2010年小学六年级希望杯初赛题

合集下载

希望杯第4-10届小学六年级全国数学竞赛题及解答

希望杯第4-10届小学六年级全国数学竞赛题及解答

第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.•2×1.•2•4+ 1927=________.4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是________。

9.将一个数A 的小数点向右移动两位,得到数B 。

那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。

则三个面涂漆的小正方体有________块。

13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。

希望杯模拟考六年级

希望杯模拟考六年级

第十三届“希望杯”全国数学邀请赛六年级第1试模拟练习题总分:120分时间:90分钟学校姓名以下每题6分,共120分1.计算:30%÷)(7131521+⨯=。

2.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是。

3.A,B 两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B 两校合并前人数比是。

4.分子小于6,分母小于60的不可约真分数有_______个。

5.如图33-3,八面体有12条棱,6个顶点.一只蚂蚁从顶点A 出发,沿棱爬行,要求恰好经过每个顶点一次.问共有________种不同的走法。

6.每天,小明上学都要经过一段平路AB 、一段上坡路BC 和一段下坡路CD (如右图).已知AB :BC :CD =1:2:1,并且小明在平路、上坡路、下坡路上的速度比为3:2:4.那么小明上学与放学回家所用的时间比是.7.一个奇怪的动物庄园里住着猫和狗,狗比猫多180只.有20%的狗错认为自己是猫;有20%的猫错认为自己是狗.在所有的猫和狗中,有32%认为自己是猫,那么狗有_______只.8.老师在黑板上写了从1开始的若干个连续自然数,1,2,3……,后来擦掉其中一个数,剩下数的平均数是112524,擦掉的自然数是_______。

9.对于大于零的分数,有如下4个结论:(1)两个真分数的和是真分数;(2)两个真分数的积是真分数;(3)一个真分数与一个假分数的和是一个假分数;(4)一个真分数与一个假分数的积是一个假分数。

其中正确结论的编号是。

10.下图是小明用一些半径为1厘米、2厘米、4厘米和8厘米的圆、半圆、圆弧和一个正方形组成的一个鼠头图案,图中阴影部分的总面积为平方厘米。

11.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是_______。

六年级希望杯历届试题

六年级希望杯历届试题

六年级希望杯历届试题一、计算类。

1. 计算:(1 + (1)/(2))×(1 - (1)/(2))×(1+(1)/(3))×(1 - (1)/(3))×·s×(1+(1)/(99))×(1 - (1)/(99))- 解析:- 先把每个括号内的式子计算出来:- (1+(1)/(2))=(3)/(2),(1 - (1)/(2))=(1)/(2);(1+(1)/(3))=(4)/(3),(1 -(1)/(3))=(2)/(3)等。

- 原式可转化为(3)/(2)×(1)/(2)×(4)/(3)×(2)/(3)×·s×(100)/(99)×(98)/(99)。

- 通过观察可以发现,相邻两项可以约分,如(3)/(2)和(2)/(3),(4)/(3)和(3)/(4)等。

- 最后剩下(1)/(2)×(100)/(99)=(50)/(99)。

2. 计算:2019×2019 - 2018×2020- 解析:- 将2018×2020变形为(2019 - 1)×(2019+1)。

- 根据平方差公式a^2 - b^2=(a + b)(a - b),这里a = 2019,b = 1。

- 则2019×2019-(2019 - 1)×(2019+1)=2019^2-(2019^2-1)=1。

3. 计算:(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(99×100)- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。

- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(99)-(1)/(100))。

希望杯六年级初试2010年试题及答案

希望杯六年级初试2010年试题及答案

六年级 练习21.计算:1287.142 2.50.139⎛⎫-⨯-÷+ ⎪⎝⎭g = 。

2.将分子相同的三个最简假分数化成带分数后,分别是:23a ,34b ,35c ,其中a, b, c 是不超过10的自然数,则(2a +b )÷c = 。

3.若用“*”表示一种运算,且满足如下关系:(1)1*1=1; (2)(n +1)*1=3×(n*1)。

则5*1-2*1= 。

4.一个分数,分子减1后等于23,分子减2后等于12,则这个分数是 。

5.将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是 。

6.一个箱子里有若干个小球。

王老师第一次从中箱子取出半数的球,再放进去1个球,第二次仍从箱子中取出半数的球,再放进去1个球,…,如此下去,一共操作了2010次,最后箱子里还有两个球。

则未取出球之前,箱子里有小球 个。

7.过年了,同学们要亲手做一些工艺品送给敬老院的老人。

开始时艺术小组的同学们先做一天,随后增加15位同学和他们一起又做了两天,恰好完成。

假设每位同学的工作效率相同,且一位同学单独完成需要60天。

那么艺术小组的同学有 位。

8.某超市平均每小时有60人排队付款,每一个收银台每小时能应付80人,某天某时段内,该超市只有一个收银台工作,付款开始4小时就没有顾客排队了。

如果当时有两个收银台工作,那么付款开始 小时就没有人排队了。

9.下面四个图形都是由六个相同的正方形组成,其中,折叠后不能围成正方体的是 。

(填序号)10.如图1所示的四个正方形的边长都是1,图中的阴影部分的面积依次用S 1, S 2,S 3,S 4表示,则S 1,S 2,S 3,S 4从小到大排列依次是 。

11.如图2,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根铁棒在水面以上的长度是总长的13,另一根铁棒在水面以上的长度是总长的15。

