平行四边形的判定(从边判定)

合集下载

初中数学《平行四边形的判定》教案+逐字稿

初中数学《平行四边形的判定》教案+逐字稿

《平行四边形的判定》教案【教学目标】知识与技能:通过平行四边形的性质,理解并探索并掌握平行四边形的判定条件,并能根据条件判定平行四边形。

过程与方法:经历平行四边形判别条件的探索过程,逐步掌握平行四边形判定的基本方法。

情感态度与价值观:主动参与探索的活动中,发展主动探究的习惯,激发学习数学的热情和兴趣。

【教学重难点】重点:平行四边形的判定方法。

难点:平行四边形判定方法的应用。

【教学过程】1)创设情境,导入新课出示下图:学生观察下图,并提出下列问题。

问题1:上图是什么图形呢?回忆平行四边形的定义,并从边、角、对角线、对称性四个角度回忆平行四边形的性质?找同学回答上节课所学。

问题2:我们可以说什么样的一个图形是平行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是平行四边形呢?这就是咱们今天要学习的新内容,平行四边形的判断。

2)师生互动,探索新知通过前面的学习,我们知道,平行四边形的对边平行且相等,对角相等,对角线互相平分。

那么反过来,具有这些性质的四边形是不是平行四边形呢?下面我们先来探究第一个问题,两组对边分别相等的四边形是不是平行四边形呢?请同学们看以下实验:取两长两短的四根木条用小钉绞和在一起,做成一个四边形,使等长的木条成为对边。

转动这个四边形,使它形状改变,在图形变化的过程中,它是什么图形呢?都是平行四边形吗?下面我们分组进行实验,一前后桌为一组的小组进行分组讨论。

提问1:你能写出两个实验中的已知条件和求证的结论吗?提问2:根据你写的已知条件,你能得到求证的结论吗?3)知识剖析,深化理解在四边形ABCD中,AC,BD相交于点O,且AB=DC,BC=AD。

求证:四边形ABCD 是平行四边形。

根据边边边的条件,证明三角形ADC和三角形ABC全等即可。

4)生生合作,巩固提高例1若AD=8cm,AB=4cm,那么当BC=_________cm,CD=________cm时,四边形ABCD为平行四边形;5)课堂小结,布置作业总结本节课所学如何利用两组对边相等判定平行四边形,并为学习接下来的几个平行四边形判断定理做铺垫。

判定平行四边形五种方法

判定平行四边形五种方法

判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD中,E、F在对角线AC上,且AE=CF,试说明四边形DEBF是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD.解:连接BD交AC于点O.因为四边形ABCD是平行四边形,所以AO=CO,BO=DO. 又AE=CF,所以AO-AE=CO-CF,即EO=FO.所以四边形DEBF是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC=1,所以四边形ABCF是平行四边形.同样可知四边形FCDE、四边形ACDF都是平行四四边形.因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判别平行四边形所需的“一组对边平行且相等” 的条件.解:因为DF∥BE,所以∠AFD=∠CEB.因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF=BE,所以△ADF≌△CBE,所以AD=BC,∠DAF=∠BCE,所以AD∥BC.所以四边形ABCD是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判别图1图2AB C DEF图3例4 如图4,在平行四边形ABCD 中,∠DAB 、∠BCD 的平分线分别交BC 、AD 边于点E 、F ,则四边形AECF 是平行四边形吗?为什么?分析:由平行四边形的性质易得AF ∥EC ,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF 是平行四边形.理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB =∠BCD ,所以AF ∥EC .又因为∠1=21∠DAB ,∠2=21∠BCD , 所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3,所以∠1=∠3,所以AE ∥CF .所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。

