实验3 Linux的进程管理
操作系统实验,实验3, 进程管理 (1)
在图形界面上利用终端通过命令“su - ”切换到超级用户,编辑文件 “job”; 按组合键[Ctrl+Alt+F2]切换到第二个虚拟终端(超级用户); 输入命令“at –f job now+1 minute”,设置1分钟后执行at调度内容; 稍等后观察at调度的执行效果,再切换到第一个虚拟终端观察at调度 的执行效果;
切换到第一个虚拟终端观察at调度的执行效果(5分钟后系统将执行重 启调度任务)。
[操作要求2] 设置一个调度,要求1分钟后执行文件job中的作业。 文件job的内容为: find /home/jkx/ -name “*.c” > /home/jkx/fdresult wall user jkx, all code files have been searched out! Please check out. [操作步骤]
续表
守 护 进 程 innd Usenet新闻服务器 功 能 说 明
linuxconf
lpd named netfs network
允许使用本地WEB服务器作为用户接口来配置机器
打印服务器 DNS服务器 安装NFS、Samba和NetWare网络文件系统 激活已配置网络接口的脚本程序
nfsd
portmap postgresql routed sendmail
事件(例如xinetd和lpd)
启动守护进程有如下几种方法
在引导系统时启动 人工手动从shell提示符启动
系统启动script的执行期间 被启动(/etc/rc.d) 任何具有相应执行 权限的用户
使用crond守护进程启动
执行at命令启动
守护进程一般由系统在开机时通过脚本或root
操作系统原理实验3-进程管理
《操作系统原理》实验报告
实验序号:3 实验项目名称:进程管理
一、实验目的及要求
1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质。
3. 掌握Linux操作系统下的进程的创建与撤销。
二、实验设备(环境)及要求
1.虚拟机VMware Workstation、Ubuntu操作系统和C语言编程。
2.创建多个父进程与子进程,并撤销这些进程。
3.编写一段程序,使用系统调用fork()创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符:父进程显示字符a;子进程分别显示字符b和字符c。
试观察记录屏幕上的显示结果并分析原因。
三、实验内容与步骤
1.创建多个父进程与子进程
2.撤销这些进程
kill命令
3.编写程序
4.运行
四、实验结果与数据处理
分析:从进程并发执行来看,输出bca或abc的任意排列
原因:fork()创建进程所需要的时间要多于输出一个字符的时间,因此在主进程创建进程2的同时,进程1就输出了”b”,而进程2和主程序的输出次序是有随机性的,所以会出现多种可能结果。
五、分析与讨论
fork函数的原理是:一个现有进程可以调用fork函数创建一个新进程。
由fork 创建的新进程被称为子进程(child process)。
fork 函数被调用一次但返回两次。
两次返回的唯一区别是子进程中返回0值而父进程中返回子进程ID。
六、教师评语
成绩
签名:
日期:。
操作系统实验3进程的创建控制实验
操作系统实验3进程的创建控制实验实验三的目标是通过实现一个进程控制程序,来加深我们对进程创建和控制机制的理解,并通过实践来熟悉和掌握相关的编程技巧。
在进行实验之前,我们需要先了解进程的一些基本概念和相关知识。
首先,进程的创建是通过操作系统中的系统调用来完成的。
在Linux系统中,常用的创建进程的系统调用有fork(和exec(。
fork(系统调用可以创建一个新的进程,该进程与调用fork(的进程几乎完全相同;而exec(系统调用则在新创建的进程中执行一个新的程序。
另外,进程的控制机制主要是通过进程的状态来实现的。
进程可以处于就绪状态、运行状态和阻塞状态。
就绪状态的进程可以被调度器选择后立即运行,而阻塞状态的进程则需要等待一些条件满足后才能被唤醒并变为就绪状态。
实验三的具体内容包括:1. 编写一个程序,通过调用fork(创建多个子进程。
子进程和父进程可以并行执行,共享程序的代码和数据段。
2. 子进程通过调用exec(系统调用执行不同的程序。
可以通过调用不同的exec(函数或者传入不同的参数来执行不同的程序。
3. 子进程执行的程序可能会产生不同的结果,比如输出不同的字符串或者产生不同的返回值。
我们可以通过wait(系统调用等待子进程退出,并获取子进程的返回值。
4. 父进程可以通过调用waitpid(系统调用来选择等待一些特定的子进程,以及获取特定子进程的返回值。
通过实验三的实践,我将更加深入地了解进程的创建和控制机制。
实验三的实验结果将让我熟悉和掌握相关的编程技巧,为我今后更加熟练地编写和控制进程打下坚实的基础。
总之,实验三是一个非常有意义的实验,将帮助我更加深入地理解进程的创建和控制机制,并通过实践获得相关的编程技巧。
这将对我今后的学习和实践有很大的帮助。
进程管理演示实验报告
一、实验目的1. 理解进程的概念及其在操作系统中的作用。
2. 掌握Linux系统中进程的创建、调度、同步和通信方法。
3. 熟悉进程的阻塞、挂起、恢复和终止操作。
4. 学习使用相关命令和工具进行进程管理和调试。
二、实验环境操作系统:Linux开发环境:GCC、Xshell三、实验内容1. 进程创建与调度2. 进程同步与通信3. 进程阻塞与恢复4. 进程终止与调试四、实验步骤1. 进程创建与调度(1)编写一个简单的C程序,使用fork()函数创建一个子进程。
(2)在父进程中,使用getpid()和getppid()函数获取进程ID和父进程ID。
(3)使用ps命令查看当前系统中的进程,观察父进程和子进程的状态。
(4)使用waitpid()函数等待子进程结束。
2. 进程同步与通信(1)编写一个使用管道(pipe)进行进程间通信的C程序。
(2)父进程向管道中写入数据,子进程从管道中读取数据。
(3)使用ps命令查看进程状态,观察管道通信的效果。
(4)编写一个使用信号量(semaphore)进行进程同步的C程序。
(5)使用sem_wait()和sem_post()函数实现进程同步。
3. 进程阻塞与恢复(1)编写一个使用sleep()函数使进程阻塞的C程序。
(2)在父进程中,使用waitpid()函数等待阻塞的子进程结束。
(3)使用kill()函数向阻塞的进程发送SIGCONT信号,使其恢复执行。
4. 进程终止与调试(1)编写一个使用exit()函数终止进程的C程序。
(2)在父进程中,使用waitpid()函数等待终止的子进程。
(3)使用gdb调试器分析程序运行过程中出现的问题。
五、实验结果与分析1. 进程创建与调度实验结果表明,使用fork()函数成功创建了子进程,父进程和子进程的进程ID和父进程ID被正确获取。
通过ps命令,可以观察到父进程和子进程的状态。
2. 进程同步与通信实验结果表明,管道通信可以成功实现父进程和子进程之间的数据传递。
Linux 进程管理实验
Linux 进程管理实验一、实验内容:1. 利用bochs观测linux0.11下的PCB进程控制结构。
2。
利用bochs观测linux0.11下的fork。
c源代码文件,简单分析其中的重要函数。
3。
在fork.c适当位置添加代码,以验证fork函数的工作原理。
二、Linux进程管理机制分析Linux有两类进程:一类是普通用户进程,一类是系统进程,它既可以在用户空间运行,又可以通过系统调用进入内核空间,并在内核空间运行;另一类叫做内核进程,这种进程只能在内核空间运行. 在以i386为平台的Linux系统中,进程由进程控制块,系统堆栈,用户堆栈,程序代码及数据段组成。
