偏振光的研究

合集下载

光偏振现象的研究实验报告

光偏振现象的研究实验报告

光偏振现象的研究实验报告一、引言光偏振现象是指光波在传播过程中,振动方向只在一个平面内的现象。

光偏振现象的研究对于理解光学原理及其应用具有重要意义。

本实验旨在通过测量不同偏振方向下透射光强度的变化,探究光偏振现象的基本原理及其应用。

二、实验原理1. 光偏振概念当一束光波在传播过程中,振动方向只在一个平面内时,称为偏振光。

如果此时所选平面与传播方向垂直,则称为线性偏振光。

2. 偏振片偏振片是一种能够选择或制造出特定偏振方向的器件。

常见的有各种材料制成的线性偏振片、四分之一波片和半波片等。

3. 马吕斯定律马吕斯定律指出:当线性偏振光通过另一个线性偏振片时,透射光强度与两者间夹角θ满足cos2θ关系。

4. 假设条件本实验中所涉及到的所有器件均为理想器件,忽略了实际器件的各种不完美因素。

三、实验装置1. He-Ne激光器2. 偏振片(线性偏振片、四分之一波片、半波片)3. 透镜4. 探测器四、实验步骤1. 将He-Ne激光器放置于台架上,开启电源,调节激光束方向,使其垂直于偏振片的传播方向。