2010年第8届希望杯数学小学六年级2试试题及详细答案

2010年第8届希望杯数学小学六年级2试试题及详细答案
5
即三角形 BEC 的面积:三角形 ECA 的面积=BE:EA=2:1 三角形 ECA 的面积=8,所以,三角形 BEC 的面积=16 那么,三角形 BPC 的面积=16-4=12 6.张老师带六一班学生去种树,学生恰好可以平均分成 5 组,已知师生每人种的树一样多,共种树 527 棵,问六一班学生有 人。 6.527=17×31 师生人数可能是 17 人,或是 31 人,即学生人数是 16 人或 30 人,由于学生人数能平均分成五组,故学生 人数应是 30 人 7.两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了 100 秒,女孩走 了 300 秒,已知在电梯静止时,男孩每秒走 3 米,女孩每秒走 2 米,则该自动扶梯长 米 7.牛吃草问题 “新草”:扶梯速度:(300×2-100×3)÷(300-100)=1.5 米/秒 “原草”:扶梯长度:300×2-1.5×300=150 米 8. 7 根直径都是 5 厘米的圆柱形木头, 有 现在用绳子分别在两处把它们捆在 一起,则至少需要绳子 分米(结头处绳子不计, π 取 3.14) 8.每处绳子由 6 段长度为 5 分米和 6 段 60°弧形组成, 所以,至少需要绳子长度=2×(5×6+6× 60°/360° ×л×5)=91.4 9. 一个深 30 厘米的圆柱形容器,外圆直径 22 厘米,壁厚 1 厘米,已装深 27.5 厘米的水。现放入一个底面直径 10 厘米,高 30 厘米的圆锥形铁块, 立方厘米的水溢出? 则将有 9.容器的容积=л×[(22-2)÷2]×[(22-2)÷2]×30=3000л 容器内水的体积=л×[(22-2)÷2]×[(22-2)÷2]×27.5=2750л 圆锥的体积=л×5×5×30×1/3=250л 圆锥的体积+水的体积=3000л=容器的容器 水刚好满,不会溢出 10.新年联欢会共有 8 个节目,其中有 3 个非歌唱类节目.排列节目单时规定,非歌唱类节目不相邻,而且第 一个和最后一个节目是歌唱类节目,则节目单有 种不同的排法. 10.先将 5 个歌唱类节目排列好,有 5×4×3×2×1=120 种 这 5 个节目中有四个空隔,再将 3 个非歌唱类节目按插在这四个空隔中,有 4×3×2=24 种 所以共有 120×24=2880 种 11.有一水池,单开进水管 3 小时可把水池注满,单开出水管 4 小时把排空满池水.水池建成后,发现水池漏 水,这时,若同时打开进水管与出水管 14 小时才能把水池注满,当水池注满后,并且关闭进水管与出水管, 经过 小时水池会漏完. 11.设 x 小时排空 由题意可列出方程: (1/3 – 1/4 – 1/x)×14=1 解得 x=84 12.甲乙两人分别从 A、B 两地同时出发,相向而行,已知甲、乙两人的速度比是 6:5,他们相遇时距 AB 两地的中点 5 千米,当甲到达 B 时,乙距 A 还有 千米 12.第一次相遇时,时间相等,速度与路程成正比,甲乙的速度比是 6:5,甲乙所走的路程比也是 6:5,即甲比 乙多走 1 份路,由题可知,甲比乙多走 5×2=10 千米,即 1 份路就是 10 千米,总路程即为 11×10=110 千米, 即,第一次相遇时,甲走了 60 千米,乙走了 50 千米 在接下来行走中,甲乙所用的时间相等,所走路程比仍是 6:5,此时,甲到 B,走了 50 千米,那么乙就走了 50× 5/6 = 250/6 千米,离 A 地 60- 250/6 = 110/6 千米

第六届“希望杯”全国小学数学邀请赛 六年级第1试

第六届“希望杯”全国小学数学邀请赛 六年级第1试

数学竞赛 第六届“希望杯”全国数学邀请赛
六年级第1试及答案
以下每题6分,共120分。

1若3 A = 4B = 5 C ,那么A :B :C =
2在其中填上“”或 “—”使等式成立:
11□10□9□8□7□6□5□4□3□2□1=1
322
33a
432120721650091A
1
6”8”
18甲、乙两人分别以每小时6千米,每小时4千米的速度从相距30千米的两地向对方出发地前进,当两人的距离为10千米时,他们走了( )小时。

19有一群猴子正要分56个桃子,每只猴子可以分到同样个数的桃子。

这时,又窜来4只猴子,只好重新分配,但要使每只猴子分到同样个数的桃子,必须扔掉一个桃子,则最后每只猴子分到桃子( )个。

20甲乙两人分别从相距千米的两地的出发,相向而行,甲每小时行4千米,但每行30分钟就休息5分钟;乙每小时行12千米,则经过( )小时( )分的时候两人相遇。

参考答案。

希望杯六年级近五年真题汇编

希望杯六年级近五年真题汇编

欢迎来主页下载---精品文档希望杯目录真题希望杯简介 (Ⅰ)近三年真题分析 (Ⅱ)2014 第 12 届希望杯六年级第 1 试试题 (1)2013 第 11 届希望杯六年级第 1 试试题 (3)2012 第 10 届希望杯六年级第 1 试试题 (5)2011 第 9 届希望杯六年级第 1 试试题 (7)2010 第 8 届希望杯六年级第 1 试试题 (9)2014 第 12 届希望杯六年级第 2 试试题 (11)2013 第 11 届希望杯六年级第 2 试试题 (13)2012 第 10 届希望杯六年级第 2 试试题 (15)2011 第 9 届希望杯六年级第 2 试试题 (17)2010 第 8 届希望杯六年级第 2 试试题 (19)参考答案2014 第 12 届希望杯六年级第 1 试试题分析 (21)2013 第 11 届希望杯六年级第 1 试试题分析 (23)2012 第 10 届希望杯六年级第 1 试试题分析 (25)2011 第 9 届希望杯六年级第 1 试试题分析 (27)2010 第 8 届希望杯六年级第 1 试试题分析 (29)2014 第 12 届希望杯六年级第 2 试试题分析 (31)2013 第 11 届希望杯六年级第 2 试试题分析 (33)2012 第 10 届希望杯六年级第 2 试试题分析 (35)2011 第 9 届希望杯六年级第 2 试试题分析 (37)2010 第 8 届希望杯六年级第 2 试试题分析 (39)希望杯简介“希望杯”全国数学邀请赛的主办单位“希望杯”是由中国科学技术协会普及部、中国优选法统筹法与经济数学研究会、《数理天地》杂志社、中青在线、华罗庚实验室等主办的全国性数学竞赛.“希望杯”全国数学邀请赛的宗旨鼓励和引导中小学生学好数学课程中最主要的内容,适当地拓宽知识面;启发他们注意数学与其它课程的联系和数学在实际中的应用;激励他们去钻研和探究;培养他们科学的思维能力、创新能力和实践能力;树立他们为振兴中华而努力成才的自信.“希望杯”全国数学邀请赛的命题原则试题内容不超出现行数学教学大纲,不超出教学进度,贴近现行的数学课本,源于课本,高于课本.题目活而不难,巧而不偏;既大众化又富于思考性和启发性.力求体现科学思维之美,寓科学于趣味之中,将知识、能力的考察和思维能力的培养结合起来.“希望杯”全国数学邀请赛的参赛对象初、高中一、二年级学生和小学四、五、六年级学生.每年举行一次,为一届.每次举行两试,三月中旬第 1 试,考1.5小时;四月中旬第 2 试,考 2 小时.“希望杯”全国数学邀请赛的赛前准备杯赛的备考其实非常简单,做到以下两点,希望杯获奖轻松惬意:1.利用寒假做完希望杯 100 题和希望杯历年真题;2.春季再做一遍;3.结合一试的试题,有针对性的准备二试.希望杯全国数学邀请赛的评奖希望杯会设置全国奖项和深圳地区奖项其中含金量最高的是全国一二等奖,整个深圳市也就 20 个左右的名额;而全国三等奖就有好几百个,具体规则如下:根据希望杯的评奖规则,全国一二等奖在赛区内统一标准,按照初赛人数的约千分之三评定.全国三等奖按报名单位初赛人数和规定比例评定,由报名单位按照下述要求评定:1.各单位获奖总指标(一二三等奖):中学每满 30 人初赛给一个指标,不足 30 人不给;小学每满 20 人初赛给一个指标,不足 20 人不给.若评出人数多于计划指标,组委会将按照从后到前的顺序去掉多出指标.2.各单位评奖时应当按照复赛分数由高到低的原则,赛分数相同时按初赛成绩排序.3.各单位指标可在小学内部中学内部调剂使用,得在二者之间调剂.4.凡是列入全国一二等奖推荐名单的,提供该生的一试试卷和二试试卷,奖励等级由全国组委会统一确定.深圳地区奖项设置有特、一、二、三等奖,2014 年 2000 多名进入二试的学生中,有 120 个特等奖,400 个一等奖,所有进入二试的选手至少能获三等奖!!近三年真题分析“希望杯”题型涉及内容广泛,为了更好备战2015年“希望杯”,我们需要对历年考试情况有一个详细了解。

