •yn );(1)求 的值;(2)若 =4,求 的值.【分析】(1)直接根据新定义的公式,代入即可求解;(2)由条件可得出算式233=4x y ,根据同底数幂的乘法得出+2y 3=4x ,再根据题意得出所求的代数式是2(981)x y ,根据幂的乘方和积的乘方可得242[(3)(3)]x y ,即为+222(3)x y 代入即可求出答案.(1)解:由题意可得,=31×32=33=27;(2)解:∵=4,∵233=4x y∵+2y 3=4x ,∵=2(981)x y=242[(3)(3)]x y=2222[(3)(3)]x y=222[(33)]x y=+222(3)x y=2×24=2×16=32.【点睛】本题属于自定义题,考查了幂的运算法则的运用,解题的关键是正确识别自定义公式,和灵活运用积的乘方法则.15.(2022·江苏·滨海县振东初级中学七年级阶段练习)阅读下列各式:(ab )2=a 2b 2,(ab )3=a 3b 3,(ab )4=a 4b 4…16.(2022·江苏·南外雨花分校七年级阶段练习)算一算:(1)()()2228233m m m m ⋅⋅-; (2)()()53253a b ⎡⎤⋅⎢⎥⎣⎦; (3)()()453t t t -⋅-⋅-;(4)已知24m n a a ==,,求32m n a +的值;(5)已知2328162x ⨯⨯=,求x 的值.【答案】(1)102m(2)7530a b(3)12t(4)128(5)6【分析】)(1)运用同底数幂乘法公式和幂的乘方公式运算,再合并即可;(2)运用幂的乘方和积的乘方公式运算即可;(3)先确定符号,再用同底数幂乘法公式运算即可;(4)逆用同底数幂乘法公式和幂的乘方公式,再整体代入即可;(5)将等式两边转化成同底数幂,再让指数相等得到一个一元一次方程,解之即可.(1)解:原式1046101010332m m m m m m ⋅===--;(2)原式()()()5551561567530a b a b a b =⋅=⋅=; (3)原式34512t t t t =⋅⋅=;(4)∵24m n a a ==,,∵()()3232323224816128m n m n m n a a a a a +=⋅=⋅⨯=⨯==; (5)∵2328162x ⨯⨯=,即()34232222x⨯⨯=, ∵352322x +=,∵3523x +=,解得:6x =.【点睛】本题考查了同底数幂乘法公式,积的乘方公式,幂的乘方公式,灵活掌握这三个公式正逆用是解题的关键.。
同底数幂的乘法教案
![同底数幂的乘法教案](https://img.taocdn.com/s3/m/8f0b351d580102020740be1e650e52ea5418ce56.png)
同底数幂的乘法教案同底数幂的乘法教案一、教学目标:1.了解同底数幂的概念,掌握同底数幂的乘法规则;2.通过例题训练和练习题目的解答,提高学生对于同底数幂的计算能力。
二、教学内容:1.同底数幂的定义;2.同底数幂的乘法规则。
三、教学重难点:1.同底数幂的乘法规则;2.应用乘法规则解决实际问题。
四、教学过程:1.导入(5分钟)通过一个小问题引导学生思考:小明有3个苹果,小红有2个苹果,小明和小红一共有多少个苹果?学生思考一会后,观察到苹果的数量相同,可以得出结论:小明和小红的苹果数量相同。
引出同底数幂的概念。
2.学习同底数幂的定义(10分钟)给出同一个底数的不同指数,如2^3和2^4,让学生观察底数的变化以及指数的变化。
引导学生总结出结论:底数相同的幂,指数不同,称为同底数幂。
3.探究同底数幂的乘法规则(15分钟)给出同底数幂的乘法算式,如2^3 * 2^4,让学生先独立计算,然后互相讨论结果,最后找一个学生汇报答案。
通过讨论和汇报,引导学生总结同底数幂的乘法规则:相同底数的幂相乘,底数不变,指数相加。
4.讲解同底数幂乘法规则的证明(10分钟)通过示意图的形式,以2^3 * 2^4为例子,讲解同底数幂乘法规则的证明过程。
让学生观察示意图,理解同底数幂乘法规则的合理性。
5.练习乘法规则(15分钟)自主解答一些同底数幂的乘法运算,如2^6 * 2^5、3^4 * 3^2等,然后互相交流讨论答案。
6.解答习题(15分钟)布置一些练习题,如计算2^3 * 2^4 + 2^2,要求学生自己解答,然后在黑板上解答并讲解。
鼓励学生提问和思考。
7.小结(5分钟)对于同底数幂的乘法规则进行小结,并提醒学生多进行类似练习,以加深对同底数幂的理解和掌握。
五、教学反思:本节课通过引导学生思考和观察的方式,培养了学生们的逻辑思维和观察能力。
通过自主解答、互相讨论和黑板解答的过程,提高了学生们的动手实践和合作交流能力。
但是在习题解答环节,可以增加一些拓展性题目,以提高学生们的应用能力和思考能力。
同底数幂的乘法教案
![同底数幂的乘法教案](https://img.taocdn.com/s3/m/73c4414e6d175f0e7cd184254b35eefdc8d315f8.png)
同底数幂的乘法教案一、教学目标1. 让学生理解同底数幂的乘法概念和性质。
2. 引导学生掌握同底数幂的乘法运算方法。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容1. 同底数幂的乘法概念:同底数幂相乘,底数不变,指数相加。
2. 同底数幂的乘法性质:(1) 零指数幂与非零指数幂相乘,结果为零指数幂。
(2) 非零指数幂与非零指数幂相乘,结果为底数不变,指数相加的幂。
3. 同底数幂的乘法运算方法:(1) 直接相乘法:将指数相加,底数保持不变。
(2) 分解因式法:将幂分解为因式,分别相乘,合并同类项。
三、教学重点与难点1. 教学重点:同底数幂的乘法概念、性质和运算方法。
2. 教学难点:同底数幂的乘法运算方法的应用和灵活运用。
