中考压轴冲刺二 动态几何定值问题解析

合集下载

专题08 动态几何类压轴题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题08 动态几何类压轴题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题08 动态几何类压轴题一、单选题1.如图,在ABC 中,90ACB ∠=︒,4AC =,3BC =.线段PE 的两个端点都在AB 上,且1PE =,P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动,在整个运动过程中,空白部分面积DPEC S 四边形的大小变化的情况是( )A .一直减小B .一直增大C .先增大后减小D .先减小后增大【答案】C【分析】 设PD=x ,AB 边上的高为h ,求出h ,并运用相似三角形的性质求出AD ,构建二次函数,利用二次函数的性质解决问题即可.【详解】在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,5AB ∴===,设PD x =,则1205x ≤≤,AB 边上的高为h ,125AC BC h AB ==, //PD BC , ADP ACB ∆∆∽∴, ∴PD AD BC AC=, 43AD x ∴=,53PA x = 221415122242333(4)2()23235353210△△APD CBE S S x x x x x x ∴+=+-=-+=-+, ()22233323()()32103210276△△△四边形ABC APD CBE DPEC S x S x S S ∴+-----+=-==, ∵203-<,∴32x≤<时,DPECS四边形随x的增大而增大,31225x<≤时,DPECS四边形随x的增大而减小,故选:C.【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题.2.如图,已知△ABC中,∠ACB=90°,∠BAC=30°,AB=6,点D为直线AB上一动点,将线段CD绕点C 逆时针旋转60°得到线段CE,连接ED、BE,当BE最小时,线段AD的值为()A.5.5B.6C.7.5D.8【答案】C【分析】以BC为边作等边△BCF,连接DF,可证△BCE≌△FCD,可得BE=DF,则DF⊥AB时,DF的长最小,即BE的长最小,即可求解.【详解】如图,以BC为边作等边△BCF,连接DF,∵∠ACB=90°,∠BAC=30°,AB=6,∴∠ABC=60°,BC=3,∵将线段CD绕点C逆时针旋转60°得到线段CE,∴CD=CE,∠DCE=60°,∵△BCF是等边三角形,∴CF=BC=BF=3,∠BCF=∠DCE =60°,∴∠BCE=∠DCF,且BC=CF,DC=CE,∴△BCE≌△FCD(SAS),∴ BE= DF,∴DF ⊥AB 时,DF 的长最小,即BE 的长最小,如图,此时作FD AB '⊥,∵FBD '∠=180°-60°-60°=60°,D F AB '⊥,∴ 1 1.52BD BF '==, ∴7.5AD AB BD '=+=',故选:C .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,直角三角形的性质,添加恰当的辅助线构造全等三角形是解题关键.二、解答题3.如图,在等腰直角三角形△ABC ,∠ABC=90°,AB=6,P 是射线AB 上一个动点,连接CP ,以CP 为斜边构造等腰直角△CDP (C 、D 、P 按逆时针方向),M 为CP 的中点,连接AD ,MB .(1)当点P 在线段AB 上运动时,求证:△CDA ∽CMB ;(2)设AP x =,△ADP 的面积为y .①当012x <<时,求y 关于x 的函数表达式;②记D 关于直线AC 的对称点为D ,若D 在△APC 的内部,求y 的取值范围.【答案】(1)见解析;(2)①2134y x x =-+;②189y << 【分析】 (1)根据等腰直角三角形的性质得BCM ACD ∠=∠,CB CM CA CD =,即可证明结论; (2)①分类讨论,当06x <≤时,或当612x <<时,过点D 作DE AB ⊥于点E ,根据(1)的相似三角形,得到AD=AP ,并且用x 表示出长度,即可求出函数表达式;②当点D 在APC △内部时,06x <<,过点P 作PN AC ⊥于点N ,利用面积法表示出PN 的长,得到x 的范围,即可求出y 的范围.【详解】解:(1)∵ABC 和CDP 是等腰直角三角形,∴45ACB DCP ∠=∠=︒,∴ACB ACP DCP ACP ∠-∠=∠-∠,即BCM ACD ∠=∠,∵ABC 和CDP 是等腰直角三角形,∴CB CA ==,CP CD = ∵M 是CP 的中点, ∴12CM CP =,∴21CM CD ==, ∴CB CM CA CD =, ∴CDA CMB ;(2)①∵M 是CP 中点, ∴12BM MC PC ==,若06x <≤,如图,过点D 作DE AB ⊥于点E ,∵AP x =,∴6PB x =-,∴PC = ∵DC DA MC MB=,∴2DC DA DP PC ==== ∵DE AB ⊥,∴12AE EP x ==,∴162DE x ===-, ∴21111632224ADP S AP DE x x x x ⎛⎫=⋅=⋅-=-+ ⎪⎝⎭; 若612x <<,如图,过点D 作DE AB ⊥于点E ,6BP x =-,PC =DC DA DP ====12AE EP x ==,162DE x ===-, ∴21111632224ADP S AP DE x x x x ⎛⎫=⋅=⋅-=-+ ⎪⎝⎭, 综上:2134y x x =-+; ②当点D 在APC △内部时,06x <<,点P 越往右,点D 离AC 越近,当点D 在PC 上时,过点P 作PN AC ⊥于点N ,∴DCA ACP PCB ∠=∠=∠,∴CP 为ACB ∠的角平分线,∴PN PB =,∵1131822ABC APC BPC S S S AC PN BC PB PN =+=⋅+⋅=+=,∴6PN PB ==,∴12AP AB PB =-=-,当126x -<<时,点D 在APC △内部,则根据2134y x x =-+,求出189y <<. 【点睛】本题考查相似三角形的综合题,解题的关键是掌握相似三角形的性质和判定,二次函数的几何运用,利用分类讨论的思想进行求解.4.如图,在平面直角坐标系中,直线3y x =-+与抛物线2y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 在y 轴上,点P 是抛物线上任意一点,过点P 作PQ ⊥y 轴,交直线AB 于点Q ,连接BP ,设点P 的横坐标为m ,△PQB 的边PQ 与PQ 边上的高之差为d .(1)求此抛物线解析式.(2)求点Q 的横坐标(用含m 的代数式表示);(3)∠BQP 为锐角.①求d 关于m 的函数关系式;②当△AOB 的顶点到PQ 的最短距离等于d 时,直接写出m 的值.【答案】(1)2y x 2x 3=-++;(2)22m m -;(3)①d m =-;②m =【分析】 (1)由直线解析式求解出A 、B 的坐标,再代入抛物线解析式求解即可;(2)由于PQ 垂直于y 轴,则P 、Q 的纵坐标相等,因此求出P 的纵坐标,再代入直线解析式求解Q 的横坐标即可;(3)①根据题中对d 的定义,分别求出PQ ,以及PQ 边上的高,再作差即可;②根据△AOB 的顶点到PQ 的最短距离等于d 时建立关于m 的一元二次方程求解,并注意运用条件判断合适的值即可.【详解】(1)由直线3y x =-+可知,A(3,0),B(0,3),将A(3,0),B(0,3)代入2y x bx c =-++得: 9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩, ∴抛物线的解析式为:2y x 2x 3=-++;(2)由题可知,P 、Q 的纵坐标相等,∵P 的横坐标为m ,且P 是抛物线上任意一点,∴P 的纵坐标为223y m m =-++,∴Q 的纵坐标为223y m m =-++,又∵Q 在直线上,∴将223y m m =-++代入3y x =-+得: 2233m m x -++=-+,解得:22x m m =-,∴Q 的横坐标为22m m -;(3)①由题意,()B P d PQ y y =--,由(2)可知: 2232Q P m P m m m m Q x x =-==---,()222332B P y m m m y m -+=+--=- ∴()B P d PQ y y m =--=-,∴d m =-;②由题可知:△AOB 为等腰直角三角形,其顶点为O ,则O 到PQ 的距离为223m m -++,当△AOB 的顶点到PQ 的最短距离等于d 时, 223m m m -++=-,解得:32m =, ∵∠BQP 为锐角,∴32m -=. 【点睛】本题考查二次函数与一次函数的综合运用,理解二次函数的性质,仔细分析题中表达的数量关系是解题关键.5.已知一次函数4y x =+的图象与二次函数()2y ax x =-的图象相交于()1,A b -和B ,点P 是线段AB 上的动点(不与A 、B 重合),过点P 作PC x ⊥轴,与二次函数()2y ax x =-的图象交于点C .(1)求a 、b 的值;(2)如图1,M 为APC ∠内一点,且1PM =,E ,F 分别为边PA 和PC 上两个动点,求MEF 周长的最小值;(3)若PAC △是直角三角形,求点C 的坐标.【答案】(1)3b =,1a =;(2(3)()2,0C 或()3,3.【分析】∠1∠∠A∠∠∠∠∠∠b∠∠∠∠∠A∠∠∠∠∠∠∠a∠∠∠(2)∠∠∠M∠∠∠∠AB∠PC ∠∠∠∠,M M '''∠∠∠∠ ,,M M PM PM ''''''∠∠∠MEF∠∠∠∠∠∠∠∠ M M '''∠∠∠∠∠∠∠290M PM APC ∠=∠'=''︒∠∠∠ M M ==''='∠3∠∠∠PAC=90°∠∠ACP=90°∠∠∠∠∠∠∠【详解】解:∠1∠∠A 在直线y=x+4∠∠∠b=-1+4=3∠∠A∠∠∠∠∠-1∠3∠∠∠A∠∠∠∠∠y=ax(x -2)∠∠∠3=-a(-1-2)∠∠3=3a∠∠a=1∠∠3b =∠ 1a =∠∠2∠∠∠∠∠∠∠M ∠∠∠∠AB ∠PC ∠∠∠∠'M ∠''M ∠∠∠∠'''M M ∠'PM ∠''PM ∠∠MEF ∠∠∠∠∠∠∠'''M M ∠∠∠∠∠∠∠∠∠∠∠PM PM PM M PA APM MPC CPM ==∠=∠∠=∠'''''',,∠∠290M PM APC ∠=∠'=''︒,∠'''M M ===∠∠3∠∠(),4P m m +∠∠()2,2C m m m -∠ ∠∠∠PAC=90°∠∠222AP AC PC +=∠()()()()2222222112334m m m m m m ++++--=--∠ ∠∠1m =-∠∠∠∠∠2m =∠∠()2,0C ∠∠∠ACP=90°∠∠222AC PC AP +=∠()()()()2222221233421m m m m m m ++--+--=+∠ ∠∠1m =-∠∠∠∠∠3m =∠4m =∠∠∠∠∠∠()3,3C ∠∠∠()2,0C ∠()3,3∠【点睛】 本题考查二次函数与一次函数的综合运用,熟练掌握二次函数的图象与性质、一次函数的图象与性质、轴对称的性质、勾股定理的应用是解题关键.6.如图所示,直线AB 交x 轴于点(),0A a ,交y 轴于点()0,B b ,且a 、b ()240a -=. (1)如图1,若C 的坐标为()1,0-,且AH BC ⊥于点H ,AH 交OB 于点P ,试求点Р的坐标; (2)如图2,连接OH ,求证45OHP ∠=︒;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连接MD ,过D 作DN DM ⊥交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子BDM ADN S S -△△的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.【答案】(1)P 的坐标为()0,1-;(2)见解析;(3)S △BDM -S △ADN 的值不发生改变,等于4【分析】(1)先依据非负数的性质求得a 、b 的值,从而可得到OA=OB ,然后再∠COB=∠POA=90°,∠OAP=∠OBC ,最后,依据ASA 可证明∠OAP ≌△OBC ,得出OP=OC ,从而得出点P 的坐标;(2)过O 分别作OM ⊥CB 于M 点,作ON ⊥HA 于N 点,利用AAS 证明∠COM ≌△PON ,得出OM=ON ,再根据角平分线得到判定即可得出HO 平分∠CHA ,从而求出∠OHP ;(3)连接OD ,易证∠ODM ≌△ADN ,从而有S △ODM =S △ADN ,由此可得S △BDM -S △ADN =S △BDM -S △ODM =S △BOD =12S △AOB . 【详解】解:(1()240a -=∴a+b=0,a -4=0,∴a=4,b=-4,则OA=OB=4.∵AH ⊥BC ,则∠AHC=90°,∠COB=90°,∴∠HAC+∠ACH=∠OBC+∠OCB=90°,∴∠HAC=∠OBC .在∠OAP 和∠OBC 中, 90COB POA OA OB OAP OBC ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩∴△OAP ≌△OBC (AAS );∴OP=OC∵C 的坐标为()1,0-,∴OC=1∴OP=1∴P 的坐标为()0,1-(2)过O 分别作OM ⊥CB 于M 点,作ON ⊥HA 于N 点.在四边形OMHN 中,∠MON=360°-3×90°=90°,∴∠COM=∠PON=90°-∠MOP .在∠COM 和∠PON 中,90COM PON OMC ONP OC OP ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△COM ≌△PON (AAS ),∴OM=ON .∵OM ⊥CB ,ON ⊥HA ,∴HO 平分∠CHA ,1452︒∴∠=∠=OHP CHA (2)S △BDM -S △ADN 的值不发生改变,等于4.理由如下:如图:连接OD .∵∠AOB=90°,OA=OB ,D 为AB 的中点,∴OD ⊥AB ,∠BOD=∠AOD=45°,OD=DA=BD∴∠OAD=45°,∠MOD=90°+45°=135°,∴∠DAN=135°=∠MOD .∵MD ⊥ND 即∠MDN=90°,∴∠MDO=∠NDA=90°-∠MDA .在∠ODM 和∠ADN 中,,MDO NDA DOM DAN OD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ODM ≌△ADN (ASA ),∴S △ODM =S △ADN , ∴12S ∆∆∆∆∆∆-=-==BDM ADN BDM ODM BOD AOB S S S S S ∴111144422S 22∆∆-=⨯⋅=⨯⨯⨯=BDM ADN S AO BO 【点睛】本题考查了全等三角形的判定与性质、角平分线的判定、二次根式及完全平方式的非负性等知识,在解决第(2)小题的过程中还用到了等积变换,而运用全等三角形的性质则是解决本题的关键.7.如图,已知等边ABC 的边长为16,点P 是AB 边上的一个动点(与点A 、B 不重合).直线l 是经过点P 的一条直线,把ABC 沿直线l 折叠,点B 的对应点是点B '.(1)如图1,当8PB =时,若点B '恰好在AC 边上,则AB '的长度为_________;(2)如图2,当10PB =时,若直线//l AC ,则BB '的长度为_______;(3)如图3,点P 在AB 边上运动过程中,若直线l 始终垂直于AC ,ACB '△的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当12PB =时,在直线l 变化过程中,求ACB '△面积的最大值.【答案】(1)8或0;(2)(3)面积不变,(4)最大为96+【分析】(1)证明△APB′是等边三角形即可解决问题.(2)如图2中,设直线l 交BC 于点E .连接BB′交PE 于O .证明△PEB 是等边三角形,求出OB 即可解决问题.(3)如图3中,结论:面积不变.证明BB′∥AC 即可.(4)如图4中,当B′P ⊥AC 时,△ACB′的面积最大,设直线PB′交AC 于E ,求出B′E 即可解决问题.【详解】解:(1)如图1中,∵ABC 是等边三角形,∴60A ∠=︒,16AB BC CA ===,∵8PB =,∵8PB PB PA ===',∵60A ∠=︒,∴APB '是等边三角形,∴8AB AP '==.当直线l 经过C 时,点B '与A 重合,此时0AB '=,故答案为8或0.(2)如图2中,设直线l 交BC 于点E .连接BB '交PE 于O .∵//PE AC ,∴60BPE A ∠=∠=︒,60BEP C ∠=∠=︒,∴PEB △是等边三角形,∵10PB =,且由于折叠,∴B ,B '关于PE 对称,∴BB PE '⊥,2BB OB '=,∴OP=12PB=5,∴OB =,∴BB '=故答案为(3)如图3中,结论:面积不变.连接BB ′,过点A 作AF ⊥BC ,垂足为F ,∵B ,B '关于直线l 对称,∴BB '⊥直线l ,∵直线l AC ⊥,∴//AC BB ',∴ACB ACB S S '=△△,∵BC=AB=AC=16,∴BF=8,∴=,∴1162ACB ACB S S '==⨯⨯= (4)如图4中,∵点B 和B′关于经过点P 的直线对称,∴B′到点P 的距离与点B 到点P 的距离相等,当B P AC '⊥时,ACB '△的面积最大,设直线PB '交AC 于E ,在Rt APE 中,∵4PA =,60PAE ∠=︒,∴AE=2,∴PE ==∵BP=B′P=12,∴12EB EP B P '=++'=∴(11612962ACB S '=⨯⨯+=+△ 【点睛】本题属于几何变换综合题,考查了等边三角形的性质和判定,轴对称变换,平行线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.8.已知抛物线2122y x x =-与x 轴交于点O 、A 两点,顶点为B .(1)直接写出:A 点坐标________ ,B 点坐标_______ ,△ABO 的形状是_______;(2)如图,直线y x m =+(m<0)交抛物线于E 、F(E 在F 右边),交对称轴于M ,交y 轴于N .若EM -FN=MN ,求m 的值;(3)在(2)的条件下,y 轴上有一动点P ,当∠EPF 最大时,请直接写出此时P 点坐标___________【答案】(1)(4,0),(2,-2),等腰直角三角形;(2)52m =-;(3)(052-) 【分析】(1)令2122y x x =-中y=0,求出A 的坐标,由22112(2)242y x x x =--+=,求出顶点B 坐标,利用勾股定理的逆定理判定△ABO 是等腰直角三角形;(2)过点E 作EG ⊥y 轴于G ,过点F 作FH ⊥y 轴于H ,过点M 作MC ⊥y 轴于C ,设y x m =+(m <0)交x 轴于D ,先求出∠OND=45°,利用锐角三角函数可得FN=sin 45HF ︒,MN=sin 45CM ︒,EN=sin 45EG ︒,联立解析式求出点E 、F 的横坐标,最后根据已知等式即可列出方程,求出m ; (3)作以EF 为弦且与y 轴相切的圆D ,切点为P ,连接EP 、FP ,利用圆周角定理和三角形外角的性质先证此时∠EPF 最大,然后确定点P 的坐标,设点P 的坐标为(0,p ),用含p 的式子表示出DP 和DF ,列出方程即可求出结论.【详解】解:(1)令2122y x x =-中y=0,得21202x x -=, 解得x=0或x=4,∴A (4,0); ∵22112(2)222y x x x =-=--, ∴顶点B 坐标为(2,-2);连接AB 、OB ,∴22416OA ==,()()22224820AB =-+-=-,()()22220820OB =-+-=-,∴222OA AB OB =+,AB=OB ,∴△ABO 是等腰直角三角形,故答案为:(4,0),(2,-2),等腰直角三角形;(2)过点E 作EG ⊥y 轴于G ,过点F 作FH ⊥y 轴于H ,过点M 作MC ⊥y 轴于C ,设y x m =+(m <0)交x 轴于D将x=0代入y x m =+中,解得y=m ;将y=0代入y x m =+中,解得x=-m∴点N 的坐标为(0,m ),点D 的坐标为(-m ,0)∴ON=OD∴△OND 为等腰直角三角形∴∠OND=45°∴FN=sin 45HF ︒,MN=sin 45CM ︒,EN=sin 45EG ︒, ∴EM=EN -)EG CM - ∵抛物线2122y x x =-的对称轴为直线x=2 ∴CM=2 联立2122y x x y x m⎧=-⎪⎨⎪=+⎩消去y ,解得:x 1=3x 2=3+∴点F的横坐标为3-E的横坐标为3+∴HF=3-EG=3+∴3,MN=)321+=∵EM -FN=MN ,1+3-=解得:52m =-, 经检验,52m =-是原方程的解; (3)如下图所示,作以EF 为弦且与y 轴相切的圆D ,切点为P ,连接EP 、FP ,先证此时∠EPF 最大,在y 轴上任取一点P ',连接EP FP ''、,FP '与圆D 交于点C∴∠EPF=∠ECF∵∠ECF是△EP C'的外角∠∴∠ECF>EP C'∴∠EPF>EP F'∠即此时∠EPF最大,然后确定点P的坐标,设点P的坐标为(0,p),如下图所示,连接DP、DF,作EF的中垂线ST,交EF于S,交y轴于T,过点S作SK⊥y轴于K由(2)知52m =- ∴点E 的坐标为(5,52),点F 的坐标为(1,32-) ∴点S 的坐标为(3,12), ∴OK=12,SK=3 由(2)知:∠SNO=45°,∵∠TSN=90°∴∠STK=45°∴△TSK 、△TDP 为等腰直角三角形∴TK=SK=3,TP=DP∴TP=TK +OK -OP=72p - ∴DP=72p -, ∴点D 的坐标为(72p -,p )∴∵DP=DF∴72p -解得:52-或p=52∵∴ES=12EF=SK ∴以EF 为直径的圆与y 轴相离∴点P 必在以EF 为直径的圆的外边∴△EPF 为锐角三角形∴点D 在△EPF 内部,也必在S 的左上方∴点D 的纵坐标大于0,即p >0∴52∴点P 的坐标为(052). 【点睛】此题考查的是二次函数、一次函数和圆的综合大题,掌握二次函数图象及性质、求一次函数解析式、等腰直角三角形的判定及性质、圆周角定理、锐角三角函数是解题关键.9.如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.【答案】(1)1tan 3DAB ∠=;(2)()2402y x x =-+<≤;(3)-4、8-. 【分析】(1))过点D 作DH AB ⊥于H ,在Rt ACB 中,利用勾股定理解得AD 、AB 的长,再结合等积法,解得DH 、AH 的长即可解题;(2)根据相似三角形对应边成比例的性质,表示()444x EH x -=+, 再证明AFE BDE 由AF AE DB BE =即)4444x y x x --=-+得到与x 的关系; (3)根据相似三角形对应边成比例的性质,结合(2)中y 关于x 的函数解析式联立方程组,继而解得x 、y 的值即可解题.【详解】(1)过点D 作DH AB ⊥于H ,在Rt ACB 中,AD =AB ∴==142ADB SDB AC ∴=⋅= 12ADB S AB DH =⋅DH ∴=AH ==1tan 3DH DAB AH ∴∠==; (2)过E 作EH ⊥CB 于H∵EDB ADC ∠=∠,90C EHD ∠=∠=︒∴ACD EHD . ∴AC EH CD DH = 即44EH x x EH=--. ∴()444x EH x -=+ .∵EH ⊥CB ,90ACB ∠=︒,4AC BC ==∴)44x EB x -==+,AB =∴)44x AE x -=+ ∵EF AD ⊥,90C ∠=︒∴AFG ADC ∠=∠ .∵EDB ADC ∠=∠∴AFG EDB ∠=∠.∵45FAE B ∠=∠=︒∴AFE BDE . ∴AF AE DB BE =即)4444x y x x --=-+. 整理得,()2402y x x =-+<≤;(3)在Rt △MDB 中,DB=4-x,所以MD=MB=(4).2x - 在Rt △ADM 中,AM=AB 一MB=)(4).22x x -=+ 所以tan ∠DAB=44DM x AM x-=⋅+ 按照点F 的位置,分两种情况讨论△CDF 与△AGE 相似:①点F 在线段AC 上,此时y=4-2x.如图,如果∠FDC=∠DAB ,由tan ∠FDC=tan ∠DAB,得44y x x x-=⋅+ 结合y=4-2x ,整理,得x2+8x+16=0.解得-4 或--4 (舍去), 如果∠CFD=∠DAB ,由tan ∠CFD=tan ∠DAB ,得4.4x x y x-=+ 结合y=4- -2x,整理,得x 2-16x+16=0.解得8x =-8+②点F 在线段AC 的延长线上,此时y=2x -4如图如果∠FDC=∠DAB,由44y x x x-=+结合y=2x -4,整理,得23160.x -=解得或3-(舍去) 如果∠CFD=∠DAB,44x x y x -=+与y=2x -4 整理,得238160.x x -+=此方程无解.综上,CD 的值为-4、8-. 【点睛】本题考查勾股定理、相似三角形的性质,涉及解二元一次方程组等知识,解题关键是根据题意利用相似三角形性质构造方程.10.如图,直线443y x =-+和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是()2,0-.(1)试说明ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,MON △的面积为S . ①求S 与t 的函数关系式;②设点M 在线段OB 上运动时,是否存在4S =的情形?若存在,求出对应的t 值;若不存在请说明理由; ③在运动过程中,当MON △为直角三角形时,求t 的值.【答案】(1)证明见解析;(2)①22455S t t =-+(02t <<),22455S t t =-(25t <≤);②存在,(t s =;③5s 或25.8s 【分析】 (1)先求解,B C 的坐标,再求解,BC AB 的长度,从而可证明结论;(2)①过点N 作⊥ND x 轴于D ,则4sin 5ND BN OBC t =⋅∠=,分两种情况讨论,当02t <<时,当25t <≤时,分别画出符合题意的图形,再利用三角形的面积公式得到函数解析式即可;②分两种情况讨论,把4S =分别代入②中的两个函数解析式,再解方程即可得到答案;③分三种情况讨论;90∠=︒NMO 或90NOM ∠=︒或90MNO ∠=︒,再利用图形的性质与锐角三角函数可得答案.【详解】解:(1)将0y =代入443y x =-+,得3x =,∴点B 的坐标为3,0;将0x =代入443y x =-+,得4y =, ∴点C 的坐标为()0,4.在Rt OBC 中,∵4OC =,3OB =,∴5BC ==.又()2,0A -,∴5AB =,∴AB BC =,∴ABC 是等腰三角形.(2)∵5AB BC ==,故点M 、N 同时开始运动,同时停止运动.过点N 作⊥ND x 轴于D , 则4sin 5ND BN OBC t =⋅∠=, ①当02t <<时(如图),2OM t =-,∴12S OM ND =⋅ ()14225t t =-⋅ 22455t t =-+. 当25t <≤时(如图),2OM t =-,∴12S OM ND =⋅ ()14225t t =-⋅ 22455t t =-. ②存在4S =的情形.当02t <<时∴ 224455t t -+=, 22100,t t ∴-+=()22411044036∴=--⨯⨯=-=-<0,所以方程无解;当25t <≤时, ∴ 224455t t -=.解得11t =21t =(不合题意,舍去).15t =+<,故当4S =时,(t =秒.③当MN x ⊥轴时,MON △为直角三角形.3cos 5MB BN MBN t =⋅∠=, 又5MB t =-. ∴355t t =-, ∴258t =. 当点M 、N 分别运动到点B 、C 时,MON △为直角三角形,5t =.当90MNO ∠=︒时,不合题意,舍去,故MON △为直角三角形时,258t =秒或5t =秒. 【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理的应用,一元二次方程的解法,锐角三角函数的定义,等腰三角形的性质,直角三角形的性质,三角形的面积,分类讨论的思想,掌握分类讨论思想解决问题是解题的关键.11.如图,点O 在线段AB 上,OA =1,OB =3,以点O 为圆心、OA 为半径作∠O ,点M 在上运动.连接MB ,以MB 为腰作等腰Rt∠MBC ,使∠MBC =90°,M ,B ,C 三点按逆时针顺序排列.(1)当点M 在AB 上时,sin∠ACB =________________;(2)当BM 与∠O 相切时,求AM 的长;(3)连接AC ,求AC 长的取值范围.【答案】(1或2;(2)3;(3)46AC ≤≤. 【分析】(1)分当M 在AB 上和点M 和A 重合两种情况解答即可;(2)先证明△BMD ∽△BAM,然后根据相似三角形的性质列式解答即可;(3)如图:以B 为顶点、OB 为边向上方作等腰Rt △OBP ,连接CP ,OM ,有△BOM ≌△BPC (SAS ),PC=OM=1,则点C 在以点P 为圆心、1为半径的圆上,转化为“圆外一点到圆上的最值问题”,作射线AP ,交OP 于C 1、C 2两点,然后求得AC 1和AC 2的长即可解答.【详解】(1)①如图:当M 在AB 上时∵OA=OM=1∴AB=AO+OB=4,BM=OB -OM=2∵MB 为腰作等腰Rt∠MBC∴BC=BM=2=∠sin∠ACB =AB AC ==; ②如图:当M 和点A 重合时,AB=BC=4∴==∠sin∠ACB =AB AC ==综上,sin∠ACB 或2; (2)如图:∵BM 与∠O 相切∴∠BMO=90°==∠AB 是直径∠∠AMD=90°∠∠BMD+∠DMO=90°,∠AMO+∠DMO=90°,∴∠BMD=∠AMO∠OA=OM∠∠OAM=∠AMO∠∠OAM=∠BMD∠∠MBA=∠MBD∠△BMD ∽△BAM∴DM MB AM AB ===设AM=x ,则DM=2x2= ,解得x=3或x=-3(舍);(3)以B 为顶点、OB 为边向上方作等腰Rt △OBP ,连接CP ,OM ,∴△BOM ≌△BPC (SAS )∴PC=OM=1则点C 在以P 为圆心的M 上、1为半径的圆上,即求转化为“圆外一点到圆上的最值问题”,∴5=作射线AP ,交OP 于C 1、C 2两点,则A C 1=AP -P C 1=4, A C 2=AP+P C 2=6,∴46AC ≤≤.【点睛】本题属于几何综合题,考查了圆的性质、全等三角形的判定与性质、相似三角形的判定与性质以及锐角的三角函数,灵活应用所学知识成为解答本题的关键.12.如图,四边形ABCD 是矩形,点P 是对角线AC 上一动点(不与点C 和点A 重合),连接PB ,过点P作PF ⊥PB 交射线DA 于点F ,连接BF .已知AD =CD=3,设CP 的长为x .(1)线段BP 的最小值为________,当1x =时,AF =____________.(2)当动点P 运动到AC 的中点时,AP 与BF 的交点为G ,FP 的中点为H ,求线段GH 的长度. (3)若点P 在射线CA 上运动,点P 在运动的过程中,①试探究∠FBP 是否会发生变化?若不改变,请求出∠FBP 的大小;若改变,请说明理由.②若△AFP 是等腰三角形,直接写出x 的值.【答案】(1)2;(2;(3)①不发生变化,30; ②3或 【分析】(1)当BP 最小时,即BP AC ⊥,根据相似三角形的性质,可求得BP 的值,当x=1时,可得到BPN PMF ,由此可得出tan FBP ∠的值,继而得到AF 的值;(2)先证明BP 垂直平分AP ,得到PF =GH 是Rt FGP △的中线,即可得到GH 的长; (3)①过点P 作PN BC ⊥交AD 于点M ,可证明FMP PNB ,设,2x PC x PN ==,可求得NC 、MP 、BN 的长,tan =3FP MP FBP BP BN ∠==,即可求得∠FBP 的大小; ②分三种情况讨论即:当FA=FP ,AP=AF ,PA=PB 时,分别根据等腰三角形的性质解题.【详解】(1)当BP 最小时,A 与F 重合,即BP AC ⊥, 33AD CD ==6,30AC DAC ACB ∴=∠=∠=︒,在Rt ABC 与Rt APB △中,BAC PAB ∠=∠ABCAPB ∴ AB BP AC BC∴=36∴=2BP ∴= 作PM BC ⊥于N ,交AD 于M ,当x=1时,1522PN MP CN BN ====,, 90BNP PMF BPF ∠=∠=∠=︒,90,90FPM PFM FPM BPN ∴∠+∠=︒∠+∠=︒,PFM BPN ∴∠=∠,BPNPFM ∴,3MP FM BP BN NP FP ∴===,MF ∴=2663AF AM MF BN MF ∴=-=-=-==,故答案为:2,3; (2)P 为AC 的中点,3AP PC AB ∴===60ABP APB BAP ∴∠=∠=∠=︒在t R ABF 和t R PBF 中,AB=BP ,BF=BFt R ABF ∴≅t R PBF90AG PG AGB PGB ∴=∠=∠=︒,BF ∴垂直平分AP ,在t R BFP 中,303PBF BP ∠=︒=,PF ∴=取PF 的中点H ,连接GH , H 为PF 中点,GH ∴为Rt PGF △的中线,12GH PF ∴==; (3)①不发生变化,30FBP ∠=︒,理由如下,作PM BC ⊥于点N ,交AD 于M ,,PBN FPM BPN PFM ∠=∠∠=∠,FMP PNB ∴,设,,,3,22x x CP x PN NC x MP BN x =∴===-=,3FP MP BP BN ∴== 30FBP ∴∠=︒;②当FA FP =时,BA BP =,ABP ∴为等边三角形,3AP AB ∴==,3x CP ∴==;当PA PF =时,12090APF ∠=︒>︒不符合题意;当AP=AD 时,75AFP APF ∠=∠=︒,75CBP CPB ∴∠=∠=︒,CP CB ∴==,即x =;综上所述,当3x =或AFP 是等腰三角形. 【点睛】本题考查矩形的性质、相似三角形的判定与性质、解直角三角形的应用、等腰三角形的判定与性质等知识,是重要考点,灵活运用分类讨论思想是解题关键.13.如图所示,在平面直角坐标系中,抛物线()230y ax bx a =++≠与x 轴交于点()1,0A -、()3,0B ,与y 轴交于点C ,点P 是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC 与OP ,交于点D ,求当PD OD的值最大时点P 的坐标; (3)点F 与点C 关于抛物线的对称轴成轴对称,当点P 的纵坐标为2时,过点P 作直线//PQ x 轴,点M 为直线PQ 上的一个动点,过点M 作MN x ⊥轴于点N ,在线段ON 上任取一点K ,当有且只有一个点K 满足135FKM ∠=︒时,请直接写出此时线段ON 的长.【答案】(1)2y x 2x 3=-++;(2)315,24⎛⎫⎪⎝⎭;(3)7+3+【分析】(1)直接利用待定系数法求解即可; (2)过P 作PG ∥y 轴,交BC 于点G ,则可构造出相似三角形,将PD OD 转换为PG OC求解即可; (3)分两种情况讨论,连接FM ,以FM 为斜边,作等腰直角△FHM ,当以H 为圆心FH 为半径作圆H ,与x 轴相切于K ,此时有且只有一个点K 满足∠FKM=135°,设点H (x ,y ),由“AAS”可证△FHE ≌△HMQ ,可得HE=QM=y -3,HQ=EF=x -2,由勾股定理可求y 的值,可求点M 坐标,即可求解.【详解】(1)将()1,0A -、()3,0B 代入抛物线解析式得:030933a b a b =-+⎧⎨=++⎩,解得:12a b =-⎧⎨=⎩, ∴抛物线的解析式为:2y x 2x 3=-++;(2)如图所示,作PG ∥y 轴,交BC 于点G ,则△DPG ∽△DOC , ∴PD PG OD OC=, 由题可知:()0,3C ,设直线BC 的解析式为:y kx b =+,将()3,0B ,()0,3C 代入得:303k b b +=⎧⎨=⎩,解得:13k b =-⎧⎨=⎩,∴直线BC 的解析式为:3BC y x =-+,3OC =,设P 的坐标为()223m,m m -++,则G 的坐标为()3m,m -+, ∴23PG m m =-+, ∴223932433m PD PG m m OD OC ⎛⎫--+ ⎪-+⎝⎭===, ∴当32m =时,PD OD 有最大值,将32m =代入抛物线解析式得:154y =, ∴点P 的坐标为31524⎛⎫⎪⎝⎭,;(3)①当M 在F 右侧时,如图所示,连接FM ,以FM 为斜边构造等腰直角△FHM ,当以H 为圆心,FH 为半径作圆H ,与x 轴相切于K 时,此时有且只有一个K 点满足∠FKM=135°,此时,连接HK ,交PM 于点Q ,延长CF 交于HK 于E ,则HK ⊥x 轴,设H (x ,y ),由题可知,抛物线的对称轴为直线x=1,∵点F 与点C 关于抛物线的对称轴对称,∴点F 的坐标为(2,3),CF ∥x 轴,∴CF ∥PM ,∴HK ⊥CF ,HK ⊥PM ,∴∠FEH=∠HQM=90°,∵∠FHE+∠MHE=90°,∠FHE+∠HFE=90°,∴∠HFE=∠MHQ ,又∵HF=HM ,∴△HFE ≌△MHQ (AAS ),∴HE=QM=y -3,HQ=FE=x -2,而HQ=HK -QK=y -2,∴y -2=x -2,即:x=y ,∴FE=y -2,∵222FH FE HE =+,FH=HK=y ,∴()()22223y y y =-+-,解得:5y =,5y =-(舍去)∴532QM =-=,523FE =-=,∴点M 的坐标为()72,,∴7ON =+;②当M 在F 左侧时,如图所示,同①的过程,可证得△HFE ≌△MHQ ,此时设H 的坐标为(x ,y ),显然有,HE=QM=y -3,HQ=FE=2-x ,而HQ=HK -QK=y -2,∴y -2=2-x ,即:4-y=x ,∴FE=y -2,∵222FH FE HE =+,FH=HK=y ,∴()()22223y y y =-+-,同理解得:5y =,∴532QM =-=,523FE =-=,∴点M 的坐标为()32,-,∴3ON =+综上,线段ON 的长为7+3+【点睛】本题考查二次函数综合问题,考查了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,圆的相关性质,以及相似三角形的判定与性质等,添加恰当的辅助线构造全等三角形是解题关键. 14.如图,在矩形ABCD 中,AB =6,BC =8,点O 为对角线AC 的中点,动点P 从点A 出发沿AC 向终点C 运动,同时动点Q 从点B 出发沿BA 向点A 运动,点P 运动速度为每秒2个单位长度,点Q 运动速度为每秒1个单位长度,当点P 到达点C 时停止运动,点Q 也同时停止运动,连结PQ ,设点P 运动时间为t (t >0)秒.(1)cos∠BAC= .(2)当PQ⊥AC时,求t的值.(3)求△QOP的面积S关于t的函数表达式,并写出t的取值范围.(4)当线段PQ的垂直平分线经过△ABC的某个顶点时,请直接写出t的值.【答案】(1)35;(2)1813t=秒;(3)22434512(0)552434512(5)552S t t tS t t t⎧=-+<<⎪⎪⎨⎪=-+-<≤⎪⎩;(4)当2t=或t=秒时,线段PQ的垂直平分线经过△ABC的某个顶点.【分析】(1)利用勾股定理先求得AC的长,即可求解;(2)在Rt△ABC中,利用余弦函数构建方程即可求解;(3)过P作PE⊥AQ于点E,过O作OF⊥AQ于点F,分52t<<,52t=和552t<≤三种情况讨论,利用三角形面积公式即可求解;(4)分线段PQ的垂直平分线经过点C时,经过点A时,经过点B时,三种情况讨论,求得结论即可.【详解】(1)在Rt△ABC中,AB=6,BC=8,10=,∴63 cos105ABBACAC∠===;故答案为:35;(2)当PQ⊥AC时,∵AP=2t,AQ=6t-,∴在Rt△ABC中,∴23cos 65AP t PAQ AQ t ∠===-, 解得:1813t =秒, 经检验,1813t =是方程的解, ∴1813t =(秒); (3)过P 作PE ⊥AQ 于点E ,过O 作OF ⊥AQ 于点F ,在Rt △ABC 中,AB =6,BC =8,AC 10=, ∴4sin 5BC BAC AC ∠==,4sin 25PE PE PAE AP t ∠===,4sin 55OF OF OAF AO ∠===, ∴PE=85t ,OF=4, ①当502t <<时, ()()2POQ AOQ APQ 1184346461222555t S S S t t t t =-=-⨯--⨯=-+, 即24341255S t t =-+(502t <<); ②当52t =时,POQ 不存在; ③当552t <≤时,()()2POQ APQ AOQ 1814346641225255t S S S t t t t =-=-⨯--⨯=-+-, 即24341255S t t =-+-(552t <≤);综上,△QOP 的面积S 关于t 的函数表达式是22434512(0)552434512(5)552S t t t S t t t ⎧=-+<<⎪⎪⎨⎪=-+-<≤⎪⎩; (4)①当线段PQ 的垂直平分线经过点C 时,PC=QC=102t -,在Rt △QBC 中,222QB BC QC +=,∴()2228102t t +=-,解得:203t -=(负值已舍); ②当线段PQ 的垂直平分线经过点A 时,AQ=AP ,即62t t -=,解得:2t =;③当线段PQ 的垂直平分线经过点B 时,过P 作PG ⊥BC 于点G ,3sin 5AB PG ACB AC PC ∠===,4cos 5BC PG ACB AC GC ∠===, ∴PG=()36102655t t -=-,CG=()48102855t t -=-, BG= BC -CG=888855t t ⎛⎫--= ⎪⎝⎭, 在Rt △BPG 中,222BG PG BP +=, 即22286655t t t ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭, 整理得:215721800t t -+=, ()2247241518056160b ac =-=--⨯⨯=-<,方程无解,∴线段PQ 的垂直平分线不会经过点B ,综上,当2t =或203t -=秒时,线段PQ 的垂直平分线经过△ABC 的某个顶点. 【点睛】本题考查了矩形性质,解直角三角形,线段垂直平分线性质等知识,主要考查学生分析问题和解决问题的能力,题目比较典型,但是有一定的难度.15.问题探究:如图,在Rt △ABC 和Rt △DEC 中,∠ACB =∠DCE =90°,∠CAB =∠CDE =60°,点D 为线段AB 上一动点,连接BE .(1)求证:△ADC ∽△BEC .(2)求证:∠DBE =90°.拓展延伸:把问题探究中的“点D 为线段AB 上一动点”改为“点D 为直线AB 上一动点”,其他条件不变,若点M 为DE 的中点,连接BM ,且有AD =1,AB =4,请直接写出BM 的长度.【答案】(1)见解析;(2)见解析;拓展延伸:BM .【分析】(1)先证得∠ACD =∠BCE ,再利用tan 60BC CE AC CD ︒===AC BC CD CE=,即可证明结论; (2)由(1)的结论得∠CAD =∠CBE ,即可证明;拓展延伸:分D 在线段AB 上和D 在BA 延长线上两种情况讨论,利用△ADC ∽△BEC 的 性质求得BE 的长,再利用直角三角形的性质即可求解.【详解】(1)∵∠ACB =∠DCE =90°,∴∠ACD+∠BCD =∠BCE+∠BCD =90°,∴∠ACD =∠BCE ,∵∠CAB =∠CDE =60°,∴tan 60BC CE AC CD ︒===AC BC CD CE=, ∴△ADC ∽△BEC ;(2)由(1)得:∠CAD =∠CBE ,∴∠CBE +∠CBA =∠CAD +∠CBA =90°,∴∠DBE =90°;拓展延伸:在Rt △ABC 中,∠ACB =90°,∠CAB =60°,AB =4,∴AC=2,BC =由(1)得:△ADC ∽△BEC , ∴AC AD BC BE=, ∵AD =1,∴由(2)得:∠DBE =90°,∵点M 为DE 的中点,∴BM=12DE ; ①当D 在线段AB 上时,如图:在Rt △BDE 中,BD=AB -AD=4-1=3,,∴DE ==∴BM=12 ②当D 在BA 延长线上时,如图:在Rt △BDE 中,BD=AB+AD=4+1=5,,∴DE ==∴BM=12综上,BM【点睛】本题考查了相似三角形的判定和性质,特殊角的三角函数值,勾股定理,等腰三角形的性质,直角三角形的性质,证明△ADC ∽△BEC 是本题的关键.16.如图,在△ABC 中,AB =BC =AC =12cm ,点D 为AB 上的点,且BD =34AB ,如果点P 在线段BC 上以3cm /s 的速度由B 点向终点C 运动,同时,点Q 在线段CA 上由C 点向终点A 运动.当一点到达终点时,另一点也随之停止运动.(1)如(图一)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由.(2)如(图二)若点Q 的运动速度与点P 的运动速度相等(点P 不与点B 和点C 重合),连接点A 与点P ,连接点B 与点Q ,并且线段AP ,BQ 相交于点F ,求∠AFQ 的度数.(3)若点Q 的运动速度为6cm /s ,当点Q 运动几秒后,可得到等边△CQP ?【答案】(1)BPD CQP ≌,证明见解析;(2)60︒(3)43【分析】 (1)根据时间和速度求得BP 、CQ 的长,根据SAS 判定两个三角形全等.(2)利用第(1)小题的方法可证得ABP BCQ ≌,BAP CBQ ∠=∠,根据三角形外角性质可得APB PAC C ∠=∠+∠,根据等边三角形性质和三角形内角和定理可得18060BFP CBQ APB ∠=︒-∠-∠=︒,根据对顶角性质可得AFQ ∠的度数.(3)设点Q 运动时间是x 秒,根据CP CQ =列一元一次方程,根据任意一角为60︒的等腰三角形是等边三角形,即可求出答案.【详解】(1)BPD CQP ≌.证明:点P 在线段BC 上以3cm /s 的速度由B 点向终点C 运动,经过1s 后,∠133BP =⨯=,∠点Q 的运动速度与点P 的运动速度相等,∠3CQ BP ==,∠AB =BC =AC =12cm ,BD =34AB , ∠ABC 是等边三角形,60B C ∠=∠=︒,31294BD =⨯=, ∠1239PC BC BP =-=-=,在BDP △和CPQ 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∠BPD CQP ≌(SAS ).(2)解:∠点Q 的运动速度与点P 的运动速度相等,∠BP CQ =,∠AB =BC =AC ,∠ABC 是等边三角形,60BAC ABC C ∠=∠=∠=︒,∠在ABP △和BCQ △中,AB BC ABC C BP CQ =⎧⎪∠=∠⎨⎪=⎩∠ABP BCQ ≌,∠BAP CBQ ∠=∠;在BPF △中,180()BFP CBQ APB ∠=︒-∠+∠,∵=CBQ APB CBQ CAP C ∠+∠∠+∠+∠,∵=60CBQ CAP BAP CAP ∠+∠∠+∠=︒,60C ∠=°,∴=6060=120CBQ APB ∠+∠︒+︒︒,∴180()=180120=60BFP CBQ APB ∠=︒-∠+∠︒-︒︒,∴=60AFQ BFP ∠∠=︒(对顶角相等).(3)解:设点Q 运动时间是x 秒,若CP CQ =,可列方程:1236x x -=, 解得:43x =. ∵在CQP 中,CP CQ =,=60C ∠︒, ∴当43x =秒时,CQP 是等边三角形(任意角是60︒的等腰三角形是等边三角形). ∴当点Q 运动43秒后,可得到等边CQP . 【点睛】。