小学“希望杯”培训100题(六年级)及解析

小学“希望杯”培训100题(六年级)及解析

小学“希望杯”培训100题(六年级)一、解答题(共100小题)1.计算:=.2.计算:2012×2014×().3..4.计算:(0.+0.3)×0.×0.7×=.5.计算:=.6.计算:=7.兄弟俩都有点傻,一位只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是岁,岁.8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有粒.9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=.(π取3)10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长米,井深米.15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到个梨.16.31500的约数中与6互质的共有个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=.18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要分钟.20.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点km.22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了元.24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是,最大是.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.29.甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是________米/秒.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是.36.在1到2013这2013个数中,共有个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是.38.若整数x满足不等式,则x=.39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是.40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(,).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是 .42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有 天.43.计算:.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).45.如图,在△ABC 中,,E ,G 分别是AD ,ED 的中点,若△EFG 的面积为1,则△ABC 的面积是 .46.如图 (1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是 .47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了 厘米.48.建筑公司计划修一条隧道.当完成任务的时,公司引进新设备,修建速度提高了20%,每天的工作时间缩短为原来的80%,实际185天完成了任务.若按原计划,则 天可完成任务.49.如果一个自然数能表示成两个非零自然数的平方差,则称这个数为”吉祥数”,如:9=52﹣42,9是”吉祥数”.那么从1开始的自然数中,第2013个”吉祥数”是 .50.有3个整数,如果第2个数的5倍是第1个数与1的差的4倍,第3个整数的5倍是第2个数与1的差的4倍,那么第1个数的最小值是.51.春蕊班的每位同学都参加了课外体操班或围棋班,有的同学还同时参加了两个班.如果同时参加两个班的人数是参加围棋班的,是参加体操班人数的.那么这个班只参加体操与只参加围棋班的人数之比是.52.甲乙两个硬盘的成本共1600元,甲按30%的利润定价,乙按40%的利润定价,甲按定价的90%出售,乙按定价的85%出售,供货的利润290元.那么甲的成本是元.53.已知,其中a,b,c,d,e都是整数,则其中最大的数的值是.54.咖啡店新推出一款杯子,定价是88元/个,实际销售时降了价,结果销量比预计的增加了,收入增加了,则每个杯子被降价元.55.若三个连续自然数的平方的和等于245,则这三个连续自然数的和是.56.已知长方体表面积是148cm2,底面面积是30cm2,底面的周长是22cm,则这个长方体的体积是cm3.57.用棱长为2厘米的小正方体,如图所示层层重叠放置.则当重叠了5层时,这个立方体的表面积是平方厘米.58.由长度分别为2,3,4,5,6的五条线段为边,可以组成个不同的三角形.59.若字母a,b,c分别表示不同的非零数字,则由a,b,c组成的各个数位上数字不同的三位数共有个,若除三位数外,其余几个的和为2874,则=.60.如图,边长为2a的正方形ABCD内有一个最大的圆圆O,圆O内有一个最大的正方形EFGH.用S1,S2,S3依次表示△EOF的面积,弓形EmF的面积,带弧边EmF的△EBF的面积,则S1*S2*S3=.(圆周率π取3)61.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.62.已知一列数:1,1,2,3,5,8,13,21,34,55,89,144,233,…,若第n个数比第n+2个数小233,则n=.63.一只蚂蚁沿边长为240cm的等边三角形ABC的三条边由A点顺时针爬行一周.它在三条边上的速度分别是每秒3cm,4cm,5cm(如图).且当它到达拐点(A,B,C)时会休息26秒,当它爬完一周回到点A时,行程结束.这期间,蚂蚁的平均速度是cm/s.64.至多含有一个奇数数字且能被25整除的四位数共有个.65.观察下面的数表:(横排为行,竖排为列)表中第1列都是单位分数,分母依次为1,2,3…,每行自第2个分数起,每个分数的分子等于左边分数的分子加1,分母等于左边分数的分母减1,直到分数的分母等于1.则位于第行,第列.66.从最小的质数算起,若连续n(n是大于1的自然数)个质数的和是完全平方数,则n 最小是.67.现有3个互不相等的数,甲说是2,a+1,b+2;乙说是2b﹣1,3,a.若两人都说对了,则这三个数的乘积是.68.若×=6657,其中x,y,z都代表非零数字,则=.69.两个直角三角板如图放置,则∠BFE的度数是∠CAF的倍.70.一个长方体相邻的两个面的面积之和是130,它的长,宽,高都是不超过13的整数,且均为互不相等的质数,则这个长方体的体积是.71.如图,一个物体由2个圆柱组成,它们的半径分别是3厘米和6厘米,而高分别是5厘米和10厘米,则这个物体的表面积是平方厘米.72.植树节,5名小朋友给5棵树浇水,每个小朋友至少浇一棵树,但一个小朋友不能重复给同一棵树浇水,一桶水也只能浇一棵树.活动结束后,5个小朋友分别浇了2,2,3,5,x桶水,5棵树分别被浇了1,1,2,4,y 桶水,那么x=,y=.73.小明出去散步前看了一下手表,回来时又看了一下手表,发现此时手表的时针,分针的位置正好与出去时的分针,时针位置相同.若他在外逗留的时间不足一小时,则他在外待了分钟.74.如图所示,共有个三角形.75.一个长为4,宽为3的长方形如图竖直放置,在其右上角有一个红点A,长方形绕右下角旋转90°,成为一个横放的长方形,再绕右下角旋转90°,成为一个竖放的长方形,…,当小红点A第一次回到右上角时所走过的路程是.76.书架第一层有依次排列的10本不同的故事书,现将2本不同的漫画书也放入第一层,则不同的放法共有种.77.分母是385的所有最简真分数的和等于.78.有价值总和为174万元的三批货物,这三批货物的质量比是3:4:5,单位质量的价格比是6:5:4.这三批货物各价值万元.79.将分数化成小数后,如果小数点后第一位起连续N个数位上数字之和等于2013,那么N=.80.如图所示是一个边长为120m的等边三角形,甲乙同时分别从A点,B点按顺时针方向出发,甲每分钟走120m,乙每分钟走180m,但经过每个顶点时,因转弯都要耽误5s,则乙出发s后第一次追上甲.81.原来,单独打开进水管3小时能将水池注满,单独打开出水管4小时可排完一池水.后来,这个水池漏水了,同时打开进水管与出水管14小时才能将水池注满,则只打开进水管需要小时可以注满这个漏的水池.82.图书馆,游泳馆,少年宫三个站在一条笔直的公路上,且游泳馆到图书馆,少年宫两站的距离相等.小明和小华分别从图书馆,少年宫两站同时出发相向而行.小明超过游泳馆站100米后与小华相遇.然后二人继续前进.小明到达少年宫站后立即沿原路返回,经过游泳馆站后300米追上小华.则图书馆,少年宫两站相距米.83.马和狗约好去牛哥家做客,牛哥说他忘了去超市买面包,狗说他去,一会儿,马到了牛哥家,听说狗去买东西了,他急了,他说,狗跑5步的时间我能跑6步,我跑4步的距离相当于狗跑7步.而且我比他力气大,买东西的活儿我去,于是马也奔超市去了,此时狗已跑出550米了.超市离牛哥家有2000米,则马要跑米才能追上狗,此时离超市还有米.84.12和60是很有趣的两个数,这两个数的积恰好是这两个数的和的10倍:12×60=720=10×(12+60).满足这两个条件的非零自然数对还有:.85.明明,亮亮,军军三人都参加了数学竞赛,他们共解出了100道题,每人都解出了其中的60道题目,若三个人都解出来的题称为基础题;只有两个人解出来的题称为中等题;只有一个人解出来的题称为难题,则在他们解出的100道题中,难题的数量比基础题的数量(填:多或少)道.86.一块木片沿河漂流,从河边的A地到B地,用了24小时.一只快艇在静水中的速度是18千米/小时,它从A驶到B所用的时间是从B驶到A所用时间的.则AB间的距离是千米.87.如图,AB∥CE,AC∥DE,且CE=DE=2AB=2AC,则=.88.小明和小林是两个集邮爱好者,他们共有邮票400多张,如果小明给小林a张邮票,小明就比小林少;如果小林给小明a张邮票,则小林就比小明少.