Linux系统中的每一个用户进程有两个堆栈:一个叫做用户堆栈,它是进程运行在用户空间时使用的堆栈;另一个叫做系统堆栈,它是用户进程运行在系统空间时使用的堆栈。
1.Linux进程的状态:Linux进程用进程控制块的state域记录了进程的当前状态,一个Linux 进程在它的生存期中,可以有下面6种状态。
1。
就绪状态(TASK_RUNNING):在此状态下,进程已挂入就绪队列,进入准备运行状态.2。
运行状态(TASK_RUNNING):当进程正在运行时,它的state域中的值不改变。
但是Linux会用一个专门指针(current)指向当前运行的任务。
3。
可中断等待状态(TASK_INTERRUPTIBLE):进程由于未获得它所申请的资源而处在等待状态。
不管是资源有效或者中断唤醒信号都能使等待的进程脱离等待而进入就绪状态。
即”浅睡眠状态”。
4.不可中断等待状态(TASK_UNINTERRUPTIBLE):这个等待状态与上面等待状态的区别在于只有当它申请的资源有效时才能被唤醒,而其它信号不能.即“深睡眠状态"。
5.停止状态(TASK_STOPPED):当进程收到一个SIGSTOP信号后就由运行状态进入停止状态,当收到一个SINCONT信号时,又会恢复运行状态.挂起状态。
linux进程管理的实验报告
实验报告:Linux进程管理1. 引言本实验报告将详细介绍Linux系统中进程管理的相关知识和操作。
进程管理是操作系统中的一个重要组成部分,它负责控制和调度系统中运行的各个进程,确保系统资源的合理分配和进程的正常运行。
在本实验中,我们将通过一系列步骤来了解Linux系统中进程的创建、监控和控制。
2. 实验环境为了完成本实验,我们需要在一台运行Linux操作系统的计算机上进行操作。
本实验报告基于Ubuntu 20.04 LTS操作系统进行撰写,但是适用于大多数Linux 发行版。
3. 实验步骤步骤一:创建新进程在Linux系统中,可以通过fork()系统调用来创建新的进程。
以下是一个简单的示例代码:#include <stdio.h>#include <unistd.h>int main() {pid_t pid = fork();if (pid == 0) {// 子进程逻辑printf("这是子进程\n");} else if (pid > 0) {// 父进程逻辑printf("这是父进程\n");} else {// 进程创建失败printf("进程创建失败\n");}return0;}步骤二:查看进程信息Linux系统提供了多种命令来查看系统中运行的进程信息。
以下是一些常用的命令:•ps:显示当前终端下的进程列表。
•top:实时显示进程的CPU、内存等资源占用情况。
•pstree:以树状结构显示进程的层次关系。
步骤三:杀死进程有时候我们需要终止一个运行中的进程,可以使用kill命令来发送终止信号给目标进程。
以下是一个示例:kill <PID>请将<PID>替换为目标进程的进程ID。
步骤四:进程优先级调整通过调整进程的优先级,可以影响进程在系统中的调度顺序。
在Linux系统中,可以使用nice命令来调整进程的优先级。
linux进程的管理互斥控制实验
2、利用wait( )来控制进程执行顺序
代码:
结果:
父进程总是没有输出,不知道为什么。。。
评阅教师特殊评语:
评阅教师:
日期:
2)当启动新进程的时候,内核也给它们分配系统资源,如___CPU时间_____和___RAM空间_____。
3)永远不向父进程返回输出的进程叫做____僵进程__________。
4)由父进程派生出来的进程叫做______子进程____________进程。
5) _________父_______进程是一个派生另一个进程的进程。
思考
如何更新子进程内容?
答:调用exec( ),覆盖原有子进程。
(1)可执行文件加载时进行了哪些处理?
答:初始化,开辟内存,显示窗口是后期可选工作,并不是每一个程序都要窗口的每个程序,任何一个程序,任何一个可执行文件,启动运行时都要调用Ntdll.dll中的NtCreateProcess()。
(3)什么是进程同步?wait( )是如何实现进程同步的?
2.进程互斥实验
1)、进一步认识并发执行的实质
2)、通过分析实验结果,分析进程竞争资源的现象,学习解决进程互斥的方法
3.进程的控制实验
1)、掌握进程另外的创建方法:需认真分析实验结果,体会本次实验进程创建方法与fork的不同
2)、通过分析实验结果,熟悉进程的睡眠、同步、撤消等进程控制方法
实验内容及要求(详见实验讲义与实验指导书):
#include <stdio.h>
#include<unistd.h>
int main( )
{
int p1,p2;
while((p1=fork( ))= = -1);
进程管理实验报告分析(3篇)
第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。
为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。
二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质。
3. 分析进程争用资源的现象,学习解决进程互斥的方法。
4. 了解Linux系统中进程通信的基本原理。
三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。
2. 修改程序,使每个进程循环显示一句话。
3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。
4. 分析利用软中断通信实现进程同步的机理。
四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。
在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。
实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。
2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。
实验结果显示,父进程和子进程的打印顺序仍然是随机的。
这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。
3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。
实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。
这表明signal()和kill()在进程控制方面具有重要作用。
4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。
linux的进程管理实验总结
linux的进程管理实验总结Linux的进程管理实验总结1. 引言Linux中的进程管理是操作系统的核心功能之一,在实际的系统运行中起着重要的作用。
进程管理能够有效地分配系统资源、管理进程的运行状态和优先级,以及监控进程的行为。
本文将以Linux的进程管理实验为主题,分步骤介绍实验过程及总结。
2. 实验目的本次实验的目的是理解Linux中进程的概念,掌握进程的创建、运行和终止的基本操作,以及进程的状态转换过程。
3. 实验环境本次实验使用的是Linux操作系统,可以选择使用虚拟机安装Linux或者使用Linux主机进行实验。
4. 实验步骤4.1 进程的创建在Linux中,可以使用系统调用fork()来创建一个新的子进程。
在实验中,可以编写一个简单的C程序来调用fork()系统调用,实现进程的创建。
具体步骤如下:(1)创建一个新的C程序文件,例如"process_create.c"。