中考复习专题:动态几何之定值问题探讨

中考复习专题:动态几何之定值问题探讨

20XX年中考复习专题:动态几何之定值问题探讨一、线段(和差)为定值问题:典型例题:例1:已知:在矩形ABCD中,AB=6cm,AD=9cm,点P从点B出发,沿射线BC方向以每秒2cm的速度移动,同时,点Q从点D出发,沿线段DA以每秒1cm的速度向点A方向移动(当点Q到达点A时,点P与点Q同时停止移动),PQ交BD于点E.求证:在点P、Q的移动过程中,线段BE的长度保持不变.例2:如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B左边),与y轴交于点C,顶点坐标为P.(1)写出二次函数L1的开口方向、对称轴和顶点坐标;(2)研究二次函数L2:y=kx2﹣4kx+3k(k≠0).①写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.练习题:1.如图,Rt△ABC中,∠A=30°,BC=10cm,点Q在线段BC上从B向C运动,点P在线段BA上从B向A 运动.Q、P两点同时出发,运动的速度相同,当点Q到达点C时,两点都停止运动.作PM⊥PQ交CA 于点M,过点P分别作BC、CA的垂线,垂足分别为E、F.(1)求证:△PQE∽△PMF;(2)当点P、Q运动时,请猜想线段PM与MA的大小有怎样的关系?并证明你的猜想;(3)设BP=x,△PEM的面积为y,求y关于x的函数关系式,当x为何值时,y有最大值,并将这个值求出来.2、已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)(1)(2) (3)3、如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时..出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).(1)当t为何值时,四边形PCDQ为平行四边形?(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.4、已知:A、B、C不在同一直线上.(1)若点A、B、C均在半径为R的⊙O上,i)如图一,当∠A=45°时,R=1,求∠BOC的度数和BC的长度;ii)如图二,当∠A为锐角时,求证sin∠A= BC2R;(2).若定长线段....BC的两个端点分别在∠MAN的两边AM、AN(B、C均与点A不重合)滑动,如图三,当∠MAN=60°,BC=2时,分别作BP⊥AM,CP⊥AN,交点为点P,试探索:在整个滑动过程中,P、A 两点的距离是否保持不变?请说明理由.二、面积(和差)为定值问题:典型例题:例1:如图,在梯形ABCD中,AD∥BC,E、F分别是AB、DC边的中点,AB=4,∠B=60°,(1)求点E到BC边的距离;(2)点P为线段EF上的一个动点,过P作PM⊥BC,垂足为M,过点M作MN∥AB交线段AD于点N,连接PN、探究:当点P在线段EF上运动时,△PMN的面积是否发生变化?若不变,请求出△PMN的面积;若变化,请说明理由.例2:如图,在平面直角坐标系x O y中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P 从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C 出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同2.时停止,设运动时间为t秒,当t=2秒时PQ=5(1)求点D的坐标,并直接写出t的取值范围;(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?练习题:1.如图1,在△ABC 中,AB=AC=5,BC=6,D 、E 分别是AB 、AC 的中点,F 、G 为BC 上的两点,FG=3,线段DG ,EF 的交点为O ,当线段FG 在线段BC 上移动时,三角形FGO 的面积与四边ADOE 的面积之和恒为定值,则这个定值是 .2.如图2,在矩形ABCD 中,AD=5,AB=4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF=CG=2,BE=DH=1,点P 是直线EF 、GH 之间任意一点,连接PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于 _________ .图1 图23.如图所示,四边形OABC 是矩形.点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重含),过点D 作直线12y x b =+交折线OAB 于点E 。