那么小明原有张邮票,小林原有张邮票.89.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.90.为确保信息安全,信息需加密传输,发送方将明文加密成密文,接收方收到密文后解密可得明文.已知有一种加密方式是将英文26个小写字母a,b,c,…,依次对应0,1,2,…,25这26个整数(见下表),当明文中的字母对应的序号为a时,将a+10除以26后所得的余数作为密文中的字母对应的序号,例如明文”a”对应密文”k”.””91.如图,在正方形场地ABCD的四周有32个洞(每边9个洞),一个工人扛着32面旗子,从A洞开始插旗,按顺时针方向,每隔5个洞就插一面旗,当他绕着正方形走完5圈时,发现有n个洞不能插旗,求n.92.某校有960套桌凳需要维修.现有甲乙两个木工,甲单独修理这批桌凳比乙多用20天;乙每天比甲多修8套;甲乙每天的修理费分别是80元,120元.在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案共选择:①由甲单独修理;②由乙单独修理;③由甲乙共同合作修理.你认为哪种方案即省时又省钱?试比较说明.93.甲乙丙三辆汽车分别从A地开往千里之外的B地.乙比甲晚出发40分钟,出发后160分钟后能追上甲;丙比乙晚出发20分钟,出发后5小时追上乙.那么如果甲比乙先出发10分钟,乙比丙先出发10分钟,那么乙追上甲之后过多久丙能追上甲?94.已知甲乙丙三位同学在北京,广州,上海的大学学习软件设计,服装设计,城市规划.有下列判断:①甲不在北京学习;②乙不在广州学习;③在北京学习的同学不学城市规划;④在广州学习的同学是学软件设计的;⑤乙不学服装设计.三位同学各在什么城市学习什么专业?95.如图,长方形ABCD,ABEF,AGHF的长与宽的比相同,且,长方形BEHG的周长是22,求长方形ECDF的面积.96.在小于30的所有质数中,是否存在差与平方和都是质数的两个质数?若存在,有几组?若不存在,请说明理由.97.甲容器内有物质A和物质B,其质量比是2:3,乙容器内有物质B和物质C,其质量比是1:2,丙容器内有物质A和物质C.现将甲乙丙三容器中的物质以1:2:3的比例取出,混合,则所得新的混合物中,A,B,C三种物质的质量比是183:152:385.求丙容器内物质A和物质C的质量比.98.程序员设计了一款新游戏,共20级.小刚一次晋级2级游戏,或一次晋级3级游戏,那么他从入门(0级)晋级到第20级共有多少种不同的方法?10月份,小强的家里用了23m的居民用水,他开的餐厅,用了102m的餐饮用水,则这个月他应该交多少元水费?100.0.买一盒牙膏,一瓶沐浴露和一瓶洗发露共付款100元.若1瓶沐浴露比2盒牙膏贵,2瓶洗发露比7瓶沐浴露贵,8盒牙膏比1瓶洗发露贵,且每个产品的单价都是整数元,分别求一盒牙膏,一瓶沐浴露,一瓶洗发露的价格.小学“希望杯”培训100题(六年级)参考答案与试题解析一、解答题(共100小题,满分0分)1.计算:=.2.计算:2012×2014×()=2.3.(2010•成都校级自主招生).解:++…+,=×(﹣+﹣+…+﹣),=×(﹣)=×()=×=.4.计算:(0.+0.3)×0.×0.7×=.+0.3)×0.7×,(+×××,×××(×××,=××=×=5.=102.解:,=(1+3+5+..+19)+3×=102+3×(1﹣)=100+=102.6.=.解:设n=++,m=,则:(1+++)×(+++)﹣(1++++)×(++),=(1+n)×m﹣(1+m)×n=m+mn﹣n﹣mn=m﹣n,=()﹣(++)=.7.兄弟俩都有点傻,以为只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是6岁,9岁.解:弟弟:(3+3)÷(2﹣1)=6(岁);哥哥:6+3=9(岁).8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有180粒.解:取了:20÷(6﹣5)=20(次),共有:20×3×(1+2)=180(粒);9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=48cm2.(π取3)S1﹣S2=(S1+S阴)﹣(S2+S阴)=S圆﹣S正=3×(16÷2)2﹣122=192﹣144=48(平方厘米);10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是23×34×52×72×11×13.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有121块糖,丙最多有19块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.)×=3﹣×=3班的人数与总人数的比值是;故答案为:.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是84.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长42米,井深12米.对应的分率的差额是:﹣)()15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到15个梨.16.31500的约数中与6互质的共有8个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=4.S=S18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是153,154,155.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要27分钟.则苏老师与公车速度和为问题;苏老师与公车速度差为,因为这时是相遇问题;那么苏老师速度(+),所以苏老师与公车速度比:,,+),公车速度(﹣),苏老师与公车速度比:=520.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是3.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点136.96km.t=﹣,22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有12个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了120元.=,丙占总数的;;﹣﹣)÷,24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是24,最大是72.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现51个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以102次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=81.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有6组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是45:61.29.(2011•成都)甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是乙丙丁甲.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是米/秒.,那么上坡的时间就是,下坡的时间就是;用总路程+)÷,(米故答案为:.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是48.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是123.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的75%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有102座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是600.36.在1到2013这2013个数中,共有51个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是18.38.若整数x满足不等式,则x=3.因为不等式,<3,2,39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是1:3.厘米的圆面积的厘米的圆面积的,圆中,据此40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(4,60).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是18.42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有132天.43.计算:.2+))﹣,)2+)2+),.,2012+.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).的分子、分母同时扩大倍,变成的分子、分母同时扩大倍,变成===﹣=﹣﹣,==++++,==﹣﹣=+,45.如图,在△ABC中,,E,G分别是AD,ED的中点,若△EFG的面积为1,则△ABC的面积是18.中,,且,据此利用分数除法的意义即可解答问题.中,的面积的,÷=1846.如图(1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S1,S2,S3,则S1,S2,S3的大小关系是相等.47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了厘米.。