四、教学准备1. 教师准备PPT或黑板,展示同底数幂的乘法示例和练习题。
2. 学生准备笔记本,记录重点内容和练习。
五、教学过程1. 导入:回顾幂的定义和性质,引导学生思考同底数幂的乘法。
2. 讲解:讲解同底数幂的乘法概念、性质和运算方法,举例说明。
3. 练习:学生独立完成练习题,教师巡回指导,解答疑问。
4. 总结:归纳同底数幂的乘法运算方法,强调重点和注意事项。
5. 作业布置:布置练习题,巩固同底数幂的乘法运算方法。
六、教学策略1. 案例分析:通过具体的数学案例,让学生理解和掌握同底数幂的乘法运算。
2. 问题解决:创设问题情境,引导学生运用同底数幂的乘法解决实际问题。
3. 小组讨论:组织学生进行小组讨论,共同探讨同底数幂的乘法运算方法。
4. 互动教学:采用问答、抢答等形式,激发学生的学习兴趣,提高课堂参与度。
七、教学评价1. 课堂练习:检查学生在课堂上的学习效果,及时发现和纠正错误。
2. 课后作业:评估学生对同底数幂的乘法运算方法的掌握程度。
3. 单元测试:定期进行单元测试,全面了解学生对该知识点的掌握情况。
4. 学生反馈:听取学生的意见和建议,不断优化教学方法和策略。
八、教学拓展1. 对比分析:让学生探讨同底数幂的乘法与幂的除法、幂的乘方的异同。
人教版八年级上14.1.1-同底数幂的乘法(教案)
![人教版八年级上14.1.1-同底数幂的乘法(教案)](https://img.taocdn.com/s3/m/29d384a1710abb68a98271fe910ef12d2bf9a97e.png)
1.教学重点
-核心内容:同底数幂乘法法则及其应用。
-重点讲解:
-同底数幂乘法法则的概念及其数学表达:am × an = am+n。
-通过实例展示如何应用同底数幂乘法法则简化计算。
-强调同底数幂乘法在解决实际问题中的重要性。
-引导学生通过观察、分析、归纳,总结出同底数幂乘法的规律。
举例:讲解同底数幂乘法法则时,可以使用具体的数值进行示例,如2^3 × 2^2 = 2^(3+2),从而帮助学生理解指数相加的实质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“同底数幂乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调同底数幂乘法法则及其应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何在不同情境下运用这个法则。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与同底数幂乘法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过计算器验证同底数幂乘法法则的正确性。
同时,我在教学中注意到,部分学生对同底数幂乘法的数学原理感兴趣,希望深入了解背后的原因。这让我意识到,在教学中不仅要注重知识传授,还要激发学生的探究欲望,引导他们主动思考、发现数学的奥秘。
最后,通过这次教学,我认识到教学反思的重要性。在今后的工作中,我会继续关注学生的学习情况,及时调整教学方法,努力提高教学质量。同时,我也会加强自身学习,不断提升教育教学水平,为学生的成长和发展贡献自己的力量。
《同底数幂的乘法》教案
![《同底数幂的乘法》教案](https://img.taocdn.com/s3/m/919ec20df11dc281e53a580216fc700abb6852f2.png)
《同底数幂的乘法》教案《同底数幂的乘法》教案1一、教学目标知识与技能目标:在推理判断中得出同底数幂乘法的法则,并能正确地运用法则进行有关计算以及解决一些实际问题。
过程与方法目标:经历探索同底数幂乘法运算性质的过程,在探索过程中,通过教师引导、学生自主探究,发展学生的数感和符号感,培养学生的观察、猜想、发现、归纳、概括等探究创新能力,发展推理能力和有条理表达能力。
使学生初步理解“特殊----一般------特殊”的认知规律。
体会具体到抽象再到具体、转化的数学思想情感、态度、价值观目标:通过本课的学习使学生在合作交流中体会数学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神。
体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。
通过老师的及时表扬、鼓励,让学生体验成功的乐趣。
二、教学重难点重点:正确地理解同底数幂的'乘法的运算性质以及会运用性质进行有关计算。
难点:同底数幂的乘法的运算性质的推导与理解以及灵活运用性质解决相关问题。
三、教具准备:多媒体四、教学过程(一)复习引入1、求n个相同因数的积的运算叫做,乘方的结果叫做。
将a·a·a?·(n个a相乘)写成乘方的形式为:。
nnaa2、表示的意义是什么?其中a叫,n叫,叫。
an读作:。
3、把下列各式写成乘方的形式:(1)2×2 ×2=(2)a·a·a·a·a =(3)(-3)×(-3)×(-3)×(-3)×(-3)=(4)5×5×5?×5= m个54、将下列乘方写成乘法的形式:(1)25 =(2)103=(3)a4=(4)am=5、计算:(1)(-4)3=(2)(4)3=(3)(2)4=(4)(-2)4=(5)(-5)3=(6)-53=思考:这几个幂的正负有什么规律?二、创设情境,揭示课题1、问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?2、引导学生分析,列出算式:3、你会计算1015×103吗?4、观察可以发现1015.103这两个因数是同底数幂的形式,所以我们把像1015×103这样的运算叫做同底数幂的乘法、根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法、三、探究新知,发现规律1、探究:根据乘方的意义计算,观察计算结果,你能发现什么规律?