(2)在C程序文件中,包含必要的头文件,如<stdio.h>和<unistd.h>。
(3)在C程序文件中,编写main()函数,调用fork()函数进行进程的创建。
(4)编译并运行该C程序文件,观察控制台输出结果。
实验中,可以通过观察控制台输出结果,判断新的子进程是否被成功创建。
4.2 进程的运行在Linux中,通过调用系统调用exec()可以用一个新的程序替换当前进程的执行。
可以使用exec()函数来实现进程的运行。
具体步骤如下:(1)创建一个新的C程序文件,例如"process_run.c"。
(2)在C程序文件中,包含必要的头文件和函数声明,如<stdio.h>和<unistd.h>。
(3)在C程序文件中,编写main()函数,调用execl()函数来执行一个可执行程序。
(4)编译并运行该C程序文件,观察控制台输出结果。
实验中,可以通过观察控制台输出结果,判断新的程序是否被成功执行。
Linux实验:进程管理
实验3:进程管理实验目的:1.掌握进程管理的相关命令;2.理解Linux进程管理的实质。
实验材料:一、实验内容及步骤Linux系统上所有运行的东西都可以称之为一个进程。
每个用户任务、每个系统管理守护进程,都可以称之为进程。
1.ps功能:用于查看进程状态。
使用该命令可以确定有哪些进程正在运行和运行的状态、进程是否结束、进程有没有僵死、哪些进程占用了过多的资源等等。
命令的格式:ps [options]主要参数:最常用的三个参数是u、a、x实例:ps –u 查看系统进程,显示面向用户的格式ps –a 查看系统中与tty相关的进程图12.top功能:显示系统当前的进程和其他状况;可以通过用户按键来不断刷新当前状态。
top 命令提供了实时的对系统处理器的状态监视;该命令可以按CPU使用。
内存使用和执行时间对任务进行排序;而且该命令的很多特性都可以通过交互式命令或者在个人定制文件中进行设定。
命令的格式:top [-] [d delay] [q] [c] [s] [S] [i]主要参数:d 指定每两次屏幕信息刷新之间的时间间隔。
当然用户可以使用s交互命令来改变之。
s 在安全模式中运行。
这将去除交互命令所带来的潜在危险。
c 显示整个命令行而不只是显示命令名。
实例:top 查看系统状况图2 top -n 10 显示更新十次后退出图3 top -n 2 -b > top.log 将更新显示二次的结果输出到名称为top.log 的档案里图43.,kill及其带参数的使用kill 进程ID图54,crontab命令试写一个定时任务,每周五11:30提示"明天休息,注意备份数据库" (运行命令为:wall "明天休息,注意备份数据库")vi aaa30 11 * * 5 wall “明天休息,注意备份数据库”crontab aaa图6。
操作系统实验报告----进程管理
实验内容:进程管理一、实验目的1、掌握Linux中进程的创建方法及执行情况;2、加深对进程、进程树等概念的理解;3、掌握Linux中如何加载子进程自己的程序;4、掌握父进程通过创建子进程完成某项任务的方法;5.、掌握系统调用exit()和_exit()调用的使用。
6、分析进程竞争资源的现象,学习解决进程互斥的方法;进一步认识并发执行的实质二、实验内容(一)进程的创建1、编写一段程序,使用系统调用fork( )创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符。
#include<stdio.h>main(){int p,x;p=fork();if(p>0){x=fork();if(x>0)printf("father\n");elseprintf("child2");}elseprintf("child1");}输出结果:child1child2father2、运行以下程序,分析程序执行过程中产生的进程情况。
#include <stdio.h>main(){int p,x;p=fork();if (p>0)fork();else{fork();fork();}sleep(15);}实验步骤:编译连接gcc –o forktree forktree.c后台运行./forktree &使用pstree –h 查看进程树运行结果:├─gnom e-terminal─┬─bash─┬─forktree─┬─forktree─┬─forkt ree───forktree││││└─forktree│││└─forktree││└─pstree 分析:程序运行,系统首先创建一个进程forktree,执行到p=fork()创建一个子进程forktree,子进程获得处理机优先执行,父进程等待;执行else,当执行到第一个fork()函数时,子进程创建了一个进程forktree,称之为孙进程,孙进程获得处理机往下执行,子进程等待;执行到第二个fork()函数时,孙进程又创建一个进程forktree,称之为重孙进程,重孙进程很快执行完,将处理机还给孙进程,孙进程很快执行完,将处理机还给子进程;子进程继续往下执行,执行到第二个fork()函数,又创建一个进程forktree,称之为第二孙进程,并获得处理机执行,此进程很快执行完,将处理机还给子进程,子进程也很快执行完,将处理机还给父进程,父进程P>0执行if语句,运行fork()函数,又创建一个进程forktree,称之为第二子进程,此进程获得处理机执行很快运行完,将处理机还给父进程,父进程运行sleep(15)语句,休眠15秒,用pstree命令查询进程树。
进程的管理实验报告
一、实验目的1. 理解进程的基本概念和进程状态转换过程。
2. 掌握进程创建、进程同步和进程通信的方法。
3. 了解进程调度算法的基本原理和实现方法。
4. 通过实验加深对进程管理的理解,提高操作系统实践能力。
二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发工具:GCC三、实验内容1. 进程创建与状态转换(1)使用fork()函数创建一个子进程,并观察父进程和子进程的进程ID。
(2)使用exec()函数替换子进程的映像,实现进程的创建。
(3)观察进程状态转换过程,如创建、运行、阻塞、就绪、终止等。
2. 进程同步(1)使用互斥锁(mutex)实现进程的互斥访问共享资源。
(2)使用信号量(semaphore)实现进程的同步,如生产者-消费者问题。
(3)观察进程同步的效果,确保进程安全执行。
3. 进程通信(1)使用管道(pipe)实现进程间的单向通信。
(2)使用消息队列(message queue)实现进程间的双向通信。
(3)使用共享内存(shared memory)实现进程间的快速通信。
(4)观察进程通信的效果,确保数据正确传递。
(1)实现基于优先级的进程调度算法,如先来先服务(FCFS)和最高优先级优先(HPF)。
(2)实现基于时间片的轮转调度算法(RR)。
(3)观察进程调度算法的效果,分析不同算法的优缺点。
四、实验步骤1. 编写程序实现进程创建与状态转换,使用fork()和exec()函数。
2. 编写程序实现进程同步,使用互斥锁和信号量。
3. 编写程序实现进程通信,使用管道、消息队列和共享内存。
4. 编写程序实现进程调度,使用优先级调度和时间片轮转调度。
5. 编译并运行程序,观察实验结果,分析实验现象。
五、实验结果与分析1. 进程创建与状态转换通过实验,我们成功创建了父进程和子进程,并观察到进程ID的变化。
在进程创建过程中,父进程的进程ID与子进程的进程ID不同,说明子进程是独立于父进程的实体。
实验三 进程管理-进程的控制实验
(1)首先查找调用进程是否有子进程,若无,则返回出错码;(2)若找到一处于“僵死状态”的子进程,则将子进程的执行时间加到父进程的执行时间上,并释放子进程的进程表项;(3)若未找到处于“僵死状态”的子进程,则调用进程便在可被中断的优先级上睡眠,等待其子进程发来软中断信号时被唤醒。