新人教版八年下《19.1平行四边形-判定》word教案3篇

新人教版八年下《19.1平行四边形-判定》word教案3篇

19.1.2 平行四边形的判定(一)教学目知识与技能1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题过程与方法经历平行四边形判定条件的探索过程,发展学生的合情推理意识和表述能力. 情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵.重点理解和掌握平行四边形的判定定理.难点几何推理方法的应用.教学过程备注教学设计与师生互动第一步:创景引入:老师提问:1、平行四边形定义是什么?如何表示?2、平行四边形性质是什么?如何概括?演示图片:选择各种四边形图片展示.提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?请学生通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?总结:平行四边形判定1 两组对边分别相等的四边形是平行四边形.平行四边形判定2 对角线互相平分的四边形是平行四边形.第二步:应用举例:例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.例2(补充)已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2) △ABC的顶点分别是△B′C′A′各边的中点.证明:(1) ∵A′B′∥BA,C′B′∥BC,∴四边形ABCB′是平行四边形.∴∠ABC=∠B′(平行四边形的对角相等).同理∠CAB=∠A′,∠BCA=∠C′.(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C 是平行四边形.∴AB=B′C,AB=A′C(平行四边形的对边相等).∴B′C=A′C.同理B′A=C′A,A′B=C′B.∴△ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.解:有6个平行四边形,分别是ABOF,ABCO,BCDO,CDEO,DEFO,EFAO.理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.第三步:随堂练习1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:①第4个图形中平行四边形的个数为___ __.(6个)②第8个图形中平行四边形的个数为___ __.(20个)第四步:课后练习:1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,B O=1/2BD,则四边形ABCD是平行四边形.()2、在四边形ABCD中,AC交BD 于点O,若OC= 且,则四边形ABCD是平行四边形.3、下列条件中,能够判断一个四边形是平行四边形的是()(A)一组对角相等;(B)对角线相等;(c)一组对角相等;(D)对角线相等;3、下列条件中能判断四边形是平行四边形的是().A、对角线互相垂直B、对角线相等C对角线互相垂直且相等D 对角线互相平分4、已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形.(用两种方法)5、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.求证:四边形AECF是平行四边形.6、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN .7.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF课后小结与反思:19.1.2 平行四边形的判定(三)教学目标知识与技能1.理解三角形中位线的概念,掌握它的性质2.能较熟练地应用三角形中位线性质进行有关的证明和计算过程与方法经历探索、猜想、证明的过程,进一步发展推理论证的能力.感悟几何学的推理方法.情感态度与价值观培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.重点掌握和运用三角形中位线的性质.难点三角形中位线性质的证明(辅助线的添加方法)教学过程备注教学设计与师生互动第一步:课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?第二步: 引入新课例(教材P98例4) 如图,点D 、E 、分别为△ABC边AB 、AC 的中点,求证:DE ∥BC 且DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . (也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE 到F ,使EF=DE ,连接CF 、CD 和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)第三步:应用举例例1已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,∵ AH=HD ,CG=GD ,∴ H G ∥AC ,HG=21AC (三角形中位线性质).同理EF ∥AC ,EF=21AC . ∴ HG ∥EF ,且HG=EF .∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.第四步:课堂练习1.如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连结AC 和BC ,并分别找出AC 和BC 的中点M 、N ,如果测得MN=20 m ,那么A 、B 两点的距离是 m ,理由是 .2.已知:三角形的各边分别为8cm 、10cm 和12cm ,求连结各边中点所成三角形的周长.3.如图,△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,(1)若EF=5cm ,则AB= cm ;若BC=9cm ,则DE= cm ;(2)中线AF 与DE 中位线有什么特殊的关系?证明你的猜想.第五步:课后巩固1.(填空)一个三角形的周长是135cm ,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.2.(填空)已知:△ABC中,点D、E、F分别是△A BC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.课后小结与反思:19.1.2 平行四边形的判定(二)教学目标知识与技能1.掌握用一组对边平行且相等来判定平行四边形的方法2.会综合运用平行四边形的四种判定方法和性质来证明问题3、使学生熟练掌握平行四边形判定的五种方法,并通过定理,习题的证明提高学生的逻辑思维能力;进一步掌握平行四边形性质与判定之间的区别与联系.过程与方法通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵.重点平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.难点几何推理方法的应用.平行四边形的判定定理与性质定理的综合应用.教学过程备注教学设计与师生互动第一步:课堂引入1.平行四边形的性质;2.平行四边形的判定方法;3.【探究】取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形.第二步:应用举例:例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=CD.∵ E 、F 分别是AD 、BC 的中点, ∴ DE ∥BF ,且DE=21AD ,BF=21BC . ∴DE=BF . ∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形).∴ BE=DF .此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.例2(补充)已知:如图,ABCD 中,E 、F 分别是AC 上两点,且BE ⊥AC 于E ,DF ⊥AC 于F .求证:四边形BEDF 是平行四边形.分析:因为BE ⊥AC 于E ,DF ⊥AC 于F ,所以BE ∥DF .需再证明BE=DF ,这需要证明△ABE 与△CDF 全等,由角角边即可.证明:∵ 四边形ABCD 是平行四边形,∴ AB=CD ,且AB ∥CD .∴ ∠BAE=∠DCF .∵ BE ⊥AC 于E ,DF ⊥AC 于F ,∴ BE ∥DF ,且∠BEA=∠DFC=90°.∴ △ABE ≌△CDF (AAS ).∴ BE=DF .∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形).例3、 已知:如图3,E 、F 是平行四边形ABCD 对角线AC 上两点,且AE =CF.求证:四边形BFDE 是平行四边形.B A OC D EF图3分析:已知平行四边形可用平行四边形的性质,求证平行四边形要想判定定理,由于E 、F 在对角线上,显然用对角线互相平分来判定.证明:连结BD 交AC 于O.是平行四边形四边形即平行四边形ABCD OFEO CF OC AE AO CFAE ODOB ,OC OA ABCD ∴=-=-∴===∴(对角线互相平分的四边形是平行四边形)这道题,还可以利用CFB AED ,DFC ABE ∆≅∆∆≅∆用对边相等或平行来判定平行四边形,相比之下使用对角线较简便.例4、 已知:如图DBC ADB BF DE ,AC BF ,AC DE ∠=∠=⊥⊥。