六年级希望杯培训试题100题

六年级希望杯培训试题100题

希望杯六年级培训题1、211⨯+321⨯+431⨯+…+200720061⨯= 。

2、〔1+20021+20041+20061〕×〔20021+20041+20061+20081〕-〔1+20021+20041+20061+20081〕×〔20021+20041+20061〕3、〔220071×3.6+353×720072006〕÷43÷534、从21+41+61+81+101+121 中去掉 和 ,余下的分数之和为1.5、99…9×55…5乘积的各位数字之和是 。

6、20031200412005120061 200711±±±±的整数局部是 。

〔分母中只有加号〕7、除法算式:÷它的计算结果的小数点后的前三位分别是 。

8、一个整数与它的倒数和等于20.05,这个数是 ,它的倒数是 。

2007个9 2007个59、在如图1的加法算式中,每个汉字分别代表1至9中的一个数字,且一样的汉字代表一样的数字,不同的汉字代表不同的数字,那么这个加法算式的和是 。

我 爱 希 望 杯 数 学 竞 赛+ 8 6 4 1 9 7 5 3 2赛 竞 学 数 杯 望 希 爱 我10、有一个分数,它的分子加2,可以约简为74;它的分母减2,可以约简为2514。

这个分数是 。

11、四个非零自然数的和为38,这四个自然数的乘积的最小值是 ,最大值是 。

12、a 是质数,b 是偶数,且a 2+b=2022,那么a+b+1= 。

13、当a =2007时,a-1,a,a+1,a+2中的合数有 个。

14、从1到30这30个自然数连乘各的末尾共 个连续的数码0.15、一个质数p ,使得p+2,p+4同时都是质数,那么p 1+21±p +41±p = .16、三个质数的倒数之和是20061155,那么这三个质数中最大的是17、彼此不等且大于0的偶数a,b,c,d 满足a+b+c+d=20,样的偶数组〔a,b,c,d 〕共有 组。

希望杯第4-11届六年级数学试题前3届无六年级)(完美版)

希望杯第4-11届六年级数学试题前3届无六年级)(完美版)

希望杯第4-11届六年级数学试题前3届⽆六年级)(完美版)六年级希望杯全国数学竞赛试题⽬录(2006)第四届⼩学“希望杯”全国数学邀请赛六年级第1试 (2)(2006)第四届⼩学“希望杯”全国数学邀请赛六年级第2试 (8)(2007)第五届⼩学“希望杯”全国数学邀请赛六年级第1试 (13)(2007)第五届⼩学“希望杯”全国数学邀请赛六年级第2试 (18)(2008)第六届⼩学“希望杯”全国数学邀请赛六年级第1试 (22)(2008)第六届⼩学“希望杯”全国数学邀请赛六年级第2试 (27)(2009)第七届⼩学“希望杯”全国数学邀请赛六年级第1试 (31)(2009)第七届⼩学“希望杯”全国数学邀请赛六年级第2试 (36)(2010)第⼋届⼩学“希望杯”全国数学邀请赛六年级第1试 (40)(2010)第⼋届⼩学“希望杯”全国数学邀请赛六年级第2试 (44)(2011)第九届⼩学“希望杯”全国数学邀请赛六年级第1试 (48)(2011)第九届⼩学“希望杯”全国数学邀请赛六年级第2试 (53)(2012)第⼗届⼩学“希望杯”全国数学邀请赛六年级第1试 (57)(2012)第⼗届⼩学“希望杯”全国数学邀请赛六年级第2试 (62)(2013)第⼗⼀届⼩学“希望杯”全国数学邀请赛六年级第1试 (67)(2013)第⼗⼀届⼩学“希望杯”全国数学邀请赛六年级第2试 (72)(2006)第四届⼩学“希望杯”全国数学邀请赛六年级第1试1. 2006×2008×(200820071200720061?+)=________。

2. 900000-9=________×999993. 271942.12.1+??=________。

4. 如果a =20062005,b =20072006,c =20082007,那么a ,b ,c 中最⼤的是________,最⼩的是________。

5. 将某商品涨价25%,如果涨价后的销售⾦额与涨价前的销售⾦额相同,则销售量减少了________%。

希望杯近五年真题汇总+详解(六年级)

希望杯近五年真题汇总+详解(六年级)

图 1
10 6. 已知三个分数的和是 ,并且它们的分母相同,分子的比是 2 : 3 : 4 , 11 那么,这三个分数中最大的是__________.
9
1 2 1 2 3 6
7. 从12点整开始,至少经过__________分钟,时针和分针都与12点整时所 在位置的夹角相等 .(如图2中的 1 2 ) 8. 若三个不同的质数的和是53,则这样的三个质数有__________组. 9. 被11除余7, 被7除余5, 并且不大于200的所有自然数的和是__________.
B
图2
A P O C
1 3 10. 在救灾捐款中, 某公司有 的人各捐款200 元, 有 的人各捐款100 元, 10 4 其余人各捐款50 元,则该公司人均捐款__________元.
图3
11.如图3,圆 P 的直径 OA 是圆O的半径,OA⊥ BC , OA 10 ,则阴影部 分的面积是__________.( π 取3) 12.如图4,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原 来的位置,在这个过程中,圆面覆盖过的区域(阴影部分)的面积是
2014 第 12 届希望杯六年级第 1 试试题
1. x 比300少 30% , y 比 x 多 30% ,则 x y ___________. 2. 如果
“ ?”
,那么,“ ?”所表示的图形可以是
下图中的__________.(填序号)
(1)
3. 计算:
(2)
(3)
(4)
(5)
3. 在小数 3.1415926 的两个数字上方加 2 个循环点,得到循环小数,这样的循环小数中, 最小的是__________. 4. 一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是__________. 5.