【中考压轴题专项练习】最新中考数学压轴大题冲刺专项训练:《动态几何 》含答案与解析

【中考压轴题专项练习】最新中考数学压轴大题冲刺专项训练:《动态几何  》含答案与解析

中考数学压轴大题冲刺专项训练动态几何1.在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC =6cm ,P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 出发向B 运动,几秒后四边形ABQP 是平行四边形?2.如图,点E 是矩形ABCD 中CD 边上一点,BCE 沿BE 折叠为BFE △,点F 落在AD 上.(1)求证:ABF DFE ∽△△;(2)若1sin 3DFE ∠=,求tan EBC ∠的值; (3)设AB k BC=,是否存在k 的值,使ABF 与BFE △相似?若存在,求出k 的值;若不存在,请说明理由. 3.如图,在平面直角坐标系xoy 中,顶点为M 的抛物线1C :2y ax bx =-(0a <)经过点A 和x 轴上的点B ,2AO OB ==,120AOB ∠=︒.(1)求该抛物线的表达式;(2)联结AM ,求AOM S ;(3)将抛物线1C 向上平移得到抛物线2C ,抛物线2C 与x 轴分别交于点E F 、(点E 在点F 的左侧),如果MBF 与AOM 相似,求所有符合条件的抛物线2C 的表达式.4.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PM 与PN 的积的最大值.5.数轴上点A 表示的有理数为20,点B 表示的有理数为-10,点P 从点A 出发以每秒5个单位长度的速度在数轴上往左运动,到达点B 后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A 停止,设运动时间为t (单位:秒).(1)当t =5时,点P 表示的有理数为 .(2)在点P 往左运动的过程中,点P 表示的有理数为 (用含t 的代数式表示).(3)当点P 与原点距离5个单位长度时,t 的值为 .6.如图,△ABC 中,∠ACB=90°,AB=10cm ,BC=8cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A-B-C-A 运动,设运动时间为t (t >0)秒.(1)AC= cm ;(2)若点P 恰好在∠ABC 的角平分线上,求此时t 的值;(3)在运动过程中,当t 为何值时,△ACP 为等腰三角形.7.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,A(a ,b)满足64a b -+-=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .OA ∥CB .(1)填空:a =_______,b =_______,点C 的坐标为_______;(2)如图1,点P(x ,y)在线段BC 上,求x ,y 满足的关系式;(3)如图2,点E 是OB 一动点,以OB 为边作∠BOG =∠AOB 交BC 于点G ,连CE 交OG 于点F ,当点E 在OB 上运动时,OFC FCG OEC∠+∠∠的值是否发生变化?若变化,请说明理由;若不变,请求出其值.8.综合实践初步探究:如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系为;解决问题:(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?若成立,请给于证明;若不成立,线段OD、OE与OC之间的数量关系为;拓展应用:(4)当∠DCE绕点C旋转到CD与OA垂直时,请猜想四边形CDOE的周长与OC的数量关系,并说明理由;==.9.ABC是等边三角形,点D在BC上,点E,F分别在射线AB,AC上,且DA DE DF∠=________︒;(1)如图1,当点D是BC的中点时,则EDF(2)如图2,点D在BC上运动(不与点B,C重合).∠的大小是否发生改变,并说明理由;①判断EDF②点D关于射线AC的对称点为点G,连接BG,CG,CE.依题意补全图形,判断四边形BECG的形状,并证明你的结论.10.如图,数轴上,点A表示的数为7-,点B表示的数为1-,点C表示的数为9,点D表示的数为13,在点B和点C处各折一下,得到条“折线数轴”,我们称点A和点D在数上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q从点D出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点P从点A运动至D点需要时间为________秒;(2)P、Q两点到原点O的距离相同时,求出动点P在数轴上所对应的数;(3)当Q点到达终点A后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q追上点P时,直接写出它们在数轴上对应的数.11.如图,在矩形ABCD 中,4AB =,3BC =,点O 为对角线BD 的中点,点P 从点A 出发,沿折线AD DO OC --以每秒1个单位长度的速度向终点C 运动,当点P 与点A 不重合时,过点P 作PQ AB ⊥于点Q ,以PQ 为边向右作正方形PQMN ,设正方形PQMN 与ABD ∆重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒).(1)求点N 落在BD 上时t 的值.(2)直接写出点O 在正方形PQMN 内部时t 的取值范围.(3)当点P 在折线AD DO -上运动时,求S 与t 之间的函数关系式.(4)直接写出直线DN 平分BCD ∆面积时t 的值.12.在Rt ABC ∆中,90CAB ∠=︒,6AC =,8AB =,点P 是射线AB 上的动点,连接CP ,将ACP ∆沿着CP 翻折得到A CP '∆,设AP x =()0x >,(1)如图1,当点A '在BC 上时,求x 的值.(2)如图2,连接AA ',BA ',当90AA B '∠=时,求PA B '∆的面积.(3)在点P 的运动过程中,当AA B '∆是等腰三角形时,求x 的值.参考答案与试题解析1.在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,几秒后四边形ABQP是平行四边形?【解析】解:设t秒后,四边形APQB为平行四边形,则AP=t,QC=2t,BQ=6﹣2t,∵AD∥BC所以AP∥BQ,根据一组对边平行且相等的四边形是平行四边形,知:AP=BQ即可,即:t=6﹣2t,∴t=2,当t=2时,AP=BQ=2<BC<AD,符合,综上所述,2秒后四边形ABQP是平行四边形.△,点F落在AD上.2.如图,点E是矩形ABCD中CD边上一点,BCE沿BE折叠为BFE(1)求证:ABF DFE ∽△△;(2)若1sin 3DFE ∠=,求tan EBC ∠的值; (3)设AB k BC=,是否存在k 的值,使ABF 与BFE △相似?若存在,求出k 的值;若不存在,请说明理由. 【解析】(1)证明:∵四边形ABCD 是矩形,∴90A D C ∠=∠=∠=︒,∵BCE 沿BE 折叠为BFE △,∴90BFE C ∠=∠=︒,∴90AFB DFE ∠+∠=︒,又∵90AFB ABF ∠+∠=︒,∴ABF DFE =∠∠.∴ABF DFE ∽△△;(2)解:在Rt DEF △中,1sin 3DE DFE EF ∠==, ∴设DE a =,3EF a =,2222DF EF DE a =+=,∵BCE 沿BE 折叠为BFE △, ∴3CE EF a ==,4CD DE CE a =+=,4AB a =,EBC EBF ∠=∠, 又∵ABF DFE ∽△△,∴22EF DF BF AB ==, ∴2tan 2EF EBF BF ∠==, 2tan tan EBC EBF ∠=∠=; (3)存在,32k =时,ABF 与BFE △相似 理由:当ABF FBE △∽△时,24∠∠=.∵45∠=∠,24590∠+∠+∠=︒,∴24530∠=∠=∠=︒,∴3cos302AB BF =︒=, ∵BC BF =,∴32AB k BC ==;②当ABF FEB ∽△△时,26∠=∠,∵4690∠+∠=︒,∴2490∠+∠=︒,这与24590∠+∠+∠=︒相矛盾,∴ABF FEB ∽△△不成立.综上所述,3k =时,ABF 与BFE △相似.3.如图,在平面直角坐标系xoy 中,顶点为M 的抛物线1C :2y ax bx =-(0a <)经过点A 和x 轴上的点B ,2AO OB ==,120AOB ∠=︒.(1)求该抛物线的表达式;(2)联结AM ,求AOM S ;(3)将抛物线1C 向上平移得到抛物线2C ,抛物线2C 与x 轴分别交于点E F 、(点E 在点F 的左侧),如果MBF 与AOM 相似,求所有符合条件的抛物线2C 的表达式.【解析】解:(1)过A 作AH x ⊥轴,垂足为H ,∵2OB =,∴0(2)B ,∵120AOB ∠=︒∴60AOH ∠=︒,30HAO ∠=︒.∵2OA =, ∴112OH OA ==. 在Rt AHO 中,222OH AH OA +=, ∴22213AH - ∴()13A --,∵抛物线1C :2y ax bx =+经过点A B 、,∴可得:4203 a ba b-=⎧⎪⎨-=-⎪⎩,解得:33233ab⎧=-⎪⎪⎨⎪=⎪⎩∴这条抛物线的表达式为232333y x x=-+;(2)过M作MG x⊥轴,垂足为G,∵23333y x x=-+=233(1)33x--+∴顶点M是31,3⎛⎝⎭,得3MG=设直线AM为y=kx+b,把(3A-,31,3M⎛⎫⎪⎪⎝⎭代入得33k bk b=-+=+,解得2333kb⎧=⎪⎪⎨⎪=-⎪⎩∴直线AM为233y x=令y=0,解得x=12∴直线AM 与x 轴的交点N 为1,02⎛⎫ ⎪⎝⎭∴111111××222222AOM S ON MG ON AH =⋅-⋅=+(3)∵0(2)B ,、M ⎛ ⎝⎭,∴在Rt BGM中,tan MG MBG BG ∠==, ∴30MBG ∠=︒.∴150MBF ∠=︒.由抛物线的轴对称性得:MO MB =,∴150MBO MOB ∠=∠=︒.∵120AOB ∠=︒,∴150AOM ∠=︒∴AOM MBF ∠=∠.∴当MBF 与AOM 相似时,有:=OM BM OA BF 或=OM BF OA BM即332BF =或32= ∴2BF =或23BF =. ∴0(4)F ,或803⎛⎫ ⎪⎝⎭,设向上平移后的抛物线2C 为:2y x k =++,当0(4)F ,时,3k =,∴抛物线2C 为:2y =+当803F ⎛⎫ ⎪⎝⎭,时,27k =,∴抛物线2C 为:2y x =+综上:抛物线2C 为:2y x x 333=-++或23327y x x =-++ 4.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PM 与PN 的积的最大值.【解析】(1)是;∵AB AC =,AD AE =∴DB=EC ,∠ADE=∠AED=∠B=∠ACB∴DE ∥BC∴∠EDC=∠DCB∵点M 、P 、N 分别为DE 、DC 、BC 的中点∴PM ∥EC ,PN ∥BD ,11,22PM EC PN BD == ∴PM PN =,∠DPM=∠DCE ,∠PNC=∠DBC∵∠DPN=∠PNC+∠DCB∴∠MPN=∠DPM+∠DPN=∠ACD+∠DCB+∠B=180°-90°=90°∴线段PM 与PN 是“等垂线段”;(2)由旋转知BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ∆≌ACE ∆(SAS )∴ABD ACE ∠=∠,BD CE = 利用三角形的中位线得12PN BD =,12PM CE =,由中位线定理可得//PM CE ,//PN BD∴DPM DCE ∠=∠,PNC DBC ∠=∠∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠∵90BAC ∠=∴90ACB ABC ∠+∠=∴90MPN ∠=∴PM 与PN 为“等垂线段”;(3)PM 与PN 的积的最大值为49;由(1)(2)知,12PM PN BD == ∴BD 最大时,PM 与PN 的积最大∴点D 在BA 的延长线上,如图所示:∴14BD AB AD =+=∴249PM PN PM •==.6.数轴上点A 表示的有理数为20,点B 表示的有理数为-10,点P 从点A 出发以每秒5个单位长度的速度在数轴上往左运动,到达点B 后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A 停止,设运动时间为t (单位:秒).(1)当t =5时,点P 表示的有理数为 .(2)在点P 往左运动的过程中,点P 表示的有理数为 (用含t 的代数式表示).(3)当点P 与原点距离5个单位长度时,t 的值为 .【解析】(1)由题意得:()201030AB =--=,点P 从点A 运动到点B 所需时间为30655AB ==(秒), 点P 从点B 返回,运动到点A 所需时间为301522AB ==(秒), 则当56t =<时,5525PA =⨯=, 因此,点P 表示的有理数为20255-=-,故答案为:5-;(2)在点P 往左运动的过程中,5PA t =,则点P 表示的有理数为205t -,故答案为:205t -;(3)由题意,分以下两种情况:①当点P 从点A 运动到点B ,即06t ≤≤时,由(2)可知,点P 表示的有理数为205t -,则2055t -=,即2055t -=或2055t -=-,解得3t =或5t =,均符合题设;②当点P 从点B 返回,运动到点A ,即615t <≤时,()26PB t =-,点P 表示的有理数为()2610222t t --=-,则2225t -=,即2225t -=或2225t -=-,解得13.5t =或8.5t =,均符合题设;综上,当点P 与原点距离5个单位长度时,t 的值为3或5或8.5或13.5时,故答案为:3或5或8.5或13.5.6.如图,△ABC 中,∠ACB=90°,AB=10cm ,BC=8cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A-B-C-A 运动,设运动时间为t (t >0)秒.(1)AC= cm ;(2)若点P 恰好在∠ABC 的角平分线上,求此时t 的值;(3)在运动过程中,当t 为何值时,△ACP 为等腰三角形.【解析】(1)由题意根据勾股定理可得:22221086AC AB BC =--=(cm ),故答案为6;(2)如图,点P 恰好在∠ABC 的角平分线上,过P 作PD ⊥AB 于点D ,则可设PC=xcm ,此时BP=(8-x )cm ,DP=PC=xcm ,AD=AC=6cm,BD=10-6=4cm ,∴在RT △BDP 中,222BD PD BP +=,即 ()22248x x +=-,解之可得:x=3,∴BP=8-3=5cm ,∴P 运动的路程为:AB+BP=10+5=15cm , ∴t=157.52=s ; (3)可以对△ACP 的腰作出讨论得到三种情况如下:①如图,AP=AC=6cm ,此时t=632=s ;②如图,PA=PC ,此时过P 作PD ⊥AC 于点D ,则AD=3,PD=4,∴AP=5,此时t=5 2.52=s ; ③如图,PC=AC=6cm ,则BP=8-6=2cm ,则P 运动的路程为AB+BP=10+2=12cm ,此时t=1262=s , 综上所述,在运动过程中,当t 为2.5s 或3s 或6s 时,△ACP 为等腰三角形.7.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,A(a ,b)满足64a b -+-=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .OA ∥CB .(1)填空:a =_______,b =_______,点C 的坐标为_______;(2)如图1,点P(x ,y)在线段BC 上,求x ,y 满足的关系式;(3)如图2,点E 是OB 一动点,以OB 为边作∠BOG =∠AOB 交BC 于点G ,连CE 交OG 于点F ,当点E 在OB 上运动时,OFC FCG OEC∠+∠∠的值是否发生变化?若变化,请说明理由;若不变,请求出其值.【解析】解:(1)∵ 640a b --=,∴60,40a b -=⎧⎨-=⎩∴6,4a b =⎧⎨=⎩ 4,6,AB OB ∴==由平移得:4,OC =且C 在y 轴负半轴上, ()0,4,C ∴-故答案为:()6,4,0,4-;(2)如图,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,连接OP . ∵AB ⊥x 轴于点B ,且点A ,P ,C 三点的坐标分别为:()()()6,4,,,0,4,x y - ∴OB=6,OC=4,,,PM y PN x =-= ∴()1111462222BOC POC POB S S S OC PN OB PM x y =+=•+•=⨯+⨯⨯- 23x y =-,而116412,22BOC S OB OC =•=⨯⨯= 2312,x y ∴-=∴,x y 满足的关系式为:2312,x y -=(3)OFC FCGOEC∠+∠∠的值不变,值为2.理由如下:∵线段OC是由线段AB平移得到,∴//,OA CB,∴∠AOB=∠OBC,又∵∠BOG=∠AOB,∴∠BOG=∠OBC,根据三角形外角性质,可得∠OGC=2∠OBC,∠OFC=∠FCG+∠OGC,,OEC FCG OBC∠=∠+∠∴∠OFC+∠FCG=2∠FCG+2∠OBC =2(∠FCG+∠OBC)=2∠OEC,∴22 OFC FCG OECOEC OEC∠+∠∠==∠∠;所以:OFC FCGOEC∠+∠∠的值不变,值为2.8.综合实践初步探究:如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系为;解决问题:(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?若成立,请给于证明;若不成立,线段OD、OE与OC之间的数量关系为;拓展应用:(4)当∠DCE绕点C旋转到CD与OA垂直时,请猜想四边形CDOE的周长与OC的数量关系,并说明理由;【解析】:(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC=12∠AOB=30°,∵CD⊥OA,∴∠ODC=90°,∴∠OCD=60°,∴∠OCE=∠DCE-∠OCD=60°,在Rt△OCD中,OD=OC•cos30°=2OC,同理:,∴;(2)(1)中结论仍然成立,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=,,∴,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE-EG,∴OF+OG=OD+EG+OE-EG=OD+OE,∴OD+OE=3OC;(3)(1)中结论不成立,结论为:3OC,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=3,3,∴3,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF-OD=EG-OD,OG=OE-EG,∴OF+OG=EG-OD+OE-EG=OE-OD,∴3.(4)由(1)可得3,CD+CE=OC∴3+1)OC,故四边形CDOE的周长为(3+1)OC.9.ABC是等边三角形,点D在BC上,点E,F分别在射线AB,AC上,且DA DE DF==.(1)如图1,当点D是BC的中点时,则EDF∠=________︒;(2)如图2,点D在BC上运动(不与点B,C重合).①判断EDF∠的大小是否发生改变,并说明理由;②点D关于射线AC的对称点为点G,连接BG,CG,CE.依题意补全图形,判断四边形BECG的形状,并证明你的结论.【解析】(1)∵点D是等边△ABC的边BC的中点,∴∠DAB=∠DAC=12∠BAC=30°,∵DA=DE,∴∠AED=∠BAD=30°,∴∠ADE=180°−∠BAD−∠AED=120°,同理:∠ADF=120°,∴∠EDF=360°−∠ADE−∠ADF=120°,故答案为:120;(2)①不发生改变,理由如下:∵ABC 是等边三角形,∴60BAC ∠=︒.∵DA DE DF ==.∴点A ,E ,F 在以D 为圆,DA 长为半径的圆上,∴2120EDF BAC ∠=∠=︒.②补全图形如下:四边形BECG 为平行四边形,证明如下:由①知,120EDF ∠=︒,∵60BDE BED ∠+∠=︒,60BDE CDF ∠+∠=︒,∴BED CDF ∠=∠.在CDF 和BED 中,DCF EBD CDF DEA DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CDF BED AAS ≅△△.∴CD BE =.∵点D 和点G 关于射线AC 对称,∴CD CG =,2120DCG ACD EBD ∠=∠=︒=∠.∴BE CG =,且//BE CG .∴四边形BECG 为平行四边形.10.如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B 和点C 处各折一下,得到条“折线数轴”,我们称点A 和点D 在数上相距20个长度单位,动点P 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D 出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA 和射线CD 上的运动速度相同均为2个单位/秒,“上坡路段”从B 到C 速度变为“水平路线”速度的一半,“下坡路段”从C 到B 速度变为“水平路线”速度的2倍.设运动的时间为t 秒,问:(1)动点P 从点A 运动至D 点需要时间为________秒;(2)P 、Q 两点到原点O 的距离相同时,求出动点P 在数轴上所对应的数;(3)当Q 点到达终点A 后,立即调头加速去追P ,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q 追上点P 时,直接写出它们在数轴上对应的数.【解析】(1)点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13, 6,10,4AB BC CD ∴===,∴动点P 从点A 运动到点D 所需时间为6104310215212++=++=(秒), 故答案为:15;(2)由题意,分以下六种情况:①当点P 在AB ,点Q 在CD 时,点P 表示的数为72t -+,点Q 表示的数为132t -,点P 、Q 到原点的距离相同,()721320t t ∴-++-=,此方程无解;②当点P 在AB ,点Q 在CO 时,点P 表示的数为72t -+,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()721740t t ∴-++-=,解得5t =,此时点P 表示的数为3,不在AB 上,不符题设,舍去;③当点P 在BO ,点Q 在CO 时,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()41740t t ∴-+-=, 解得133t =, 此时点P 表示的数为13,不在BO 上,不符题设,舍去; ④当点P 、Q 相遇时,点P 、Q 均在BC 上,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,4174t t ∴-=-, 解得215t =, 此时点P 表示的数为15,点Q 表示的数为15,均符合题设; ⑤当点P 在OC ,点Q 在OB 时,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()41740t t ∴-+-=, 解得133t =, 此时点P 表示的数为13,点Q 表示的数为13-,均符合题设; ⑥当点P 在OC ,点Q 在BA 时,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为410128224t t ⎛⎫----=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()4820t t ∴-+-=,解得4t =,此时点Q 表示的数为0,不在BA 上,不符题设,舍去;综上,点P 表示的数为15或13; (3)点Q 到达点A 所需时间为41067.5242++=(秒),此时点P 到达的点是()7327.531 3.5-+⨯+-⨯=,点P 到达点C 所需时间为6101321+=(秒),此时点Q 到达的点是()7232137.526-+⨯+⨯--=, ∴点Q 在CD 上追上点P ,此时点P 表示的数为()9213217t t +-=-,点Q 表示的数为()761037.525334.5t t -+++---=-,217334.5t t ∴-=-,解得17.5t =,此时点P 表示的数为18,点Q 表示的数为18.11.如图,在矩形ABCD 中,4AB =,3BC =,点O 为对角线BD 的中点,点P 从点A 出发,沿折线AD DO OC --以每秒1个单位长度的速度向终点C 运动,当点P 与点A 不重合时,过点P 作PQ AB ⊥于点Q ,以PQ 为边向右作正方形PQMN ,设正方形PQMN 与ABD ∆重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒).(1)求点N 落在BD 上时t 的值.(2)直接写出点O 在正方形PQMN 内部时t 的取值范围.(3)当点P 在折线AD DO -上运动时,求S 与t 之间的函数关系式.(4)直接写出直线DN 平分BCD ∆面积时t 的值.【解析】(1)如图1所示,由题意可知,当点N 落在BD 上时,因为四边形PQMN 是正方形,所以AP PN t ==,又因为在矩形ABCD 中,4AB =,3BC =,所以3DP t =-,在DPN ∆和DAB ∆中,因为PDN ADB ∠=∠,90DPN DAB ∠=∠=︒,所以DPN DAB ∆∆∽,则DP PN DA AB =, 所以334t t -=,解得127t =, 所以当点N 落在BD 上时t 的值为127. 故答案为:127t =. (2)①如图2,点O 刚落在正方形PQMN 上.因为点O 是矩形ABCD 对角线BD 的中点,所以MN 在矩形ABCD 的一条对称轴上,所以AM MB =,所以4t t =-,解得2t =.②如图3,点O 和点P 重合,此时P 点运动的距离为AD DO +,因为3AD =,4AB =,所以2222345BD AD AB =+=+=, 所以1522DO BD ==, 所以此时511322t AD DO =+=+=. 综上所述,当点O 在正方形PQMN 内部时,t 的取值位于上述两个临界位置之间,即t 的取值范围为1127t <<. 故答案为:1127t <<. (3)①由(1)可知,当1207t <≤时,正方形PQMN 和ABD ∆的重叠部分即为正方形PQMN ,所以此时2S t =.②当1237t <≤时,点P 在AD 上, 设PN 与BD 交于点G ,MN 与BD 交于点F ,此时正方形PQMN 和ABD ∆的重叠部分为五边形PGFMQ ,此时PQMN GNF S S S ∆=-.同(1),可知DPG DAB ∆∆∽,FMB DAB ∆∆∽,因为AP AM t ==,3AD =,4AB =,所以3DP t =-,4BM t =-, 所以DP PG DA AB =,FM BM DA BA=, 所以334t PG -=,434FM t -=, 所以443PG t =-,334FM t =-, 所以474433GN PN PG t t t ⎛⎫=-=--=- ⎪⎝⎭, 373344NF MN FM t t t ⎛⎫=-=--=- ⎪⎝⎭, 所以1177432234GNF S GN NF t t ∆⎛⎫⎛⎫=⋅=-- ⎪⎪⎝⎭⎝⎭,所以217743234PQMN GNF S S S t t t ∆⎛⎫⎛⎫=-=--- ⎪⎪⎝⎭⎝⎭, 整理得2257624S t t =-+-.③当1132t <≤时,点P 在DO 上, 设MN 与BD 交于点F ,则PFMQ PQB FMB S S S S ∆∆==-.因为3AD =,5BD =,所以3PD t =-,所以8PB t =-,同(1),PQB DAB ∆∆∽,所以PB QB PQ DA AB DA==, 所以8543t QB PQ -==,所以()485QB t =-,()385PQ t =-, 所以431(8)(8)(8)555MB QB QM t t t =-=---=-, 又因为FMB DAB ∆∆∽,所以FM BM DA BA =, 所以()18534t FM -=,所以()3820FM t =-, 所以11134131(8)(8)(8)(8)222552205PQB FMB S S S PQ QB FM MB t t t t ∆∆=-=⋅-⋅=⋅-⋅--⋅-⋅-, 整理得()29840S t =-. 综上所述,当1207t <≤时,2S t =;当1237t <≤时,2257624S t t =-+-;当1132t <≤时,()29840S t =-.故答案为:22212725127632479187211340552t tS t t tt t t⎧⎛⎫<⎪⎪⎝⎭⎪⎪⎛⎫=-+-<⎨ ⎪⎝⎭⎪⎪⎛⎫-+<⎪ ⎪⎝⎭⎩(4)设直线DN与BC交于点E,因为直线DN平分BCD∆的面积,∴32BE CE==.①如图7,点P在AD上,过点E作EH AD⊥于点H,则DPN DHE∆∆∽,所以DP PNDH HE=,因为AP PN t==,3DP t=-,4EH BA==,所以3324tt-=,解得2411t=.②如图8,点P在DO上,连接OE.因为E 、O 分别是BC 、BD 的中点,所以EO 是BCD ∆的一条中位线,所以//OE CD ,所以122OE CD ==,又因为//PN CD ,所以//PN OE ,所以DPN DOE ∆∆∽,所以DP PN DO OE=, 因为3DP t =-,52DO =,()385PN PQ t ==- (由(3)②知),2OE =,所以3(8)35522t t --=,解得367t =. ③如图9,P 在OC 上,设DE 与OC 交于点S ,连接OE ,交PQ 于R .同②,//OE CD ,且122OE CD ==, 所以SCD SOE ∆∆∽,所以12OS OE CS CD ==, 又因为52OC OD ==,所以15126OS OC ==+, 所以53SC =,又因为//PN OE (同②), 所以SPN SOE ∆∆∽,所以SP PN SO OE=, 因为112OP t AD OD t =--=-, 所以193SP OS OP t =-=-,所以193526t PN -=, 所以761255PN t =-, 又因为//PQ BC ,所以ORP OEC ∆∆∽, 所以OP PR OC CE =,所以1125322t PR -=,所以333510PQ t =-, 所以333339510255PQ PR RQ PR BE t t =+=+=-+=-, 又因为PQ PN =,所以7612395555t t -=-,解得173t =. 综上所述,当直线DN 平分BCD ∆的面积时,t 的值为2411或367或173. 故答案为:2411或367或173. 12.在Rt ABC ∆中,90CAB ∠=︒,6AC =,8AB =,点P 是射线AB 上的动点,连接CP ,将ACP ∆沿着CP 翻折得到A CP '∆,设AP x =()0x >,(1)如图1,当点A '在BC 上时,求x 的值.(2)如图2,连接AA ',BA ',当90AA B '∠=时,求PA B '∆的面积.(3)在点P 的运动过程中,当AA B '∆是等腰三角形时,求x 的值.【解析】(1)在Rt ABC ∆中,90CAB ∠=︒,6AC =,8AB =,∴由勾股定理得:BC=10,由折叠性质得:A 'P=AP=x , C A '=AC=6,则PB=8-x ,A 'B=4,在RtΔA 'BP 中,由勾股定理得:42+x 2=(8-x)2,解得:3x =;(2)当90AA B '∠=︒时,由折叠性质得:AC=A 'C=4,∠CAB=∠C A 'P=90º,∴CAA '∠=CA A '∠,∵A AB CAA ''∠+∠=90º,A AB A BA ''∠+∠=90º,∴CAA A BA ''∠=∠,∵CA A AA P ''∠+∠=90º,AA P PA B ''∠+∠=90º,∴CA A PA B ''∠=∠,∴A BA PA B ''∠=∠,∴A P PB '==4,则4PA PA PB '===,且PAA S '∆=PA B S '∆,由6AC =,∠CAB=90º,可求得213CP =,121313AQ A Q '∴==,81313PQ ∴=, 9613PAA S '∆∴=,9613PA B S '∆∴=; (3)①当AA A B ''=时,若P 在线段AB 上,如图1,过A '作A 'H ⊥AB 于H ,过C 作CD ⊥H A '延长线于D ,则四边形ACDH 是矩形,又AA B '∆是等腰三角形,∴4CD AH ==,6A C AC DH '===,25A D '∴=,625A H '=-,∵CA D PA H ''∠+∠=90º,CA D A CD ''∠+∠=90º, ∴A CD PA H ''∠=∠,又PHA CDA ''∠=∠=90º,∴A PH CA D ''∆~∆,∴CD A C A H A P '='', 得6625x=-,解得935x =-,若P 在AB 延长线上时,如图2,过A '作AB 的平行线,交AC 延长线与D ,过P 作PH 垂直平行线于H ,则四边形APHD 是矩形,同上方法,易求得A 'D=4,25CD =, ∴PH=AD=625+,同理可证得A PH CA D ''∆~∆,∴C AD A PH A P '''=, 得6625x=+,解得935x =+,②当8AA AB '==时,如图3,由折叠性质得: CP 垂直平分A A ',则4AQ A Q '==,∠AQP=90º,又AC=6,25CQ ∴=,∵∠ AQP=∠CAB=90º,∴由同角的余角相等得:∠ACQ=∠QAP , ∴ACQ PAQ ∆∆,∴AC CQ AP AQ =, 即625x =, 解得:1255x =;③当AB A B '=时,如图4,则P 、B 重合,8x ∴=,综上所述935x =-935x =+或1255x =或8x =.。