判定平行四边形的五种方法

判定平行四边形的五种方法

判定平行四边形的基本方法判定一个四边形是平行四边形共有五种方法: 定义:两组对边分别平行的四边形是平行四边形 判定1:两组对边分别相等的四边形是平行四边形 判定2:两组对角分别相等的四边形是平行四边形 判定3:对角线互相平分的四边形是平行四边形 判定4:一组对边平行且相等的四边形是平行四边形一、运用定义“两组对边分别平行的四边形是平行四边形”判定,证两组对边分别平行。

1、如图,在平行四边形ABCD 中,∠DAB 、∠BCD 的平分线分别交BC 、AD 边于点E 、F ,求证:四边形AECF 是平行四边形证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠DAB =∠BCD ,∴AF ∥EC . 又∵∠1=21∠DAB ,∠2=21∠BCD ,∴∠1=∠2. ∵AD ∥BC , ∴∠2=∠3, ∴∠1=∠3, ∴AE ∥CF .∴四边形AECF 是平行四边形.(两组对边分别平行的四边形是平行四边形)1.如图1,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD =CE ,连结DE 并延长至点F ,使EF =AE ,连结AF 、BE 和CF(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF 是怎样的四边形,并说明理由。

解:(1)选证△BDE ≌△FEC 证明:∵△ABC 是等边三角形, ∴BC =AC ,∠ACD =60°∵CD =CE ,∴BD =AE ,△EDC 是等边三角形∴DE =EC ,∠CDE =∠DEC =60° ∴∠BDE =∠FEC =120°又∵EF =AE ,∴BD =FE ,∴△BDE ≌△FECAFB D CE图1A B C D E 1 32 F(2)四边形ABDF是平行四边形理由:由(1)知,△ABC、△EDC、△AEF都是等边三角形∵∠CDE=∠ABC=∠EF A=60°∴AB∥DF,BD∥AF∵四边形ABDF是平行四边形。