2. 将线性偏振片插入激光束路径中,并旋转偏振片,观察透射光强度的变化。

3. 将四分之一波片插入激光束路径中,并旋转四分之一波片和线性偏振片,观察透射光强度的变化。

4. 将半波片插入激光束路径中,并旋转半波片和线性偏振片,观察透射光强度的变化。

5. 通过探测器测量不同角度下透射光强度,并记录数据。

五、实验结果与分析1. 线性偏振片当线性偏振片与激光束的偏振方向垂直时,透射光强度为0。

随着偏振片旋转,透射光强度呈现出cos2θ的变化规律,符合马吕斯定律。

2. 四分之一波片四分之一波片能够将线性偏振光转化为圆偏振光。

当线性偏振片与四分之一波片的快轴和慢轴夹角为45°时,透射光强度最大;当夹角为0°或90°时,透射光强度为0。

3. 半波片半波片能够将线性偏振光转化为相反方向的线性偏振光。

当线性偏振片与半波片的快轴和慢轴夹角为45°时,透射光强度最大;当夹角为0°或90°时,透射光强度为0。

光的偏振实验方法

光的偏振实验方法

光的偏振实验方法光的偏振是光学中的重要现象,它涉及到光的传播方向和振动方向的关系。

为了研究和观察光的偏振现象,科学家们开发了许多实验方法。

本文将介绍一些常用的光的偏振实验方法。

一、马吕斯交叉法马吕斯交叉法是一种简单而直观的光的偏振实验方法。

所需装置包括一个偏振镜和一对交叉的光栅。

实验步骤:1. 将光栅放置在光路中,使光通过光栅后形成一对交叉的图案。

2. 调整偏振镜的角度,观察图案的变化。

3. 当偏振镜与光栅之间的角度达到一定条件时,图案将呈现出清晰的波纹状。

通过观察图案的变化,我们可以判断光的偏振性质以及偏振方向。

二、尼古拉斯法尼古拉斯法是一种利用偏振片的实验方法,可以用来测量光的振动方向。

实验步骤:1. 准备一对偏振片,将它们的传递轴垂直放置。

2. 将待测光线通过第一个偏振片,使其只能通过一个方向的振动。

3. 调整第二个偏振片的角度,观察透过第二个偏振片的光的强度变化。

4. 当第二个偏振片的传递轴与第一个偏振片之间的夹角为90°时,光的强度将最小。

通过调整第二个偏振片的角度,我们可以确定光的振动方向。

三、双折射和波片法双折射和波片法是一种通过使用双折射晶体和波片来产生和分析偏振光的实验方法。

实验步骤:1. 使用双折射晶体(如方解石)产生偏振光。

2. 将产生的偏振光通过波片(如四分之一波片或半波片)进行调整。

3. 观察光的传播方向和振动方向的变化,使用适当的检测器记录实验结果。

通过对偏振光的产生、调整和分析,我们可以研究光的偏振现象和性质。

总结:光的偏振实验方法有很多种,其中马吕斯交叉法、尼古拉斯法和双折射和波片法是常用的实验手段。

通过这些实验方法,科学家们能够观察和研究光的偏振现象,从而深入理解光的性质和行为。

对于光学研究和实际应用而言,光的偏振实验方法具有重要的意义。

注:本文介绍的实验方法仅为举例,实际实验操作应根据具体情况和实验要求进行调整。

偏振光的研究实验报告

偏振光的研究实验报告

偏振光的研究实验报告偏振光的研究实验报告引言:偏振光是指光波中电场矢量在空间中的振动方向固定的光。

它在光学领域有着广泛的应用,包括材料的表征、光学器件的设计和光通信等。

本实验旨在通过研究偏振光的性质和特点,探索其在实际应用中的潜力。

实验一:偏振片的特性在实验中,我们首先使用了一块偏振片。

偏振片是一种能够选择性地通过特定方向偏振光的光学器件。

我们将偏振片放置在光源前方,并逐渐旋转它。

观察到当光通过偏振片时,光强度会随着旋转角度的变化而发生明显的变化。

这说明偏振片能够选择性地通过特定方向的偏振光。

实验二:马吕斯定律的验证马吕斯定律是描述光的偏振现象的基本定律之一。

它表明,当一束偏振光通过一个偏振片时,出射光的偏振方向与入射光的偏振方向之间的夹角保持不变。

我们使用了两块偏振片,并将它们叠加在一起。

通过旋转第二块偏振片,我们观察到光的强度随着旋转角度的变化而发生周期性的变化。

这一结果验证了马吕斯定律的正确性。

实验三:偏振光的干涉在实验中,我们使用了一束激光器发出的偏振光,并将其分成两束,分别通过两个不同的光程。

然后,我们将两束光重新合并在一起。

通过调节两束光的光程差,我们观察到干涉现象。

当光程差等于整数倍的波长时,干涉现象最为明显。

这一实验结果说明了偏振光的干涉现象是由于光的相位差引起的。

实验四:偏振光的旋光性质偏振光的旋光性质是指光在通过旋光物质时,偏振方向会发生旋转的现象。

我们使用了一块旋光片,并将它放置在光源前方。

通过观察光通过旋光片后的偏振方向,我们发现光的偏振方向确实发生了旋转。

这一实验结果验证了偏振光的旋光性质。

结论:通过以上实验,我们对偏振光的性质和特点有了更深入的了解。

偏振光的研究不仅有助于我们理解光的本质,还在许多实际应用中发挥着重要作用。

例如,在材料的表征中,偏振光可以用来分析材料的结构和性质。

在光学器件的设计中,偏振光可以用来控制光的传输和调制。

在光通信中,偏振光可以用来提高信号传输的可靠性和速率。

光的偏振偏振光的实验研究

光的偏振偏振光的实验研究

光的偏振偏振光的实验研究光的偏振是指光波的振动方向只在特定平面内进行的现象。

而偏振光则是指只在一个特定方向上振动的光波。

在光学领域中,对光的偏振进行研究对于理解光的性质和应用有着重要的意义。

本文将探讨光的偏振以及偏振光的实验研究。

一、光的偏振的原理光是由电磁波组成的,而电磁波包括电场和磁场的振动。

在垂直方向上,光波的电场和磁场都是垂直于传播方向的。

然而,在光的传播过程中,如果对光波的电场进行了特定方向的约束,那么光波的电场就会以特定的方向进行振动,这就是光的偏振现象。

光的偏振可以通过多种方式实现,其中最常见的方式是通过偏振片。

偏振片是由具有一定特性的材料制成的光学元件,能够选择性地阻止某些方向的光波通过,只允许特定方向的光波通过。

常见的偏振片有线性偏振片和圆偏振片。

二、实验研究光的偏振的方法1. 偏振片实验进行偏振实验的基本方法是使用两块偏振片。

首先,将两块偏振片的方向调整为平行,这样光线就可以通过。

然后,逐渐旋转一块偏振片,观察光的强度变化。

当两块偏振片的方向垂直时,光线将完全被阻挡,无法通过。

通过这个实验,我们可以观察到光的偏振现象,并且可以确定光的偏振方向和光的强度随偏振片方向变化的关系。

2. 波片实验波片是另一种常用的用于研究光的偏振的实验工具。

波片可以将线偏振光转化为圆偏振光或者将圆偏振光转化为线偏振光。

在波片实验中,首先,将线偏振光通过一块线偏振片,将其转化为线偏振光。

然后,将转化后的线偏振光通过一块波片,观察光的偏振状态的变化。

根据波片的不同性质,光的偏振状态可能会改变。

通过这个实验,我们可以研究光的偏振状态的变化规律以及波片对光的偏振的影响。

三、光的偏振在实际应用中的意义光的偏振在许多领域中都有着重要的应用,如光学通信、液晶显示、偏振镜等。

举个例子,在液晶显示技术中,通过控制偏振态使得液晶分子的取向发生变化,进而可以对光的透射进行调节,实现图像的显示。

此外,光的偏振还可以用于解析光束中的信息。

光的偏振实验了解光的偏振现象

光的偏振实验了解光的偏振现象

光的偏振实验了解光的偏振现象光的偏振现象是光波在传播过程中振动方向的定义。

通常,光的波动是沿着垂直于传播方向的所有方向均匀地振动。

然而,在某些情况下,光的振动方向可以被约束在一个特定的方向上,这就是光的偏振现象。

为了进一步了解光的偏振现象,我们可以进行实验来观察和研究光的偏振行为。

以下将介绍几种常见的光的偏振实验方法。

一、马吕斯法马吕斯法是最早用来研究光的偏振的实验方法之一。

该方法利用偏光镜和分析片的组合,可以将线偏振光转换成圆偏振光或者反之。

通过调节偏光镜和分析片的相对角度,我们可以观察到转换前后光的强度的变化,从而研究光的偏振现象。

二、振动起偏器法振动起偏器法是通过使用起偏器和分析器来观察光的偏振现象。

起偏器是一个偏振镜,可以限制光只能在一个特定方向上振动。

当通过起偏器的偏振光再经过分析器时,根据分析器的角度调节,我们可以观察到光的强度的变化,从而探究光的偏振特性。

三、双折射现象双折射是光线通过一些特殊的材料时产生的光的偏振现象。

常见的双折射材料包括石英晶体和冰晶石等。

通过将光线通过这些材料,我们可以观察到光线被分成两束具有不同振动方向的光线,这种现象被称为光的双折射。

通过测量这两束光线的振动方向,可以研究光的偏振现象。

四、干涉法干涉法是一种通过干涉现象来研究光的偏振特性的方法。

通过使用光路调节器和干涉仪,我们可以观察到在特定条件下,不同偏振方向的光线在干涉仪中产生干涉条纹。

通过分析和测量这些干涉条纹,可以获得有关光的偏振性质的有用信息。

通过以上的实验方法,我们可以更加深入地了解光的偏振现象。

这些实验方法不仅帮助我们理解光的振动方式,还在许多领域中有着重要的应用,如光学通信、显微镜下的观察等。

总结光的偏振现象是光学中非常重要的一个概念。

通过实验方法,我们可以对光的偏振行为有更深入的认识。

马吕斯法、振动起偏器法、双折射现象和干涉法是常用的实验方法,它们各自从不同的角度帮助我们理解光的偏振现象。

偏振光的研究_实验报告

偏振光的研究_实验报告

一、实验目的1. 观察光的偏振现象,加深对光的偏振性质的认识。

2. 学习并掌握偏振光的产生、传播、检测和调控方法。

3. 理解马吕斯定律及其在实际应用中的意义。

4. 掌握使用偏振片、波片等光学元件进行偏振光实验的基本技能。

二、实验原理1. 光的偏振性质:光是一种电磁波,具有横波性质。

在光的传播过程中,光矢量的振动方向相对于传播方向可以保持不变(线偏振光)、绕传播方向旋转(圆偏振光)或呈现椭圆轨迹(椭圆偏振光)。

2. 偏振光的产生:自然光通过偏振片后,可以产生线偏振光。

当自然光入射到某些光学各向异性介质(如偏振片、波片等)时,由于不同方向的光矢量分量在介质中的折射率不同,从而导致光矢量振动方向发生偏转,形成偏振光。

3. 马吕斯定律:当一束完全线偏振光通过一个偏振片时,透射光的光强与入射光的光强和偏振片透振方向与入射光光矢量振动方向的夹角θ之间的关系为:\( I = I_0 \cdot \cos^2\theta \),其中\( I \)为透射光的光强,\( I_0 \)为入射光的光强。

三、实验仪器与设备1. 自然光源(如激光器)2. 偏振片(两块)3. 波片(1/4波片、1/2波片)4. 光具座5. 光屏6. 光电探测器7. 数据采集与分析软件四、实验步骤1. 观察线偏振光:将自然光源发出的光通过偏振片,观察光屏上的光斑。