4、exit()终止进程的执行。
系统调用格式:void exit(status)int status;其中,status 是返回给父进程的一个整数,以备查考。
为了及时回收进程所占用的资源并减少父进程的干预,LINUX/LINUX 利用exit( )来实现进程的自我终止,通常父进程在创建子进程时,应在进程的末尾安排一条exit( ),使子进程自我终止。
exit(0)表示进程正常终止,exit(1)表示进程运行有错,异常终止。
如果调用进程在执行exit( )时,其父进程正在等待它的终止,则父进程可立即得到其返回的整数。
核心须为exit( )完成以下操作:(1)关闭软中断(2)回收资源(3)写记帐信息(4)置进程为“僵死状态”参考程序#include<stdio.h>#include<unistd.h>main( ){in t pid;pid=fork( ); /*创建子进程*/switch(pid){case -1:printf("fork fail!\n");exit(1);case 0: /*创建失败*//*子进程*/execl("/bin/ls","ls","1","color",NULL); printf("exec fail!\n");exit(1);default:wait(NULL);/*父进程*/ /*同步*/printf("ls completed !\n");exit(0);}}运行结果执行命令ls -l -color ,(按倒序)列出当前目录下所有文件和子目录;ls completed!分析原因程序在调用fork( )建立一个子进程后,马上调用wait( ),使父进程在子进程结束之前,一直处于睡眠状态。
实验进程管理实验报告
一、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质,理解进程的创建、调度、同步与通信。
3. 学习使用Linux系统中的进程管理命令,掌握进程的监控、控制与优化。
二、实验环境操作系统:Linux Ubuntu 20.04实验工具:终端(Terminal)、shell命令三、实验内容1. 进程的基本概念与特性2. 进程的创建与调度3. 进程同步与通信4. 进程的监控与优化四、实验步骤1. 进程的基本概念与特性(1)通过阅读相关资料,了解进程的概念、特性和生命周期。
(2)使用shell命令查看当前系统中进程的状态,如ps、top、htop等。
2. 进程的创建与调度(1)使用fork()函数创建进程,观察父子进程之间的关系。
(2)使用exec()函数替换子进程的映像,实现进程的创建。
(3)使用wait()、waitpid()等函数等待子进程结束,控制进程执行顺序。
(4)通过修改进程优先级,观察进程调度策略的变化。
3. 进程同步与通信(1)使用互斥锁(mutex)实现进程同步,防止数据竞争。
(2)使用条件变量(condition variable)实现进程间的条件同步。
(3)使用信号量(semaphore)实现进程间的同步与通信。
(4)通过管道(pipe)、消息队列(message queue)、共享内存(shared memory)等机制实现进程间的通信。
4. 进程的监控与优化(1)使用ps、top、htop等命令监控进程的运行状态。
(2)通过调整进程优先级,优化进程的执行顺序。
(3)使用renice命令调整进程的实时性。
(4)使用nice命令调整进程的调度策略。
五、实验结果与分析1. 进程的基本概念与特性通过实验,我们了解到进程是具有一定独立功能的程序关于某个数据集合的一次运行活动,具有并发性、动态性、独立性、异步性和结构特征等特性。
2. 进程的创建与调度实验过程中,我们成功创建了多个进程,并通过修改进程优先级,观察到调度策略的变化。
linux进程管理的实验报告
linux进程管理的实验报告Linux进程管理的实验报告引言:Linux操作系统是一种开源的操作系统,以其稳定性和高度可定制性而受到广泛使用。
在Linux系统中,进程管理是一个重要的组成部分,它负责控制和管理系统中运行的进程。
本实验报告旨在探讨Linux进程管理的相关概念和实践。
一、进程的基本概念进程是指在计算机系统中正在运行的一个程序实例。
每个进程都有自己的内存空间、寄存器和状态。
在Linux系统中,每个进程都有一个唯一的进程标识符(PID),用于标识和管理进程。
二、进程的创建和终止在Linux系统中,进程的创建是通过fork()系统调用来实现的。
fork()系统调用会创建一个新的进程,新进程是原进程的一个副本,包括代码、数据和堆栈等。
新进程和原进程共享相同的代码段,但是拥有独立的数据和堆栈。
进程的终止可以通过exit()系统调用来实现。
当一个进程调用exit()系统调用时,它会释放所有的资源,并通知操作系统该进程已经终止。
此外,父进程可以通过wait()系统调用来等待子进程的终止,并获取子进程的退出状态。
三、进程的调度和优先级在Linux系统中,进程的调度是由调度器负责的。
调度器根据进程的优先级和调度策略来确定下一个要运行的进程。
Linux系统中有多种调度策略,如先来先服务(FCFS)、最短作业优先(SJF)、轮转调度(Round Robin)等。
进程的优先级用一个数字表示,范围从-20到19,其中-20表示最高优先级,19表示最低优先级。
较高优先级的进程会被优先调度,以保证其能够及时响应用户的请求。
四、进程的状态转换在Linux系统中,进程可以处于不同的状态,如运行态、就绪态和阻塞态等。
进程的状态转换是由操作系统根据进程的行为和外部事件来控制的。
当一个进程被创建时,它处于就绪态,等待被调度执行。
当进程获得CPU资源并开始执行时,它进入运行态。
当进程需要等待某个事件发生时,如等待用户输入或等待某个文件读写完成,它会进入阻塞态。
实验3_常用的Linux系统命令
实验三常用的Linux系统命令一.实验目的1.掌握常用的Linux系统命令。
2.增加对Linux系统的认识,并能够基本熟练掌握该系统。
二.实验要求1.学习几个常用的Linux系统命令的功能及格式。
2.练习使用这些命令及各命令的参数。
三.实验内容1.常用Linux系统命令1).man命令功能:显示具有一定格式的在线命令帮助手册,也可以显示某个命令的格式。
例如:查命令ls的用法,则命令为:$man ls退出时用“q”。
2).more命令功能:在终端上分页显示。
例:以root登录后,在其缺省目录下有一install.log文件(或其它在一屏显示范围容纳不下的文本文件),用cat install.log命令查看其内容,屏幕上会滚动,这时可做如下处理:#cat /root/install.log |more则显示一屏后,按“空格”往下滚一页,按“Enter”键则往下滚一行。
浏览过程中按【q】键,可结束分页显示。
3).date命令功能:显示及修改日期和时间。
例如:要查看当前的日期和时间,可以如下输入:#date显示:set jan 9 17:54:0l CST 2008若想将当前的日期和时间改为12月11日早上9点30分,可以如下输入:#date 12110930 没有空格4).& 后台命令符功能:将&符放在一条命令后,使该条命令在后台执行。
在提示符#后输入命令,系统就为该命令创建一个进程,由该进程完成命令所规定的任务。
进程终止后才重新出现#提示符,通常称这种命令为前台命令。
如果在命令行的末尾加上“&”符,如:在现行命令窗口输入#xclock可以看到有一个小时钟窗口弹出,同时现行窗口也被占用,不能再通过该命令窗口输入其它命令。
可以使用”Ctrl+C”退出xclock,再输入其它命令。
请试用#xclock& 命令,则系统为这条命令创建一个进程,它在后台执行,这种进程称为后台进程。
Linux进程管理
–用at命令可以定时执行指定的程序
–eg.