从边的角度,平行四边形的判定方法

从边的角度,平行四边形的判定方法

从边的角度,平行四边形的判定方法一、两组对边分别平行。

1.1 这可是平行四边形最基本、最“原汁原味”的判定方法。

就像一个人走路,两条腿迈出去的方向始终是平行的,那这个四边形就像规规矩矩站着的士兵,两组对边分别平行,那它就是平行四边形。

咱们生活里的长方形窗户框架,那对边就是平行的,这就是平行四边形在生活中的常见例子。

这就好比是平行四边形的“身份证”,只要满足这个条件,那它就稳稳当当是平行四边形这个大家族的一员了。

1.2 从边的方向去看,如果我们把平行四边形想象成一个轨道,那么两组对边就像两条永不相交的铁轨,一直延伸下去都是平行的。

这是平行四边形判定的“入门法则”,简单又直接,就像“小葱拌豆腐——一清二楚”。

二、两组对边分别相等。

2.1 这个判定方法也很好理解。

你想啊,如果一个四边形的两组对边就像两根一样长的筷子,那这个四边形肯定是平行四边形。

比如说咱们常见的那种可伸缩的晾衣架,它展开之后的框架形状,如果两组对边长度都分别相等,那它就是平行四边形。

这就像是给平行四边形判定又开了一个方便之门,只要对边长度都分别对上号了,那它就八九不离十是平行四边形了。

2.2 这就好比两个人比赛跳远,两个人跳的距离一样远,那这就像是平行四边形两组对边分别相等的情况。

在数学这个大舞台上,这个判定方法也是相当重要的,很多时候我们不能一眼看出对边是否平行,但是只要量一量对边的长度,要是分别相等,那这个四边形就有很大的嫌疑是平行四边形了。

2.3 有时候我们可以把这个四边形想象成一个拼图,两组对边就像两对完全匹配的拼图块,长度相等就能完美地组合在一起,形成平行四边形这个独特的形状。

这就像俗语说的“一个萝卜一个坑”,对边长度相等这个条件正好能把平行四边形这个坑填满。

三、一组对边平行且相等。

3.1 这是一个很“厉害”的判定方法。

就像一个人迈着相同长度的步伐,并且每一步的方向都是平行的,那这个四边形就一定是平行四边形。

比如说那种特殊的梯子,它的两边如果一组对边平行且相等,那这个梯子的框架形状就是平行四边形。

平行四边形的判定

平行四边形的判定

第十七课时:平行四边形的判定【知识要点】1.平行四边形的5个判定方法:(1)边:两组对边分别平行的四边形是平行四边形。

////AB CD ABCD AD BC ⎫⇒⎬⎭叫做平行四边形。

(2)边:两组对边分别相等的四边形是平行四边形。

A B C D A B C D A D B C =⎫⇒⎬=⎭叫做平行四边形。

(3)边:一组对边平行且相等的四边形是平行四边形。

//AB CD ABCD AB CD ⎫⇒⎬=⎭叫做平行四边形。

(4)角:两组对角分别相等的四边形是平行四边形。

A C ABCDB D ∠=∠⎫⇒⎬∠=∠⎭是平行四边形。

(5)对角线:对角线互相平分的四边形是平行四边形。

O A O C A B C D O B O D =⎫⇒⎬=⎭叫做平行四边形。

2.平行四边形的知识运用包括三个方面:(1)直接运用平行四边形的性质去解决问题,求角、线段,证明角相等,互补,证明线段相等或平分;(2)判定一个四边形是平行四边形,从而判定两直线平行;(3)先判定一个四边形是平行四边形,然后用平行四边形的性质去解决某些问题。