中考压轴题 定值问题

中考压轴题    定值问题

中考定值问题分类解析在中考中,定值问题一直是一类热门专题。

对考察学生的分析问题、解决问题的能力,在变化中寻找不变的结论和关系的探索能力,要求都比较高。

而且对数学思想方法的考察也比较深入。

定值问题的思考切入点多种多样,解决这类问题的方法也是灵活多变。

本文从定值结论的不同来分类,解析以下这类这类问题的解决策略。

一:线段定值1.如图,点A在函数y=(x>0)图象上,过点A作x轴和y轴的平行线分别交函数y=图象于点B,C,直线BC与坐标轴的交点为D,E.(1)试问:当点A在函数y=(x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(2)试说明:当点A在函数y=(x>0)图象上运动时,线段BD与CE 的长始终相等.【解析】此题后两问都是定值问题。

但解决的策略不同。

第二问是通过含参计算,最后消掉参数,从而得到结论与参数无关,是个定值。

这是定值问题中常用的一种方法。

第三问是通过全等证明,其实也可以用含参计算的方法证明【解答】解:(1)∵点C在y=的图象上,且C点横坐标为1,∴C(1,1),∵AC∥y轴,AB∥x轴,∴A点横坐标为1,∵A点在函数y=(x>0)图象上,∴A(1,4),∴B点纵坐标为4,∵点B在y=的图象上,∴B点坐标为(,4);(2)设A(a,),则C(a,),B(,),∴AB=a﹣=a,AC=﹣=,∴S=AB•AC=××=,△ABC即△ABC的面积不发生变化,其面积为;(3)如图,设AB的延长线交y轴于点G,AC的延长线交x轴于点F,∵AB∥x轴,∴△ABC∽△EFC,∴=,即=,∴EF=a,由(2)可知BG=a,∴BG=EF,∵AE∥y轴,∴∠BDG=∠FCE,在△DBG和△CFE中∴△DBG≌△CEF(AAS),∴BD=EF.2.如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在第一象限的点.(1)当△ABD的面积为4时,①求点D的坐标;②联结OD,点M是抛物线上的点,且∠MDO=∠BOD,求点M的坐标;(2)直线BD、AD分别与y轴交于点E、F,那么OE+OF的值是否变化,请说明理由.【解析】这个问题中求线段和为定值,也是采用含参计算,最终消参的方法【解答】解:(1)∵抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),∴A(﹣2,0),4a+4=0,∴a=﹣1,AB=4,∴抛物线的解析式为y=﹣x2+4,①设D(m,﹣m2+4),∵△ABD的面积为4,∴4=×4(﹣m2+4)∴m=±,∵点D在第一象限,∴m=,∴D(,2),②如图1,点M在OD上方时,∵∠MDO=∠BOD,∴DM∥AB,∴M(﹣,2),当M在OD下方时,设DM交x轴于G,设G(n,0),∴OG=n,∵D(,2),∴DG=,∵∠MDO=∠BOD,∴OG=DG,∴,∴n=,∴G(,0),∵D(,2),∴直线DG的解析式为y=﹣2x+6①,∵抛物线的解析式为y=﹣x2+4②,联立①②得,x=,y=2,此时交点刚好是D点,所以在OD下方不存在点M.(2)OE+OF的值不发生变化,理由:如图2,过点D作DH⊥AB于H,∴OF∥DH,∴,设D(b,﹣b2+4),∴AH=b+2,DH=﹣b2+4,∵OA=2,∴,∴OF=,同理:OE=2(2+b),∴OE+OF=2(2﹣b)+2(2+b)=8.3.如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.【解析】消参法【解答】解:(1)当y=0时,x2﹣4x+3=0,∴x1=1,x2=3;即:A(1,0),B(3,0);(2)①二次函数L2与L1有关图象的两条相同的性质:(Ⅰ)对称轴都为直线x=2或顶点的横坐标为2;(Ⅱ)都经过A(1,0),B(3,0)两点;②存在实数k,使△ABP为等边三角形.∵y=kx2﹣4kx+3k=k(x﹣2)2﹣k,∴顶点P(2,﹣k).∵A(1,0),B(3,0),∴AB=2要使△ABP为等边三角形,必满足|﹣k|=,∴k=±;③线段EF的长度不会发生变化.∵直线y=8k与抛物线L2交于E、F两点,∴kx2﹣4kx+3k=8k,∵k≠0,∴x2﹣4x+3=8,∴x1=﹣1,x2=5,∴EF=x2﹣x1=6,∴线段EF的长度不会发生变化.二、周长定值1.如图,平行四边形ABCD中,AB=5,BC=10,sin∠B=,E点为BC边上的一个动点(不与B、C重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,连结DE,DF.(1)当△ABE恰为直角三角形时,求BF:CG的值:(2)当点E在线段BC上运动时,△BEF与△CEG的周长之和是否是常数,请说明理由:(3)设BE=x,△DEF的面积为y,试求出y关于x的函数关系式,并写出定义域.【解析】第二问,设BE=x,利用相似把各条线段用x表示,这是利用了函数的思想。

中考数学专题 动态几何之定值(恒等)问题(含解析)

中考数学专题 动态几何之定值(恒等)问题(含解析)

专题44 动态几何之定值(恒等)问题数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。

本专题原创编写动态几何之定值(恒等)问题模拟题。

在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。

在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。

1.如图,在Rt△ABC和Rt△DEF中,∠ACB=∠DEF=900,∠A=∠F=450,DF=4,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB。

求证:点E到AC的距离为常数2。

【答案】解:如图,过点E作EH⊥AC于点H,则EH即为点E到AC的距离。

∵在Rt△DEF 中,∠DEF=900,∠F=450,DF=4, ∴4DE 222==。

∵DE∥AB,∴∠EDH=∠A=450。

∴22EH 22==。

∴点E 到AC 的距离为常数2。

【考点】平移问题,作辅助线,等腰直角三角形的性质,平行的性质。

2. 对非负实数x “四舍五入”到个位的值记为即:当n 为非负整数时,如果如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,… 试解决下列问题:(1)填空:①= (为圆周率); ②如果的取值范围为 ;(2)①当;②举例说明不恒成立;(3)求满足的值;(4)设n 为常数,且为正整数,函数范围内取值时,函数值y 为整数的个数记为的个数记为b .求证: 【答案】(1)①3 ② ,><x .,2121n x n x n >=<+<≤-则><ππx x 则实数,312>=-<><+>=+<≥x m m x m x :,,0求证为非负整数时><+>>=<+<y x y x x x x 的所有非负实数34>=<1412+<≤+-=n x n x x x y 在的自变量k n k a 的所有整数满足>=<;.2n b a ==9447<≤x(2)①证明略 ②举反例:不一定成立.(3)(4)证明略。

2020年中考数学动态几何题中的“定值型”问题赏析精品版

2020年中考数学动态几何题中的“定值型”问题赏析精品版

特殊的位置,探得定值,如果需要的话再考虑证明;或直接推理、计算,并在计算中消去变
量,从而得到定值 。以下以 2010 年中考题为例说明具体的求解策略
一、长度定值
例 1.( 2010 山东聊城)如图,点 P 是矩形 ABCD 的边 AD 的一个动点,矩形的两条边 AB、
BC 的长分别为 3 和 4,那么点 P 到矩形的两条对角线 AC 和 BD 的距离之和是 (
点 D 是线段 BC 上的动点(与端点 线 OAB 于点 E.
B、C 不重合),过点 D 作直线 y =- 1 x + b 交折 2
( 1)略 ( 2)当点 E 在线段 OA 上时,若矩形 OABC 关于直线 DE 的对称图形为四边形 O1A1B1C1,
试探究 O1A1B1C1 与矩形 OABC 的重叠部分的面积是否发生变化,若不变,求出该 重叠部分的面积;若改变,请说明理由 .
y
C
D
B
O
EA
x
思路点拨:(2)重叠部分是一个平行四边形, 由于这个平行四边形上下边上的高不变, 因此
决定重叠部分面积是否变化的因素就是看这个平行四边形落在
OA 边上的线段长度是否变
化.
解:( 1)略
( 2)如图 3,设 O1A1 与 CB 相交于点 M ,OA 与 C1 B1 相交于点 N,则矩形 O1A 1B 1C1 与矩 形 OABC 的重叠部分的面积即为四边形 DNEM 的面积。
解:( 1)如图 4, OE=5, r 2 ,CH =2
( 2)略 ( 3)如图 6,连接 AK ,AM,延长 AM ,
与圆交于点 G,连接 TG,则 GTA 90 2 4 90
3 4 , 2 3 90 由于 BKO 3 90 ,故, BKO 2 ; 而 BKO 1,故 1 2 在 AMK 和 NMA 中, 1 2 ; AMK NMA

中考数学动态几何题中的定值型问题赏析

中考数学动态几何题中的定值型问题赏析

中考数学动态几何题中的“定值型”问题赏析在动态几何问题中,当一些元素按照一定的规律在确定的范围内变化时,与它相关的另一些几何元素的某些量或其数量关系保持不变,这类问题称为几何定值问题。

定值问题由于有时甚至不知道定值的结果,而使人难以下手,给问题解决带来困难。

解决这类问题时,要善于运用辩证的观点去思考分析,在“可变”的元素中寻求“不变”的量.一般可采用特殊值或特殊的位置,探得定值,如果需要的话再考虑证明;或直接推理、计算,并在计算中消去变量,从而得到定值。

以下以2010年中考题为例说明具体的求解策略 一、长度定值 例1.(2010山东聊城)如图,点P 是矩形ABCD 的边AD 的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .125B .65C .245D .不确定解析:因为四边形ABCD 是矩形,由勾股定理得AC =BD =5.过点P 分别作AC 、BD 的垂线PE 、PF ,容易得△PDF ∽△BDA , ∴PD PF BD AB =,即53PD PF =,∴35PF PD =, 同理35PE PA =,∴PE +PF =312()55PA PD +=.故答案为A 。

点评:本题属于矩形中动点定值问题,在选择题中,可以采取特殊点法求解,譬如P 与A 重合、P 与B 重合或P 为AD 的中点等特殊情形下,求出PE +PF 的值探求答案. 二、角度定值 例2.(2010年广东广州)如图,⊙O 的半径为1,点P 是⊙O 上一点,弦AB 垂直平分线段OP ,点D 是APB 上任一点(与端点A 、B 不重合),DE ⊥AB 于点E ,以点D 为圆心、DE 长为半径作⊙D ,分别过点A 、B 作⊙D 的切线,两条切线相交于点C .(1)求弦AB 的长;(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由; (3)略分析:(1)连接OA ,OP 与AB 的交点为F ,则△OAF 为直角三角形,且OA =1,OF =12,借助勾股定理可求得AF 的长,根据垂径定理求得AB ;(2)要判断∠ACB 是否为定值,只需判定∠CAB +∠ABC 的值是否是定值,由于⊙D 是△ABC 的内切圆,所以AD 和BD 分别为∠CAB 和∠ABC 的角平分线,因此只要∠DAE +∠DBA 是定值,而∠DAE +∠DBA 等于弧AB 所对的圆周角,这个值等于∠AOB 值的一半,只需看∠AOB 值即可。

中考数学总结复习冲刺练动态几何问题

中考数学总结复习冲刺练动态几何问题

【序言】从历年中考来看,动向问题常常作为压轴题目出现,得分率也是最低的。

动向问题一般分两类,一类是代数综合方面,在座标系中有动点,动直线,一般是利用多种函数交错求解。

另一类就是几何综合题,在梯形,矩形,三角形中建立动点、线以及整体平移翻转,对考生的综合剖析能力进行观察。

因此说,动向问题是中考数学中间的重中之重,只有完整掌握,才有时机拼高分。

在这一讲,我们侧重研究一下动向几何问题的解法,第一部分真题精讲【例1】( 2012,密云,一模)如图,在梯形ABCD中,AD∥ BC, AD3, DC5,BC10 ,梯形的高为 4 .动点M 从 B 点出发沿线段BC以每秒 2 个单位长度的速度向终点 C 运动;动点N 同时从 C 点出发沿线段CD以每秒 1 个单位长度的速度向终点 D 运动.设运动的时间为t (秒).A DNB M C(1)当 MN ∥ AB 时,求t的值;(2)尝试究:t为何值时,△ MNC 为等腰三角形.【思路剖析1】此题作为密云卷压轴题,自然有必定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。

可是解决动点问题,第一就是要找谁在动,谁没在动,经过剖析动向条件和静态条件之间的关系求解。

对于大部分题目来说,都有一个由动转静的瞬时,就此题而言, M, N 是在动,意味着BM,MC以及 DN,NC都是变化的。

可是我们发现,和这些动向的条件亲密有关的条件DC,BC长度都是给定的,并且动向条件之间也是有关系的。

因此当题中设定MN//AB 时,就变为了一个静止问题。

由此,从这些条件出发,列出方程,自然得出结果。

【分析】解:( 1)由题意知,当M 、 N运动到t 秒时,如图①,过 D 作DE ∥AB交BC于E 点,则四边形ABED 是平行四边形.A DNB E MC ∵AB∥DE , AB∥MN .∴ DE ∥ MN .(依据第一讲我们说梯形内协助线的常用做法,成功将MN放在三角形内,将动向问题转变为平行时候的静态问题)∴ MC NC .(这个比率关系就是将静态与动向联系起来的要点)EC CD ∴ 102t t.解得 t50.103517【思路剖析2】第二问失分也是最严重的,好多同学看到等腰三角形,理所自然认为是MN=NC即可,于是就遗漏了MN=MC,MC=CN这两种状况。

中考压轴冲刺二动态几何定值问题解析

中考压轴冲刺二动态几何定值问题解析

中考压轴冲刺二动态几何定值问题解析类型一【线段及线段的和差为定值】例1、已知:祥BC是等腰直角三角形,/ BAC=90°,将那BC绕点C顺时针方向旋转得到AABC,记旋②求证:EA'EC=EF;(2)如图2,在(1)的条件下,设P是直线AD上的一个动点,连接PA, PF,若AB=盘,求线段PA+PF的最小值.(结果保留根号)【详解】①解:由/ CA'D=15。

,可知/ A'CD=90。

-15。

=75所以/ ACA=180° -75 ° =10即旋转角”为105°.②证明:连接AF ,设EF交CA于点O.在EF时截取EM=EC,连接CM .・. /CED = /A'CE+/CA'E=45° +15=60°,・./ CEA = 120°,・•• FE 平分/ CEA',・./ CEF = Z FEA '= 60°,・. / FCO= 180 — 45 —75° = 60°,・./FCO = /A'EO, / FOC = /AOE,.-.△FOC C/D A AOE,OF OCA O OEOF AO -- =OC OE・. / COE = Z FOA ;.-.△COE^A FOA :FA'O=/ OEC=60°,・•.△A'CF是等边三角形,.-,CF=CA= A'F,・•• EM= EC, / CEM = 60°, .•.△CEM是等边三角形,/ ECM = 60°, CM = CE,・. / FCA = / MCE = 60°,・./ FCM =/ ACE, .-.△FCM^A ACE (SAS),・•. FM = AE,• .CE+AE=EM+FM = EF.(2)解:如图2中,连接AF, PB ; AB',彳B M,AC交AC的延长线于M.02由②可知,/ EAF='EAB'= 75°, AE = A'E, A'F = A'B',AEF^A AEB;EF=EBB; F关于A'E对称,・•. PF=PB ;PA+PF= PA+PB' AB;在Rt^CBM 中,CB'= BC= 72AB = 2, / MCB'= 30。

2022中考压轴精品--动态几何2(动图中的计算与证明)--数学

2022中考压轴精品--动态几何2(动图中的计算与证明)--数学

2022中考压轴精品--动态几何2(动图中的计算与证明)--数学图形(或部分图形)经“平移”、“轴对称”或“旋转”(包括中心对称)之后,就会引起图形形状,位置关系的变化,就会显现新的图形和新的关系。

因此,图形变换引出的问题要紧有两类:一类是变换引出的新的性质和位置关系问题;另一类是变换引出的几何量的运算问题。

一、平移变换中的运算与证明解法:(1)把背景图形研究清晰;(2)充分运用平移的性质(专门是“平移不改变角度”) 例1 如图,若将边长为cm 2的两个互相重合的正方形纸片沿对角线AC 翻折成等腰直角三角形后,再抽出一个等腰直角三角形沿AC 移动,若重叠部分PC A '∆的面积是21cm ,则移动的距离'AA 等于 。