然后逐渐旋转偏振片,观察光斑的变化,验证马吕斯定律。

2. 观察圆偏振光:将1/4波片放置在偏振片和光屏之间,使1/4波片的光轴与偏振片的透振方向夹角为45°。

观察光屏上的光斑,验证圆偏振光的产生。

3. 观察椭圆偏振光:将1/4波片的光轴与偏振片的透振方向夹角调整为22.5°,观察光屏上的光斑,验证椭圆偏振光的产生。

4. 测量偏振片透振方向:利用光电探测器测量偏振片的透振方向,并与理论计算值进行比较。

5. 分析实验数据:使用数据采集与分析软件对实验数据进行处理,分析偏振光的特性,验证实验原理。

偏振光现象的研究实验报告

偏振光现象的研究实验报告

偏振光现象的研究实验报告一、实验目的本实验旨在通过观察和分析偏振光现象,深入理解光的偏振性质,掌握偏振片和检偏器的使用方法,并学会分析和解释实验数据。

二、实验原理偏振光是一种特殊的光线,其电矢量或磁矢量在某一固定方向上振动。

自然光在不受外力作用的环境中产生,其光波的振动方向是随机的,既有水平方向的振动,也有垂直方向的振动。

而偏振光则只有在一个特定方向上存在振动。

三、实验步骤1. 准备实验器材:光源、偏振片、检偏器、屏幕、测量尺、坐标纸。

2. 打开光源,使光线通过偏振片,观察光线的变化。

3. 旋转偏振片,观察光强的变化,找到使光强最弱的偏振角度。

4. 将检偏器旋转至与偏振片相同的偏振角度,观察光强的变化。

5. 记录实验数据,绘制光强与偏振角度的关系图。

6. 分析实验结果,得出结论。

四、实验结果与分析1. 实验结果通过实验,我们观察到当自然光通过偏振片后,光线变为偏振光,其电矢量或磁矢量在某一固定方向上振动。

旋转偏振片时,光强会发生变化,当偏振片的偏振方向与检偏器的偏振方向一致时,光强达到最小值。

记录实验数据并绘制了光强与偏振角度的关系图。

2. 结果分析根据实验结果,我们可以得出以下结论:(1)自然光通过偏振片后,变为偏振光,其电矢量或磁矢量在某一固定方向上振动。

这说明偏振片具有使光线偏振的作用。

(2)旋转偏振片时,光强发生变化,当偏振片的偏振方向与检偏器的偏振方向一致时,光强达到最小值。

这说明检偏器具有检测偏振光的作用,当检偏器的偏振方向与偏振光的偏振方向一致时,透射的光强最小。

(3)根据实验数据绘制的光强与偏振角度的关系图可以看出,当偏振片的偏振方向与检偏器的偏振方向一致时,光强最小,此时两者之间的夹角为90度。

这说明检偏器的偏振方向与偏振光的偏振方向垂直时,透射的光强最大。

五、结论总结本实验通过观察和分析偏振光现象,深入理解了光的偏振性质。

实验结果表明,自然光通过偏振片后变为偏振光,其电矢量或磁矢量在某一固定方向上振动;旋转偏振片时,光强发生变化,当偏振片的偏振方向与检偏器的偏振方向一致时,光强达到最小值;根据实验数据绘制的光强与偏振角度的关系图可以看出,当两者之间的夹角为90度时,透射的光强最大。