学生动手:计算下列各式:(1)25×22 =(2)a3·a2 =(3)5m×5n=(m、n 都是正整数)2、引导学生发现规律:请同学们注意观察计算前后各式的两边底数有什么关系?指数呢?得到结论:①这三个式子都是底数相同的幂相乘、②相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和、3、猜想:对于任意底数a,a· a=(m,n都是正整数)(学生小组讨论,能说出结果即可,教师引导推导过程)4、推导同底数幂的乘法的运算法则:am·an表示同底数幂的乘法、根据幂的意义可得:am·an=(a·a·?·a)(a·a·?·a)= a·a·?·a= am+nmn m个a n个a(m+n)个a即可得am·an= am+n(m、n都是正整数)提问:你能用文字叙述你得到的结论吗?(即为:同底数幂相乘,底数不变,指数相加。
人教版《同底数幂的乘法》教案
![人教版《同底数幂的乘法》教案](https://img.taocdn.com/s3/m/7a7c32695627a5e9856a561252d380eb629423d7.png)
最新人教版《同底数幂的乘法》教案一、教学目标:1. 让学生理解同底数幂的乘法概念,掌握同底数幂相乘的法则。
2. 培养学生运用同底数幂的乘法解决实际问题的能力。
3. 提高学生的数学思维能力和运算能力。
二、教学内容:1. 同底数幂的乘法定义及法则。
2. 幂的乘方与积的乘方。
3. 实数范围内同底数幂的乘法运算。
4. 应用题解答。
三、教学重点与难点:1. 重点:同底数幂的乘法法则及其应用。
2. 难点:幂的乘方与积的乘方的运算规律。
四、教学方法:1. 采用问题驱动法,引导学生主动探究同底数幂的乘法规律。
2. 运用案例分析法,让学生在实际问题中运用同底数幂的乘法。
3. 采用小组讨论法,培养学生的团队合作精神。
4. 利用多媒体辅助教学,提高教学效果。
五、教学过程:1. 导入新课:复习幂的基本概念,引导学生思考同底数幂的乘法问题。
2. 讲解同底数幂的乘法法则,通过示例让学生理解并掌握规律。
3. 练习巩固:布置一些同底数幂的乘法题目,让学生独立完成,检验掌握情况。
4. 讲解幂的乘方与积的乘方,引导学生发现运算规律。
5. 应用拓展:给出一些实际问题,让学生运用同底数幂的乘法解决问题。
7. 布置作业:布置一些有关同底数幂的乘法的练习题,巩固所学知识。
六、教学评价:1. 通过课堂提问、练习册和课后作业评估学生对同底数幂乘法的理解程度。
2. 观察学生在解决实际问题时是否能正确运用同底数幂的乘法法则。
3. 分析学生的练习和考试情况,评估学生对幂的乘方与积的乘方运算规律的掌握。
七、教学资源:1. 教学PPT或黑板,用于展示同底数幂的乘法规则和示例。
2. 练习册和习题,用于学生练习和巩固知识点。
3. 教学软件或多媒体材料,用于辅助解释和展示复杂的数学概念。
4. 实物模型或图示,帮助学生直观理解幂的概念。
八、教学进度安排:1. 第一课时:介绍同底数幂的乘法定义及法则。
2. 第二课时:讲解幂的乘方与积的乘方,并进行相关练习。
3. 第三课时:应用同底数幂的乘法解决实际问题。
同底数幂的乘法教案
![同底数幂的乘法教案](https://img.taocdn.com/s3/m/8cc0d8376d85ec3a87c24028915f804d2a16877d.png)
同底数幂的乘法教案同底数幂的乘法教案「篇一」一、教学目标1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.2.培养学生运用公式熟练进行计算的能力.3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.4.渗透数学公式的结构美、和谐美.二、学法引导1.教学方法:讲授法、练习法.2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.三、重点・难点及解决办法(一)重点同底数幂的运算性质.(二)难点同底数幂运算性质的灵活运用.(三)解决办法在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.3.再通过三组不同形式的题型从不同的角度训练学生的'思维能力,以提高学生的辨别能力和运算能力.七、教学步骤(一)明确目标本节课重点是熟练运用同底数暴的乘法运算公式.(二)整体感知要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用:外,还要善于根据题目的结构特征,学会它们的逆向应用:,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.(三)教学过程1.创设情境、复习导入(1)叙述同底数幂乘法法则并用字母表示.(2)指出下列运算的错误,并说出正确结果.①②③强调:①中的指数不为0,指数相加时不要漏加的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.(3)填空:① 。
② ,。