【观看与摸索】第一,搞清晰背景图形:ABC ∆和'''C B A ∆ 均为底边长为cm 22的等腰直角三角形;第二,由平移搞 清晰新图形的特点:由于平移不改变角度,可知PC A '∆也 是等腰直角三角形,如此一来,,)'22(212'C A S PCA =∆ 即2411AC=。

解得,2'=C A 而22=AC , 222'-=∴AA 。

解:填222-。

【说明】能够看出,由背景和平移的性质相结合得出CA ('C )EPC A '∆为等腰直角三角形,是本题迅速获解之关键。

例2 如图(1),已知ABC ∆的面积为3,且,AC AB =现将ABC ∆沿CA 方向平移CA 长度得到EFA ∆。

(1)求ABC ∆所扫过的图形面积;(2)试判定,AF 与BE 的位置关系,并说明理由; (3)若,15︒=∠BEC 求AC 的长。

【观看与摸索】第一,搞清晰原图形即ABC ∆的特点:,AC AB = 面积为3,第二,搞清晰平移过程:平移沿CA 方向进行;平移距离 为CA 的长度。

注意!这就意味着每一对对应点之间的距离都等于CA , 因此就有AE CA BF ==。

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=

2024年中考数学重难点押题预测《几何最值问题综合》含答案解析

2024年中考数学重难点押题预测《几何最值问题综合》含答案解析

几何最值问题综合1、2、3、4、题型一1.“两定一动”型将军饮马:①异侧型→直接连接,交点即为待求动点;后用勾股定理求最值②同侧型→对称、连接;后续同上2.“两定两动”型:①同侧型→先水平平移(往靠近对方的方向)、再对称、最后连接;也可先对称、再水平平移(往靠近对方的方向)、最后连接;后续同上。

同侧型异侧型②异侧型→先水平平移(往靠近对方的方向)、再连接;后续同上。

【1(2023•泸州)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是 27 .【分析】找出点E 关于AC 的对称点E ',FE '与AC 的交点P '即为PE +PF 取得最小值时P 的位置AP P C的值即可.【E 关于AC 的对称点E ',FE '交AC 于点P ',PE ',∴PE =PE ',∴PE +PF =PE '+PF ≥E 'F ,故当PE +PF 取得最小值时P 位于点P '处∴当PE +PF 取得最小值时AP PC的值AP P C 的值即可.∵正方形ABCD 是关于AC 所在直线轴对称∴点E 关于AC 所在直线对称的对称点E '在AD 上AE '=AE ,过点F 作FG ⊥AB 交AC 于点G ,则∠GFA =90°,∵四边形ABCD 是正方形∴∠DAB =∠B =90°,∠CAB =∠ACB =45°,∴FG ∥BC ∥AD ,∠AGF =∠ACB =45°,∴GF =AF ,∵E ,F 是正方形ABCD 的边AB 的三等分点∴AE '=AE =EF =FB ,∴GC =13AC ,AE GF =AE AF=12,∴AG =23AC ,AP P C =AE GF =12,∴AP '=13AG =13×23AC =29AC ,∴P 'C =AC -AP '=AC -29AC =79AC ,∴AP P C =29AC 79AC =27,故答案为27.2(2023•德州)如图,在四边形ABCD 中,∠A =90°,AD ∥BC ,AB =3,BC =4,点E 在AB 上,且AE =1.F ,G 为边AD 上的两个动点,且FG =1.当四边形CGFE 的周长最小时,CG 的长为 154 .【分析】先确定FG 和EC 的长为确定的值,得到四边形CGFE 的周长最小时,即为CG +EF 最小时,平移CG 到C 'F ,作点E 关于AD 对称点E ',连接E 'C '交AD 于点G ',得到CG +EF 最小时,点G 与G '重合,再利用平行线分线段成比例求出C 'G '长即可.【解答】解:∵∠A =90°,AD ∥BC ,∴∠B =90°,∵AB =3,BC =4,AE =1,∴BE =AB -AE =3-1=2,在Rt △EBC 中,由勾股定理,得EC =BE 2+BC 2=22+42=25,∵FG =1,∴四边形CGFE 的周长=CG +FG +EF +EC =CG +EF +1+25,∴四边形CGFE 的周长最小时,只要CG +EF 最小即可.过点F 作FC '∥GC 交BC 于点C ',延长BA 到E ',使AE '=AE =1,连接E 'F ,E 'C ',E 'C '交AD 于点G ',可得AD 垂直平分E 'E ,∴E 'F =EF ,∵AD ∥BC ,∴C 'F =CG ,CC '=FG =1,∴CG +EF =C 'F +E 'F ≥E 'C ',即CG +EF 最小时,CG =C 'G ',∵E 'B =AB +AE '=3+1=4,BC '=BC -CC '=4-1=3,由勾股定理,得E 'C '=E B 2+BC 2=42+32=5,∵AG '∥BC ',∴C G E C =AB E B ,即C G 5=34,解得C 'G '=154,即四边形CGFE 的周长最小时,CG 的长为154.故答案为:154.3(2023•绥化)如图,△ABC 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60°得到CF .连接AF ,EF ,DF ,则△CDF 周长的最小值是 3+33 .【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF= 30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°-∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=12∠ABC=30°,CD=12AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG交于点I,连接CI,FH,则∠ACG=60°,CG=GH=12AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=33,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=33,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=33,∴△CDF的周长的最小值为3+33.故答案为:3+33.【中考模拟练】4(2024•衡南县模拟)已知:如图,直线y=-2x+4分别与x轴,y轴交于A、B两点,点P(1,0),若在直线AB上取一点M,在y轴上取一点N,连接MN、MP、NP,则MN+MP+NP的最小值是()A.3B.1+255+855C.2855D.10【分析】作点P关于y轴的对称点E,点P关于AB的对称点F,连接EN,EM,EF,FM,FP,设FP交AB 于C,过点F作FD⊥x轴于D,则EN=NP,FM=MP,FP⊥AB,OE=OP,FC=PC,MN+MP+ NP=MN+FM+EN,根据“两点之间线段最短”得MN+FM+EN≥EF,则MN+MP+NP≥EF,因此MN+MP+NP的最小值为线段EF的长;先求出点A(2,0),点B(0,4),则OA=2,OB=4,再由点P (1,0)得OP=1,则OE=OP=1,PA=OA-OP=1,再求出AB=25,证△PAC∽△BAO得PC:OB=PA:AB,由此得PC=255,则PF=455,再证△PFD∽△BAO得FD:OA=PD:OB=PF:AB,由此可得FD=45,PD=85,则ED=OE+OP+PD=185,然后在Rt△EFD中由勾股定理求出EF即可得MN+MP+NP的最小值.【解答】解:作点P关于y轴的对称点E,点P关于AB的对称点F,连接EN,EM,EF,FM,FP,设FP交AB于C,过点F作FD⊥x轴于D,如图所示:则EN=NP,FM=MP,FP⊥AB,OE=OP,FC=PC,∴MN+MP+NP=MN+FM+EN,根据“两点之间线段最短”得MN+FM+EN≥EF,∴MN+MP+NP≥EF,∴MN+MP+NP的最小值为线段EF的长,对于y=-2x+4,当x=0时,y=4,当x=0时,x=2,∴点A(2,0),点B(0,4),∴OA=2,OB=4,又∵点P(1,0),∴OP=1,∴OE=OP=1,PA=OA-OP=2-1=1,在Rt△OAB中,OA=2,OB=4,由勾股定理得:AB=OA2+OB2=25,∵FP⊥AB,FD⊥x轴,∠BOA=90°,∴∠PCA=∠BOA=∠PDF=90°,又∵∠PAC=∠BAO,∴△PAC∽△BAO,∴PC:OB=PA:AB,∠APC=∠ABO,即PC:4=1:25,∴PC=255,∴FC=PC=255,∴PF=FC+PC=455,∵∠APC=∠ABO,∠BOA=∠PDF=90°,∵△PFD∽△BAO,∴FD:OA=PD:OB=PF:AB,即FD:2=PD:4=455:25,∴FD=45,PD=8 5,∴ED=OE+OP+PD=1+1+85=185,在Rt△EFD中,ED=185,FD=45,由勾股定理得:EF=ED2+FD2=285 5.故选:C.5(2023•龙马潭区二模)如图,抛物线y=-x2-3x+4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.若点D为抛物线上一点且横坐标为-3,点E为y轴上一点,点F在以点A为圆心,2为半径的圆上,则DE+EF的最小值 65-2 .【分析】先求出点A(-4,0),点D(-3,4),作点D关于y轴对称的点T,则点T(3,4),连接AE交与轴于M,交⊙A于N,过点T作TH⊥x轴于H,连接AF,当点E与点M重合,点F与点N重合时,DE+EF为最小,最小值为线段TN的长,然后可在Rt△ATH中由勾股定理求出TA,进而可得TN,据此可得出答案.【解答】解:对于y=-x2-3x+4,当y=0时,-x2-3x+4=0,解得:x1=-4,x2=1,∴点A的坐标为(-4,0),对于y=-x2-3x+4,当x=-3时,y=4,∴点D的坐标为(-3,4),作点D关于y轴对称的点T,则点T(3,4),连接AE交与轴于M,交⊙A于N,过点T作TH⊥x轴于H,连接AF,当点E与点M重合,点F与点N重合时,DE+EF为最小,最小值为线段TN的长.理由如下:当点E与点M不重合,点F与点N不重合时,∴DE+EF=TE+EF,根据“两点之间线段最短”可知:TE+EF+AF>AT,即:TE+EF+AF>TN+AN,∵AF=AN=2,∴TE+EF>TN,即:DE+EF>TN,∴当点E与点M重合,点F与点N重合时,DE+EF为最小.∵点T(3,4),A(-4,0),∴OH=3,TH=4,OA=4,∴AH=OA+OH=7,在Rt△ATH中,AH=7,TH=4,由勾股定理得:TA=AH2+TH2=65,∴TN=TA-AN=65-2.即DE+EF为最小值为65-2.故答案为:65-2.6(2024•碑林区校级一模)(1)如图①,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D是边AC 的中点.以点A为圆心,2为半径在△ABC内部画弧,若点P是上述弧上的动点,点Q是边BC上的动点,求PQ+QD的最小值;(2)如图②,矩形ABCD是某在建的公园示意图,其中AB=2003米,BC=400米.根据实际情况,需要在边DC的中点E处开一个东门,同时根据设计要求,要在以点A为圆心,在公园内以10米为半径的圆弧上选一处点P开一个西北门,还要在边BC上选一处点Q,在以Q为圆心,在公园内以10米为半径的半圆的三等分点的M、N处开两个南门.线段PM、NE是要修的两条道路.为了节约成本,希望PM+NE最小.试求PM+NE最小值及此时BQ的长.【分析】(1)作点D关于BC的对称点D′,连接D′Q、AP,过点D′作D′E⊥AB交AB的延长线于E,则QD =QD′,DK=D′K,当A、P、Q、D′在同一条直线上时,PQ+QD=AD′-AP取得最小值,由DK∥AB,可得△CDK∽△CAB,运用相似三角形性质可得DK=3,CK=4,再由勾股定理即可求得答案;(2)连接MQ,NQ,过点Q作QK⊥MN于K,作点A关于直线MN的对称点A′,将E向左平移10米得到点E′,过点E′作E′L∥AB,过点A′作A′L⊥E′L于L,连接A′M、A′E′、E′M,由题意得随着圆心Q在BC上运动,MN在平行于BC且到BC距离为53的直线上运动,再运用勾股定理可得PM+NE最小值=A′E-AP=(201011-10)米;设E′L与GH的交点为T,过点Q作QK⊥MN于K,由E′L∥AA′,可得△E′MT∽△A′MG,即可求得BQ的值.【解答】解:(1)如图①,作点D 关于BC 的对称点D ′,连接D ′Q 、AP ,过点D ′作D ′E ⊥AB 交AB 的延长线于E ,则QD =QD ′,DK =D ′K ,∴PQ +QD =PQ +QD ′=AQ -AP +QD ′,当A 、P 、Q 、D ′在同一条直线上时,PQ +QD =AD ′-AP 取得最小值,∵∠ABC =90°,AB =6,BC =8,∴AC =AB 2+BC 2=62+82=10,∵点D 是边AC 的中点,∴CD =12AC =5,∵DK ∥AB ,∴△CDK ∽△CAB ,∴DK AB =CK BC =CD AC,即DK 6=CK 8=510,∴DK =3,CK =4,∴D ′K =3,BK =4,∵∠E =∠EBK =∠BKD ′=90°,∴四边形BED ′K 是矩形,∴D ′E =BK =4,BE =D ′K =3,∴AE =AB +BE =6+3=9,∴AD ′=AE 2+D E 2=92+42=97,∵AP =2,∴PQ +QD 的最小值=97-2;(2)如图②,连接MQ ,NQ ,过点Q 作QK ⊥MN 于K ,作点A 关于直线MN 的对称点A ′,将E 向左平移10米得到点E ′,过点E ′作E ′L ∥AB ,过点A ′作A ′L ⊥E ′L 于L ,连接A ′M 、A ′E ′、E ′M ,∵M 、N 是半圆Q 的三等分点,且半径为10,∴△QMN 为等边三角形,且MN ∥BC ,MN =10,∵QK ⊥MN ,QM =10米,∴QK =53米,∴随着圆心Q 在BC 上运动,MN 在平行于BC 且到BC 距离为53的直线上运动,∵EE ′∥MN 且EE ′=MN =10米,∴四边形EE ′MN 是平行四边形,∴NE =ME ′,∴PM +NE =PM +ME ′≥AM -AP +ME ′=AM +ME ′-10,∵E 是CD 的中点,∴DE =12CD =1003,∴E ′L =AA ′-DE =2(AB -QK )-DE =2×(2003-53)-1003=2903(米),A ′L =BC -E ′E =400-10=390(米),在Rt △A ′E ′L 中,A ′E ′=A L 2+E L 2=3902+2903 2=201011,∴PM +NE 最小值=A ′E -AP =(201011-10)米;此时△MNQ 在如图③的△M ′N ′Q 位置,设E′L与GH的交点为T,过点Q作QK⊥MN于K,′∵∠CBG=∠BGK=∠GKQ=90°,∴四边形BGKQ是矩形,∴BQ=GK,∵E′L∥AA′,∴△E′MT∽△A′MG,∴MT MG =E TA G,∵MT=390-MG,E′T=EH=1003-53=953(米),A′G=AG= 2003-53=1953(米),GT=390米,∴390-MGMG =953 1953,∴MG=760529(米),∴GK=GM+MK=760529+5=775029(米),∴BQ=GK=775029米,∴当PM+NE取最小值时,BQ的长为775029米.7(2023•卧龙区二模)综合与实践问题提出(1)如图①,请你在直线l上找一点P,使点P到两个定点A和B的距离之和最小,即PA+PB的和最小(保留作图痕迹,不写作法);思维转换(2)如图②,已知点E是直线l外一定点,且到直线l的距离为4,MN是直线l上的动线段,MN=6,连接ME,NE,求ME+NE的最小值.小敏在解题过程中发现:“借助物理学科的相对运动思维,若将线段MN 看作静线段,则点E在平行于直线l的直线上运动”,请你参考小敏的思路求ME+NE的最小值;拓展应用(3)如图③,在矩形ABCD中,AD=2AB=25,连接BD,点E、F分别是边BC、AD上的动点,且BE= AF,分别过点E、F作EM⊥BD,FN⊥BD,垂足分别为M、N,连接AM、AN,请直接写出△AMN周长的最小值.【分析】(1)作点A的对称点,由两点之间线段最短解题即可;(2)将M、N看作定点,E看作动点,由(1)作法可解;(3)由相似得出MN为定值,再根据(2)作法求出AM+AN的最值,即可解答.【解答】解:(1)如图①,则点P为所求.连接A′B交l于点P,由对称得AP=A′P,∴AP+BP=A′P+BP,∵两点之间线段最短,∴A′P+BP最短,即PA+PB的和最小.(2)如图②,过点E作直线l1∥l,作点N关于l1的对称点N′,连接MN′,交l1于点P,则PM+PN的值即是EM+EN的最小值,∵点E到直线l的距离为4,∵NN′=8,∵MN=6,∴MN′=62+82=10,∴PM+PN=10,即ME+NE的最小值为10.(3)如图③,过A作l∥BD,AH⊥BD于点H,作点M关于l的对称点M′,连接M′N,由(2)得M′N为AM+AN的最小值,∵AB=5,AD=25,∴BD=52=5,2+25∴AH=5×25=2,5∴MM′=4,设ME=x,由△ABD∽△BME得,BM=2x,BE=5x,∴AF=5x,∴DF=25-5x,由△DNF∽△ABD得,DN=4-2x,∴MN=5-2x-(4-2x)=1,∵l∥BD,MM′⊥l,∴MM′⊥BD,∴M′N=42+12=17,∴△AMN周长的最小值为17+1.题型二:辅助圆类几何最值动点的运动轨迹为辅助圆的三种形式:1、定义法--若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)2、定边对直角--若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)3.定边对定角--若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)【中考真题练】8(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC 绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是 4+3 .【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB =2BC =4,CE =AE =12AB =2,AC =AB •cos30°=23,∴∠ECA =∠BAC =30°,过点A 作AG ⊥CE 交CE 的延长线于点G ,∴AG =12AC =3,∵点F 在以A 为圆心,AB 长为半径的圆上,∴AF =AB =4,∴点F 到CE 的距离最大值为4+3,∴S △CEF =12CE ⋅4+3 =4+3,故答案为:4+3.【中考模拟练】9(2023•永寿县二模)如图,在正方形ABCD 中,AB =4,M 是AD 的中点,点P 是CD 上一个动点,当∠APM 的度数最大时,CP 的长为 4-22 .【分析】因为同弧所对的圆外角小于圆周角,因此过点A 、M 作⊙O 与CD 相切于点P ',当点P 运动到点P '处时,∠AP 'M 的度数最大,记AM 的中点为N ,可以证出四边形OP 'DN 是矩形,在Rt △MON 中,利用勾股定理求出ON ,从而得出DP '的长,进而求出CP 的长.【解答】解:过点A 、M 作⊙O 与CD 相切于点P ',记PM 与⊙O 交于点Q ,连接AP ′,MP ′,OM ,OP ′,AQ ,则∠AP 'M =∠AQM >∠APM ,∠OP ′D =90°,∴当点P 运动到点P '时,∠AP 'M 最大,作ON ⊥AD 于点N ,则MN =AN =12AM ,∵四边形ABCD 是正方形,∴∠D =90°,∴四边形OP 'DN 是矩形,∵AB =4,M 是AD 的中点,∴AM =DM =2,MN =1,∴OM =OP '=DN =DM +MN =3,在Rt △MON 中,ON =OM 2-MN 2=32-12=22,∴DP '=ON =22,∴CP '=DC -DP '=4-22,∴当∠APM 的度数最大时,CP 的长为4-22.故答案为:4-22.10(2023•营口一模)如图,等边三角形ABC 和等边三角形ADE ,点N ,点M 分别为BC ,DE 的中点,AB =6,AD =4,△ADE 绕点A 旋转过程中,MN 的最大值为 53 .【分析】分析题意可知,点M 是在以AM 为半径,点A 为圆心的圆上运动,连接AN ,AM ,以AM 为半径,点A 为圆心作圆,反向延长AN 与圆交于点M ′,以此得到M 、A 、N 三点共线时,MN 的值最大,再根据勾股定理分别算出AM 、AN 的值,则MN 的最大值M ′N =AN +AM ′=AN +AM .【解答】解:连接AN ,AM ,以AM 为半径,点A 为圆心作圆,反向延长AN 与圆交于点M ′,如图,∵△ADE 绕点A 旋转,∴点M 是在以AM 为半径,点A 为圆心的圆上运动,∵AM +AN ≥MN ,∴当点M 旋转到M ′,即M 、A 、N 三点共线时,MN 的值最大,最大为M ′N ,∵△ABC 和△ADE 都是等边三角形,点N ,点M 分别为BC ,DE 的中点,AB =6,AD =4,∴AN ⊥BC ,AM ⊥DE ,BN =3,DM =2,在Rt △ABN 中,由勾股定理得AN =AB 2-BN 2=33,在Rt △ADM 中,由勾股定理得AM =AD 2-DM 2=23,根据旋转的性质得,AM ′=AM =23,∴M ′N =AN +AM ′=53,即MN 的最大值为53.故答案为:53.11(2023•定远县校级一模)如图,半径为4的⊙O 中,CD 为直径,弦AB ⊥CD 且过半径OD 的中点,点E 为⊙O 上一动点,CF ⊥AE 于点F .当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为 23π3 .【分析】由∠AFC =90°,得点F 在以AC 为直径的圆上运动,当点E 与B 重合时,此时点F 与G 重合,当点E 与D 重合时,此时点F 与A 重合,则点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为AG 的长,然后根据条件求出AG 所在圆的半径和圆心角,从而解决问题.【解答】解:∵CF ⊥AE ,∴∠AFC =90°,∴点F 在以AC 为直径的圆上运动,以AC 为直径画半圆AC ,连接OA ,当点E 与B 重合时,此时点F 与G 重合,当点E 与D 重合时,此时点F 与A 重合,∴点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为AG的长,∵点G 为OD 的中点,∴OG =12OD =12OA =2,∵OG ⊥AB ,∴∠AOG =60°,AG =23,∵OA =OC ,∴∠ACG =30°,∴AC =2AG =43,∴AG 所在圆的半径为23,圆心角为60°,∴AG 的长为60π×23180=23π3,故答案为:23π3.12(2024•兰州模拟)综合与实践【问题情境】在数学综合实践课上,“希望小组”的同学们以三角形为背景,探究图形变化过程中的几何问题,如图,在△ABC 中,AB =AC ,∠BAC =90°,点D 为平面内一点(点A ,B ,D 三点不共线),AE 为△ABD 的中线.【初步尝试】(1)如图1,小林同学发现:延长AE 至点M ,使得ME =AE ,连接DM .始终存在以下两个结论,请你在①,②中挑选一个进行证明:①DM =AC ;②∠MDA +∠DAB =180°;【类比探究】(2)如图2,将AD 绕点A 顺时针旋转90°得到AF ,连接CF .小斌同学沿着小林同学的思考进一步探究后发现:AE =12CF ,请你帮他证明;【拓展延伸】(3)如图3,在(2)的条件下,王老师提出新的探究方向:点D 在以点A 为圆心,AD 为半径的圆上运动(AD >AB ),直线AE 与直线CF 相交于点G ,连接BG ,在点D 的运动过程中BG 存在最大值.若AB =4,请直接写出BG 的最大值.【分析】(1)利用SAS 证明△ABE ≌△MDE ,可得AB =DM ,再结合AB =AC ,即可证得DM =AC ;由全等三角形性质可得∠BAE =∠DME ,再运用平行线的判定和性质即可证得∠MDA +∠DAB =180°;(2)延长AE 至点M ,使得ME =AE ,连接DM .利用SAS 证得△ACF ≌△DMA ,可得CF =AM ,再由AE =12AM ,可证得AE =12CF ;(3)延长DA 至M ,使AM =AD ,设AM 交CF 于N ,连接BM 交CF 于K ,取AC 中点P ,连接GP ,可证得△ACF ≌△ABM (SAS ),利用三角形中位线定理可得AE ∥BM ,即AG ∥BM ,利用直角三角形性质可得GP =12AC =12AB =2,得出点G 在以P 为圆心,2为半径的⊙P 上运动,连接BP 并延长交⊙P 于G ′,可得BG ′的长为BG 的最大值,再运用勾股定理即可求得答案.【解答】(1)证明:①∵AE 为△ABD 的中线,∴BE =DE ,在△ABE 和△MDE 中,BE =DE ∠AEB =∠MED AE =ME,∴△ABE ≌△MDE (SAS ),∴AB =DM ,∵AB =AC ,∴DM =AC ;②由①知△ABE ≌△MDE ,∴∠BAE =∠DME ,∴AB ∥DM ,∴∠MDA +∠DAB =180°;(2)证明:延长AE 至点M ,使得ME =AE ,连接DM .由旋转得:AF =AD ,∠DAF =90°,∵∠BAC =90°,∠DAF +∠BAC +∠BAD +∠CAF =360°,∴∠BAD +∠CAF =180°,由(1)②得:∠MDA +∠DAB =180°,DM =AB =AC ,∴∠CAF =∠MDA ,在△ACF 和△DMA 中,AF =AD ∠CAF =∠MDA AC =DM,∴△ACF ≌△DMA (SAS ),∴CF =AM ,∵AE =12AM ,∴AE =12CF ;(3)如图3,延长DA 至M ,使AM =AD ,设AM 交CF 于N ,连接BM 交CF 于K ,取AC 中点P ,连接GP ,由旋转得:AF =AD ,∠DAF =90°,∴AF =AM ,∠MAF =180°-90°=90°,∵∠BAC =90°,∴∠MAF +∠CAM =∠BAC +∠CAM ,即∠CAF =∠BAM ,在△ACF 和△ABM 中,AC =AB ∠CAF =∠BAM AF =AM,∴△ACF ≌△ABM (SAS ),∴∠AFC =∠AMB ,即∠AFN =∠KMN ,∵∠ANF=∠KNM,∴∠FAN=∠MKN=90°,∴BM⊥CF,∵E、A分别是DB、DM的中点,∴AE是△BDM的中位线,∴AE∥BM,即AG∥BM,∴AG⊥CF,∴∠AGC=90°,∵点P是AC的中点,∴GP=12AC=12AB=2,∴点G在以P为圆心,2为半径的⊙P上运动,连接BP并延长交⊙P于G′,∴BG′的长为BG的最大值,在Rt△ABP中,BP=AB2+AP2=42+22=25,∴BG′=BP+PG′=25+2,∴BG的最大值为25+2.题型三:瓜豆原理类几何最值大概动点问题符合瓜豆原理的模型时,也可以和几何最值结合【中考真题练】13(2022•沈阳)【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是AD=BC;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=33,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是 8+36 ;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.【分析】(1)证明△AOD≌△BOC(SAS),即可得出结论;(2)利用旋转性质可证得∠BOC =∠AOD ,再证明△AOD ≌△BOC (SAS ),即可得出结论;(3)①过点A 作AT ⊥AB ,使AT =AB ,连接BT ,AD ,DT ,BD ,先证得△ABC ∽△TBD ,得出DT =36,即点D 的运动轨迹是以T 为圆心,36为半径的圆,当D 在AT 的延长线上时,AD 的值最大,最大值为8+36;②如图4,在AB 上方作∠ABT =30°,过点A 作AT ⊥BT 于点T ,连接AD 、BD 、DT ,过点T 作TH ⊥AD 于点H ,可证得△BAC ∽△BTD ,得出DT =32AC =32×33=92,再求出DH 、AH ,即可求得AD ;如图5,在AB 下方作∠ABE =30°,过点A 作AE ⊥BE 于点E ,连接DE ,可证得△BAC ∽△BTD ,得出DE =92,再由勾股定理即可求得AD .【解答】解:(1)AD =BC .理由如下:如图1,∵△AOB 和△COD 是等腰直角三角形,∠AOB =∠COD =90°,∴OA =OB ,OD =OC ,在△AOD 和△BOC 中,,∴△AOD ≌△BOC (SAS ),∴AD =BC ,故答案为:AD =BC ;(2)AD =BC 仍然成立.证明:如图2,∵∠AOB =∠COD =90°,∴∠AOB +∠AOC =∠AOC +∠COD =90°+α,即∠BOC =∠AOD ,在△AOD 和△BOC 中,,∴△AOD ≌△BOC (SAS ),∴AD =BC ;(3)①过点A 作AT ⊥AB ,使AT =AB ,连接BT ,AD ,DT ,BD ,∵△ABT 和△CBD 都是等腰直角三角形,∴BT =2AB ,BD =2BC ,∠ABT =∠CBD =45°,∴BT AB=BD BC =2,∠ABC =∠TBD ,∴△ABC ∽△TBD ,∴DT AC =BT AB=2,∴DT =2AC =2×33=36,∵AT =AB =8,DT =36,∴点D 的运动轨迹是以T 为圆心,36为半径的圆,∴当D 在AT 的延长线上时,AD 的值最大,最大值为8+36,故答案为:8+36;②如图4,在AB 上方作∠ABT =30°,过点A 作AT ⊥BT 于点T ,连接AD 、BD 、DT ,过点T 作TH ⊥AD 于点H ,∵BT AB =BD BC =cos30°=32,∠ABC =∠TBD =30°+∠TBC ,∴△BAC ∽△BTD ,∴DT AC=BD BC =32,∴DT =32AC =32×33=92,在Rt △ABT 中,AT =AB •sin ∠ABT =8sin30°=4,∵∠BAT =90°-30°=60°,∴∠TAH =∠BAT -∠DAB =60°-30°=30°,∵TH ⊥AD ,∴TH =AT •sin ∠TAH =4sin30°=2,AH =AT •cos ∠TAH =4cos30°=23,在Rt △DTH 中,DH ===652,∴AD =AH +DH =23+652;如图5,在AB 上方作∠ABE =30°,过点A 作AE ⊥BE 于点E ,连接DE ,则BE AB=BD BC =cos30°=32,∵∠EBD =∠ABC =∠ABD +30°,∴△BDE ∽△BCA ,∴DE AC =BE AB =32,∴DE =32AC =32×33=92,∵∠BAE =90°-30°=60°,AE =AB •sin30°=8×12=4,∴∠DAE =∠DAB +∠BAE =30°+60°=90°,∴AD ===172;综上所述,AD 的值为23+652或172.【中考模拟练】14(2023•金平区三模)如图,长方形ABCD 中,AB =6,BC =152,E 为BC 上一点,且BE =32,F 为AB 边上的一个动点,连接EF ,将EF 绕着点E 顺时针旋转45°到EG 的位置,连接FG 和CG ,则CG 的最小值为 32+32 .【分析】如图,将线段BE 绕点E 顺时针旋转45°得到线段ET ,连接DE 交CG 于J .首先证明∠ETG =90°,推出点G 的在射线TG 上运动,推出当CG ⊥TG 时,CG 的值最小.【解答】解:如图,将线段BE 绕点E 顺时针旋转45°得到线段ET ,连接DE 交CG 于J .∵四边形ABCD 是矩形,∴AB =CD =6,∠B =∠BCD =90°,∵∠BET =∠FEG =45°,∴∠BEF =∠TEG ,∵EB =ET ,EF =EG ,∴△EBF ≌△ETG (SAS ),∴∠B =∠ETG =90°,∴点G 在射线TG 上运动,∴当CG ⊥TG 时,CG 的值最小,∵BC =152,BE =32,CD =6,∴CE =CD =6,∴∠CED =∠BET =45°,∴∠TEJ =90°=∠ETG =∠JGT =90°,∴四边形ETGJ 是矩形,∴DE ∥GT ,GJ =TE =BE =32,∴CJ ⊥DE ,∴JE =JD ,∴CJ =12DE =32,∴CG =CJ +GJ =32+32,∴CG 的最小值为32+32,故答案为:32+32.15(2023•苍溪县一模)如图,线段AB 为⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,点P 是⊙O 上一动点,连接CP ,以CP 为斜边在PC 的上方作Rt △PCD ,且使∠DCP =60°,连接OD ,则OD 长的最大值为 23+1 .【分析】如图,作△COE ,使得∠CEO =90°,∠ECO =60°,则CO =2CE ,OE =23,∠OCP =∠ECD ,由△COP ∽△CED ,推出OP ED =CP CD=2,即ED =12OP =1(定长),由点E 是定点,DE 是定长,推出点D 在半径为1的⊙E 上,由此即可解决问题.【解答】解:如图,作△COE ,使得∠CEO =90°,∠ECO =60°,则CO =2CE ,OE =23,∠OCP =∠ECD ,∵∠CDP =90°,∠DCP =60°,∴CP =2CD ,∴CO CE =CP CD=2,∴△COP ∽△CED ,∴OP ED =CP CD =2,即ED =12OP =1(定长),∵点E 是定点,DE 是定长,∴点D 在半径为1的⊙E 上,∵OD ≤OE +DE =23+1,∴OD 的最大值为23+1,故答案为23+1.16(2023•海淀区校级三模)在平面直角坐标系xOy 中,给定图形W 和点P ,若图形W 上存在两个点M ,N 满足PM =3PN 且∠MPN =90°,则称点P 是图形W 的关联点.已知点A (-23,0),B (0,2).(1)在点P 1(-3,-1),P 2(-3,3),P 3(-23,-2)中,P1,P 2 是线段AB 的关联点;(2)⊙T 是以点T (t ,0)为圆心,r 为半径的圆.①当t =0时,若线段AB 上任一点均为⊙O 的关联点,求r 的取值范围;②记线段AB 与线段AO 组成折线G ,若存在t ≥4,使折线G 的关联点都是⊙T 的关联点,直接写出r 的最小值.【分析】(1)根据关联点的定义,结合勾股定理进行判断即可;(2)①根据题意推得三角形PMN 为含30度角的直角三角形,根据瓜豆原理可得求得点O 到点P 的最大距离为3+12r ,最小距离为3-12r ,推得⊙O 的所有关联点在以O 为圆心,3+12r 和3-12r 为半径的两个圆构成的圆环中,结合图形求得半径r 的取值范围;②结合①中的结论,画出满足条件的关联点的范围,进行求解即可.【解答】解:(1)∵∠MPN =90°,∴△MPN 为直角三角形,∴满足MN 2=PM 2+PN 2,根据勾股定理可得:,,,;,,;P3A=2,,,∵,且,∴是线段AB的关联点;∵,且,∴是线段AB的关联点;∵P3A=7P3B,且P3A2+P3B2≠AB2,∴∠BAO=30°,P3A⊥OA,∴∠P3AB=90°+30°=120°,∴对于线段AB上的任意两点M、N,当时,∠P3NM>90°,如图,则∠MPN必是锐角,不可能是直角,∴不是线段AB的关联点;故答案为:P1,P2.(2)①由(1)可得:∵∠MPN=90°,∴△MPN为直角三角形,∴MN2=PM2+PN2=4PN2,即MN=2PN,即三角形PMN为含30度角的直角三角形,如图:则点P是以MN为斜边且含30度角的直角三角形的直角顶点.在圆O上取点M,N,则对于任意位置的M和N,符合的关联点有2个,如图:以点P 为例,当点M 在半径为r 的⊙O 上运动时,点N 为圆上一定点,且MN =2PN ,∠PNM =60°,则点M 的运动轨迹为圆,故点P 的轨迹也为圆,令点P 的轨迹为圆R ,如图:当M ,O ,N 三点共线,P ,R ,N 三点共线时,∠PNM =60°,∴OR =32r ,RN =12r ,则点O 到点P 的最大距离为3+12r ,最小距离为3-12r ,当点N 也在⊙O 上运动时,⊙R 也随之运动,则⊙R 扫过的区域为3+12r 和3-12rr 为半径围成的圆,即⊙O 的所有关联点在以O 为圆心,3+12r 和3-12r 为半径的两个圆构成的圆环中,∴当线段AB 与半径为3+12r 交于点A 时,r 最小,如图:则3+12r =23,解得r =6-23,当线段AB 与半径为3-12r 的圆相切时,r 最大,过点O 作OH ⊥AB ,如图:则,即,解得,则,解得,∴②当关联点在线段AB上时,满足条件的关联点所在范围如图阴影部分:当关联点在线段AO上时,满足条件的关联点所在范围如图阴影部分:当关联点在不同线段上时,满足条件的关联点在点O和点B上的范围如图阴影部分:综上,所有区域叠加一起为:由①可知,满足T的所有关联点所在范围为圆环,故若使得圆环能够完整“包住”关联点,圆环中外圆的必须经过点G1,∵∠GBA=30°,∠G=90°,∠OBA=60°,∠O=90°,∴四边形AOBG为矩形,∴,则,即,解得r=42(负值舍去);综上,r的最小值为42.17(2024•昆山市一模)如图1,在平面直角坐标系中,直线y=-5x+5与x轴,y轴分别交于A、C两点,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为B.(1)求抛物线解析式;(2)若点M为x轴下方抛物线上一动点,当点M运动到某一位置时,△ABM的面积等于△ABC面积的35,求此时点M的坐标;(3)如图2,以B为圆心,2为半径的⊙B与x轴交于E、F两点(F在E右侧),若P点是⊙B上一动点,连接PA,以PA为腰作等腰Rt△PAD,使∠PAD=90°(P、A、D三点为逆时针顺序),连接FD.求FD长度的取值范围.【分析】(1)将点A(1,0),C(0,5)代入y=x2+bx+c,即可求解;×4×(-m2+6m-5),(2)设M(m,m2-6m+5),先求AB=4,则S△ABC=10,再由题意可得S△AMB=6=12即可求M(2,-3)或M(4,-3);(3)将点B绕A点顺时针旋转90°到B',连接AB',PB,B'D,可证明△ADB'≌△APB(SAS),则可得D在以B'为圆心,2为半径的圆上运动,又由B'(1,-4),F(7,0),则B'F=213,所以DF的最大值为61+ 2,DF的最小值为61-2,即可求213-2≤DF≤213+2.【解答】解:(1)令x=0,则y=5,∴C(0,5),令y=0,则x=1,∴A(1,0),将点A(1,0),C(0,5)代入y=x2+bx+c,得,∴,∴y=x2-6x+5;(2)设M(m,m2-6m+5),令y=0,则x2-6x+5=0,解得x=5或x=1,∴B(5,0),∴AB=4,∴S△ABC=1×4×5=10,2∵△ABM的面积等于△ABC面积的35,∴S△AMB=6=1×4×(-m2+6m-5),2解得m=2或m=4,∴M(2,-3)或M(4,-3);(3)将点B绕A点顺时针旋转90°到B',连接AB',PB,B'D,∵∠B'AD+∠BAD=90°,∠PAB+∠BAD=90°,∴∠B'AD=∠PAB,∵AB=AB',PA=AD,∴△ADB'≌△APB(SAS),∴BP=B'D,∵PB=2,∴B'D=2,∴D在以B'为圆心,2为半径的圆上运动,∵B(5,0),A(1,0),∴B'(1,-4),∵BF=2,∴F(7,0),∴B'F=213,∴DF的最大值为213+2,DF的最小值为213-2,∴213-2≤DF≤213+2.题型四:其他类几何最值除了常见的模型与几何最值结合外,还有一些几何问题,应用直接的最值原理,比如:点到直线的距离垂线段最短等【中考真题练】18(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=4,按下列步骤作图:①在AC和AB上分别截取AD,AE,使AD=AE.②分别以点D和点E为圆心,以大于12DE的长为半径作弧,两弧在∠BAC内交于点M.③作射线AM交BC于点F.若点P是线段AF上的一个动点,连接CP,则CP+12AP的最小值是 23 .【分析】根据题目中所给的条件,判断AF为角平分线,由问题可知,需要利用胡不归模型构建直角三角形,转化两条线段和为一条线段,利用三角函数求出线段长度.【解答】理由如下:由作图步骤可知,射线AM为∠CAB的角平分线,∵∠ABC=90°,∠B=30°,∴∠CAB=60°,∵AM平分∠CAB,∴∠CAF=∠BAF=12∠CAB=30°,过点C作CN⊥AB于N,交AF于P,在Rt△APN中,∠BAF=30°,∴PN=12AP,∴CP+12AP=CP+PN=CN,根据点到直线的距离,垂线段最短,此时CP+PN值最小在Rt△ACN中,∠CAN=60°,AC=4,∴sin60°=CNAC,∴CN=sin60°×AC=4×32=23,∴CP+12AP=CP+PN=CN=23,故答案为:23.19(2023•德阳)如图,在底面为正三角形的直三棱柱ABC-A1B1C1中,AB=23,AA1=2,点M为AC的中点,一只小虫从B1沿三棱柱ABC-A1B1C1的表面爬行到M处,则小虫爬行的最短路程等于 19 .【分析】利用平面展开图可总结为3种情况,画出图形利用勾股定理求出B1M的长即可.【解答】解:如图1,将三棱柱ABC-A1B1C1的侧面BB1C1C和侧面CC1A1A沿CC1展开在同一平面内,连接MB1,∵M是AC的中点,△ABC和△A1B1C1是等边三角形,∴CM=12AC=12×23=3,∴BM=CM+BC=33,在Rt△MBB1中,由勾股定理得:B1M=BM2+B1B2=31,如图2,把底面ABC和侧面BB1A1A沿AB展开在同一平面内,连接MB1,过点M作MF⊥A1B1于点F,交AB于点E,则四边形AEFA1是矩形,ME⊥AB,在Rt△AME中,∠MAE=60°,∴ME =AM •sin60°=3×32=32,AE =AM •cos60°=32,∴MF =ME +EF =32+2=72,B 1F =A 1B 1-A 1F =332,在Rt △MFB 1中,由勾股定理得:B 1M =MF 2+B 1F 2=19,如图3,连接B 1M ,交A 1C 1于点N ,则B 1M ⊥AC ,B 1N ⊥A 1C 1,在Rt △A 1NB 1中,∠NA 1B 1=60°,∴NB 1=A 1B 1•sin60°=3,∴B 1M =NB 1+MN =5,∵19<5<31,∴小虫爬行的最短路程为19.故答案为:19.20(2023•常州)如图,在Rt △ABC 中,∠BAC =90°,AB =AC =4,D 是AC 延长线上的一点,CD =2.M 是边BC 上的一点(点M 与点B 、C 不重合),以CD 、CM 为邻边作▱CMND .连接AN 并取AN 的中点P ,连接PM ,则PM 的取值范围是 22≤MP <5 .【分析】先根据题意确定点P 的运动轨迹,即可确定MP 的最大值和最小值,从而解答.【解答】解:∵AB =AC =4,∴AD =6,∵△ABC 是等腰直角三角形,四边形CNMD 是平行四边形,∴DN ∥BC ,DN =BC ,CD ∥MN ,CD =MN ,∴∠ADN =∠ACB =45°=∠ABC =∠CMN ,当M 与B 重合时,如图M1,N 1,P 1,∠ABN 1=90°,∴AN 1=42+22=25,∵P 1是中点,∴MP 1=12AN 1=5,当MP ⊥BC 时,如图P 2,M 2,N 2,∵P 1,P ,P 2是中点,∴P 的运动轨迹为平行于BC 的线段,交AC 于H ,∴CH =3-2=1,∵∠ACB =45°,∴PH 与BC 间的距离为P2M 2=22CH =22,∵M不与B、C重合,∴22≤MP<5.【中考模拟练】21(2024•济南一模)如图,在矩形ABCD中,AB=4,BC=3,E为AB上一点,连接DE,将△ADE 沿DE折叠,点A落在A1处,连接A1C,若F、G分别为A1C、BC的中点,则FG的最小值为1.【分析】连接A1B,由F、G分别为A1C、BC的中点可得FG=12A1B,在△A1BD中有A1B+A1D≥BD,由勾股定理可得BD,由折叠性质和矩形性质可得A1D=AD=BC,即可求解.【解答】解:如图,连接A1B,BD,∵F、G分别为A1C、BC的中点,∴FG=12A1B,当FG的最小时,即A1B最小,∵四边形ABCD为矩形,AB=4,BC=3,∴AD=BC=3,∠A=90°,∴BD=AB2+AD2=5,∵△ADE沿DE折叠,∴A1D=AD=3,在△A1BD中有A1B+A1D≥BD,∴A1B≥BD-A1D,即A1B≥2,∴FG=12A1B≥1,∴FG的最小值为1,故答案为:1.22(2024•郾城区一模)如图,在矩形ABCD中,AD=63,AB=6,对角线AC,BD相交于点O,点E在线段AC上,且AE=4,点F为线段BD上的一个动点,则EF+12BF的最小值为4.【分析】过点E作EG⊥BC于点G,过点F作FH⊥BC于点H,首先根据题意将12BF用FH表示,再将EF+FH的最小值用EG表示,进而求出EG的长即可解决问题.【解答】解:过点E作EG⊥BC于点G,过点F作FH⊥BC于点H,如图,∵四边形ABCD是矩形,AD=63,AB=6,。