【经典例题】例1 如图,在 ABCD 中,AE=CG ,求证:GF=HE 。

如图,口ABCD 中,点M 、N 是对角线AC 上的点,且AM=CN ,DE=BF 。

求证:四边形MFNE 是平行四边形。

ABCDABCDOABCDEF H AF例3 如图,AB//CD ,∠ABC=∠ADC ,AE=CF ,BE=DF ,求证:EF 与AC 互相平分。

例4 已知:如图,在平行四边形ABCD 中,BE ⊥AC 于点E ,DF ⊥AC 于点F ,又M 、N 分别是DC 、AB 的中点。

求证:四边形EMFN 是平行四边形。

·例5 已知:如图,分别以△ABC 的三边为边长在BC 边的同侧面作等边△ABD 、△BCE 、△ACF ,连结DE 、EF 。

求证:四边形ADEF 是平行四边形。

例6 如图,△ABC 为等边三角形,D 、F 分别为CB 、BA 上的点,且CD=BF ,以AD 为一边作等边△ADE 。

判定平行四边形的五种方法

判定平行四边形的五种方法

判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD中,E、F在对角线AC上,且AE=CF,试说明四边形DEBF是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD.解:连接BD交AC于点O.因为四边形ABCD是平行四边形,所以AO=CO,BO=DO. 又AE=CF,所以AO-AE=CO-CF,即EO=FO.所以四边形DEBF是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC=1,所以四边形ABCF是平行四边形.同样可知四边形FCDE、四边形ACDF都是平行四四边形.因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判别平行四边形所需的“一组对边平行且相等” 的条件.解:因为DF∥BE,所以∠AFD=∠CEB.因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF=BE,所以△ADF≌△CBE,所以AD=BC,∠DAF=∠BCE,所以AD∥BC.所以四边形ABCD是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判别例4 如图4,在平行四边形ABCD中,∠DAB、∠BCD的平分线分别交BC、AD 边于点E、F,则四边形AECF是平行四边形吗?为什么?分析:由平行四边形的性质易得AF∥EC,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF是平行四边形.图1图2AB C DEF图3AB CDEF图41 32理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB =∠BCD , 所以AF ∥EC .又因为∠1=21∠DAB ,∠2=21∠BCD , 所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3, 所以∠1=∠3,所以AE ∥CF . 所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。

判定平行四边形的五种方法

判定平行四边形的五种方法

判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。

下面以近几年的中考题为例说明如何证明四边形是平行四边形。

一、 两组对边分别平行如图1,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF 是怎样的四边形,并说明理由。

解:(1)选证△BDE≌△FEC证明:∵△ABC 是等边三角形,∴BC=AC,∠ACD=60°∵CD=CE,∴BD=AE,△EDC 是等边三角形∴DE=EC,∠CDE=∠DEC=60°∴∠BDE=∠FEC=120°又∵EF=AE,∴BD=FE,∴△BDE≌△FEC(2)四边形ABDF 是平行四边形理由:由(1)知,△ABC、△EDC、△AEF 都是等边三角形∵∠CDE=∠ABC=∠EFA=60°∴AB∥DF,BD∥AF∵四边形ABDF 是平行四边形。

点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等时,可证四边形的两组对边分别平行,从而四边形是平行四边形。

二、 一组对边平行且相等例2 已知:如图2,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连结BG 并延长交DE于F(1)求证:△BCG≌△DCE;(2)将△DCE 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形?并说明理由。

分析:(2)由于ABCD 是正方形,所以有AB∥DC,又通过旋转CE=AE′已知CE=CG ,所以E′A=CG,A FB DC E 图1这样就有BE′=GD,可证E′BGD是平行四边形。