操作:按以下方法设定在当天的17:30将/root/abc的文件以电子邮件的方式发给用户student1和student2
四、实验总结
五、教师评语
签名:
日期:
成绩
二、实验环境
Linux虚拟机:redhat 5.0
三、实验内容及步骤
可以用一些Linux命令操作和管理进程
1、用ps命令观察Linux正在运行的进程
2、执行ps命令,显示本机正在运行的所有程序(包括其他用户和系统运行的进程)的详细列表,并分析各进程的运行情况
3、绘制进程树
提示:为了绘制进程数,需要获得更多有关进程的信息,特别是知道每个进程的父进程ID号,可以用ps -Al
–注意:通常,用户只能删除自己拥有的进程,只有root用户可以删除任意用户的进程
–eg.
nice --10 find / -name“abc*”> /tmp/find
nice -10 find / -name“abc*”> /tmp/find
比较前后两次操作显示的进程信息
注意:只有root用户可以增加进程的优先级,而且可以用于任何进程;其他用户只能改变自己拥有进程的优先级
•用kill命令删除进程
–注意:通常,用户只能删除自己拥有的进程,只有root用户可以删除任意用户的进程
–eg.
操作:用kill 999命令将进程ID号为999的进程删除
说明:进程999为进程1200的父进程,所以删除999的同时,也将进程1200终止了
请同学们自己设计操作过程!
•设置和更改进程的优先级进程管理
一、实验目的及要求
熟悉和理解进程和进程数的概念
进程管理_实验报告
一、实验目的1. 理解Linux操作系统中进程的概念,明确进程与程序的区别。
2. 掌握Linux下进程的创建、调度、同步与通信等基本操作。
3. 学会使用Linux命令查看和管理进程。
二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发工具:gcc、gdb三、实验内容1. 进程创建与调度2. 进程同步与互斥3. 进程通信4. 进程控制四、实验步骤1. 进程创建与调度(1)编写一个C程序,创建一个子进程,并在父进程中打印出子进程的进程标识符(PID)。
```c#include <stdio.h>#include <unistd.h>#include <sys/types.h>int main() {pid_t pid;pid = fork(); // 创建子进程if (pid == 0) { // 子进程printf("子进程的PID:%d\n", getpid());} else if (pid > 0) { // 父进程printf("父进程的PID:%d,子进程的PID:%d\n", getpid(), pid); } else {printf("创建子进程失败\n");}return 0;}```(2)编译并运行程序,观察结果。
2. 进程同步与互斥(1)编写一个C程序,使用互斥锁(mutex)实现两个进程的同步。
```c#include <stdio.h>#include <stdlib.h>#include <pthread.h>pthread_mutex_t mutex;void thread_func(void arg) {pthread_mutex_lock(&mutex); // 获取互斥锁printf("线程 %ld 获取了互斥锁\n", pthread_self());sleep(1);pthread_mutex_unlock(&mutex); // 释放互斥锁return NULL;}int main() {pthread_t thread1, thread2;pthread_mutex_init(&mutex, NULL); // 初始化互斥锁pthread_create(&thread1, NULL, thread_func, (void )1);pthread_create(&thread2, NULL, thread_func, (void )2);pthread_join(thread1, NULL);pthread_join(thread2, NULL);pthread_mutex_destroy(&mutex); // 销毁互斥锁return 0;}```(2)编译并运行程序,观察结果。
管理linux系统实验报告
管理linux系统实验报告实验背景Linux 是一种以Unix 为基础设计的开源操作系统,广泛应用于服务器领域和嵌入式系统中。
作为一个管理员,熟悉并掌握Linux 系统的管理能力是十分重要的。
本次实验旨在加深理解Linux 的基本管理技能,并通过实践加以应用。
实验内容本次实验包括以下几个部分:1. 用户管理2. 文件权限管理3. 进程管理4. 磁盘管理5. 系统日志管理实验步骤1. 用户管理通过命令行创建一个新用户,并设置密码。
其中,新用户需要有管理员权限(sudo)。
bashsudo adduser <用户名>sudo passwd <用户名>sudo usermod -aG sudo <用户名>2. 文件权限管理创建一个新的文件夹,并设置不同的权限给不同的用户组:bashmkdir test_directorychown <用户名>:<用户组> test_directorychmod 750 test_directory3. 进程管理查看当前正在运行的进程列表,并进行进程的查找、结束操作:bashps auxkill <PID>4. 磁盘管理查看系统的磁盘使用情况,并对硬盘进行挂载和卸载操作:bashdf -hsudo mount /dev/<设备名> /mntsudo umount /mnt5. 系统日志管理查看系统日志,并分析其中的信息:bashtail /var/log/syslog实验总结通过本次实验,我学习到了Linux 系统的基本管理技能。
用户管理、文件权限管理、进程管理、磁盘管理和系统日志管理是运维人员必须掌握的基本技能。
合理设置用户权限、熟练运用命令行工具、了解硬盘的使用情况以及分析系统日志,都有助于提高系统的安全性和稳定性。
在实验过程中,我发现通过多次实践才能真正熟练掌握这些技能。
同时,还需要时常查阅相关的文档和资料,以便了解更多命令和技巧。
Linux的进程管理实验报告
实验报告Linux进程管理实验内容:1,进程运行控制命令2,进程管理命令3,调度进程命令4,信息管理命令姓名:学好:520913080429专业:信息安全09-041,进程运行控制命令[root@localhost ~]# find / -name testing & <==将该执行程序放在后台执行[1] 5673You have new mail in /var/spool/mail/root[root@localhost ~]# fg <=将该程序教会屏幕前执行find / -name testing[1]+ Stopped find / -name testing[root@localhost ~]#[root@localhost /]# vi .bashrc[2]+ Stopped vi .bashrc <=两个进程被丢到后台当中[root@localhost /]#[root@localhost /]# jobs[1]- Stopped find / -name testing (wd: ~)[2]+ Stopped vi .bashrc[root@localhost /]# <=显示有两个工作在后台下,状态为停止[root@localhost /]# find / -name test/usr/lib/ruby/1.8/test/usr/lib/python2.4/email/test/usr/lib/python2.4/test/usr/lib/python2.4/bsddb/test/usr/lib/pgsql/test/usr/bin/test/usr/include/boost/mpl/aux_/test/usr/include/boost/test/usr/share/pear/test/usr/share/doc/db4-devel-4.3.29/ref/test/usr/share/doc/lynx-2.8.5/test/usr/share/doc/ncurses-devel-5.5/test[3]+ Stopped find / -name test[root@localhost /]#[root@localhost /]# vi .bashrc[4]+ Stopped vi .bashrc[root@localhost /]#[root@localhost /]# jobs[1] Stopped find / -name testing (wd: ~)[2] Stopped vi .bashrc[3]- Stopped find / -name test[4]+ Stopped vi .bashrc[root@localhost /]#[root@localhost /]# bg %1[1] find / -name testing & (wd: ~)[root@localhost /]# /usr/share/doc/kernel-doc-2.6.18/Documentation/ABI/testing [root@localhost /]#[root@localhost /]# jobs[1] Running find / -name testing & (wd: ~)[2] Stopped vi .bashrc[3]- Stopped find / -name test[4]+ Stopped vi .bashrc[root@localhost /]# /work/mini2440/linux-2.6.32.2-mini2440/Documentation/ABI/testing[root@localhost /]#[root@localhost /]# bg %2[2] vi .bashrc &[root@localhost /]# jobs[1] Running find / -name testing & (wd: ~)[2]+ Stopped vi .bashrc[3] Stopped find / -name test[4]- Stopped vi .bashrc2,进程管理命令[root@localhost ~]# ps -auxWarning: bad syntax, perhaps a bogus '-'? See /usr/share/doc/procps-3.2.7/FAQUSER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMANDroot 1 0.0 0.0 2044 636 ? Ss 12:05 0:01 init [5]root 2 0.0 0.0 0 0 ? S 12:05 0:00 [migration/0]root 3 0.0 0.0 0 0 ? SN 12:05 0:00 [ksoftirqd/0]root 4 0.0 0.0 0 0 ? S 12:05 0:00 [watchdog/0]root 5 0.0 0.0 0 0 ? S< 12:05 0:00 [events/0]root 6 0.0 0.0 0 0 ? S< 12:05 0:00 [khelper]root 7 0.0 0.0 0 0 ? S< 12:05 0:00 [kthread]root 9 0.0 0.0 0 0 ? S< 12:05 0:00 [xenwatch]root 10 0.0 0.0 0 0 ? S< 12:05 0:00 [xenbus]root 12 0.0 0.0 0 0 ? S< 12:05 0:00 [kblockd/0]root 13 0.0 0.0 0 0 ? S< 12:05 0:00 [kacpid]root 177 0.0 0.0 0 0 ? S< 12:05 0:00 [cqueue/0]root 181 0.0 0.0 0 0 ? S< 12:05 0:00 [khubd]root 183 0.0 0.0 0 0 ? S< 12:05 0:00 [kseriod]root 238 0.0 0.0 0 0 ? S 12:05 0:00 [pdflush]root 239 0.0 0.0 0 0 ? S 12:05 0:00 [pdflush]root 240 0.0 0.0 0 0 ? S< 12:05 0:00 [kswapd0]root 241 0.0 0.0 0 0 ? S< 12:05 0:00 [aio/0]root 445 0.0 0.0 0 0 ? S< 12:05 0:00 [kpsmoused]root 475 0.0 0.0 0 0 ? S< 12:05 0:00 [scsi_eh_0]root 480 0.0 0.0 0 0 ? S< 12:05 0:00 [kmirrord]root 485 0.0 0.0 0 0 ? S< 12:05 0:00 [ksnapd]root 488 0.0 0.0 0 0 ? S< 12:06 0:01 [kjournald]root 516 0.0 0.0 0 0 ? S< 12:06 0:00 [kauditd]root 550 0.0 0.0 2388 816 ? S<s 12:06 0:01 /sbin/udevd -droot 1271 0.0 0.0 0 0 ? S< 12:06 0:00 [kgameportd]root 2162 0.0 0.0 0 0 ? S< 12:07 0:00 [kjournald]root 2652 0.0 0.2 5276 2584 ? S 12:07 0:01 /usr/sbin/vmtoolsdroot 2704 0.0 0.2 9840 2088 ? Ss 12:07 0:00 cupsdroot 3164 0.0 0.0 12060 636 ? S<sl 12:08 0:00 auditdroot 3166 0.0 0.3 9504 3712 ? S<s 12:08 0:00 python /sbin/audispdroot 3180 0.0 0.0 1704 584 ? Ss 12:08 0:00 syslogd -m 0root 3183 0.0 0.0 1656 404 ? Ss 12:08 0:00 klogd -xrpc 3216 0.0 0.0 1784 548 ? Ss 12:08 0:00 portmaproot 3245 0.0 0.0 1800 732 ? Ss 12:08 0:00 rpc.statdroot 3278 0.0 0.0 4952 568 ? Ss 12:08 0:00 rpc.idmapddbus 3297 0.0 0.1 2852 964 ? Ss 12:08 0:00 dbus-daemon --systemroot 3308 0.0 0.0 2128 756 ? Ss 12:08 0:00 /usr/sbin/hcidroot 3312 0.0 0.0 1724 496 ? Ss 12:08 0:00 /usr/sbin/sdpdroot 3337 0.0 0.0 0 0 ? S< 12:08 0:00 [krfcommd]root 3376 0.0 0.1 33192 1284 ? Ssl 12:08 0:00 pcscdroot 3395 0.0 0.0 1896 444 ? Ss 12:08 0:00 /usr/bin/hidd --serverroot 3415 0.0 0.1 9344 1108 ? Ssl 12:08 0:00 automountroot 3434 0.0 0.0 1656 524 ? Ss 12:08 0:00 /usr/sbin/acpidroot 3445 0.0 0.0 5088 496 ? Ss 12:08 0:00 ./hpiodroot 3450 0.0 0.4 13172 4548 ? S 12:08 0:00 python ./hpssd.pyroot 3465 0.0 0.0 5184 924 ? Ss 12:08 0:00 /usr/sbin/sshdroot 3477 0.0 0.0 2680 884 ? Ss 12:08 0:00 xinetd -stayalive -pidfile /var/root 3497 0.0 0.1 8500 1804 ? Ss 12:08 0:00 sendmail: accepting connections smmsp 3505 0.0 0.1 7564 1448 ? Ss 12:08 0:00 sendmail: Queue runner@01:00:00 root 3518 0.0 0.0 1876 352 ? Ss 12:08 0:00 gpm -m /dev/input/mice -t exps2 root 3529 0.0 0.1 5476 1112 ? Ss 12:08 0:00 crondxfs 3564 0.0 0.1 3940 1780 ? Ss 12:08 0:00 xfs -droppriv -daemonroot 3575 0.0 0.0 1652 504 ? SNs 12:08 0:00 anacron -sroot 3585 0.0 0.0 2216 436 ? Ss 12:08 0:00 /usr/sbin/atdroot 3624 0.5 1.2 25456 12156 ? S 12:08 0:14 /usr/bin/python /usr/sbin/yum-up avahi 3650 0.0 0.1 2684 1364 ? Ss 12:09 0:01 avahi-daemon: running [localhost avahi 3651 0.0 0.0 2552 316 ? Ss 12:09 0:00 avahi-daemon: chroot helper68 3663 0.1 0.4 6236 4308 ? Ss 12:09 0:03 haldroot 3664 0.0 0.1 3112 964 ? S 12:09 0:00 hald-runner68 3670 0.0 0.0 1980 788 ? S 12:09 0:00 hald-addon-acpi: listening on ac68 3677 0.0 0.0 1976 788 ? S 12:09 0:00 hald-addon-keyboard: listening o root 3688 0.0 0.0 1936 616 ? S 12:09 0:00 hald-addon-storage: polling /dev root 3955 0.0 0.0 2100 932 ? S 12:09 0:00 xenstored --pid-file /var/run/xeroot 3961 0.0 0.0 12152 420 ? Sl 12:09 0:00 xenconsoledroot 3963 0.0 0.4 11844 3940 ? S 12:09 0:00 python /usr/sbin/xend startroot 3964 0.0 0.5 63064 4924 ? Sl 12:09 0:00 python /usr/sbin/xend startroot 3965 0.0 0.0 13496 600 ? Ssl 12:09 0:00 blktapctrlroot 4344 0.0 0.0 2292 708 ? Ss 12:09 0:00 /sbin/dhclient -1 -q -lf /var/liroot 4466 0.0 0.0 1912 336 ? S 12:09 0:00 /usr/sbin/smartd -q neverroot 4478 0.0 0.0 1640 432 tty1 Ss+ 12:09 0:00 /sbin/mingetty tty1root 4480 0.0 0.0 1640 428 tty2 Ss+ 12:09 0:00 /sbin/mingetty tty2root 4481 0.0 0.0 1636 428 tty3 Ss+ 12:09 0:00 /sbin/mingetty tty3root 4482 0.0 0.0 1640 432 tty4 Ss+ 12:09 0:00 /sbin/mingetty tty4root 4483 0.0 0.0 1640 432 tty5 Ss+ 12:09 0:00 /sbin/mingetty tty5root 4509 0.0 0.0 1636 428 tty6 Ss+ 12:09 0:00 /sbin/mingetty tty6root 4510 