中考数学动态几何之定值问题真题与分析

中考数学动态几何之定值问题真题与分析

中考数学动态几何之定值问题真题与分析动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

常见的题型包括最值问题、面积问题、和差问题、定值问题和存在性问题等。

从三方面进行动态几何之定值问题的探讨:(1)线段(和差)为定值问题;(2)面积(和差)为定值问题;(3)其它定值问题。

一、线段(和差)为定值问题:典型例题:例1:如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.12(不需证明).(1)如图1,当点P为线段EC中点时,易证:PR+PQ=5(2)如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.【答案】解:(2)图2中结论PR+PQ=125仍成立。

证明如下:连接BP,过C点作CK⊥BD于点K。

∵四边形ABCD为矩形,∴∠BCD=90°。

又∵CD=AB=3,BC=4,∴2 2 22BD CD BC345=+=+=。

∵S△BCD=12BC•CD=12BD•CK,∴3×4=5CK,∴CK=125。

∵S△BCE=12BE•CK,S△BEP=12PR•BE,S△BCP=12PQ•BC,且S△BCE=S△BEP+S△BCP,∴12BE•CK=12PR•BE+12PQ•BC。

又∵BE=BC,∴12CK=12PR+12PQ。

∴CK=PR+PQ。

又∵CK=125,∴PR+PQ=125。

(3)图3中的结论是PR-PQ=125.【考点】矩形的性质,三角形的面积,勾股定理。

【分析】(2)连接BP,过C点作CK⊥BD于点K.根据矩形的性质及勾股定理求出BD的长,根据三角形面积相等可求出CK的长,最后通过等量代换即可证明。

专题44 动态几何之定值(恒等)问题(压轴题)

专题44 动态几何之定值(恒等)问题(压轴题)