平行四边形的判定

平行四边形的判定

18.2 平行四边形的判定教学目标:探索并证明平行四边形的判定定理 教学过程: 一、回顾思考 平行四边形的性质1、定义:平行四边形的对边平行∵四边形ABCD 是平行四边形. ∴AB//CD,BC//DA.2、定理:平行四边形的对边相等.∵四边形ABCD 是平行四边形.∴AB=CD,BC=DA.3、定理:平行四边形的对角相等.∵四边形ABCD 是平行四边形.∴∠A=∠C, ∠B=∠D.4、定理:平行四边形的对角线互相平分.∵四边形ABCD 是平行四边形.∴CO=AO,BO=DO. 二、讲授新知 平行四边形的判定1、定理:两组对边分别相等的四边形是平行四边形. 已知:如图,在四边形ABCD 中,AB=CD,BC=DA. 求证:四边形ABCD 是平行四边形.分析:要证明四边形ABCD 是平行四边形. 可转化证明两组对边分别平行,从而作辅 助线,用全等三角形来证明相应的角相等. 证明:连接AC.∵ AB=CD,BC=DA,AC=CA, ∴ △ABC ≌△CDA(SSS). ∴∠1=∠2, ∠3=∠4. ∴AB//CD,CB//AD.∴四边形ABCD 是平行四边形.2、定理:一组对边平行且相等的四边形是平行四边形. 已知:如图,在四边形ABCD 中,AB ∥CD,AB=CD. 求证:四边形ABCD 是平行四边形.分析:要证明四边形ABCD 是平行四边形.可转化证明两级对边分别相等,从而作辅助线,用全等三角形来证明相应的边相等. 证明:连接AC.∵ AB ∥CD,∴ ∠1=∠2.∵AB=CD,AC=CA, ∴△ABC ≌△CDA(SAS).BDCABDCAO你还有几种不同的证法∴BC=DA.∴四边形ABCD 是平行四边形.3、定理:对角线互相平分的四边形是平行四边形的.已知:如图,在四边形ABCD 中, 对角线AC,BD 相交于点O,CO=AO,BO=DO. 求证:四边形ABCD 是平行四边形.分析:要证明四边形ABCD 是平行四边形.可转化证明两级对边分别平行,从而用全等三角形来证明相应的角相等. 证明:∵CO=AO,BO=DO,∠1=∠2, ∴△AOD ≌△COB(SAS). ∴∠3=∠4. ∴AD//CB. 同理,AB//CD.∴四边形ABCD 是平行四边形.三、做一做,想一想 已知:如图.求证:四边形MNOP 是平行四边形.分析:这是一道综合性题目,利用勾股定理, 方程和平行四边形的判定进行计算性推理 可获证. 证明:()().453222=---x x.8=∴x.5PO MN ==∴.3ON PM ==∴∴四边形MNPO 是平行四边形 四、随堂练习1、已知:如图,在□ABCD 中,BF=DE. 求证:四边形AFCE 是平行四边形.分析:由已知的平行四边形和BF=DE 可知,CE=AF, 则转化为利用一组对应边平行且相等来证明. 证明:∵四边形ABCD 是平行四边形, ∴DC//AB,DC=AB. ∵ DE=CF, ∴CE=AF,∴四边形AFCE 是平行四边形.2、已知:如图,在□ABCD 中,BE 、DF 分别与直线AC 相交于点E 、F ,且BE//DF,分别连结DE 、BF.求证:四边形BEDF 是平行四边形.分析:要证明四边形BEDF 是平行四边形,只要证明EF 与BD 互相平分就可.你还有几种不同的证法 你还有几种不同的证法证明:连结BD交EF于点O.在□ABCD中,OB=OD.∵BE//DF,∴∠OBE=∠ODF,∠OEB=∠OFD.∴△OBE ≌△ODF(AAS).∴OE=OF.∴四边形BEDF是平行四边形.五、回顾思考平行四边形的判定定理:两组对边分别相等的四边形是平行四边形.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.定理:一组对边平行且相等的四边形是平行四边形.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.定理:对角线互相平分的四边形是平行四边形.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.六、独立作业P90习题18.2 2、3、5题.OFE DCBABDCABDCAO。

平行四边形的判定(一)

平行四边形的判定(一)

人教版八年级数学下册平行四边形定的判定(一)教案设计单位:湖北省咸安区马桥中学主讲人:刘于候一、新课引入有一块平行四边形的玻璃块,小明不小心碰碎了一部分,聪明的他很快将原来的平行四边形玻璃块复原,你知道他用的是什么方法吗?二、学习目标1、掌握平行四边形的4种判定方法2、培养学生用类比、联想及数形结合的思维方法来研究问题三、温故知新1、平行四边形的性质(1)、边:两组对边分别平行且相等(2)、角:两组对角分别相等:邻角互补(3)、对角线:对角线相互平分知识点一平行四边形的判定定理2、平行四边形性质的逆命题:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是___平行四边形______;(3)两组对角_相等______的四边形是_平行四边形________;(4)对角线____相互平分____的四边形是_____平行四边形____猜想:这些逆命题成立吗?可否成为平行四边形的判别方法?3、根据平行四边形的定义证明以上命题(2):两组对边分别相等的四边形是平行四边形。