偏振光的观察与研究实验原理

偏振光的观察与研究实验原理

偏振光的观察与研究实验原理
偏振光是光学中的一个重要概念,它涉及到光的振动方向和传播方向的不对称性。

以下是偏振光的观察与研究实验原理:
1. 偏振光的定义:偏振光是指光的振动方向相对于传播方向具有不对称性。

只有横波才能产生偏振现象,而光波是一种电磁波,因此具有偏振性质。

2. 偏振光的分类:根据振动方向与传播方向的关系,偏振光可以分为自然光、线偏振光、局部偏振光、圆偏振光和椭圆偏振光五种。

3. 产生偏振光的方法:
利用光的反射和折射:当光在界面上反射或折射时,光的振动方向会发生变化。

通过调整入射角,可以在特定条件下获得线偏振光。

当入射角为布雷斯特角时,反射光成为完全线偏振光。

利用光学棱镜:尼科尔棱镜和格兰棱镜等光学棱镜可以将自然光转化为线偏振光。

利用偏振片:偏振片可以由自然光得到线偏振光,通过改变偏振片的放置角度,可以得到不同偏振态的光。

4. 改变光的偏振态的元件:波晶片。

平而偏振光垂直入射晶片,如果光轴平行于晶片表而,会产生双折射现象。

利用此特性,可以通过改变波晶片的放置角度来改变出射光的偏振态。

在实验中,通常会使用各种设备来观察和研究偏振光,例如偏振分束器、检偏器等。

通过调整这些设备的参数和角度,可以观察到不同偏振态的光的特性,进一步了解光的偏振性质。

总之,偏振光的观察与研究实验主要涉及光的反射、折
射、通过光学棱镜和偏振片产生偏振光的方法,以及利用波晶片改变光的偏振态的原理。

通过这些实验,可以深入了解光的偏振性质及其在光学中的应用。

偏振光的研究

偏振光的研究

偏振光的研究偏振光是指在特定方向上振动的电磁波。

光波一般以横波的形式传播,其中的电场矢量在垂直于传播方向的平面内振动。

偏振光的研究对于了解光的本质、光学仪器的设计和光学通信等领域都具有重要意义。

偏振光的研究可以追溯到19世纪初期,法国物理学家亚利和卡工合作发现了光的偏振现象,并提出了偏振理论。

此后,英国物理学家斯托克斯进一步发展了偏振光的研究。

斯托克斯做出了关于偏振光的数学描述,并提出了斯托克斯矢量的概念,用于描述光的偏振状态。

偏振光的性质包括偏振方向、偏振度和光强度等。

偏振方向指的是电场矢量振动的方向,可以通过偏振片进行调节。

根据偏振方向的不同,偏振光可以分为水平偏振、垂直偏振、斜线偏振和圆偏振等。

偏振度是描述光的偏振程度的物理量,它表示电场矢量在某一方向上的分量占总电场矢量的比例。

光强度则是描述光的能量的物理量,它与光的振幅和偏振度有关。

偏振光的产生方式主要有自然产生和人工产生两种。

自然产生的偏振光包括自然光通过自然界中的物体,如水面、大气等散射而产生的偏振光。

人工产生的偏振光则是通过偏振器或特定光源产生的。

常见的人工产生偏振光的方法有偏振片、偏振棱镜、偏振滤波器和波片等。

偏振光的研究在科学和工程技术中有广泛的应用。

在科学研究方面,偏振光的研究可用于研究光的传播、干涉和干扰等现象,以及材料的光学性质研究。

在工程技术中,偏振光的研究可用于光学仪器的设计,例如偏振显微镜、偏振滤波器和光通信中的光纤激光器等。

总之,偏振光的研究在光学领域中具有重要意义,它帮助我们了解光的特性和行为,为光学技术的发展和应用提供了基础。

在日常生活中,我们也可以通过一些实验和观察,感受到偏振光的存在和特性。

偏振光检测研究

偏振光检测研究

偏振器件 米勒矩阵
出射光 斯托克斯矢量
偏振器件:使入射光的偏振参量改变的器件 米勒矩阵M:用来描述偏振器件作用的矩阵
不同的偏振器件米勒矩阵不同
出射光的斯托克斯矢量和入射光的斯托 克斯矢量满足关系式:
Sout M Sin
S0' S1'
M11 M 21
M12 M 22
M13 M 23
M14 S0 S0
已知,光波从介质表面反射(透射)时,其偏振 态可能发生变化,偏振状态的改变与入射光的状
态、介质表面状态有关。 E Acos(t kz 0)
不同物体或同种物体的不同状态(粗糙度、空 隙度、含水量)可能产生不同的偏振状态。 采用偏振成像方法,可提取其偏振信息并加以利用。
在军事目标识别中,目标与背景的对比是个 重要因素。有时可以对目标进行伪装,但若同时 采用偏振探测和光度探测,大部分的军事目标都 可以被识别。
有人用紫外到近红外段的波长对置于沙滩背景 下的一群士兵和一辆军用伪装车蒙皮做了偏振测量 和光度测量,比较偏振和光度的探测能力。
对于军事车辆的伪装漫反射蒙皮,当将反射 率视为视角和波长的函数时,反射率为常量。当 将偏振度视为散射角的函数时,偏振度会有很大 的不同。
结果表明:由于沙中低吸收、强散射的二氧 化硅致使沙地显得明亮(高反射率),军事车辆 和士兵衣服具有52%高偏振度、低反射率,在低 偏振度(多数小于10%)、高反射率的沙滩沙地上非 常容易被识别。
I
Q
此组参量可以表示包括偏振
U
度在内的任意偏振光的状态
V
I、Q、U、V 都具有光强度的量纲。
I —表示总光强度 Q —表示X轴方向直线偏振光分量 U —表示450方向直线偏振光分量 V —表示右旋园偏振光分量

偏振光的性质与应用研究

偏振光的性质与应用研究

偏振光的性质与应用研究偏振光是指在传播方向上的电矢量在空间分布上有一定规律的光波。

它与自然光相比,具有一些独特的性质和应用。

本文将深入探讨偏振光的性质以及其在许多领域的应用研究。

一、偏振光的性质1. 偏振状态偏振光的一个重要特性是其偏振状态。

偏振状态描述了电矢量在空间内振动的方向和方式。

常见的偏振状态有线偏振、圆偏振和椭圆偏振。

线偏振光的电矢量在平面上振动,其方向可以是任意角度;圆偏振光的电矢量在平面上绕传播方向旋转,其旋转方向可以是顺时针或逆时针;椭圆偏振光则是一种既有振动方向又有旋转方向的偏振光。

2. 偏振光的传播特性偏振光在传播过程中具有一些独特的传播特性。

例如,偏振光在与晶体或其他介质相互作用时会发生双折射现象,也就是将一束入射线分成两束不同方向的偏振分量。

这种双折射现象可以被利用来制造偏振器件和调节光信号的偏振状态。

此外,偏振光还具有折射率与偏振状态相关的性质,这对光学器件的设计和应用起着重要作用。

3. 偏振光的相位差当两束具有不同偏振状态的光波相遇时,它们之间的相位差会导致干涉现象的出现。

相位差可以根据不同偏振状态之间的光程差来计算。

干涉现象是偏振光在显微镜和干涉仪等领域应用的基础,也是测量物质性质和形成图像的重要工具。

二、偏振光的应用研究1. 光通信偏振光在光通信领域中具有重要应用。

由于偏振光的传播特性稳定且不容易受到外界干扰,可以提高光通信系统的传输速率和容量。

此外,应用偏振分割复用技术可实现多信道的同时传输,并减少系统复杂度和成本。

因此,研究偏振光在光通信中的性质和应用对提高通信效率和可靠性至关重要。

2. 光电显示与光存储器偏振光在光电显示和光存储器领域也有广泛应用。

通过控制偏振器和液晶屏之间的相对位置和角度,可以实现高分辨率和高对比度的显示效果。

而在光存储器中,偏振光通常用于记录和读取信息。

通过利用偏振光的传播特性和相位差,可以实现大容量和快速读写的光存储器。

3. 光学显微镜偏振光在生物和材料科学中的显微镜研究中起着重要作用。

偏振光的观察与研究实验报告数据(精选10篇)

偏振光的观察与研究实验报告数据(精选10篇)

偏振光的观察与研究实验报告数据偏振光指的是只在一个平面上振动的光,它的传播方式与普通光有所不同。

由于其具有特殊的偏振状态,因此可以在各个领域中发挥重要作用。

在本次实验中,我们对偏振光的观察与研究进行了探究。

一、实验目的1. 学习偏振光的概念及其传播方式。

2. 观察线偏振器和波片对偏振光的影响。

3. 研究偏振光的干涉现象。

二、实验仪器及材料1. 两个偏光片2. 一块玻璃板3. 一块亚克力板4. 一束激光光源5. 一个手机屏幕三、实验步骤1. 将一块玻璃板和一块亚克力板插入两个偏光片之间,调整偏光片的方向,观察得到的光的强度变化。