0.0 0.4 16964 4248 ? Ss 12:09 0:00 /usr/sbin/gdm-binary -nodaemon root 4585 0.0 0.2 15988 2652 ? S 12:09 0:00 /usr/sbin/gdm-binary -nodaemon root 4589 0.0 0.1 16964 1508 ? S 12:09 0:00 /usr/sbin/gdm-binary -nodaemon root 4591 0.3 1.3 19960 12916 tty7 Ss+ 12:09 0:08 /usr/bin/Xorg :0 -br -audit 0 -aroot 4799 0.0 0.6 23060 6000 ? Ss 12:15 0:00 /usr/bin/gnome-sessionroot 4828 0.0 0.0 0 0 ? Z 12:15 0:00 [Xsession] <defunct>root 4861 0.0 0.0 4308 508 ? Ss 12:15 0:00 /usr/bin/ssh-agent /usr/bin/dbus root 4864 0.0 0.0 2756 504 ? S 12:15 0:00 /usr/bin/dbus-launch --exit-with root 4865 0.0 0.0 2720 848 ? Ss 12:15 0:00 /bin/dbus-daemon --fork --print- root 4871 0.0 0.3 7348 3416 ? S 12:15 0:00 /usr/libexec/gconfd-2 5root 4875 0.0 0.0 2552 588 ? S 12:15 0:00 /usr/bin/gnome-keyring-daemon root 4877 0.0 0.8 34028 8044 ? Sl 12:15 0:00 /usr/libexec/gnome-settings-daem root 4894 0.0 1.1 25160 11280 ? Ss 12:15 0:00 /usr/lib/scim-1.0/scim-launcherroot 4907 0.0 1.1 39776 11528 ? Ss 12:15 0:00 metacity --sm-client-id=default1root 4912 0.0 1.4 98520 14212 ? Ss 12:15 0:02 gnome-panel --sm-client-id defau root 4914 0.3 1.8 136400 18176 ? Ss 12:15 0:07 nautilus --no-default-window --sroot 4918 0.0 0.3 38896 2948 ? Ssl 12:15 0:00 /usr/libexec/bonobo-activation-s root 4922 0.0 0.3 11360 3092 ? S 12:15 0:00 /usr/libexec/gnome-vfs-daemon root 4926 0.0 0.8 44884 8096 ? Ss 12:15 0:00 eggcups --sm-client-id default4root 4938 0.3 1.9 77512 18920 ? S 12:15 0:08 /usr/lib/vmware-tools/bin32/vmwa root 4941 0.0 0.0 6452 576 ? Ss 12:15 0:00 /usr/lib/scim-1.0/scim-helper-ma root 4942 0.0 0.6 49540 6596 ? Ssl 12:15 0:00 /usr/lib/scim-1.0/scim-panel-gtk root 4946 0.0 0.5 14584 4996 ? Ss 12:15 0:00 bt-applet --sm-disableroot 4948 0.0 0.0 13548 816 ? Ss 12:15 0:00 /usr/lib/scim-1.0/scim-launcher root 4952 0.1 1.3 25236 13336 ? Ss 12:15 0:04 /usr/bin/python -tt /usr/bin/pup root 4960 0.0 0.1 2536 1196 ? S 12:16 0:00 /usr/libexec/gam_serverroot 4962 0.0 1.3 97264 12776 ? S 12:16 0:00 /usr/libexec/wnck-applet --oaf-a root 4964 0.0 0.9 104952 8800 ? S 12:16 0:00 /usr/libexec/trashapplet --oaf-aroot 4980 0.0 0.2 17280 2212 ? Sl 12:16 0:00 ./escd --key_Inserted="/usr/bin/ root 4983 0.1 0.9 74352 9260 ? Ss 12:16 0:02 nm-applet --sm-disableroot 4985 0.0 0.0 2452 828 ? S 12:16 0:00 /usr/libexec/mapping-daemonroot 4992 0.0 0.4 15396 4608 ? Ss 12:16 0:01 pam-panel-icon --sm-client-id de root 4995 0.0 0.6 74052 6320 ? Ss 12:16 0:00 gnome-power-managerroot 4996 0.0 0.0 1820 620 ? S 12:16 0:00 /sbin/pam_timestamp_check -d roo root 5017 0.0 0.4 16404 4068 ? Ss 12:16 0:00 gnome-screensaverroot 5029 0.6 2.6 64052 25252 ? S 12:16 0:14 /usr/bin/python -E /usr/bin/seal root 5046 0.0 0.6 23148 6532 ? S 12:16 0:01 /usr/libexec/notification-area-a root 5049 0.1 1.3 97332 12944 ? S 12:17 0:02 /usr/libexec/mixer_applet2 --oaf root 5052 0.1 1.2 48824 11612 ? S 12:17 0:02 /usr/libexec/clock-applet --oaf-root 5061 0.0 0.1 12292 1000 ? S 12:17 0:00 scim-bridgeroot 5437 0.0 1.7 131360 17252 ? Sl 12:28 0:00 gnome-terminalroot 5442 0.0 0.0 2452 660 ? S 12:28 0:00 gnome-pty-helperroot 5443 0.0 0.1 5052 1516 pts/1 Ss 12:28 0:00 bashroot 5933 0.0 0.1 5004 1248 pts/1 T 12:44 0:00 vi .bashrcroot 6062 0.0 0.1 4800 1108 pts/1 T 12:48 0:00 find / -name testroot 6159 0.0 0.1 5028 1308 pts/1 T 12:50 0:00 vi .bashrcroot 6271 0.0 0.0 4476 952 pts/1 R+ 12:54 0:00 ps -aux[root@localhost ~]#USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMANDUSER :进程属于那个人的PID :进程号%CPU :使用了多少CPU资源%MEM :使用了多少RAMVSZ RSS :占用的Ram的大小TTY :若为tty1-tty6则为本机用户,STAT :该进程的状态START :该进程开始的日期TIME :该进程运行了多久的时间COMMAND :该进程的内容[root@localhost ~]# toptop - 13:06:05 up 1:00, 1 user, load average: 0.00, 0.01, 0.08Tasks: 123 total, 2 running, 117 sleeping, 3 stopped, 1 zombieCpu(s): 0.7%us, 0.7%sy, 0.0%ni, 98.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%stMem: 962500k total, 826544k used, 135956k free, 215324k buffers Swap: 2031608k total, 0k used, 2031608k free, 411772k cachedPID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND4591 root 15 0 38392 12m 5316 S 1.3 1.3 0:09.46 Xorg5437 root 15 0 128m 17m 10m R 0.3 1.8 0:00.75 gnome-terminal1 root 15 0 2044 636 540 S 0.0 0.1 0:01.04 init2 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/03 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/04 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/05 root 10 -5 0 0 0 S 0.0 0.0 0:00.12 events/06 root 20 -5 0 0 0 S 0.0 0.0 0:00.02 khelper7 