已知:如图,在四边形ABCD中,AB=_DC__,AD=__BC_。

求证:四边形ABCD是__平行四边形_______想一想:以上命题(3)怎么证明?命题(3):两组对角分别相等的四边形是平行四边形。

已知:如图,四边形ABCD,∠A=_∠C___,∠B=∠_D___,求证:四边形ABCD是平行四边形___平行四边形___4、利用三角形全等,根据平行四边形的定义来证明以上命题(4):对角线相互平分的四边形是平行四边形。

已知:如图,在四边形ABCD中,AC、BD相交于点O,且OA=OC____,OB=_OD___。

求证:四边形ABCD是_平行四边形_________。

四、知识应用知识点二平行四边形的判定定理的应用例3 如图,口ABCD的对角线AC、BD且AE=CF。

求证:四边形BFDE练一练 如图,口ABCD 的对角线AC 、BD 相交于点O ,E 、F 分别是OA ,OC 的中点。

平行四边形的判定

平行四边形的判定

标题:平行四边形判定文档模板范本一、背景知识平行四边形是指四边形中,对边互相平行的四边形。

对于平行四边形的判定,需要掌握以下几个关键点:1. 如何判断两个向量平行2. 如何判断两条直线平行3. 如何判断四边形对边平行二、判定方法1. 通过向量判定对于平行四边形,相邻两条边的向量应该相等。

因此可以通过求出两个向量是否相等来判断是否为平行四边形。

举例:给出四边形ABCD,如果向量AB与向量CD相等,同时向量BC与向量AD相等,那么四边形ABCD就是平行四边形。

2. 通过直线判定如果两条直线都平行于同一直线,则它们是平行的。

举例:给出四边形ABCD,若直线AB∥直线CD,同时直线AD∥直线BC,那么四边形ABCD就是平行四边形。

3. 通过对边判定如果对边平行,则这个四边形为平行四边形。

举例:给出四边形ABCD,如果线段AB和CD平行且BC和AD平行,则四边形ABCD为平行四边形。

三、法律名词及注释1. 平行线指在同一平面内,没有交点的两条直线,它们的夹角为零。

2. 向量指既有大小又有方向的物理量。

向量通常用一箭头表示,箭头顶点为向量起点。

3. 直线没有拐弯的线。

4. 四边形由四条线段组成的形状。

四、本文档所涉及简要注释本文档所提到的平行四边形是指对边互相平行的四边形。

文档提供了三种判定方法:通过向量判定、通过直线判定、通过对边判定。

同时,文档还对相关法律名词进行了注释。

五、总结通过本文档,我们了解了平行四边形的定义以及判定方法。

在实践中,可以根据实际情况选择最适合的判定方法。

判定平行四边形的五种方法

判定平行四边形的五种方法

判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。

下面以近几年的中考题为例说明如何证明四边形是平行四边形。

一、 两组对边分别平行如图1,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF 是怎样的四边形,并说明理由。

解:(1)选证△BDE≌△FEC证明:∵△ABC 是等边三角形,∴BC=AC,∠ACD=60°∵CD=CE,∴BD=AE,△EDC 是等边三角形∴DE=EC,∠CDE=∠DEC=60°∴∠BDE=∠FEC=120°又∵EF=AE,∴BD=FE,∴△BDE≌△FEC(2)四边形ABDF 是平行四边形理由:由(1)知,△ABC、△EDC、△AEF 都是等边三角形∵∠CDE=∠ABC=∠EFA=60°∴AB∥DF,BD∥AF∵四边形ABDF 是平行四边形。

点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等时,可证四边形的两组对边分别平行,从而四边形是平行四边形。

二、 一组对边平行且相等例2 已知:如图2,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连结BG 并延长交DE于F(1)求证:△BCG≌△DCE;(2)将△DCE 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形?并说明理由。

分析:(2)由于ABCD 是正方形,所以有AB∥DC,又通过旋转CE=AE′已知CE=CG ,所以E′A=CG,这样就有BE′=GD,可证E′BGD 是平行四边形。