2. 将一个偏光片放置在激光器前,记录得到的光的强度值,并将其称为“I”。

然后将另一个偏光片放在激光光路中,并逐渐旋转它的方向。

记录得到的光的强度值,并将其称为“T”。

3. 将一个手机屏幕放置在两个偏光片之间,逐渐旋转其中一个偏光片的方向。

观察手机屏幕的显示情况。

4. 在两个偏光片之间插入一块玻璃板,然后将其中一个偏光片旋转一定的角度,并记录得到光的强度值。

四、实验结果1. 调整偏光片的方向之后,得到的光的强度会发生变化,实验表明,当两个偏光片的方向垂直时,通过的光线最弱,当两个偏光片的方向相同时,通过光线最强。

2. 在实验过程中,我们发现,当两个偏光片的方向偏离90度时,通过的光线几乎消失。

这说明当光的振动方向被偏振后,只有振动方向与偏振方向一致的光才能通过。

3. 在手机屏幕的观察实验中,我们发现当两个偏光片的方向相同时,手机屏幕显示为亮屏,而当两个偏光片的方向垂直时,手机屏幕显示为黑屏。

这说明手机屏幕与偏振光的作用原理是相似的。

4. 在偏振光的干涉实验中,我们发现,在通过玻璃板的偏振光中,存在两个方向的振动状态,这两个方向的振动状态会互相干涉,导致光线强度的变化。

五、实验结论本次实验通过观察偏振光的传播方式,观察了线偏振器和波片对偏振光的影响,以及研究了偏振光的干涉现象。

偏振光的研究实验结论

偏振光的研究实验结论

偏振光的研究实验结论
偏振光是一种具有特殊振动方向的光,它的振动方向与光波传播方向垂直。

偏振光可以通过偏振片等光学元件进行筛选和分析。

在研究偏振光的实验中,我们得出了以下结论:
1. 光波的偏振状态:光波的偏振状态可以分为线偏振光、圆偏振光和椭偏振光三种。

其中,线偏振光的振动方向只有一种,圆偏振光的振动方向沿着一个圆圈运动,椭偏振光的振动方向沿着一个椭圆运动。

2. 偏振片的作用:偏振片是一种光学元件,它可以通过筛选光波的振动方向来分离不同的偏振状态。

在实验中,我们使用偏振片来筛选光波的振动方向,并观察通过偏振片后的光强度变化。

3. 偏振片的透射率:偏振片的透射率与光波的振动方向有关。

当光波的振动方向与偏振片的主轴方向平行时,光线可以透过偏振片;当光波的振动方向与偏振片的主轴方向垂直时,光线不能透过偏振片。

4. 双折射现象:双折射是一种光的传播现象,指当光线通过具有双折射性质的物质时,光线会被分成两束不同的光线,即普通光和振动方向垂直的光(称作光的快轴和慢轴)。

5. 波片的作用:波片是一种光学元件,它可以改变光波的偏振状态。

在实验中,我们使用波片来调整光波的偏振状态,从而观察不同偏振状态下的光强度变化。

综上所述,偏振光的研究实验得出了很多重要结论,这些结论对于了解光学现象和应用具有重要意义。

偏振光研究报告实验报告

偏振光研究报告实验报告

偏振光研究报告实验报告偏振光研究报告一、实验目的本实验旨在研究偏振光的特性,通过观察和分析偏振光的干涉现象,验证光的偏振原理,并探讨其在光学领域中的应用。

二、实验原理偏振光是光的一种特殊状态,其电矢量在传播方向上具有一定的振动方向。

偏振光的干涉是利用两个或多个偏振光的叠加产生相干光,通过观察干涉现象可以研究偏振光的性质。

本实验将通过偏振光干涉实验来验证光的偏振原理。

三、实验步骤1.准备实验器材:偏振片、起偏器、检偏器、光源、光导纤维、屏幕等。

2.将光源、偏振片、起偏器、检偏器按照一定顺序连接起来,确保光路畅通。

3.打开光源,调整偏振片和起偏器的角度,观察干涉现象。

4.分别改变偏振片和检偏器的角度,观察干涉现象的变化。

5.利用光导纤维将光引入屏幕,记录干涉条纹的形状和分布。

6.分析实验数据,得出结论。

四、实验结果与分析1.实验结果在实验中,我们观察到了明显的干涉现象。

当偏振片和检偏器的角度合适时,屏幕上呈现清晰的干涉条纹。

随着偏振片和检偏器角度的变化,干涉条纹的形状和分布也发生了明显的变化。

通过光导纤维的引导,我们成功地将光引入屏幕,并记录下了干涉条纹的形状和分布。

2.结果分析通过实验结果可以看出,偏振光的干涉现象是真实存在的。

当两个偏振光的振动方向相互垂直时,它们将产生相互干扰的现象,导致屏幕上出现明暗相间的条纹。

这些条纹的形状和分布取决于偏振片和检偏器的相对角度以及光的波长等因素。

此外,我们还发现偏振光的干涉在光学领域中具有重要的应用价值。

例如,通过测量干涉条纹的形状和分布,我们可以推断出光的偏振状态和传播方向等信息。

此外,利用偏振光的干涉还可以实现光学加密和图像处理等功能。

五、结论本实验通过观察和分析偏振光的干涉现象,验证了光的偏振原理。

实验结果表明,偏振光的干涉是一种有效的光学现象,可以用于研究光的性质和光学信号处理等领域。

在未来的研究中,我们可以进一步探讨偏振光的干涉机制以及其在光学领域中的应用前景。

偏振光的观察与研究

偏振光的观察与研究

偏振光的观察与研究
什么是偏振光?
偏振光(polarized light)是一种由一定角度的线性电场改变方向的平面电磁波,
具有波动不同方向的一组特定的交叉电磁场,每对电磁场的矢量都可以通过单独的圆柱坐
标表示。

在空间里,由两个有偏振性的矢量交叉形成的波析出了偏振电磁波,形成一组相离、有序及同方向性的点阵模式,这就是“偏振性”。

由于水平方向(0°)与垂直方向(90°)的矢量构成了偏振光,并被描述为偏振状态,了解这类光及其波动使用偏振角(angle of polarization)是很重要的。

因此,观
察和研究这类光的手段,就是用偏振滤片,根据其波的方向,经特别设计的物理装置进行
分类处理,从而实现偏振光的观察与研究。

关于偏振光的观察与研究,以偏振仪(Polarimeter)为基础的实验仪器技术具有很
大的潜力,可以用于测量被测样品的偏振性质,以细微构成偏振光变化和极性等各种物质。

例如,偏振仪常用于测量一种物质如果影响该物质的偏振特征,以及这种物质在不同
相应偏振仪条件下的变化情况;偏振仪可以测量细微的极性变化,用以分析构成偏振光的
微小事件;偏振仪也可以用来表征物质的半导体折射率等性质。

此外,偏振仪还可以用于
偏振光学显微镜(Polarized Light Microscope)、偏振干涉仪(Polarized Interference)等应用中。