第十届四、五、六年级希望杯初赛试题

第十届四、五、六年级希望杯初赛试题

14.有一筐桃子,4 个 4 个的数,多 2 个;6 个 6 个的数,多 4 个,8 个 8 个的数,少 6 个,已知这筐桃子的个数不少于 120 个,也不多于 150 个,则这筐桃子共有______个。
15.小兰将连续偶数 2、4、6、8、10、12、14、16、„逐个相加得结果 2012,验算时发 现漏加了一个数,那么这个漏加的数是________。
18.射击训练规定:用步枪射击,发 10 发子弹,每击中靶心 一次奖励 2 发子弹;用手枪射击,发 14 发子弹,每击中靶心一次奖励 4 发子弹。小王用步 枪射击,小李用手枪射击,当他们把发的和奖励完的子弹都打完时,两人射击的次数相等。 如果小王击中靶心 30 次,那么小李击中靶心______次。
19.东方红小学 2012 年的升旗时间因日期的不同而不同,规定: 1 月 1 日到 1 月 10 日,恒定为早晨 7:13; 1 月 11 日到 6 月 6 日,从早晨 7:13 逐渐提前到 4:46,每天依次提前 1 分钟; 6 月 7 日到 6 月 21 日,恒定为早餐 4:46; 6 月 22 日到 11 月 16 日,从早晨 4:46 逐渐推迟到 7:13,每天依次推迟 1 分钟; 11 月 17 日到 12 月 31 日,恒定为早晨 7:13. 则今天(3 月 11 日)东方红小学的升旗时间是_____点______分。
16.从五枚面值为 1 元的邮票和四枚面值为 1.60 元的邮票中任取一枚或若干枚,可组成不同 的邮资_______种。
17.从 1,2,3,4,„,15,16 这十六个自然数中,任取 n 个数,其中必有这样的两个数:一个是 另一个的 3 倍,则 n 最小是______.
1 时,工程队采用新设备,使修建速度提 3 4 高了 20%,同时为了保养新设备,每天工作的时间缩短为原来的 ,结果,前后共用 185 5

2010年希望杯数学竞赛六年级练习题

2010年希望杯数学竞赛六年级练习题

2010年希望杯数学竞赛六年级练习题1、计算:(14+2010)+(13+2010×2)+(12+2010×3)+……+(2+2010×13)+(1+2010×14)=_____________。

2、计算:20÷202120+221= 3、计算:631++9631+++129631++++……+150129631+++++ =_________。

4、计算:(34-3615+209-127)-3011+4213=_________。

5、计算:25.5%÷【3-(5.55×311-1012÷0.4】=_________。

6、0.•1+0.•2+0.•3+0.•4+0.•5+0.•6+0.•7+0.•8 =_________。

7、有一个整数,用它去除160、110、70得到的三个余数之和是50,则这个整数是_________。

8、11+22+33+……+20020+20031除以7余数是_________。

9、有三个分子相同的最简假分数,化成带分数后为32a、85b 、87c 。

已知a 、b 、c 都小于10,则(a +b )÷c=_________。

10、分母是455的所有最简真分数的和等于_________。

11、设a 、b 是1~2010这2010个自然数中两个不同的自然数,则ba ba -+的最大值是_________。

12、将一个三位数的个位数字减小1,十位数字减小2,百位数字减小3,得到了一个新的三位数。

如果新的三位数是原来的32,那么原来的三位数是_________。

13、请写出十个自然数,使得这十个数中的一个或几个数的和能等于1到1000以内的任意的数,则这十个数分别是______、______、______、______、______、______、______、______、______、______。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年小学六年级希望杯初赛题D人,某天某时段内,该超市只有一个收银台工作,付款开始4小时就没有顾客排队了。

如果当时有两个收银台工作,那么付款开始小时就没有人排队了。

9.下面四个图形都是由六个相同的正方形组成,其中,折叠后不能围成正方体的是。

(填序号)10.如图1所示的四个正方形的边长都是1,图中的阴影部分的面积依次用S1,S2,S3,S4表示,则S1,S2,S3,S4从小到大排列依次是。

11.如图2,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根铁棒在水面以上的长度是总长的,另一根铁棒在水面以上的长度是总长的。