A FB DC E 图1解:(1)∵ABCD是正方形,∴∠BCD=∠DCE=90°又∵CG=CE,△BCG≌△DCE(2)∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′,∵CE=CG,∴CG=AE′,∵四边形ABCD是正方形∴BE′∥DG,AB=CD∴AB-AE′=CD-CG,即BE′=DG∴四边形DE′BG是平行四边形点评:当四边形一组对边平行时,再证这组对边相等,即可得这个四边形是平行四边形三、两组对边分别相等例3 如图3所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE,等边△BCF。

平行四边形的判定

平行四边形的判定

平行四边形的判定主要从三个方面看:
(1)从边看:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。

(2)从角看:两组对角分别相等的四边形是平行四边形。

(3)从对角线看:对角线互相平分的四边形是平行四边形。

解决平行四边形有关题目时,要充分挖掘平行四边形本身的性质
(1)解决平行四边形的题目,首先要挖掘平行四边形本身的性质。

(2)证明两条线段相等常常转化成证明两线段所在的三角形全等。

(3)求平行四边形的面积关键是找这一条边上的高,周长主要是求一组邻边的和,常用方程或方程组的方法解决.
(4)根据已知条件有边考虑边,有角考虑角,灵活选择平行四边形性质和判定方法是解决问题的关键
(5)证明四边形为平行四边形,一般转化为三角形全等的问题.
(6)有时要把几何问题用方程思想来求解。

(7)利用对角线的性质可求平行四边形的边、对角线以及进行平行四边形的证明.对于平行四边形的题目只要有对角线,一般先考虑对角线的判定方法.
(8)对于平行四边形的问题有角的关系时,一般考虑对角或邻角的性质和判定方法.
☆熟记点:平行四边形的五种判定方法.
☆注意点:凡是能用平行四边形知识证明的问题,不要再用三角形全等证明.
☆技巧点:在四边形中证明线段,角相等或线线平行,一般先判定四边形是不是平行四边形,若是,则可直接用平行四边形的性质去解决问题,若不是,则利用添辅助线构造出平行四边形的方法解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形的判定
从边判定
【学习目标】 1、 经历平行四边形判定定理的探索、猜想与证明过程。

2、 掌握从边判定平行四边形的方法,能根据不同条件灵活选取适当的判定定理 进行推理。

【学习探究】
四边形ABC [其中三个顶点A 、C 、D 的位置如图所示,请你在网格中确定
点 B 的位置,使四边形ABCD 为平行四边形。

(每格长度为单位1)
猜想:四边形ABCD 勺边满足什么关系时,它为平行四边形?
问题一:两组对边分别相等 的四边形,是否为平行四边形?
1、演绎证明:
已知:如图,在四边形ABCD 中, AB=DC
AD=BC.
求证:四边形ABCD 是平行四边形。

2、平行四边形的判定定理1: ___________________ 四边形是平行四边形
q f
A '
1
q ►—
问题二:一组对边平行且相等 的四边形,是否为平行四边形? 1、演绎证明:
已知:如图,在四边形ABCD 中, AB// CD
且 AB=CD
2、平行四边形的判定定理 2:
_______________________________________________ 四边形是平行四边形。

【学习反馈】
1、 根据下面的条件,能否判断四边形 ABCD1平行四边形?
(1) AB=CD AD=BC
(2) A 吐 AD, CB=CD
(3) AB// CD AD=BC
2、 在四边形ABCD 中,若AB=CD 请你补充一个条件,使四边形 ABCD 是平行四 边形。

则你补充的条件是 _________________________
3、如图,在□ ABCD 中,点E 、F 分别在边BC 和DA 上,且AF=CE 求证:四边形
AECF 是平行四边形•
证明:
四边形ABCD1平行四边形,
AD // CB(
) 即 AF// CE
又 AF=CE
四边形AECF 是平行四边形(求证:四边形ABCD1平行四边形
)
变式:如图,在□ ABCD中,AE、CF分别是/ BAD / BCD的平分线.求证:四边形AECF是平行四边形.
4、如图,在□ ABCD中,点E、F是对角线AC上的两点,且AE=CF求证:四边形BFDE是平行四边形•
【学习小结】通过本节课的学习,你有哪些收获?。

相关文档
最新文档