因此,观察与研究偏振光是十分必要的,通过偏振仪,我们可以深入了解光在特定环
境中偏振性质,以及光在不同环境下发生的变化,从而进行有效的研究。

偏振光的研究 实验报告

偏振光的研究 实验报告

偏振光的研究实验报告偏振光的研究实验报告引言:偏振光是一种特殊的光波,其振动方向在一个平面内,与普通光波相比,具有更强的定向性。

在过去的几十年里,偏振光的研究得到了广泛的关注和应用。

本实验旨在通过对偏振光的实验研究,深入了解其特性和应用。

实验一:偏振片的特性在本实验中,我们首先使用了一块偏振片。

偏振片是一种能够选择性地通过或阻挡特定方向振动的光的装置。

我们将光源发出的自然光通过偏振片,观察到了光的强度发生了明显的变化。

这是因为偏振片只允许与其方向平行的光通过,而将垂直于其方向的光阻挡。

通过旋转偏振片,我们可以观察到光的强度随着角度的变化而变化。

实验二:偏振光的产生在本实验中,我们使用了一束自然光通过一个偏振片,将其转换为偏振光。

然后,我们使用另一个偏振片,将偏振光的方向进行调整。

我们观察到,当两个偏振片的方向相同时,光通过的强度最大;而当两个偏振片的方向垂直时,光通过的强度最小。

这表明,偏振光的方向可以通过调整偏振片的方向来改变。

实验三:偏振光的应用偏振光在许多领域中有着广泛的应用。

例如,在光学显微镜中,通过使用偏振光可以增强图像的对比度,使得细小结构更加清晰可见。

在液晶显示器中,偏振光的旋转可以控制光的透过与阻挡,实现像素点的开闭。

此外,偏振光还被应用于光学通信、光学传感器等领域。

实验四:偏振光的检测在本实验中,我们使用了偏振片和偏振光检测器来测量光的偏振状态。

通过旋转偏振片,我们可以调整光的偏振方向,而偏振光检测器可以测量到通过的光的强度。

通过实验数据的分析,我们可以得到光的偏振状态的信息,例如偏振方向和偏振度。

结论:通过本实验,我们深入了解了偏振光的特性和应用。

偏振光具有较强的定向性,可以通过偏振片的选择和调整来改变其方向。

在光学领域,偏振光的研究和应用已经取得了重要的进展,并在许多领域发挥着重要的作用。

通过对偏振光的深入研究,我们可以进一步拓展其应用,并为光学技术的发展做出贡献。

致谢:在此,我要感谢实验室的老师和同学们对本实验的支持和帮助。

光的偏振实验

光的偏振实验

光的偏振实验光的偏振是指光波在传播过程中的振动方向。

对于自然光而言,它是沿着各个方向振动的,而偏振光则是只在一个特定方向振动的光。

光的偏振实验是通过一系列实验手段来研究光的偏振性质和行为的。

本文将介绍几种经典的光的偏振实验方法。

一、马吕斯定律实验马吕斯定律是用来描述光的反射和折射时的偏振现象的。

通过马吕斯定律实验,我们可以观察到光在介质表面反射时的偏振现象。

实验方法:1. 准备一束线偏振光,可以通过偏振片过滤自然光来获取。

2. 将偏振片放置在介质表面,使其与表面成一定的夹角。

3. 观察反射光的偏振情况,可以通过另一块偏振片来判断其偏振方向。

实验结果:根据马吕斯定律,当入射角等于特定角度时,反射光是完全偏振的。

此时偏振片与介质表面垂直的方向与反射光偏振方向平行,而与介质表面平行的方向则与反射光偏振方向垂直。

二、尼古拉斯实验尼古拉斯实验是用来观察光的偏振方向随着材料的旋转而发生变化的实验。

通过尼古拉斯实验,我们可以确定材料的双折射性质以及对光的偏振方向的影响。

实验方法:1. 准备一束线偏振光,可以通过偏振片过滤自然光来获取。

2. 将光通过一个双轴晶体,如石英晶体。

3. 旋转晶体,并观察通过晶体后的光的偏振方向。

实验结果:当晶体的主轴方向与偏振光的偏振方向平行时,通过晶体的光仍然是线偏振的。

但当晶体旋转时,通过晶体的光的偏振方向会随之发生改变。

三、菲涅尔法实验菲涅尔法实验是一种经典的观察光的偏振干涉现象的实验。

通过菲涅尔法实验,我们可以观察到光在通过偏振片和波片时的干涉现象。

实验方法:1. 准备一束线偏振光,并通过一个偏振片使其只能通过一个特定方向的偏振光。

2. 用波片将入射光转化为圆偏振光。

3. 再次通过一个偏振片,观察通过偏振片和波片后的干涉现象。

实验结果:当通过偏振片和波片的光具有相同的偏振方向时,两束光合成的光会产生干涉现象。

干涉条纹的间距和样貌会受到波片的厚度和入射光的偏振方向影响。

结论:光的偏振实验是研究光的偏振性质和行为的重要手段之一。

偏振光研究

偏振光研究

偏振光的研究光的偏振是指光的振动方向不变,或光矢量结尾在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。

光的偏振现象最先是牛顿在1704年至1706年间引入光学的;马吕斯在1809年第一提出“光的偏振”这一术语,并在实验室发觉了光的偏振现象;麦克斯韦在1865年至1873年间成立了光的电磁理论,从本质上说明了光的偏振现象。