2.探索新知,讲授新课例1 计算:(1)(2)(3)解:(1)原式(2)原式(3)原式例2 计算:(1)(2)(3)(4)解:(1)原式(2)原式(3)原式(4)或原式提问:和相等吗?3.巩固熟练(1)P93 练习(下)1,2.(2)计算:① ②③ ④(3)错误辨析:计算:① (是正整数)解:说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.②解:原式说明:与不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为(四)总结、扩展底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.八、布置作业P94 A组3~5;P95 B组1~2.同底数幂的乘法教案「篇二」教学目标1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.教学重点和难点幂的运算性质.课堂教学过程设计一、运用实例导入新课引例一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?要解方程(x+3)(x+5)=x(x+ 2)+39必须将(x+3)(x+ 5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法.(写出课题:第七章整式的乘除)本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.二、复习提问1.乘方的意义:求n个相同因数a的`积的运算叫乘方,即2.指出下列各式的底数与指数:(1)34; (2)a3; (3)(a+b)2; (4)(-2)3; (5)-23.其中,(-2)3 与- 23 的含义是否相同?结果是否相等?(-2)4 与- 24 呢三、讲授新课1.利用乘方的意义,提问学生,引出法则计算103×102.解:103×102=(10×10×10)+(10×10)(幂的意义)=10×10×10×10×10(乘法的结合律)=105.2.引导学生建立幂的运算法则将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有=am+n,即am·an=am+n.3.引导学生剖析法则(1)等号左边是什么运算? (2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系? (4)公式中的底数a可以表示什么?(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.四、应用举例变式练习例1 计算:(1)107×104;(2)x2·x5.解:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7.提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.课堂练习计算:(1)105·106;(2)a7·a3;(3)y3· y2;(4)b5· b;(5)a6·a6;(6)x5·x5.例2 计算:(1)23×24×25;(2)y· y2· y5.解:(1)23×24×25=23+4+5=212.(2) y· y2 · y5 =y1+2+5=y8.对于第(2)小题,要指出y的指数是1,不能忽略.五、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a的指数是1.六、作业同底数幂的乘法教案「篇三」同底数幂的乘法北师大版数学初一下册教案教学目标一、知识与技能1.掌握同底数幂的乘法法则,并会用式子表示;2.能利用同底数幂的乘法法则进行简单计算;二、过程与方法1.在探索性质的过程中让学生经历观察、猜想、创新、交流、验证、归纳总结的思维过程;2.课堂中教给学生“动手做,动脑想,多合作,大胆猜,会验证”的`研讨式学习方法;三、情感态度和价值观1.在活动中培养乐于探索、合作学习的习惯,培养“用数学”的意识和能力;2.通过同底数幂乘法性质的推导和应用,使学生初步理解“特殊、一般、特殊”的认知规律和辨证唯物主义思想,体会科学的思想方法,激发学生探索创新精神;教学重点同底数幂乘法法则;教学难点同底数幂的乘法法则的灵活运用;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备练习本;课时安排1课时教学过程一、导入光在真空中的速度大约是3×108m/s.太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。
同底数幂的乘法教案
![同底数幂的乘法教案](https://img.taocdn.com/s3/m/ab6e37833086bceb19e8b8f67c1cfad6185fe950.png)
同底数幂的乘法教案=1013=108+5依照刚才推理出的方法口答:103×106、107×108、105×106、10m×10n。
师引导学生观察每个式子结果的底数和指数的变化,问:你能发现底数为10的同底数幂相乘,结果有什么规律吗?学生通过练习,会很容易发现:底数为10的幂相乘,底数10不变,指数相加.师过渡:我们探讨出了底数为10的同底数幂的乘法规律,那么底数为其他数时,规律是不是一样的呢?底2)课件展示:请同学们根据乘方的意义,完成下列填空(1)22×25=( )×( )= 2( ) ;(2)a2× a3=( )×( )= a( ) ;(3)5m·5n=( )×( )= 5( ) ;( m 、 n 是正整数)师让生按照刚才探究底数为10的同底数幂的乘法规律,独立完成,师发现个别学生存在问题,及时点拨提示。
师生一起讨论分析,多媒体展示预设结果。
师:通过观察,在同底数幂相乘的过程中,结果的底数、指数如何变化?生观察后得出:底数不变,指数相加。
师:我们把上述运算过程推广到一般情况,猜想:a m·a n= ?(m、n是正整数)生:a m·a n=a m+n师:想一想,为什么呢?请同学们在练习本上推导其运算过程,教师多媒体展示:a m · a n =( a · a ····· a )×( a · a ····· a )= a · a ····· a = a m + nm 个 a n 个 a 底 m + n )个 a用数学符号规范表示上面得出的规律为:a m · a n = a m+n底 m 、 n 是是正整数) 师生意见达成,用文字归纳出同底数幂的乘法法则:同底数幂相乘,底数不变、指数相加。