已知两根铁棒的长度之和是33厘米,则两根铁棒的长度之差是厘米。

12.甲、乙、丙三人一起去钓鱼。

他们将钓得的鱼放在一个鱼篓中,就在原地躺下休息,结果都睡着了。

甲先醒来,他将鱼篓中的鱼平均分成3份,发现还多一条,就将多的这条鱼扔回河中,拿着其中的一份回家了。

乙随后醒来,他将鱼篓中现有的鱼平均分成3份,发现还多一条,也将多的这条鱼扔回河中,拿着其中的一份回家了。

丙最后醒来,他也将鱼篓中的鱼平均分成3份,这时也多一条鱼。

这三个人至少钓到条鱼。

13.过冬了,小白兔只储存了180只胡萝卜,小灰兔只储存了120棵大白菜。

为了冬天里有胡萝卜吃,小灰兔用十几棵大白菜换了小白兔的一些胡萝卜,这时他们储存的食物数量相等。

则一棵大白菜可以换只胡萝卜。

14.王宇玩射击气球的游戏,游戏有两关,两关的气球数量相同。

若王宇第一关射中的气球数比没射中的气球数的4倍多2个;第二关射中的气球数比第一关增加了8个,正好是没射中的气球数的6倍,则游戏中每一关有气球个。

15.已知小明的爸爸和妈妈的年龄不同,且相差不超过10岁。

如果去年、今年和明年,爸爸和妈妈的年龄都是小明年龄的整数倍,那么小明今年岁。

16.观察图3所示的减法算式发现,得数175和被减数571的数字顺序相反。

那么,减去396后,使得数与被减数的数字顺序相反的三位被减数共有个。

17.甲、乙两个服装厂生产同一种服装,甲厂每月生产服装2700套,生产上衣和裤子的时间比是2:1;乙厂每月生产服装3600套,生产上衣和被子的时间比是3:2。

若两个厂合作一个月,最多可生产服装套。

18.一收银员下班前查账时发现:现金比账面记录少了153元。

她知道实际收钱不会错,只能是记账时有一个数点错了小数点。

那么记错的那笔账实际收到的现金是元。

19.现有5吨的A零件4个,4吨的B零件6个,3吨的C零件11个,1吨的D零件7个。

如果要将所有零件一次运走,至少需要载重为6吨的汽车辆。

20.甲、乙两人分别从A、B两地同时出发,相向而行。

出发时他们的速度之比是3:2,相遇后,甲的速度提高20%,乙的速度提高,这样当甲到达B地时,乙离A地还有41千米,那么A、B两地相距千米。

2010年“第八届”希望杯(六年级)初赛详解1.原式=8-(2.38-8/9)+1/9=6.622.有余问题+基础分数问题题中三个带分数可转化为假分数,分别是(3a+2)/3;(4b+3)/4;(5c+3)/5 且这三个假分数为最简假分数,由题可知:3a+2=4b+3=5c+3可解出:a=7,b=5,c=4那么(2a+b)÷c=19/4=4又3/4另一解法:假分数的分子除以分母,分别是除3余2,除4余3,除5余3,a,b,c是不超过10的自然数,23符合要求,所以假分数的分子是23,所以a=7,b=5,c=43.新定义运算2*1=3×(1*1)=3×1=35*1=3×(4*1)=3×[3×(3*1)]=9×(3*1)=9×[3×(2*1)]=9×3×3=81所以 5*1-2*1=81-3=784.基础分数问题由分子减2后会等于1/2,我们可设原分数为(a+2)/2a那么,分子减1会等于2/3 即(a+2-1)/2a = 2/3解比例方程,可解得 a=3,所以,原分数是5/6另一解法:约分后两分数的分母分别是3和2,由题可知,原分数的分母就应该是2和3的公倍数,[2,3]=6,如果原分数的分母是6,很容易判断出,这种假设是符合题意的。

5.数字谜问题要想差最小,被减数与减数的最高位即千位相差得越小越好,由题所给的八个数字可知,差是一个百位数(千位相减为0),那差的百位应该要最小,这样可推出被减数和减数的千位分别为2和9,依次类推可得:6234-5987=247 符合题目要求6.还原问题在操作第2010次后,还剩一个,再放进一个,正好最后剩二个;可推出:在操作2010次前(即操作第2009次后),箱子里还剩二个,依次倒退一二次,不难发现,在每次操作前,箱子里总是剩下二个,所以,原来箱子里就二个球7.工程问题由题可知,每个同学的工作效率是1/60,那么后来加进来的15个同学工作二天就完成了1/60 ×15×2= 1/2,另外的1/2是由艺术组的同学工作三天完成的。

概括下:15人做2天可完成一半,那么多少人做3天也可完成一半?不难算出10人做3天可完成1/2,即艺术组有10人8.牛吃草问题一台收银机4小时可应对4×80=320人,而4小时又有4×60人来排队,说明:在收银前,已经有320-240=80人在排队。