按电磁波理论,光是横波,它的振动方向和光的传播方向垂直,因此能够分成五种偏振态:自然光(非偏振光)、线偏振光、部份偏振光、园偏振光和椭圆偏振光。

自然光是各方向的振幅相同的光,它的振动方向在垂直于光的传播方向的平面内可取所有可能的方向,没有一个方向占有优势。

假设把所有方向的光振动都分解到彼此垂直的两个方向上,那么在这两个方向上的振动能量和振幅都相等。

线偏振光是在垂直于传播方向的平面内,光矢量只沿一个固定方向振动。

部份偏光能够看成自然光与线偏光混合而成,即它有某个方向的振幅占优势。

园偏光和椭圆偏振光是光矢量结尾在垂直于传播方向的平面上的轨迹呈圆或椭圆。

通过对偏振光的研究人们发明和制造了一些偏振光的元件,如:偏振片、波片和各类偏振棱镜等。

利用光的偏振现象在物理学方面可测量材料的厚度和折射率,能够了解材料的微观结构。

力学上利用偏振光的干与现象检测材料应力散布,进一步应用于建筑工程学方面就能够够检测桥梁和水坝的平安度。

实验原理为了研究光的偏振态和利用光的偏振特性进行各类分析和测量工作,需要各类偏振元件:产生偏振光的元件、改变光的偏振态的元件等,下面分类介绍。

1.产生偏振光的元件在激光器发明之前,一样的自然光源产生的光都是非偏振光,因此要产生偏振光都要利用产生偏振光的元件。

依照这些元件在实验中的作用,分为起偏器和检偏器。

起偏器是将自然光变成线偏振光的元件,检偏器是用于辨别光的偏振态的元件。

在激光器谐振腔中能够利用布儒斯特角使输出的激光束是线偏振光。

将自然光变成偏振光的方式有很多,一个方式是利用光在界面反射和透射光阴的偏振现象。

大学物理实验-偏振光的研究

大学物理实验-偏振光的研究

实验32 偏振光的研究1808年,马吕斯(E. L. Malus,1775~1812)发现了光的偏振现象,通过对偏振现象的深入研究,人们充分地认识了光的本质--光波是横波.为了更好地认识和利用光的偏振性,各种偏振光元件、偏振光仪器应运而生.偏振光的应用技术也日益发展,在各个领域都得到广泛应用.【实验内容】1.观察光的偏振现象,掌握利用偏振器来调节光强度的方法.2.了解产生和检验偏振光的原理与方法,鉴别光的不同偏振状态.3.设计实验来测量玻璃堆的玻璃折射率,利用反射起偏测出布儒斯特角.4.了解和观察偏振光的干涉现象【可供选择的仪器】计算机与操作控制软件,格兰傅科棱镜,λ/2波片,λ/4波片,玻璃堆,由步进电机控制的调节架,光电接收系统,H e-N e激光器.【实验原理】光的干涉和衍射现象揭示了光的波动性,光的偏振特性进一步证明了光是横波.光的偏振现象在工业和生活中的应用广泛,因此同学们需要理解光的偏振性质,掌握偏振光检测方法。

1.光的偏振态从垂直于光传播方向的平面上观察,光矢量变化遵从不同的规律,根据这些规律,可以把光分成偏振光、自然光和部分偏振光三种.在垂直于光传播方向的平面上,光矢量的端点随时间变化如果是有规律的,则称其为完全偏振光.完全偏振光包含线偏振光、椭圆偏振光和圆偏振光.光矢量端点的轨迹是一直线的,称为线偏振光;光矢量端点的轨迹是椭圆的称为椭圆偏振光;光矢量端点的轨迹是圆的称为圆偏振光.根据振动的合成原理,线偏振光、椭圆偏振光和圆偏振光均可以等效为振动方向相互垂直、相互关联的两个线偏振光,并且这两个线偏振光需要具有相同的传播方向和频率,两者有确定的相位差.普通光源直接发出的光是自然光.由于原子(或分子)发光具有随机性和间断性,不同原子(或分子)在同一时刻和同一原子(或分子)在不同时刻的发光都是不相干的.普通光源包含大量原子(或分子),这些原子(或分子)发出光的偏振方向、初相位都是随机的,因此发出的光波是不相干的. 值得注意的是对于自然光,由于自然光沿着不同方向振动的各光矢量的振幅和相位都是随机的,所以自然光可以等效成振幅相等,振动方向相互垂直,互不相关的两个线偏振光.部分偏振光可以看作是自然光和偏振光的叠加.2.双折射晶体一束光入射到晶体界面时会发生折射. 在某些晶体中,折射光会分成两束,这就是晶体的双折射现象.这两束折射光中,一束光遵守折射定律称为寻常光,简称o 光.另一束光则不遵守折射定律称为非常光,简称e 光. o 光的传播速率各向同性,e 光的传播速率与传播方向有关,o 光和e 光都是线偏振光.在双折射晶体内部,存在某个特殊的方向,当光沿着该方向传播的时侯,不发生双折射,这个方向被称为该晶体的光轴.沿着光轴方向,o 光和e 光传播速度相同;垂直于光轴方向,o 光和e 光传播速度差异最大.按照光轴的数目不同,可以把双折射晶体分为单轴晶体和双轴晶体.单轴晶体如方解石、冰洲石、石英;双轴晶体如云母、黄玉. 本实验中采用的是单轴晶体.必须注意,只有在晶体内部才有o 光、e 光之分,光线射出晶体之后都称为线偏振光.3. 偏振器获得偏振光的途径很多. 当光在介质的界面上发生反射时,可以获得部分偏振光;满足特定条件时,可以获得线偏振光.如地球大气中的微粒、水分子等对阳光的散射,会形成线偏振光和部分偏振光.在实际工作中,常采用专门的偏振器来获得线偏振光.偏振片是一种可以使入射光通过后变成线偏振光的光学薄膜,它能够吸收某一振动方向的光而透过与此垂直方向振动的光.偏振片允许光矢量透过的方向,称为偏振化方向或者透光方向.按实际应用时所起作用的不同,可以把偏振片分为起偏器和检偏器.用来产生偏振光的叫做起偏器,用来检验偏振光的则叫做检偏器.图32-1给出了线偏振光的产生与检测原理示意图.双折射晶体可以把一束光分解成o 光和e 光,o 光和e 光都是线偏振光.利用这一特性,也可以利用双折射晶体制作偏振器.格兰棱镜,全称为格兰·泰勒棱镜,就是由两块冰洲石单轴晶体的直角棱镜组成偏振器.两块冰洲石的中间斜面为空气隙.光轴与入射端界面平行.自然光垂直入射的时候,在第一个直角棱镜内,o 光和e 光传播方向相同但速度不同,在两个直角棱镜斜面处,e 光传播方向不变,o 光将发生全反射.若将棱镜侧面出射的o 光吸收掉,则仅留下沿原入射方向传播的e 光,则此格兰棱镜可以作为起偏器,当然也可以用作检偏器.图32-2给出了格兰棱镜的光路图. 32-2 格兰棱镜I 0 I 1 I 2图32-1 线偏振光的产生与检测 起偏器 检偏器 偏振化方向4. 波片波片,也称作相位延迟片,是由双折射晶体做成,是从单轴晶体中切割下来的平面平行板,其表面平行于光轴.如图32-3所示.当一束单色平行自然光正入射(垂直于晶体光轴)到波片上时,光在晶体内部便分解为o 光和e 光.由于入射光垂直于光轴入射,o 光和e 光传播方向相同,但是传播速度不同,它们通过厚度确定的波片时的光程也就不同. 设波晶片的厚度为d ,则两束光通过晶片后,有相位差2)o e n n d πδλ=-( (32-1) 式中λ为光波在真空中的波长.单色线偏振光垂直入射到波片内,分解为o 光和e 光,o 光和e 光在入射界面相位差为0,经过厚度确定的波片后两者产生一附加相位差δ.离开波片时两者又合二为一,合成光的性质取决于δ及入射光的性质.(1) 当δ= 2k π时 , 则光程差 ( n o - n e ) d = k λ,即这样的晶片厚度可使o 光和e 光的光程差等于k λ,称为全波片(λ波片).其o 光和e 光的合振动为线偏振光,其光矢量的方向与入射光光矢量的方向相同.(2) 当δ= (2k +1)π时,则光程差( n o - n e ) d = (2k +1) λ/2,此时晶片的厚度可使o 光和e 光的光程差等于(2k +1) λ/2,称为半波片 (λ/2 波片).其合振动仍为线偏振光,但光矢量的方向相对于入射光的光矢量方向转过2θ 角 (θ是入射光振动面与波片光轴间的夹角,如图32-3所示).(3) 当δ= (2k +1)π/2 时,则光程差( n o - n e ) d = (2k +1) λ/4,晶片的厚度可使o 光和e 光的光程差等于(2k +1) λ/4,称为四分之一波片(λ/4波片).其合振动一般为椭圆偏振光.应当注意两种特殊情况:当入射光矢量与波片光轴平行或垂直时,出射光为线偏振光;当入射光矢量与波片光轴夹角为π/4时,出射光为圆偏振光.从以上可知λ/4波片可将线偏振光变成椭圆偏振光或圆偏振光;根据光路的可逆性,它也可将椭圆偏振光或圆偏振光变成线偏振光。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