中小学数学同底数幂的乘法教案
![中小学数学同底数幂的乘法教案](https://img.taocdn.com/s3/m/fa05919b4128915f804d2b160b4e767f5acf80c9.png)
中小学数学同底数幂的乘法教案一、教学目标1. 让学生理解同底数幂的乘法概念及其意义。
2. 引导学生掌握同底数幂的乘法法则及运算技巧。
3. 培养学生的数学思维能力,提高学生解决实际问题的能力。
二、教学内容1. 同底数幂的乘法概念介绍。
2. 同底数幂的乘法法则及运算技巧。
3. 实例讲解与练习。
三、教学重点与难点1. 教学重点:同底数幂的乘法概念、法则及运算技巧。
2. 教学难点:同底数幂的乘法运算在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解同底数幂的乘法概念、法则及运算技巧。
2. 运用案例分析法,分析实际问题,引导学生运用同底数幂的乘法解决实际问题。
3. 利用练习法,巩固所学知识,提高学生的运算能力。
五、教学过程1. 导入:通过复习幂的定义,引导学生进入同底数幂的乘法学习。
2. 讲解:讲解同底数幂的乘法概念、法则及运算技巧,结合实际例子进行阐述。
3. 练习:布置针对性的练习题,让学生运用所学知识进行计算。
4. 总结:对本节课的内容进行总结,强调同底数幂的乘法在实际问题中的应用。
5. 作业:布置课后作业,巩固所学知识。
六、教学反思在教学过程中,关注学生的学习反馈,及时调整教学方法,提高教学效果。
针对学生的薄弱环节,加强练习和指导,帮助学生克服困难,掌握同底数幂的乘法。
七、教学评价通过课堂表现、课后作业和练习情况,评价学生对同底数幂的乘法的掌握程度。
鼓励学生积极参与课堂讨论,提高学生的数学思维能力。
八、教学拓展1. 探讨同底数幂的除法及其运算规律。
2. 引导学生将同底数幂的乘法应用于解决实际问题,提高学生的应用能力。
九、教学资源1. 教案、PPT等教学资料。
2. 练习题及答案。
3. 相关数学软件或工具,如计算器、数学软件等。
十、教学时间1课时(45分钟)六、教学准备1. 制作详细的教学PPT,包含同底数幂的乘法定义、法则、例题及练习题。
2. 准备不同难度的练习题,以适应不同学生的学习需求。
3. 准备黑板和粉笔,以便在课堂上进行板书和演示。
同底数幂的乘法重难点教学设计
![同底数幂的乘法重难点教学设计](https://img.taocdn.com/s3/m/f8eed352a6c30c2258019e40.png)
14.1.1同底数幂的乘法重难点设计教学目标:1、知识与技能目标:在推理判断中得出同底数幂乘法的法则。
2、过程与方法目标:经历探索同底数幂乘法运算性质的过程,培养学生的观察、猜想、发现、归纳、概括等探究创新能力,发展推理能力和有条理表达能力。
3、情感、态度、价值观目标:在小组合作交流中,培养协作精神、探究精神,增强学习信心.教学重点:正确地理解同底数幂的乘法的运算性质。
教学难点:同底数幂的乘法的运算性质的推导与理解。
教法学法:引导发现法、合作探究法。
教学过程:猜谜语:老师演示,头顶帽子(左边)打一数学名词。
(乘方)抢答题:已知3个数2、3、4,你能从中任取两个数组成算式,使其运算结果最大吗?生回答:生1、3×4=12生2、34生3、43总结评价:第3位同学回答的非常棒,但是前两位同学也很棒,这么积极思考。
师问:43进行的什么运算呢?3叫做什么?4叫做什么?43又叫做什么?这3个数还能组成哪些幂?(学生思考,自己在练习本上写出来,这里找法有规律,看看你能否发现?)师再问:幂也是数,能否进行运算呢?今天我们先来研究一下乘法运算。
第一步:实验从刚才得到的6个幂中任取两个数进行乘法运算。
第二步:观察(1)你找到了哪些等式?(2)你从这些等式中有什么发现?(3)你能用语言概括出你的发现吗?请以小组为单位合作研究,并请代表展示小组的研究成果。
板书成果:1、642333=⨯2、743222=⨯3、532444=⨯4、333842=⨯5、2221243=⨯师问:这五个等式均成立吧?但好像有点差别?你们看出差别了吗?生答:1、2、3每个等式中幂的底数相同,4、5每个等式幂的指数相同。
师:同学们太棒了,1、2、3都是相同底数的幂在相乘,4、5都是相同指数的幂在相乘,今天我们先研究想同底数幂相乘,即同底数幂的乘法。
板书课题师:从1、2、3三个等式中你还有什么发现呢?生答:左边幂的指数相加等于右边幂的指数。
师:火眼金睛,太棒了!那你能告诉我=⨯6255?那=⨯32a a ?=⨯n m a a ?生答:m 个a 相乘再和n 个a 相乘一共是m+n 个a 相乘。
同底数幂的乘法一等奖创新教案
![同底数幂的乘法一等奖创新教案](https://img.taocdn.com/s3/m/be44ef4c78563c1ec5da50e2524de518974bd314.png)
同底数幂的乘法一等奖创新教案创新教案:同底数幂的乘法一、教学目标:1.理解同底数幂的乘法的概念和运算规则;2.掌握同底数幂的乘法的计算方法;3.能够将同底数幂的乘法应用于解决实际问题。
二、教学重点:1.同底数幂的乘法的概念和运算规则;2.同底数幂的乘法的计算方法。
三、教学难点:同底数幂的乘法的运算规则的理解和应用。
四、教学过程:1.导入(5分钟)引导学生回顾近期所学知识,复习幂的概念和运算规则。
2.引入新知(10分钟)通过提问,让学生思考同底数幂的乘法可能存在的规律或运算法则。
引导学生观察并分析下面的幂的乘法:2^3×2^42^2×2^22^5×2^2通过观察和分析,引导学生得出同底数幂的乘法规则:幂相加,底数不变。