《中考压轴题》专题42:动态几何之定值(恒等)问题一、解答题1.阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用)(1)【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB 于点F,则PE+PF的值为.(2)【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA交BD于点F,求PE+PF的值;(3)【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.2.已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,54),直线y=kx+2与y 轴相交于点P ,与二次函数图象交于不同的两点A (x 1,y 1),B (x 2,y 2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x 取值范围在﹣1<x <3时,请写出其函数值y 的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y 轴上,必存在定点G ,使△ABG 的内切圆的圆心落在y 轴上,并求△GAB 面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax 2+bx+c=0的两根为x 1,x 2,则:1212bc x x x x a a+=⋅=能灵活运用这种关系,有时可以使解题更为简单.例:不解方程,求方程x 2﹣3x=15两根的和与积.解:原方程变为:x 2﹣3x ﹣15=0∵一元二次方程的根与系数有关系:1212b c x x x x a a +=⋅=∴原方程两根之和=331--=,两根之积=15151-=-.3.给定直线l :y=kx ,抛物线C :y=ax 2+bx+1.(1)当b=1时,l 与C 相交于A ,B 两点,其中A 为C 的顶点,B 与A 关于原点对称,求a 的值;(2)若把直线l 向上平移k 2+1个单位长度得到直线r ,则无论非零实数k 取何值,直线r 与抛物线C 都只有一个交点.①求此抛物线的解析式;②若P 是此抛物线上任一点,过P 作PQ ∥y 轴且与直线y=2交于Q 点,O 为原点.求证:OP=PQ.4.如图,在平面直角坐标系xOy 中,一次函数5y x m 4=+的图象与x 轴交于A (﹣1,0),与y 轴交于点C .以直线x=2为对称轴的抛物线C 1:y=ax 2+bx+c (a≠0)经过A 、C 两点,并与x 轴正半轴交于点B .(1)求m 的值及抛物线C 1:y=ax 2+bx+c (a≠0)的函数表达式.(2)设点D (0,2512),若F 是抛物线C 1:y=ax 2+bx+c (a≠0)对称轴上使得△ADF 的周长取得最小值的点,过F 任意作一条与y 轴不平行的直线交抛物线C 1于M 1(x 1,y 1),M 2(x 2,y 2)两点,试探究1211M F M F +是否为定值?请说明理由.(3)将抛物线C 1作适当平移,得到抛物线C 2:()221y x h 4=--,h >1.若当1<x≤m 时,y 2≥﹣x 恒成立,求m的最大值.5.如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为(﹣4,4).点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点Q 也停止运动.连接BP ,过P 点作BP 的垂线,与过点Q 平行于y 轴的直线l 相交于点D .BD 与y 轴交于点E ,连接PE .设点P 运动的时间为t (s ).(1)∠PBD 的度数为,点D 的坐标为(用t 表示);(2)当t 为何值时,△PBE 为等腰三角形?(3)探索△POE 周长是否随时间t 的变化而变化?若变化,说明理由;若不变,试求这个定值.6.如图,已知直线AB :y kx 2k 4=++与抛物线21y x 2=交于A 、B 两点,(1)直线AB 总经过一个定点C ,请直接写出点C 坐标;(2)当1k 2=-时,在直线AB 下方的抛物线上求点P ,使△ABP 的面积等于5;(3)若在抛物线上存在定点D 使∠ADB =90°,求点D 到直线AB 的最大距离.7.如图,在矩形ABCD 中,把点D 沿AE 对折,使点D 落在OC 上的F 点,已知AO=8.AD=10.(1)求F 点的坐标;(2)如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过点O ,F ,且直线y=6x ﹣36是该抛物线的切线,求抛物线的解析式;(3)直线()35y k x 34=--与(2)中的抛物线交于P 、Q 两点,点B 的坐标为(3,354-),求证:11PB QB +为定值.(参考公式:在平面直角坐标系中,若M (x 1,y 1),N (x 2,y 2),则M ,N 两点间的距离为|MN|=.8.数学活动﹣求重叠部分的面积(1)问题情境:如图①,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点P 与等边△ABC 的内心O 重合,已知OA=2,则图中重叠部分△PAB 的面积为.(2)探究1:在(1)的条件下,将纸片绕P 点旋转至如图②所示位置,纸片两边分别与AC ,AB 交于点E ,F ,图②中重叠部分的面积与图①重叠部分的面积是否相等?如果相等,请给予证明;如果不相等,请说明理由.(3)探究2:如图③,若∠CAB=α(0°<α<90°),AD 为∠CAB 的角平分线,点P 在射线AD 上,且AP=2,以P 为顶点的等腰三角形纸片(纸片足够大)与∠CAB 的两边AC ,AB 分别交于点E 、F ,∠EPF=180°﹣α,求重叠部分的面积.(用α或2的三角函数值表示)9.如图,在平面直角坐标系中,O 为坐标原点,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(185,245-),以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1)求直线BC 的解析;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O ,B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想m n ⋅的值,并证明你的结论;(4)点P 从O 出发,以每秒1个单位速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t(0<t )秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.10.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.(4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.11.如图,二次函数22y a x 2()mx 3m =--(其中a ,m 是常数,且a>0,m>0)的图象与x 轴分别交于点A ,B (点A 位于点B 的左侧),与y 轴交于点C(0,-3),点D 在二次函数的图象上,CD ∥AB ,连接AD .过点A 作射线AE 交二次函数的图象于点E ,AB 平分∠DAE .(1)用含m 的代数式表示a ;(2))求证:AD AE为定值;(3)设该二次函数图象的顶点为F .探索:在x 轴的负半轴上是否存在点G ,连接CF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.12.如图,已知抛物线y=ax 2+bx+c (a >0,c <0)交x 轴于点A ,B ,交y 轴于点C ,设过点A ,B ,C 三点的圆与y 轴的另一个交点为D .(1)如图1,已知点A ,B ,C 的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D 的坐标;②若点M 为抛物线上的一动点,且位于第四象限,求△BDM 面积的最大值;(2)如图2,若a=1,求证:无论b ,c 取何值,点D 均为定点,求出该定点坐标.13.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连接AP,OP,OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰巧是CD边的中点,求∠OAB的度数;(3)如图2,在(1)条件下,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A 不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M,N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求线段EF的长度.14.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.15.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.16.如图,在平面坐标系中,直线y=﹣x+2与x 轴,y 轴分别交于点A ,点B ,动点P (a ,b )在第一象限内,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点P (a ,b )运动时,矩形PMON 的面积为定值2.(1)求∠OAB 的度数;(2)求证:△AOF ∽△BEO ;(3)当点E ,F 都在线段AB 上时,由三条线段AE ,EF ,BF 组成一个三角形,记此三角形的外接圆面积为S 1,△OEF 的面积为S 2.试探究:S 1+S 2是否存在最小值?若存在,请求出该最小值;若不存在,请说明理由.17.如图1,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF=900,且EF 交正方形外角的平分线CF 于点F .(1)图1中若点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE=EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E 在线段BC 上滑动(不与点B ,C 重合).①AE=EF 是否总成立?请给出证明;②在如图2的直角坐标系中,当点E 滑动到某处时,点F 恰好落在抛物线2y x x 1=-++上,求此时点F 的坐标.18.如图,已知正方形ABCD 的边长为4,对称中心为点P ,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC 成轴对称,设它们的面积和为S 1.(1)求证:∠APE=∠CFP ;(2)设四边形CMPF 的面积为S 2,CF=x ,12S y S .①求y 关于x 的函数解析式和自变量x 的取值范围,并求出y 的最大值;②当图中两块阴影部分图形关于点P 成中心对称时,求y的值.19.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(0,4),点B 的坐标为(4,0),点C 的坐标为(﹣4,0),点P 在射线AB 上运动,连结CP 与y 轴交于点D ,连结BD .过P ,D ,B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF.(1)求直线AB 的函数解析式;(2)当点P 在线段AB (不包括A ,B 两点)上时.①求证:∠BDE=∠ADP ;②设DE=x ,DF=y .请求出y 关于x 的函数解析式;(3)请你探究:点P 在运动过程中,是否存在以B ,D ,F 为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P 的坐标:如果不存在,请说明理由.20.已知,如图(a),抛物线2y ax bx c =++经过点A(x 1,0),B(x 2,0),C(0,-2),其顶点为D.以AB 为直径的⊙M 交y 轴于点E 、F ,过点E 作⊙M 的切线交x 轴于点N 。