偏振光的研究
2006.1.10
中国科学技术大学国家级精品课程大学物理实验讲座前言
干涉和衍射—光的波动性
偏振—光是横波
光的偏振现象
偏振元件应用 S E H =⨯
光的矢量性—光是横波
K为波面的法线方向,S为光波的能量传播方向。

在各向同性的介质中S与K同向。

在各向异性的介质中S与K不同向。

自然光线偏振光
部分偏振光 圆偏振光 椭圆偏振光
部分偏振度
定义: min
max min
max I I I I P +-=
椭圆偏振光的形成(两个互相垂直的振动的合成)
)
cos()cos(2010αωαω+=+=t E E t E E y y x x
椭圆方程式:
002121221002
022
022
/)
(sin )cos(2
E E E E E E E E E E E y x y
x y x y
y
x
x
====--=--+
正椭圆
πδαααααα
改变光的偏振态的方法 1、利用偏振片 2、利用反射现象 3、利用双折射晶体 光的散射
利用偏振片产生偏振光
马吕斯定律(1809年)和消光现象
菲涅耳公式
(只写出反射时的公式)
)
sin()sin()tan()
tan(r φθφθφθφθ+--==
+-=
=
S S S P P P A R r A R
注:R ,A 为振幅
布鲁斯特角:12tan n n

利用布儒斯特角产生偏振光
全反射时光的偏振态的改变 反射波的振幅比可以改写为:
θ
θθθθ
θθ
θ2
222222
222sin cos sin cos sin cos sin cos -+-+-=-+--=n n n n r n n r P S 1)(sin sin sin 12<=≥=n n n n n
全反射θφθ
当入射角大于或等于临界角sin-1(n)时
P
S
i i P i i S e e i B i B n i i n n
i n r e e i A i A n i n i r δβδαββθθθααθθθθ==-=
-+-+-=
==-=
-+--=--22
2122
2
2
22
222)
exp()
exp(sin cos sin cos )
exp()
exp(sin cos sin cos
P S δδ∆-=
全反射时的相位改变
菲涅耳棱体
晶体光学
晶体光学元件
1、偏振器件:
尼科耳棱镜
格兰棱镜
2 波晶片
构造:单轴晶体使其光轴与表面平行
入射光 1/4波片
厚度
)
/(4
)
12(2
)
12()(2e o e o oe n n m d m d n n -+±=+±=-=
λ
π
λ
π
δ
检验偏振光的光路
偏振光的检验
借助检偏器和1/4波晶片检验光的5种偏振态 1.只用检偏器(转动):
对于线偏光可以出现极大和消光现象。

对于椭圆偏光和部分偏光可以出现极大和极小现象。

对于圆偏光和非偏光各方向光强不变。

2.用1/4波晶片和检偏器(转动) :
对于非偏光(自然光)各方向光强不变。

对于圆偏光出现消光现象(原因)。

对于部分偏光仍出现极大和极小现象。

对于椭圆偏光,当把1/4波晶片的快慢轴放在光强极大位置时出现消光
现象(原因)。

平行偏光干涉的装置
(干涉的三条件:频率、振动方向、初位相—相同)
装置:自然光+起偏器P1+波晶片+检偏器P2
偏振光的干涉的结果
现象
单色光照明厚度变化的波晶片P1 ⊥ P2,P1 II P2,亮暗纹互补
白光照明厚度变化的波晶片P1 ⊥P2,P1 II P2,彩色互补(如红色与青色,绿色和紫色,黄色和蓝色等)显色偏振
其他产生双折射的机理和应用
光测弹性(由于材料的内、外应力造成双折射现象)
检查玻璃、塑料等的内应力
桥梁、矿井、水坝和机械工件等的应力分布的监测和模拟。

地震预报。

克尔效应和普克尔效应(由于电场造成双折射现象)—高速光开关。

旋光现象的观察和测量 1811年由阿喇果和毕奥发现 石英、松节油、糖溶液中有旋光现象
左旋和右旋—与旋光物质的结构有关(1822年赫谢尔发现) 旋光计—测量糖溶液的浓度 L αρϕ∆=
会聚偏光的干涉
椭圆偏振光法测定介质薄膜的厚度和折射率
在现代科学技术中,薄膜有着广泛的应用。

因此测量薄膜的技术也有了很大的发展,椭偏法就是70年代以来随着电子计算机的广泛应用而发展起来的目前已有的测量薄膜的最精确的方法之一。

椭偏法测量具有如下特点:
能测量很薄的膜(1nm),且精度很高,比干涉法高1-2个数量级。

是一种无损测量,不必特别制备样品,也不损坏样品,比其它精密方法:如称重法、定量化学分析法简便。

可同时测量膜的厚度、折射率以及吸收系数。

因此可以作为分析工具使用。

对一些表面结构、表面过程和表面反应相当敏感。

是研究表面物理的一种方法
椭偏仪的光路图
椭偏仪的基本原理
入射光的P 分量
)]45(exp[2
2
)(θ+=
i E E i P 入射光的S 分量
)]513(exp[2
2
)(θ+=
i E E i P 反射光的P 分量和 S 分量的比值—椭圆参量 ρ=RP/Rs=tan ψexp(i ∆)=f(n1, n2, n3,φ1,d ,λ)
9020
Pr )()Pr ((Pr )()()()()()(tan S -=-=⎩⎨
⎧=-=---===
=
=
θβββπ
βββββββββββ∆ψSi Pi Sr Si Pi Sr i e
Si i e Sr i e Pi
i e
i e i e A A A A A A R R i r r S r
P i S r S i P r P P
总结
光是横波具有五种偏振态
光与物质相互作用时会发生偏振态的改变 偏振元件:偏振片、偏振棱镜、波片
应用:光测弹性、旋光计、椭偏仪、电光调制。

相关文档
最新文档