3.概念讲解(10分钟)向学生详细讲解同底数幂的乘法的概念和运算规则。
解释为什么同底数幂的乘法是幂相加,底数不变。
4.计算方法(20分钟)向学生示范同底数幂的乘法的计算方法,分为两种情况讲解:情况一:幂的次数相同的同底数幂的乘法。
例如:2^3×2^3情况二:幂的次数不同的同底数幂的乘法。
例如:2^3×2^4让学生通过练习计算同底数幂的乘法,掌握计算方法。
5.练习(20分钟)让学生在课堂上进行同底数幂的乘法的练习。
包括计算同底数幂的乘法和应用题。
6.拓展和应用(15分钟)给学生一些拓展和应用问题,引导学生将同底数幂的乘法应用于解决实际问题。
例如:已知一个电阻的电阻值为R,当两个相同电阻的电阻串联时,总电阻是多少?7.总结(10分钟)总结同底数幂的乘法的概念、运算规则和计算方法。
强调理解和灵活运用同底数幂的乘法的重要性。
五、教学辅助手段:1.板书:写出同底数幂的乘法的规则和示例计算步骤。
2.练习题及解答。
六、教学评估:1.在课堂上观察学生的学习情况和参与度;2.布置同底数幂的乘法的练习题,检查学生的掌握情况;3.对学生的拓展和应用问题进行评估。
初中数学_《同底数幂的乘法》教学设计学情分析教材分析课后反思
![初中数学_《同底数幂的乘法》教学设计学情分析教材分析课后反思](https://img.taocdn.com/s3/m/155b026e5fbfc77da369b15a.png)
11.1同底数幂的乘法教案一、教学分析(一)、教学内容分析同底数幂的乘法是在学习了有理数的乘方之后,为了学习整式的乘法而学习的关于幂的一个基本性质,又是幂的三个性质中最基本的一个性质,学好了同底数幂的乘法,其他两个性质和整式乘法的学习就容易了。
同底数幂的乘法法则既是有理数幂的乘法的推广又是整式乘法的重要基础,在本章的学习中具有举足轻重的地位。
(二)、教学对象分析学生在七年级时就学习了乘方的意义,同底数幂的乘法法则的探究就是在乘方的意义的基础上继续的探究活动,学生容易理解同底数幂的乘法中指数的关系。
本节课的一个困难点是对于同底数幂的乘法法则猜想的验证过程。
二、教学目标(一)、知识与技能:1.能熟练地运用同底数幂的乘法法则进行计算,并能利用它解决简单的实际问题。
2.理解同底数幂的乘法法则的由来,掌握同底数幂的乘法法则。
(二)、过程与方法:经历探索同底数幂的乘法法则的过程,进一步体会幂的意义;在了解同底数幂的乘法运算的基础上,发现同底数幂的乘法性质。
(三)、情感态度与价值观:在推到同底数幂的乘法性质的过程中,培养学生观察、概括和抽象的能力。
三、教学重点、难点(一)、教学重点:同底数幂的乘法法则及其简单应用。
(二)、教学难点:理解同底数幂的乘法法则的推导过程。
四、教学过程(一)、复习旧知1、通常代数式na表示的意义是什么?其中a叫____,n叫_____,n a叫_____。
用乘方的形式表示如:(1)2×2 ×2=2( )(2)a·a·a·a·a =a( )2、计算:(1)(-2)2 = ______________ (2)(-2)3= ______________3、判断下面两组代数式是否相等。
(1)(-3)2和32(-3)3和33(2)(x-y)2和(y-x)2 (x-y)3和(y-x)3思考:这几个幂的正负有什么规律?设计意图:学生已经在七年级上册中学过乘方和整式的加减法,已经接触过用字母表示数,但这几个内容学生学过的时间过长,对知识的记忆可能有些模糊,因此教学第一环节我安排回顾旧知与思考,让学生回顾乘方的相关知识,为同底数幂的乘法的学习作铺垫。
《同底数幂的乘法》的教案
![《同底数幂的乘法》的教案](https://img.taocdn.com/s3/m/37caa8780622192e453610661ed9ad51f11d546c.png)
《同底数幂的乘法》的教案一、教学目标:1. 让学生理解同底数幂的乘法概念和性质。
2. 培养学生运用同底数幂的乘法法则进行计算和解决问题的能力。
3. 提高学生对幂的运算规律的认识,为学习更高阶的数学知识奠定基础。
二、教学内容:1. 同底数幂的乘法定义及性质2. 同底数幂的乘法法则3. 幂的运算规律4. 应用举例5. 练习与巩固三、教学重点与难点:1. 重点:同底数幂的乘法概念、性质及运算规律。
2. 难点:运用同底数幂的乘法法则解决实际问题。
四、教学方法:1. 采用讲授法,讲解同底数幂的乘法概念、性质和运算规律。
2. 运用案例分析法,分析应用举例,让学生更好地理解知识点。
3. 设计练习题,让学生在实践中巩固所学知识。
4. 组织小组讨论,培养学生合作学习的能力。
五、教学过程:1. 导入新课:通过复习幂的基本概念,引导学生进入同底数幂的乘法学习。
2. 讲解同底数幂的乘法概念、性质和运算规律,让学生理解和掌握。
3. 分析应用举例,让学生学会将理论知识应用于实际问题解决。
4. 设计练习题,让学生进行课堂练习,巩固所学知识。
5. 组织小组讨论,培养学生合作学习的能力。
6. 总结本节课所学内容,布置课后作业,让学生进一步巩固和拓展知识。
六、教学评价:1. 通过课堂提问、练习题和小组讨论,评估学生对同底数幂的乘法概念、性质和运算规律的理解程度。
2. 关注学生在解决问题时的思维过程和方法,评价其运用所学知识解决实际问题的能力。
3. 结合课后作业和拓展练习,了解学生对课堂所学知识的巩固情况。
七、教学资源:1. 教案、PPT、教学视频等教学资料。
2. 练习题、课后作业及拓展练习题。
3. 数学软件或工具,如计算器、数学软件等。
八、教学进度安排:1. 第1-2课时:讲解同底数幂的乘法概念、性质和运算规律。
2. 第3课时:分析应用举例,让学生学会将理论知识应用于实际问题解决。
3. 第4课时:设计练习题,让学生进行课堂练习,巩固所学知识。