这二台收银机除了要应对已经排好队的80人,还得应对每个时间新增加排队的人。

假设二台收银机工作x小时后无人排队,那么,80×2×x=80+60x解得x=0.8小时9.正方体(长方体)展开图形如果其中四个图形是“四联体”的,那剩下的两个图形一定在“四联体”的两侧,所以选①10.(1)图中,连接正方形左上角与右下角的那条对角线,阴影部分平均分成两块,每块的面积都会等于四分之一圆面积减去大三角形的面积(即正方形面积的一半)(2)图中,正方形中的两个半圆可合成一个大圆,那么,阴影部分的面积就会等于正方形的面积减去这个大圆的面积(3)图中,连接正方形右上角与左下角的那条对角线,阴影部分就分切出两小块;再连接正方形的那条对角线,阴影部分间的那白色部分也会被切成两小块,容易发现,阴影部分的两小块与白色的两小块分别相等,这样把阴影部分的两小块补过来,阴影部分就是正方形的一半11.长铁棒分成三段,水中两段;短铁棒分成五段,水中四段由题可知,长铁棒的两段和短铁棒的四小段一样长,即长铁棒的一段相当于短铁棒的二小段,即长铁棒相当于短铁棒的六小段,两根铁棒合起来就是有11小段,共33厘米,即1小段长3厘米,而长铁棒比短铁棒长1小段,所以,两根铁棒相差3厘米12.还原问题设丙拿走x条鱼,那么乙拿走后剩下3x+1条鱼可推出乙拿走了(3x+1)/2条鱼;那么甲拿走后剩下:(3x+1)/2 +3x+1+1=(9x+5)/2条鱼可推出甲拿走了(9x+5)/4条鱼;那么总的鱼有(9x+5)/4 +(9x+5)/2 +1=(27x+19)/4条由于(27x+19)/4是整数且尽可能小,27x+19应为4的倍数,经尝试,x=3符合条件即总共有25条鱼另:也可以用尝试法,假设丙分完后每个蒌里是1条鱼、2条鱼、、、、然后倒推,也很容易找出正确的答案13.总食物数量不量,即最后,两只兔各有食物150白兔 150=剩下的萝卜+换来的白菜灰兔 150=剩下的白菜+换来的萝卜如果我们假设白兔换来的白菜为x,很容易把上面的等式转换成:白兔 150=(150-x)+x灰兔 150=(120-x)+(30+x)由题可知,30+x应该是x的整数倍,而且x的取值大于10但小于20(题中说拿十几颗白菜换)经尝试 x=15 符合题意,(30+15)÷15=3即一颗大白菜可换3个萝卜另一解法:小白兔给小灰兔的萝卜数比小灰兔给小白兔的白菜数多30,30是小灰兔给小白兔白菜的整数倍,分解质因数30=2*3*5,而题中说白菜数为十几颗,因此只能是3*5=15颗,则所换的萝卜数是30+15=45只故一颗白菜换3只萝卜14.设第一关未射中的为x个,射中的就是4x+2第二关(x-8)×6=4x+2+8解得 x=29所以,总的个数是5×29+2=147个15.约数倍数问题年龄差不变.去年、今年、明年,爸妈的年龄差都是小明年龄的整数倍而小明的三个年龄是三个连续的自然数,爸妈的年龄差不超过10,在不超过10的数中,有三个连续约数的数只有6,这三个连续约数是1、2、3即小明的三个年龄分别是1岁、2岁、3岁,所以,小明今年2岁16.数字谜及计数问题设被减数是abc,则差就是cba,两数相差得396,把它列为减数的竖式形式,不难找出a=5、6、7、8、9,相对应,c=1、2、3、4、5,共五组,每组中,b可以取0至9任何一个数字,所以共有5×10=50种17.统筹安排问题甲生产上衣所需时间 2/3即10/15,生产裤子所需时间 1/3即5/15乙生产上衣所需时间3/5即 9/15,生产裤子所需时间 2/5即 6/15对比可知,甲生产裤子的效率高,乙生产上衣的效率高甲全部生产裤子一个月生产2700÷ 1/3 =8100条乙全部生产上衣一个月生产3600÷ 3/5 =6000件配套时,甲多生产了8100-6000=2100条,甲可以用生产2100条裤子的时间来生产成衣,这样可以生产2100/8100 × 2700=700套成衣所以,二人合作一个月共能生产6000+700=6700套成衣18.错中求解问题现金比记帐金额少,说明记帐时把小数点往右看错了一位,这样记帐金额增大了10倍,与现金相差9倍,相差153元,所以现金就是153÷9=17元19.生活中的应用题①表示1吨的零件要16次,分别是:⑤+①;⑤+①;⑤+①;⑤+①;④+①;④+①;④+①;③+③;③+③;③+③;③+③;③+③;③;④;④;④;20.行程问题中的比例问题方法一:从行程应用题角度入手,牢牢抓住公式展开思考.设甲、乙的速度分别是3和2,第一次相遇时,它们所走的路程分别是3s和2s提速后,甲所走的路程是2s,速度是3×(1+20%)=3.6 ,所需要时间即为2s÷3.6,这个时间也是乙相遇后所走的时间,乙这时速度是2×(1+ 1/3)=8/3 ,所以乙走的路程=8/3 × (2s÷3.6),还差41千米到A所以 3s - 8/3 × (2s÷3.6)=41可求出 s=27所以,总路程是27×5=135方法二:从比例应用题入手考虑,抓住把比当份数和正反比例知识点展开思考第一次相遇时,甲的速度是3,乙的速度是2,速度比是3:2,由于时间相同,路程与速度成正比,所以甲乙所走的路程之比也是3:2提速后,甲的速度是3*(1+20%)=18/5,乙的速度是2*(1+ 1/3)=8/3,速度比是18/5 : 8/3 =27:20,由于时间相同,路程与速度成正比,所以甲乙所走的路程之比也是27:20由题可知,乙第一次相遇时所走的路程与甲提速后所走的路程是相同的,那么所占份数也应一样,故我们可把上面两个比中相应份数转化成一样,即第一次相遇时,甲乙所走路程比是3:2=81:54提速后,甲乙所走路程比是27:20=54:40 那么 81-40即是41千米,即1 份就是1千米所以,两地相距(81+54)*1=135千米2010希望杯六年级决赛题(2010-04-11 23:47:05)转载标签:分类:希望杯竞赛试卷杂谈2010年希望杯六年级决赛题详解1.原式=0.75/1.35 ×5.4=32.等式左边,经过计算=191/228,再把它转化成等式右边形式可算出A=1,B=5,C=6(A+B)÷C=1(由于博文中不好显示这种形式的分数,故解析较略)3.要想这个奇数最大,那么位数越多越好,要想位数越多,那么该数里面所涉加法的次数越多越好,要想加法的次数越数,那么其中的加数越小越好,依以上考虑,不难找出该数是10112354.由题可知:12345679×27=333333333即12345679×3×9=333333333即12345679×9=111111111可推出12345679×9×8=888888888即12345679×72=8888888885.连接AP、EF因为三角形BPE和三角形CFD的面积相等,都等于4所以三角形BEF和三角形EFC的面积相等,这两个三角形的底边都是EF,所以它们的高肯定相等,可以推出EF∥BC那么,根据平行线定律,可得 CF:FA=BE:EA在三角形CPF和三角形APF中,由于高相同,所以面积之比会等于底边之比,即三角形CPF的面积:三角形APF的面积=CF:FA同理可得:三角形BPE的面积:三角形EPA的面积=BE:EA综合上面三个比,可得三角形CPF的面积:三角形APF的面积=三角形BPE的面积:三角形EPA的面积因为三角形BPE的面积=三角形CPF的面积=4所以,三角形EPA的面积=三角形APF的面积=1/2 四边形EPFA的面积=2那么 BE:EA=2:1即三角形BEC的面积:三角形ECA的面积=BE:EA=2:1三角形ECA的面积=8,所以,三角形BEC的面积=16那么,三角形BPC的面积=16-4=126.527=17×31师生人数可能是17人,或是31人,即学生人数是16人或30人,由于学生人数能平均分成五组,故学生人数应是30人7.牛吃草问题“新草”:扶梯速度:(300×2-100×3)÷(300-100)=1.5米/秒“原草”:扶梯长度:300×2-1.5×300=150米8.每处绳子由6段长度为5分米和6段60°弧形组成,所以,至少需要绳子长度=2×(5×6+6× 60°/360° ×л×5)=91.49.容器的容积=л×[(22-2)÷2]×[(22-2)÷2]×30=3000л容器内水的体积=л×[(22-2)÷2]×[(22-2)÷2]×27.5=2750л圆锥的体积=л×5×5×30×1/3=250л圆锥的体积+水的体积=3000л=容器的容器水刚好满,不会溢出10.先将5个歌唱类节目排列好,有5×4×3×2×1=120种这5个节目中有四个空隔,再将3个非歌唱类节目按插在这四个空隔中,有4×3×2=24种所以共有120×24=2880种11.设x小时排空由题意可列出方程: (1/3 – 1/4 –1/x)×14=1解得 x=8412.第一次相遇时,时间相等,速度与路程成正比,甲乙的速度比是6:5,甲乙所走的路程比也是6:5,即甲比乙多走1份路,由题可知,甲比乙多走5×2=10千米,即1份路就是10千米,总路程即为11×10=110千米,即,第一次相遇时,甲走了60千米,乙走了50千米在接下来行走中,甲乙所用的时间相等,所走路程比仍是6:5,此时,甲到B,走了50千米,那么乙就走了50× 5/6 = 250/6千米,离A地60- 250/6 = 110/6千米13.在数字0---9中,只有4,5,6,8,9,符合题意,所以有以下种情况:5×9=45,9×5=45,6×8=48,8×6=48,6×9=54,9×6=54,8×8=6414. 对应法解工程应用题(此处的甲乙丙丁分别表示其工作效率)甲+乙+丙=1/90甲+乙+丁=1/120丙+丁=1/180以上三个式子相加,得 2甲+2乙+2丙+2丁=9/360甲+乙+丙+丁=1/80可推出甲+乙=1/80 – 1/180 =5/720(1- 5/720 ×36)÷ 1/80 = 60天15.题中”火车追上到超过甲用30秒”,是火车尾追甲,追及路程是火车长可求出甲的速度= 60000/3600 - 180÷30 = 32/3 米/秒题中“火车与乙相遇到离开用6秒”,是火车尾与乙相遇,相遇路程是火车长可求出乙的速度=180÷6 – 60000/3600 = 40/3 米/秒题中“火车追上甲到遇到乙用了5分钟”,此时,火车走了60000× 5/60 =5000米甲走了32/3 × 5×60= 3200米,与乙相隔5000-3200=1800米甲乙相遇时间=1800÷(32/3 + 40/3)=1.25分钟16.由题可知:ƒ(5)=5,505次ƒ(5)结果仍是5,所以,所求的前面部分=5×5=25后一部分:ƒ(8)=3,ƒ(3)=7,ƒ(7)=3,ƒ(3)=7、、、、、2个重复一次,2010÷2没有余数,2010个就应ƒ(3)=7,所以后一部分=2×7=14即,最后结果=25+14=39。

相关文档
最新文档