初三升中考最后冲刺:动态几何综合训练二答案

初三升中考最后冲刺:动态几何综合训练二答案

动态几何综合训练二答案第1题答案.(1)解:∵直角梯形A B C D ,A D B C ∥PD QC ∴∥∴当PD QC =时,四边形PQCD为平行四边形.由题意可知:2AP t CQ t ==,82t t ∴-= 38t = 83t =∴当83t s =时,四边形PQCD 为平行四边形.(2)解:设PQ 与O ⊙相切于点H , 过点P 作P E B C ⊥,垂足为E直角梯形A B C D A D B C ,∥ PE AB ∴=由题意可知:2AP BE t CQ t ===,222BQ BC CQ t ∴=-=-222223EQ BQ BE t t t =-=--=-A B 为O ⊙的直径,90A B C D A B ∠=∠=° AD BC ∴、为O ⊙的切线 AP PH HQ BQ ∴==,22222PQ PH HQ AP BQ t t t ∴=+=+=+-=-在Rt PEQ △中,222PE EQ PQ +=22212(223)(22)t t ∴+-=-即:28881440t t -+=211180t t -+= (2)(9)0t t --= 1229t t ∴==,因为P 在A D 边运动的时间为8811A D ==秒而98t =>9t ∴=(舍去)B QBQE∴当2t =秒时,PQ 与O ⊙相切.第2题答案.(1)如图1,过点E 作EG BC ⊥于点G .∵E 为A B 的中点, ∴122B E A B ==.在R t E B G △中,60B =︒∠,∴30BEG =︒∠.∴112B G B E E G ====, 即点E 到B C(2)①当点N 在线段A D 上运动时,P M N △的形状不发生改变. ∵P M E F E G E F ⊥⊥,,∴P M E G ∥. ∵E F B C ∥,∴E P G M =,PM EG ==同理4M N A B ==.如图2,过点P 作P H M N ⊥于H ,∵M N A B ∥, ∴6030N M C B PM H ==︒=︒∠∠,∠.∴122PH PM ==∴3cos 302M H P M =︒=. 则35422N H M N M H =-=-=.在R t P N H △中,PN ===∴P M N △的周长=4PM PN M N ++=+.②当点N 在线段D C 上运动时,P M N △的形状发生改变,但M N C △恒为等边三角形.当P M P N =时,如图3,作P R M N ⊥于R ,则M R N R =. 类似①,32M R =.∴23M N M R ==.∵M N C △是等边三角形,∴3M C M N ==.此时,6132x E P G M B C B G M C ===--=--=.当M P M N =时,如图4,这时M C M N M P ===图3A D E BFCPNM图4A D EBF CPM N 图5A D EBF (P ) CMN GGRG图1A D E BF CG图2A D EBF CPNMG H此时,615x EP G M ===--=-当N P N M =时,如图5,30N P M P M N ==︒∠∠.则120P M N =︒∠,又60M N C =︒∠, ∴180PN M M N C +=︒∠∠.因此点P 与F 重合,P M C △为直角三角形. ∴tan 301M C P M =︒= .此时,6114x E P G M ===--=.综上所述,当2x =或4或(5-时,P M N △为等腰三角形.第3题答案.解:(1)当点P 与点N 重合或点Q 与点M 重合时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边可能构成一个三角形. ①当点P 与点N 重合时,21222011x x x x +===由,得,(舍去).因为BQ +CM =31)20x x +=<,此时点Q 与点M 不重合.所以1x =-符合题意. ②当点Q 与点M 重合时,320,5x x x +==由得.此时22520DN x ==>,不符合题意.故点Q 与点M 不能重合.所以所求x 1. (2)由(1)知,点Q 只能在点M 的左侧, ①当点P 在点N 的左侧时, 由220(3)20(2)x x x x -+=-+, 解得120()2x x ==舍去,.当x =2时四边形PQMN 是平行四边形. ②当点P 在点N 的右侧时, 由220(3)(2)20x x x x -+=+-, 解得1210()4x x =-=舍去,.当x =4时四边形NQMP 是平行四边形.所以当24x x ==或时,以P ,Q ,M ,N 为顶点的四边形是平行四边形. (3)过点Q ,M 分别作AD 的垂线,垂足分别为点E ,F . 由于2x >x ,所以点E 一定在点P 的左侧.若以P ,Q ,M ,N 为顶点的四边形是等腰梯形, 则点F 一定在点N 的右侧,且PE =NF , 即223x x x x -=-.解得120()4x x ==舍去,.由于当x =4时, 以P ,Q ,M ,N 为顶点的四边形是平行四边形, 所以以P ,Q ,M ,N 为顶点的四边形不能为等腰梯形.第4题答案.(1) 从点C 乘坐摩天轮,经过2分钟后到达点E , 1分则︒=∠120COE 2分延长CO 与圆交于点F ,作EG ⊥OF 于点G . 3分 则︒=∠60GOE , 4分在R t E O G △中,2060cos 40=︒=OG 米, 5分 ∴小明2分钟后离开地面高度66=++=OG CO DC DG 米. 6分(2) F 即为最高点,他能看到的地面景物面积为26)π28s =≈平方公里. 8分注:若理解为23π28s =≈平方公里不扣分. 不写答句不扣分.第5题答案.解: (1) 当直线12y x b =-+过点C (0,1)时,1b =;当直线12y x b =-+过点A (3,0)时,32b =;当直线12y x b =-+过点B (3,1)时,52b =.∵点D 不与点C 、点B 重合, ∴当312b <≤时, 点E 在线段O A 上(如图1),在12y x b =-+中, 令0y =, 得2x b =.∴ 点E 的坐标为()2,0b . ∴ 112122S O E O C b b =⋅⋅=⨯⨯=.当3522b <<时, 点E 在线段AB 上(如图2),在12y x b =-+中, 令3x =, 得32y b =- .∴ 点E 的坐标为33,2b ⎛⎫-⎪⎝⎭. 求△O D E 的面积给出以下两种方法:解法1: 在12y x b =-+中, 令0y =,得2x b =. ∴直线12y x b =-+与x 轴的交点为F()2,0b .∴ ODF OEF S S S ∆∆=- 1122O F O C O F E A =⋅⋅-⋅⋅113212222b b b ⎛⎫=⨯⨯-⨯⨯- ⎪⎝⎭ 252b b =-+. 解法2:在12y x b =-+中, 令1y =, 得22x b =-.∴点D 的坐标为()22,1b -.O C D BD E O AE O ABC S S S S S ∆∆∆=---矩形111222O A A B O C C D B D B E O A A E =⋅-⋅⋅-⋅⋅-⋅⋅()11513311(22)52322222b b b b ⎛⎫⎛⎫=⨯-⨯⨯--⨯-⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭ 252b b =-+. ∴ 当312b <≤时,S b =;当3522b <<时, 252S b b =-+.(2) ∵ 矩形O A B C 关于直线D E 的对称图形为四边形111O A B C ∴ 四边形1111O A B C 也为矩形, 且11113,1O A O A O C O C ====,11C B 与C B 相交于点D ,11O A 与O A 相交于点E .设11C B 与O A 相交于点F ,11O A 与C B 相交于点G , ∴ 矩形O A B C 与矩形1111O A B C 重叠部分为四边形D F E ∵ //,//DG FE DF GE ,∴ 四边形D F E G 为平行四边形,且1D FO G EO O G D ∠=∠=∠. 证明平行四边形D F E G 为菱形给出以下两种证法:证法1:过点D 作11D M O A ⊥于点M ,D N O A ⊥于点N (如图11),在R t D M G ∆和R t D N F ∆中,111D M C O C O D N ====, 90,DNF DM G DFN DGM ︒∠=∠=∠=∠, ∴ R t D M G ∆≌ R t D N F ∆. ∴ D F D G =.∴ 平行四边形D F E G 为菱形.证法2:由轴对称的性质知.G D E F D E D E F D E G ∠=∠∠=∠, 又DE=DE ,∴D FE ∆≌ D G E ∆. ∴ D F D G =. ∴ 四边形D F E G 为菱形. 在12y x b =-+中, 令0y =,得2x b =; 令1y =, 得22x b =-.∴点E 的坐标为()2,0b , 点D 的坐标为()22,1b -.在R t D N E ∆中,()2222,1EN b b DN =--==, ∴DE ==.过点F 作FH D E ⊥于H ,则H 为D E 的中点, 122EH D E ==,∵D EN FEH ∠=∠, ∴R t D N E ∆∽Rt FHE ∆. ∴12D N F HE NE H==,得124FH EH ==455452122122=⨯⨯⨯=⨯⨯⨯=⨯=∆DE FH S S DFE DFEG 菱形.∴菱形D F E G 的面积不变,面积为54.第6题答案.解:(1)当正方形DEFG 的边GF 在BC 上时,如图 (1),过点A 作BC 边上的高AM ,交DE 于N ,垂足为M .∵S △ABC =48,BC =12,∴AM =8.∵DE ∥BC ,△ADE ∽△ABC , ………1分 ∴AMAN BCDE =,而AN=AM -MN=AM -DE ,∴8812DE DE -=. ……………………2分解之得8.4=DE .∴当正方形DEFG 的边GF 在BC 上时,正方形DEFG 的边长为4.8.…3分 (2)分两种情况:①当正方形DEFG 在△ABC 的内部时,如图(2),△ABC 与正方形DEFG 重叠部分的面积为正方形DEFG 的面积,∵DE =x ,∴2x y =,此时x 的范围是x <0≤4.8…4分B( 图(2))A D E FGCB (图(1))ADEF G CM N②当正方形DEFG 的一部分在△ABC 的外部时, 如图(2),设DG 与BC 交于点Q ,EF 与BC 交于点P , △ABC 的高AM 交DE 于N ,∵DE =x ,DE ∥BC ,∴△ADE ∽△ABC , …………5分 即AM AN BC DE =,而AN =AM -MN =AM -EP , ∴8812EPx -=,解得x EP 328-=.………6分所以)328(x x y -=, 即x x y 8322+-=.………7分由题意,x >4.8,x <12,所以128.4<<x .因此△ABC 与正方形DEFG 重叠部分的面积为⎪⎩⎪⎨⎧<<+-=)128.4(83222x x x x y ……………………………………8分当x <0≤4.8时,△ABC 与正方形DEFG 重叠部分的面积的最大值为4.82=23.04 当128.4<<x 时,因为x x y 8322+-=,所以当6)32(28=-⨯-=x 时,△ABC 与正方形DEFG 重叠部分的面积的最大值为24)32(480)32(42=-⨯-⨯-⨯.因为24>23.04,所以△ABC 与正方形DEFG 重叠部分的面积的最大值为24. …………………10分第7题答案.解:(1)121分(2)作A M B C ⊥于M ,分别交P D F E 、于点N S 、, P D B C P D F E ∥,∥90AM B AN P ASF APD ABC ∴∠=∠=∠=︒,△∽△ H F PD ⊥∴四边形H F SN 是矩形2分6P DN S F H ∴==A P D ABC △∽△ A P PD A BB C∴=,得65x P D = 3分 5x N S F H ∴==4分PFED PBC D FBC E y S S S -∴=- 梯形梯形5分=11()()22P D B C N M P D N S F E B C SM +---+··N =1()-2P D B C N S P D N S +··M B( 图(3))AD EFGCNP Q(0< x ≤4.8)A DCPBF H EQ MS=2116133()62255255BC PD N S x x x x ⎛⎫--⨯=-+ ⎪⎝⎭·=6分23532524y x ⎛⎫∴=--+ ⎪⎝⎭,当52x =时,34y =最大值 7分(3)延长H F 交B C 于Q由(2)知四边形HQM N 和四边形FQMS 均为矩形FQ SM AM AN NS QM HN PN PH ∴==--==-,由56AB AC BC AM BC ===⊥,,,得43A M B M ==, 由(2)知A P A N P N AB A M B M==,得4355x x A N P N ==,414455F Q x x x ∴=--=-8分四边形PFED 是平行四边形133tan tan 5420D P F DEF C F H F H P H x xD P FC∴∠=∠=∠∴====∠∠·339()3352020B Q B M Q M B M P N P H x x x ∴=-=--=-+=-9分在Rt FBQ △中,2222BP BFFQ BQ ==+,即2229(5)(4)320x x x ⎛⎫-=-+-⎪⎝⎭ 10分12280081x x ∴==,(舍去) 11分第8题答案.(1)如图Rt ∆ADE 就是要画的(图形正确就得分) .----------------------------------2分 (2) 22--------------------------------------------------------------------------------------------------5分 (3)AD 与⊙M 相切. -------------------------------------------------------------------------------------6分 证法一:过点M 作MH ⊥AD 于H ,连接MN , MA ,则MN ⊥AE 且MN=3在Rt △AMN 中,tan ∠MAN=ANMN =33∴∠MAN=30°---------------------------------------------7分∵∠DAE=∠BAC=60°∴∠MAD=30°∴∠MAN=∠MAD=30°∴MH=MN (由△MHA ≌△MNA 或解Rt △AMH 求得MH =3从而得MH=MN 亦可)------------9分 ∴AD 与⊙M 相切. --------------------------------------------------------------------------------------10分 证法二:连接MA 、ME 、MD ,则S ADE ∆=DME AME AMD S S S ∆∆∆++-----------------------------8分 过M 作MH ⊥AD 于H, MG ⊥DE 于G, 连接MN , 则MN ⊥AE 且MN=3,MG=1∴21AC ·BC =21AD ·MH +21AE ·MN +21DE ·MG由此可以计算出MH =3 ∴MH=MN ---------------------------------------------------------------9分 ∴AD 与⊙M 相切----------------------------------------------------------------------------------------10分第9题答案.解:(1)如图1 过点B 作B N O C ⊥,垂足为N由题意知 10O B O C == 8B N O A==6ON ∴== ·················································1分 (68)B ∴, ···········································································1分 (2)如图1 90BON POHONB OHP ∠=∠∠=∠= ° BON POH∴△∽△BO O N BN POO HPH∴==5P C t = 1056384O P tO H tP H t ∴=-∴=-=-10(63)34BH OB OH t t ∴=-=--=+ ····································································· 1分 21(34)(84)6416(02)2S t t t t t ∴=+-=-++<≤ ······················································ 2分(3)①当点G 在点E 上方时如图2 过点B 作B N O C '⊥,垂足为N '84BN CN CB ''==∴==BM PCBC PM ∥∥∴四边形B M P C 是平行四边形5PM BC BM PC t O C O B∴=====OCB OBC ∴∠=∠PM CB OPD OCBODPOBC∴∠=∠∠=∠ ∥ O P D O D P ∴∠=∠ 9090O P D R M P O D P D P H ∠+∠=∠+∠= °RMP DPH EM EP ∴∠=∠∴= ················································································ 1分 点F 为PM 的中点 E F P M∴⊥ 90EMF PMR EFM PRM ∠=∠∠=∠= ° M E F M P R ∴△∽△M E M F EF M PM RPR∴== 其中2P M M F ==84MR PR === ·············································································· 1分 5M E EF ∴==2EF EG=2523E G M G E M E G ∴=∴=-=-=·········································· 1分 xyOBPAHN图1xyOBPAHN ' EFDG RC图2AB OC MBG BON '∴∠=∠ ∥又90G M B O N B '∠=∠= °94M G M B M G B N B O B M N BN O'∴∴=∴=''△∽△995420t t ∴=∴=······································································································ 1分②当点G 在点E 下方时如图3 同理可得 527M G M E E G =+=+=21215420BM t t ∴==∴=·········································· 1分∴当920t =或2120时,2EF EG=.x yO BPAHEF DGRCM图3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考压轴冲刺二动态几何定值问题解析类型一【线段及线段的和差为定值】例1、已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接P A,PF,若AB,求线段P A+PF的最小值.(结果保留根号)【详解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋转角α为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴OFA O'=OCOE,∴OFOC=A OOE',∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠F A′O=∠OEC=60°,∴△A′CF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴P A+PF=P A+PB′≥AB′,在Rt △CB ′M 中,CB ′=BC AB =2,∠MCB ′=30°,∴B ′M =12CB ′=1,CM∴AB ′2∴P A +PF类型二 【线段的积或商为定值】例2、如图①,矩形ABCD 中,2,5,1AB BC BP ===,090MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F .当PN 旋转至PC 处时,MPN ∠的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D ,此时ABP ∆是否与PCD ∆相似?并说明理由;(2)类比探究:如图③,在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE t =时,EPF ∆的面积为S ,试用含t 的代数式表示S ; ①在旋转过程中,若1t =时,求对应的EPF ∆的面积; ②在旋转过程中,当EPF ∆的面积为4.2时,求对应的t 的值.【详解】(1)相似理由:∵090BAP BPA ∠+∠=,090CPD BPA ∠+∠=, ∴BAP CPD ∠=∠, 又∵090ABP PCD ∠=∠=, ∴ABP PCD ∆∆:; (2)在旋转过程中PEPF的值为定值, 理由如下:过点F 作FG BC ⊥于点G ,∵BEP GPF ∠=∠,90EBP PGF ∠=∠=,∴EBP PGF ∆∆:,∴PE BPPF GF=, ∵四边形ABCD 为矩形,∴四边形ABGF 为矩形, ∴2,1FG AB BP === ∴12PE PF = 即在旋转过程中,PE PF 的值为定值,12PE PF =; (3)由(2)知:EBP PGF ∆∆:,∴12BE PE PG PF ==, 又∵,2AE t BE t ==-,∴()2242PB t t =-=-,()14252BG AF BP PG t t ==+=+-=-, ∴EPF AEF BEP PFG ABGF S S S S S ∆∆∆∆=---矩形()()()()2111252521224245222t t t t t t t =--⨯--⨯⨯--⨯⨯-=-+即:245S t t =-+;①当1t =时,EPF ∆的面积214152S =-⨯+=, ②当 4.2EPF S ∆=时,∴245 4.2t t -+=解得:12t =-,22t =(舍去)∴当EPF ∆的面积为4.2时,25t =-; 类型三 【角及角的和差定值】例3、如图,在△ABC 中,∠ABC >60°,∠BAC <60°,以AB 为边作等边△ABD (点C 、D 在边AB 的同侧),连接CD.(1)若∠ABC=90°,∠BAC=30°,求∠BDC的度数;(2)当∠BAC=2∠BDC时,请判断△ABC的形状并说明理由;(3)当∠BCD等于多少度时,∠BAC=2∠BDC恒成立.【详解】(1)∵△ABD为等边三角形,∴∠BAD=∠ABD=60°,AB=AD,又∵∠BAC=30°,∴AC平分∠BAD,∴AC垂直平分BD,∴CD=BC,∴∠BDC=∠DBC=∠ABC-∠ABD=90°-60°=30°;(2)△ABC是等腰三角形,理由:设∠BDC=x,则∠BAC=2x,有∠CAD=60°-2x,∠ADC=60°+x,∴∠ACD=180°-∠CAD-∠ADC=60°+x,∴∠ACD=∠ADC,∴AC=AD,又∵AB=AD,∴AB=AC,即△ABC是等腰三角形;(3)当∠BCD=150°时,∠BAC=2∠BDC恒成立,如图,作等边△BCE,连接DE,∴BC=EC,∠BCE=60°.∵∠BCD=150°,∴∠ECD=360°-∠BCD-∠BCE=150°,∴∠DCE=∠DCB.又∵CD=CD,∴△BCD≌△ECD.∴∠BDC=∠EDC,即∠BDE=2∠BDC.又∵△ABD为等边三角形,∴AB=BD,∠ABD=∠CBE=60°,∴∠ABC=∠DBE=60°+∠DBC.又∵BC=BE,∴△BDE≌△BAC.∴∠BAC=∠BDE,∴∠BAC=2∠BDC.类型四【三角形的周长为定值】例4、如图,现有一张边长为的正方形ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP,BH.∠=∠;(1)求证:EPB EBP∠=∠;(2)求证:APB BPH(3)当点P在边AD上移动时,△PDH的周长是否发生变化?不变化,求出周长,若变化,说明理由;(4)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式.【详解】(1)证明:∵四边形EPGF由四边形EFCB折叠而来,EB与EP重叠∴EP = EB∴∠EPB = ∠EBP(2)证明∵四边形EPGF由四边形EFCB折叠而来,EB与EP重叠,PG与BC重叠∴∠EPG = ∠EBC又∵∠EPB = ∠EBP∴∠EPG - ∠EPB = ∠EBC - ∠EBP,即∠BPH = ∠PBC∵AD∥BC,∴∠APB = ∠PBC,∴∠APB = ∠BPH(3)解:△PDH的周长不发生变化.如图所示,过点B作BQ丄PG于点Q.在△BP A和△BPQ中,∵APB QPB PB PBA PQB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BPA BPQ ASA ≅V V ∴ ,,PQ AP AB BQ == ∴BQ BC =Rt BHQ V 和Rt BHC V ,∵BQ BCBH BH =⎧⎨=⎩∴ ()Rt BHQ Rt BHC HL V V ≌ ∴QH =HC∴△PDH的周长为:PD DH PH PD AP DH HC AD l BC =++=+++=+=为固定值,固定不变.如图,过点F 作FM 垂直AB 于点M .∵90,90BEF ABP BEF MFE ︒︒∠+∠=∠+∠=∴MFE ABP ∠=∠ 在△ABP 和△MFE 中∵,A EMF AB MFABP MFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABP MFE ASA V V ≌ ∴ ME AP x ==在△AEP 中,根据勾股定理,可得:222(4)x BE BE +-=解得:228x BE =+∴1()2EFCB S S CF BE BC ==+⨯四边形 ,即 2221224288=282x x S x x x ⎛⎫=⨯-+++⨯ ⎪⎝⎭-+ 即S 关于x 的关系式为:2282x S x =-+类型五 【三角形的面积及和差为定值】例5、综合与实践:矩形的旋转 问题情境:在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD 和EFGH 叠放在一起,这时对角线AC 和EG 互相重合.固定矩形ABCD ,将矩形EFGH 绕AC 的中点O 逆时针方向旋转,直到点E 与点B 重合时停止,在此过程中开展探究活动. 操作发现:(1)雄鹰小组初步发现:在旋转过程中,当边AB 与EF 交于点M ,边CD 与GH 交于点N ,如图2、图3所示,则线段AM 与CN 始终存在的数量关系是 .(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN 时,如图3所示,四边形QMRN 为菱形,请你证明这个结论.(3)雄鹰小组还发现在问题(2)中的四边形QMRN 中∠MQN 与旋转角∠AOE 存在着特定的数量关系,请你写出这一关系,并说明理由. 实践探究:(4)在图3中,随着矩形纸片EFGH 的旋转,四边形QMRN的面积会发生变化.若矩形纸片的长为,请你帮助雄鹰小组探究当旋转角∠AOE 为多少度时,四边形QMRN 的面积最大?最大面积是多少?(直接写出答案)【详解】(1)结论:AM=CN.理由:如图2中,设AB交EG于K,CD交EG于J.∵四边形ABCD是矩形,四边形EFGH是矩形,∴AB∥CD,EF∥EG,OA=OC=OE=OG,∴∠MEK=∠JGN,∠OAK=∠OAJ,∵∠AOK=∠AOJ,∴△AOK≌△AOJ(ASA),∴OK=OJ,AK=CJ,∠AOK=∠AJO,∴EK=JG,∵∠EKM=∠AKO,∠GJN=∠CJO,∴∠EKM=∠GJN,∴△EKM≌△GJN(ASA),∴KM=JN,∴AM=AN.(2)证明:过点Q作QK⊥EF,QL⊥CD,垂足分别为点K,L.由题可知:矩形ABCD≌矩形EFGH,∴AD=EH,AB∥CD,EF∥HG,∴四边形QMRN为平行四边形,∵QK⊥EF,QL⊥CD,∴QK=EH,QL=AD,∠QKM=∠QLN=90°,∴QK=QL,又∵AB∥CD,EF∥HG,∴∠KMQ=∠MQN,∠MQN=∠LNQ,∴∠KMQ=∠LNQ,∴△QKM≌△QLN(AAS),∴MQ=NQ∴四边形QMRN为菱形.(3)结论:∠MQN=∠AOE.理由:如图3﹣1中,∵∠QND=∠1+∠2,∠AOE=∠1+∠3,又由题意可知旋转前∠2与∠3重合,∴∠2=∠3,∴∠QND═∠AOE,∵AB∥CD,∴∠MQN=∠QND,∴∠MQN=∠AOE.(4)如图3﹣2中,连接BD,在DC上取一点J,使得DJ=AD,则AJ=2,∵CD=,∴CJ=AJ=2,∴∠JCA=∠JAC,∵∠AJD=45°=∠JCA+∠JAC,∴∠ACJ=22.5°,∵OC=OD,∴∠OCD=∠ODC=22.5°,∴∠BOC=45°,观察图象可知,当点F与点C重合或点G与点D重合时,四边形QMRN的面积最大,最大值=∴∠AOE=45°或135°时,四边形QMRN面积最大为.练习:1.已知在平行四边形ABCD中,AB=6,BC=10,∠BAD=120°,E为线段BC上的一个动点(不与B,C 重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,(1)如图1,当AE⊥BC时,求线段BE、CG的长度.(2)如图2,点E在线段BC上运动时,连接DE,DF,△BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.(3)如图2,设BE=x,△DEF的面积为y,试求出y关于x的函数关系式.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠BAD +∠B =180°, ∵∠BAD =120°, ∴∠B =60°, ∵AE ⊥BC 于E ,在Rt △ABE 中,∠BAE =30°,AB =6,∴BE =3,AE ∵EF ⊥AB , ∴∠BFE =90°,在Rt △BEF 中,∠BEF =30°,∴BF =12BE =32,EF , ∵S ▱ABCD =BC ×AE =AB ×FG ,∴=6FG ,∴FG∴EG =FG ﹣EF ; (2)如图2,过点A 作AH ⊥BC 于H , ∵∠B =60°,∴BH =3,AH∵∠AHB =∠BFE =90°,∠B =∠B , ∴△ABH ∽△EBF ,∴AB BH AHBE BF EF==, 设BE =a ,∴63a BF EF==, ∴BF =12a ,EF, ∵AB ∥CD , ∴△BEF ∽△CEG ,∴BF BE EF CG CEEG ==, ∴132210a a a CG a EG==-, ∴CG =12(10﹣a ),EG =2(10﹣a ), ∴C △BEF +C △CEG =BE +BF +EF +CE +CG +EG =a +12a +10﹣a +12(10﹣a )10﹣a )(3)同(2)的方法得,EF ,CG =12(10﹣x ),∴DG =CD +CG =6+5﹣12x =11﹣12x , ∴S △DEF =12EF ×DG =12×2x ×(11﹣12x )=﹣8x 2+4(0<x <10). 2.如图,边长为8的正方形OABC 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上点A 、C 间的一个动点(含端点),过点P 作PF ⊥BC 于点F ,点D 、E 的坐标分别为(0,6),(﹣4,0),连接PD ,PE ,DE .(1)求抛物线的解析式;(2)小明探究点P的位置是发现:当点P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判定该猜想是否正确,并说明理由;(3)请直接写出△PDE周长的最大值和最小值.【详解】(1)∵边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,∴C(0,8),A(﹣8,0),设抛物线解析式为:y=ax2+c,则8640 ca c=⎧⎨+=⎩,解得:188ac⎧=-⎪⎨⎪=⎩.∴抛物线解析式为y=﹣18x2+8.(2)设P(x,﹣18x2+8),则F(x,8),则PF=8﹣(﹣18x2+8)=18x2.PD2=x2+[6﹣(﹣18x2+8)]2=164x4+12x2+4=(18x2+2)2∴PD=18x2+2,∴d=|PD﹣PF|=|18x2+2﹣18x2|=2∴d=|PD﹣PF|为定值2;(3)如图,过点E作EF⊥x轴,交抛物线于点P,由d=|PD﹣PF|为定值2,得C△PDE=ED+PE+PD=ED+PE+PF+2=ED+2+(PE+PF),又∵D(0,6),E(﹣4,0)∴DE==∴C△PDE=(PE+PF),当PE和PF在同一直线时PE+PF最小,得C△PDE最小值==2 .设P为抛物线AC上异于点A的任意一点,过P作PM∥x轴,交AB于点M,连接ME,如图2.由于E是AO的中点,易证得ME≥PE(当点P接近点A时,在△PME中,显然∠MPE是钝角,故ME≥PE,与A重合时,等号成立),而ME≤AE+AM,所以PE≤AE+AM.所以当P与A重合时,PE+PF最大,AE=8﹣4=4,PD=10.得C△PDE最大值==.综上所述,△PDE周长的最大值是,最小值是.3.如图,四边形ABCD中,AD∥BC,∠ABC=90°.(1)直接填空:∠BAD=______°.(2)点P在CD上,连结AP,AM平分∠DAP,AN平分∠P AB,AM、AN分别与射线BP交于点M、N.设∠DAM=α°.①求∠BAN的度数(用含α的代数式表示).②若AN⊥BM,试探究∠AMB的度数是否为定值?若为定值,请求出该定值;若不为定值,请用α的代数式表示它.【详解】解:(1)∵AD∥BC,∠ABC=90°,∴∠BAD=180°-90°=90°.故答案为:90;(2)①∵AM平分∠DAP,∠DAM=α°,∴∠DAP=2α°,∵∠BAD=90°,∴∠BAP=(90-2α)°,∵AN平分∠P AB,∴∠BAN=12(90-2α)°=(45-α)°;②∵AM平分∠DAP,AN平分∠P AB,∴∠P AM=12∠P AD,∠P AN=12∠P AB,∴∠MAN=∠MAP+∠P AN=12∠P AD+∠12∠P AB=1290°=45°,∵AN⊥BM,∴∠ANM=90°,∴∠AMB=180°-90°-45°=45°.4.将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)【详解】(1)结论:S△ABC:S△ADE=定值.理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.∵∠BAE =∠CAD =90°,∴∠BAC +∠EAD =180°,∠BAC +∠CAG =180°, ∴∠DAE =∠CAG , ∵AB =AE =AD =AC ,∴1212ABC AEDAB AC sin CAG S S AE AD sin DAE ⋅⋅⋅∠==⋅⋅⋅∠V V 1. (2)如图2中,S △ABC :S △ADE =定值.理由:如图1中,作DH ⊥AE 于H ,CG ⊥BA 交BA 的延长线于G .不妨设∠ADC =30°,则AD =,AE =AB , ∵∠BAE =∠CAD =90°,∴∠BAC +∠EAD =180°,∠BAC +∠CAG =180°, ∴∠DAE =∠CAG ,∴12132ABC AEDAB AC sin CAGS S AE AD sin DAE ⋅⋅⋅∠==⋅⋅⋅∠V V .(3)如图3中,如图2中,S △ABC :S △ADE =定值.理由:如图1中,作DH ⊥AE 于H ,CG ⊥BA 交BA 的延长线于G .∵∠BAE =∠CAD =90°,∴∠BAC +∠EAD =180°,∠BAC +∠CAG =180°, ∴∠DAE =∠CAG ,∵AB =a ,AE =b ,AC =m ,AD =n∴1212ABC AEDAB AC sin CAGS maS nb AE AD sin DAE ⋅⋅⋅∠==⋅⋅⋅∠V V . 5.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______. (2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.【详解】解:(1)∵PE AB ⊥,10AB =,3PE =, ∴ABP ∆的面积111031522AB PE =⨯=⨯⨯=, ∵PE AB ⊥,PF AC ⊥,CG AB ⊥, 且ABC ABP ACP S S S ∆∆∆=+, ∴AB CG AB PE AC PF ⋅=⋅+⋅, ∵AB AC =,∴358CG PE PF =+=+=. 故答案为:15,8.(2)∵PE AB ⊥,PF AC ⊥,CG AB ⊥, 且ABC ABP ACP S S S ∆∆∆=+, ∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =, ∴CG PE PF =+.(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,如图2所示:∵10AB AC BC ===, ∴ABC ∆是等边三角形, ∵AM BC ⊥, ∴152BM BC ==,∴AM ==∴ABC ∆的面积111022BC AM =⨯=⨯⨯= ∵PE BC ⊥,PF AC ⊥,PG AB ⊥,∴ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积111222BC PE AC PF AB PG =⨯+⨯+⨯1()2AB PE PF PG =++=∴210PE PF PG ⨯++==. (4)过点E 作EQ BC ⊥,垂足为Q ,如图3所示:∵四边形ABCD 是矩形,∴AD BC =,90C ADC ∠=∠=︒, ∵8AD =,3CF =,∴5BF BC CF AD CF =-=-=,由折叠可得:5DF BF ==,BEF DEF ∠=∠, ∵90C ∠=︒,∴4DC ===,∵EQ BC ⊥,90C ADC ∠=∠=︒, ∴90EQC C ADC ∠=︒=∠=∠, ∴四边形EQCD 是矩形, ∴4EQ DC ==, ∵//AD BC , ∴DEF EFB ∠=∠, ∵BEF DEF ∠=∠, ∴BEF EFB ∠=∠, ∴BE BF =,由解决问题(1)可得:PG PH EQ +=, ∴4PG PH +=,即PG PH +的值为4.6.如图,已知锐角△ABC 中,AB 、AC 边的中垂线交于点O(1)若∠A =α(0°<α<90°),求∠BOC ;(2)试判断∠ABO +∠ACB 是否为定值;若是,求出定值,若不是,请说明理由. 解:(1)AB 、AC 边的中垂线交于点O , ∴AO =BO =CO ,∴∠OAB =∠OBA ,∠OCA =∠OAC ,∴∠AOB+∠AOC=(180°﹣∠OAB﹣∠OBA)+(180°﹣∠OAC﹣∠OCA),∴∠AOB+∠AOC=(180°﹣2∠OAB)+(180°﹣2∠OAC)=360°﹣2(∠OAB+∠OAC)=360°﹣2∠A=360°﹣2α,∴∠BOC=360°﹣(∠AOB+∠AOC)=2α;(2)∠ABO+∠ACB为定值,∵BO=CO,∴∠OBC=∠OCB,∵∠OAB=∠OBA,∠OCA=∠OAC,∴∠OBC=(180°﹣2∠A)=90°﹣α,∵∠ABO+∠ACB+∠OBC+∠A=180°,∴∠ABO+∠ACB=180°﹣α﹣(90°﹣α)=90°.7.⊙O的直径AB=15cm,有一条定长为9cm的动弦,CD在弧AB上滑动(点C和A、点D与B不重合),且CE⊥CD交AB于E,DF⊥CD交AB于F.(1)求证:AE=BF(2)在动弦CD滑动过程中,四边形CDFE的面积是否为定值,若是定值,请给出证明,并求这个定值,若不是,请说明理由.【详解】(1)如图,过O作OG⊥CD于G,则G为CD的中点,又EC⊥CD,FD⊥CD,∴EC∥OG∥FD,∴O为EF的中点,即OE=OF,又AB为⊙O的直径,∴OA=OB,∴AE=BF(等式性质),(2)四边形CDFE的面积是定值,理由如下:过点O作OG⊥CD于G,连接OD.则14.5cm.2DG CD==在△OGD中,190,7.5cm2OGD OD AB∠===o,根据勾股定理得6cmOG==,则GD=4.5cm.∵OD、DG是定值,∴OG是定值,∵CE∥OG∥DF,G为CD中点,∴O为EF中点,①当CD与AB不平行时.∴OG为梯形CDFE的中位线,∴CE+DF=2OG=2×6=12cm,∵梯形的高也是定值9cm,∴梯形的面积是定值=12×9÷2=54cm2.②当CD∥AB时,四边形ECDF是矩形,OG=EC=FD=6,∴矩形的面积=6×9=54cm2是定值.综上所述,四边形CDFE的面积是定值.8.在平面直角坐标系中,点A和点B分别在x轴的正半轴和y轴的正半轴上,且OA=6,OB=8,点D是AB的中点.(1)直接写出点D的坐标及AB的长;(2)若直角∠NDM绕点D旋转,射线DP分别交x轴、y轴于点P、N,射线DM交x轴于点M,连接MN.①当点P和点N分别在x轴的负半轴和y轴的正半轴时,若△PDM∽△MON,求点N的坐标;②在直角∠NDM绕点D旋转的过程中,∠DMN的大小是否会发生变化?请说明理由.【详解】(1)∵OA=6,OB=8,点D是AB的中点,∴点D的坐标为(3,4),AB==10;(2)①如图,过点D作DC⊥y轴于C,作DE⊥x轴于E,则CD=3=OE,DE=4=CO,∠DCN=∠DEM=90°,设ON=x,则CN=4﹣x.∵∠CDE=∠PDM=90°,∴∠CDN=∠EDM,∴△CDN∽△EDM,∴CD CNED EM=,即344xEM-=,∴EM43=(4﹣x).∵CD∥PO,∴△CDN∽△OPN,∴CD CNOP ON=,即34xOP x-=,∴OP34xx=-.∵△PDM∽△MON,∴∠NPO=∠NMO,∴PN=MN.∵NO⊥PM,∴PO=MO,即34343xx=+-(4﹣x),解得:x1=10(舍去),x252=,∴ON52=,∴点N的坐标为(0,52);②在直角∠NDM绕点D旋转的过程中,∠DMN的大小不会发生变化.理由如下:由①可得:△CDN∽△EDM,∴CD DNED DM=,即34DNDM=.又∵OA=6,OB=8,∴34OAOB=,∴DN OADM OB=,即DN DMAO OB=.又∵∠AOB=∠NDM=90°,∴△AOB∽△NDM,∴∠DMN=∠OBA.∵∠OBA大小不变,∴∠DMN的大小不会发生变化.9.如图,在菱形ABCD中,∠ABC=60°,AB=2.过点A作对角线BD的平行线与边CD的延长线相交于点E.P为边BD上的一个动点(不与端点B,D重合),连接P A,PE,AC.(1)求证:四边形ABDE是平行四边形;(2)求四边形ABDE的周长和面积;(3)记△ABP的周长和面积分别为C1和S1,△PDE的周长和面积分别为C2和S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.【详解】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,即AB∥DE.∵BD∥AE,∴四边形ABDE是平行四边形.(2)解:设对角线AC与BD相交于点O.∵四边形ABCD是菱形,∠ABC=60°,∴∠ABD=∠CBP=12∠ABC=30°,AC⊥BD.在Rt△AOB中,AO=12AB=1,∴OB∴BD=2BO=∴Y ABDE的周长为:2AB+2BD=YABDE的面积为:BD•AO==(3)①∵C1+C2=AB+PB+AP+PD+PE+DE=2AB+BD+AP+PE=AP+PE,∵C和A关于直线BD对称,∴当P在D处时,AP+PE的值最小,最小值是2+2=4,当P 在点B 处时,AP +PE 的值最大,如图2, 过E 作EG ⊥BD ,交BD 的延长线于G , ∵∠BDE =150°, ∴∠EDG =30°, ∵DE =2,∴EG =1,DGRt △PEG 中,BG =由勾股定理得:PE ==∴AP +PE 的最大值是:∵P 为边BD 上的一个动点(不与端点B ,D 重合),∴C 1+C 2<C 1+C 2< (写对一边的范围给一分)②S 1+S 2理由是:S 1+S 2=1111BP AO PD AO AO()12222BP PD ⋅+⋅=+=⨯=10.如图,抛物线的顶点坐标为C (0,8),并且经过A (8,0),点P 是抛物线上点A ,C 间的一个动点(含端点),过点P 作直线y =8的垂线,垂足为点F ,点D ,E 的坐标分别为(0,6),(4,0),连接PD ,PE ,DE .(1)求抛物线的解析式;(2)猜想并探究:对于任意一点P ,PD 与PF 的差是否为固定值?如果是,请求出此定值;如果不是,请说明理由;(3)求:①当△PDE 的周长最小时的点P 坐标;②使△PDE 的面积为整数的点P 的个数.【答案】(1)抛物线的解析式为y =﹣18x 2+8;(2)PD 与PF 的差是定值,PD ﹣PF =2;(3)①P (4,6),此时△PDE 的周长最小;②共有11个令S △DPE 为整数的点. 【解析】(1)设抛物线的解析式为y =a (x +h )2+k ∵点C (0,8)是它的顶点坐标, ∴y =ax 2+8 又∵经过点A (8,0), 有64a +8=0,解得a =1-8故抛物线的解析式为:y =1-8x 2+8; (2)是定值,解答如下:设P (a ,1-8a 2+8),则F (a ,8), ∵D (0,6),∴PD 2128a ==+ PF =22118888a a ⎛⎫--+=⎪⎝⎭, ∴PD ﹣PF =2;(3)当点P 运动时,DE 大小不变,则PE 与PD 的和最小时,△PDE 的周长最小, ∵PD ﹣PF =2,∴PD =PF +2,∴PE +PD =PE +PF +2,∴当P 、E 、F 三点共线时,PE +PF 最小, 此时点P ,E 的横坐标都为4, 将x =4代入y =1-8x 2+8,得y =6, ∴P (4,6),此时△PDE 的周长最小. 过点P 做PH ⊥x 轴,垂足为H . 设P (a ,1-8a 2+8)∴PH =1-8a 2+8,EH =a -4,OH =a S △DPE =S 梯形PHOD -S △PHE -S △DOE=()2211111-86?844628282a a a a ⎛⎫⎛⎫++--+--⨯⨯ ⎪ ⎪⎝⎭⎝⎭=21-344a a ++ =21-6)134a -+( ∵点P 是抛物线上点A ,C 间的一个动点(含端点) ∴0≤a ≤8当a =6时,S △DPE 取最大值为13. 当a =0时,S △DPE 取最小值为4. 即4≤S △DPE ≤13其中,当S △DPE =12时,有两个点P . 所以,共有11个令S △DPE 为整数的点.。

相关文档
最新文档