人教版《同底数幂的乘法》教案
![人教版《同底数幂的乘法》教案](https://img.taocdn.com/s3/m/e1f5b884a48da0116c175f0e7cd184254a351b69.png)
最新人教版《同底数幂的乘法》教案一、教学目标1. 让学生理解同底数幂的乘法概念,掌握同底数幂相乘的运算法则。
2. 培养学生运用同底数幂的乘法解决实际问题的能力。
3. 提高学生的数学思维能力和运算能力。
二、教学内容1. 同底数幂的乘法定义及运算法则。
2. 实例讲解和练习。
三、教学重点与难点1. 教学重点:同底数幂的乘法概念及运算法则。
2. 教学难点:如何运用同底数幂的乘法解决实际问题。
四、教学方法1. 采用讲解、示范、练习、讨论、总结的教学方法。
2. 利用多媒体辅助教学,增强学生的直观感受。
3. 结合生活实例,激发学生的学习兴趣。
五、教学过程1. 导入新课:复习幂的定义,引出同底数幂的乘法概念。
2. 讲解与示范:讲解同底数幂的乘法运算法则,并进行示范。
3. 练习:学生独立完成练习题,巩固所学知识。
4. 讨论:分组讨论生活中的实际问题,运用同底数幂的乘法解决。
5. 总结:对本节课的内容进行总结,强调重点和难点。
6. 布置作业:布置适量作业,巩固所学知识。
六、教学策略1. 案例分析:通过分析具体案例,让学生理解同底数幂的乘法在实际问题中的应用。
2. 问题解决:引导学生运用同底数幂的乘法解决数学问题,提高学生的解决问题的能力。
3. 小组合作:组织学生进行小组合作,共同探讨同底数幂的乘法运算法则,培养学生的团队合作精神。
七、教学评价1. 课堂提问:通过提问了解学生对同底数幂的乘法的理解和掌握情况。
2. 作业批改:检查学生作业,评估学生对同底数幂的乘法的掌握程度。
3. 课堂表现:观察学生在课堂上的参与程度和表现,了解学生的学习状态。
八、教学资源1. 教材:最新人教版数学教材。
2. 多媒体课件:制作精美的多媒体课件,辅助教学。
3. 练习题库:准备一定量的练习题,供学生课后巩固练习。
九、教学进度安排1. 第1周:讲解同底数幂的乘法定义及运算法则。
2. 第2周:通过实例讲解和练习,巩固同底数幂的乘法知识。
3. 第3周:组织小组讨论,运用同底数幂的乘法解决实际问题。
【精品】(同底数幂的乘法)重点难点突破
![【精品】(同底数幂的乘法)重点难点突破](https://img.taocdn.com/s3/m/88b8139fc281e53a5902ff69.png)
《同底数幂的乘法》重点难点突破
研制者:王武军
学习重点:理解并掌握同底数幂乘法法则
知识要点:
1.回顾幂的意义。
a n表示n个a相乘,a叫做底数,n叫做指数,a n叫做幂。
2.同底数幂的概念。
同底数幂指的是底数相同的几个幂。
3.根据幂的意义初步进行简单同底数幂的运算。
4.结合幂的意义及初步运算推导同底数幂的乘法法则。
突破方式:观看《同底数幂的乘法》PPT
学习难点:运用同底数幂的乘法法则进行相关运算
知识要点:
5.底数为单项式的同底数幂乘法
(1)先找出相同的底数,底数不同时进行适当变形;
(2)再利用法则进行计算。
6.底数为多项式的同底数幂乘法
(1)将底数看做一个整体,看是否相同,若不同,需加以适当变形;(2)利用法则进行计算。
突破方式:收看微课《同底数幂的乘法》。
同底数幂的乘法
![同底数幂的乘法](https://img.taocdn.com/s3/m/415aa9d058f5f61fb73666c2.png)
例2 下面的计算对不对?如果不对,怎样改正?
√) (1)a3a3=a6 (
(2)b4b4=2b4
8 应为: b × ( )
设计意图:
通过问题引导学生反思对运 算性质特点的探求,积极思考和 回顾运算性质的得来过程,达到 对运算性质的剖析,增强理解.
× (3)x5+x5=x10 ( ) 应为:2x5 × (4)y7y=y7 ( )
)
同时让学生进一 步感受数学运算 的简洁美.
3 .说一说
4.由具体到抽象,让学生观察 同底数幂相乘的一般情况.
am×an=(a×a a)×(a×a a) (共有m个 a ) (共有n个a)
一般地,
5. 条件:①乘法 ②同底数幂 m × n m+n , a a =a (m,n都是正整数 ) 结果:①底数不变 ②指数相加
(5)a3a5=a15 (× )
应为:y8
应为:a8
× (6)(b+2)3(b+2)5(b+2)=b9+29 ( )
应为(b+2)9
例3 计算下列各式:
(1)4×2n×2 n-1 (2)(x+y-z)3(-x-y+z)2 (3)(-a)5×a 2n-3×(-a 2n)×(-a)2 (4)(x+y)3(-x-y)4(-x-y)5 (5)27×3 m-1 ×3m×32m (6)-a2×a×a5+a3×a2×a3
由学生自行讲练, 教师辅助.
五、应用拓展 1.
促进深化
1) )=2( 3 )x2( 5 ) 28=2( x2(7)=2(2)x2( 6 ) x( 4 ) =2( 4
设计意图:
2. 如何能过更简便的计算210的值? 答: 210=22x23x22x23=32x32=1024 3. am+n 可以写成哪两个因式的积?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同底数幂的乘法重难点突破
本节课设计了七个教学环节:复习回顾、探究新知、巩固落实、应用提高、拓展延伸、课堂小结、布置作业.
第一环节 复习回顾
活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:
活动目的:通过此活动,让学生回忆幂与乘法之间关系,即
a
n n a a a a 个⨯⨯⨯=,从而为下一步探索得到同底数幂的乘法法则提供了依据,培养学生知识迁移的能力.
活动的注意事项:教师要引导学生回忆七年级上册课本中有关乘方的知识,能把幂的形式与同底数幂的乘法之间的联系通过回忆后彻底搞清楚、搞透彻,弄明白.在最初回忆时,或许学生会出现思维上的盲点,教师根据具体情况,可以从最基本的数学形式上进行引导,如?23=,你是怎样知道的?等.而学生作为教学活动的主体,一定要积极进行思考,切不可仅听取他人意见.这个内容是探索新知识的主要依据,绝不能省略.
第二环节 探究新知
活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论.
活动目的:在很多人的印象中,代数除了繁琐的计算就是空洞的符号,是一门内容枯燥、脱离实际的课程,事实上,代数是一门具有丰富内容并且与现实世界、学生生活、其他科学联系十分紧密的学科,它的符号表示手段,深刻地揭示了存在于一类实际问题中的共性,有助于人们对现实世界的认识.本节课的内容正是体现了这一点,用字母揭示一般规律性的东西,是我们应该引导学生掌握的,
这是一种非常简洁的方式.
活动的注意事项:探求新知的过程应留给学生独立思考,在教学时要尽量留给学生更多的时间与空间,让他们充分发挥个人的主体作用.用字母表达式体现一般的规律性,学生不是首次接触,如原来所学的各种几何图形面积公式就是一种体现.在本节课中,让学生从数字入手,首先研究8
10可以写成怎样的乘积形式,7
10呢?如若把指数换为字母,又可以怎样理解?在此基础上,把底数换为分数、负数的形式,进而又换作字母的形式,由学生个人思考,小组合作得到结论,结论共享,使全班在认识上又有大的提高,从而得到一般的规律性结论表达式n
m a
m
n
⋅.由前面的层层铺垫得到结论并非难事,多数同学完全可以理解.字=
a
a+
母表达式中“m、n都是正整数”这一限定条件不必过分严格强调,随着今后所学数的范围的扩大,这一条件不起作用.让学生能识别并记忆表达式特征是关键.
第三环节巩固落实
活动内容:以基本习题为落脚点,让学生学会判别、应用所学字母表达式,以达到巩固新知的作用.
参照教材提供的例题,不断要求学生分辨,是否符合“同底数幂乘法”特征:①是乘法运算吗?②因式部分底数是多少?③对于(3)题中“-”你是怎样理解的?这道题仍是“同底数幂乘法”的形式吗?④你会处理(4)题中的指数问题吗?说一说你的处理方式.
活动目的:教科书例题是落实基本知识的主要习题类型,特别是刚刚接触,还没有消化吸收的新知识,理解不透彻往往会为今后的学习带来麻烦,所以在处理例题时,可设计一连串的问题串,由浅入深地进行剖析、分解,这样的设计帮助学生以表达式为依据,根据表达式特征会对形式变化的习题进行分析,从而找到突破口,实践次数多了,学生自然提高对问题的分析、解决能力,使自己在不知不觉中进步.
活动的注意事项:例题中后两个是难点,(3)题中或许会出现对“一”的不理解,无从下手,此时可与(1)题比较,负数作底数在形式上是加括号的,所以此时的“-”不存在于底数之中,因而底数为x,可以看作是同底数幂相乘,“-”在这里起到的是表示相反数的意义.
第四环节 应用提高
活动内容:1.完成课本“想一想”:p n m a a a ⋅⋅等于什么?
2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处.
3.独立处理例2,从实际情境中学会处理问题的方法.
4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成).
活动目的:进一步熟悉同底数幂的乘法性质,并运用同底数幂的乘法性质解决一些实际问题.
活动注意事项:扎扎实实的落实了字母表达式,学生已对本节主要知识有了清醒的认识,此处应留给学生充分的空间进行思考交流.由于知识难度跨度不大,思维上不会造成过度混乱,因而不需花费过多时间.
第五环节 拓展延伸
活动内容:写成幂的形式: (1)()38
77⨯-; (2)()37
66⨯-; (3)()()4
35555-⨯⨯-. 活动目的:面对底数互为相反数时怎样把乘积结果写为幂的形式?这也是同底数幂乘法中会遇到的问题.本环节根据学生情况选作.
活动的注意事项:对于底数互为相反数的这种形式,学生刚一接触可能思想跳跃性较大,有无从下手的感觉,而引导他们从幂的意义的角度去分析自然不难得到:“负数的偶次幂为正,负数的奇次幂为负”的结论.而对于这一结论的认识单凭引导得出,在学生脑海中的映象自然不清晰,应鼓励学生先去探索,分组合作,尽量在小组内合作消化掉.对于个别合作不佳的小组或数学抽象思维不强的同学,仍需教师进行指导,从而让学生体会到遇到这类问题应先确定结果符号,再进行指数相加.
第六环节 课堂小结
活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受.
活动目的:学生畅谈自己学习所得的新知识与个人切身体会,教师予以鼓励,激发学生的学习兴趣与自信心,特别是课上这种由特殊到一般的知识推导方式,更是学数学应掌握的必要方法.
活动的注意事项:发挥学生学习的主体地位,从他们已有的知识结构出发,通过观察、操作、归纳总结等活动,来探究新知,小结中更要体现这一点,教师只是起适时的点拨作用.
第七环节布置作业
1.完成课本习题1.1中所有习题.
2. 拓展作业:你能尝试运用今天所学的同底数幂的乘法解决下面的问题吗
(1)()()b
a
b-
⋅
-2
a
-2;(2)()()b
b
a-
⋅
a。