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kthread9 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 xenwatch10 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 xenbus12 root 10 -5 0 0 0 S 0.0 0.0 0:00.42 kblockd/013 root 20 -5 0 0 0 S 0.0 0.0 0:00.00 kacpid177 root 18 -5 0 0 0 S 0.0 0.0 0:00.00 cqueue/0181 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 khubd183 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kseriod238 root 23 0 0 0 0 S 0.0 0.0 0:00.00 pdflush239 root 15 0 0 0 0 S 0.0 0.0 0:00.51 pdflush240 root 18 -5 0 0 0 S 0.0 0.0 0:00.00 kswapd0241 root 18 -5 0 0 0 S 0.0 0.0 0:00.00 aio/0445 root 11 -5 0 0 0 S 0.0 0.0 0:00.00 kpsmoused 475 root 18 -5 0 0 0 S 0.0 0.0 0:00.00 scsi_eh_0480 root 19 -5 0 0 0 S 0.0 0.0 0:00.00 kmirrord485 root 20 -5 0 0 0 S 0.0 0.0 0:00.00 ksnapd488 root 10 -5 0 0 0 S 0.0 0.0 0:01.28 kjournald516 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kauditd550 root 17 -4 2388 816 372 S 0.0 0.1 0:01.48 udevd1271 root 17 -5 0 0 0 S 0.0 0.0 0:00.00 kgameportd 2162 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kjournald 2652 root 15 0 5276 2584 2152 S 0.0 0.3 0:01.59 vmtoolsdYou have new mail in /var/spool/mail/rootTop为动态进程查看cpu使用的情况[root@localhost ~]# sar -u 1 3Linux 2.6.18-8.el5xen (localhost.localdomain) 2011年11月07日13时09分33秒CPU %user %nice %system %iowait %steal %idle13时09分34秒all 1.00 0.00 1.00 0.00 0.00 98.0013时09分35秒all 3.96 0.00 0.00 0.000.00 96.0413时09分36秒all 0.00 0.00 1.00 0.00 0.00 99.00Average: all 1.66 0.00 0.66 0.00 0.00 97.67[root@localhost ~]#查看内存的使用情况[root@localhost ~]# sar -r 1 3Linux 2.6.18-8.el5xen (localhost.localdomain) 2011年11月07日13时10分44秒kbmemfree kbmemused %memused kbbuffers kbcached kbswpfree kbswpused %swpused kbswpcad13时10分45秒134656 827844 86.01 215596 411924 2031608 0 0.00 013时10分46秒134656 827844 86.01 215596 411924 2031608 0 0.00 013时10分47秒134656 827844 86.01 215596 411924 2031608 0 0.00 0Average: 134656 827844 86.01 215596 411924 2031608 0 0.00 0You have new mail in /var/spool/mail/root[root@localhost ~]#关闭进程PID为2652的进程[root@localhost ~]# kill -9 2652[root@localhost ~]#查看系统的内核版本,主机名称,cpu信息[root@localhost ~]# uname -aLinux localhost.localdomain 2.6.18-8.el5xen #1 SMP Fri Jan 26 14:42:21 EST 2007 i686 i686 i386 GNU/LinuxYou have new mail in /var/spool/mail/root[root@localhost ~]#了解cpu的详细信息[root@localhost ~]# more /proc/cpuinfoprocessor : 0vendor_id : GenuineIntelcpu family : 6model : 23model name : Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz stepping : 10cpu MHz : 2925.552cache size : 3072 KBfdiv_bug : nohlt_bug : nof00f_bug : nocoma_bug : nofpu : yesfpu_exception : yescpuid level : 13wp : yesflags : fpu tsc msr pae mce cx8 apic mtrr mca cmov pat pse36 clflush dts acpi mmx fxsrsse sse2 ss nx lm constant_tsc up pni cx16 lahf_lmbogomips : 7338.60[root@localhost ~]#查看进程的优先级[root@localhost ~]# ps -lF S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD0 S 0 5443 5437 0 75 0 - 1263 wait pts/1 00:00:00 bash0 T 0 5933 5443 0 75 0 - 1251 finish pts/1 00:00:00 vi0 T 0 6062 5443 0 77 0 - 1200 finish pts/1 00:00:00 find0 T 0 6159 5443 0 78 0 - 1257 finish pts/1 00:00:00 vi4 R 0 7163 5443 0 77 0 - 1107 - pts/1 00:00:00 ps 3,调度进程命令[root@localhost ~]#[root@localhost ~]# at 5pmat> shutdown -h -nowat> You have new mail in /var/spool/mail/root[root@localhost ~]# atq[root@localhost ~]# at 5pm shutdown -h -nowUsage: at [-V] [-q x] [-f file] [-m] timeat [-V] [-q x] [-f file] [-m] -t [[CC]YY]MMDDhhmmat -c job [job...](atq | at -l) [-V] [-q x](atrm | at -d | at -r) [-V] [-q x] job ...batch [-V] [-f file] [-m][root@localhost ~]# at -qat: option requires an argument -- qUsage: at [-V] [-q x] [-f file] [-m] timeat [-V] [-q x] [-f file] [-m] -t [[CC]YY]MMDDhhmmat -c job [job...](atq | at -l) [-V] [-q x](atrm | at -d | at -r) [-V] [-q x] job ...batch [-V] [-f file] [-m][root@localhost ~]#[root@localhost ~]#[root@localhost ~]# crontab –e[root@localhost ~]# at 6pmat> sar -u 1 3at> <EOT>job 1 at 2011-11-10 18:00[root@localhost ~]#[root@localhost ~]# atq1 2011-11-10 18:00 a root 一个任务[root@localhost ~]#0 12 * * *mail test </home/test/test.txt[root@localhost ~]# crontab –r 删除所有[root@localhost ~]#crontab –l[root@localhost ~]# atq[root@localhost ~]# vi /etc/crontab 启动iv编辑器SHELL=/bin/bashPATH=/sbin:/bin:/usr/sbin:/usr/binMAILTO=rootHOME=/# run-parts01 * * * * root run-parts /etc/cron.hourly02 4 * * * root run-parts /etc/cron.daily22 4 * * 0 root run-parts /etc/cron.weekly42 4 1 * * root run-parts /etc/cron.monthly4,信息管理命令[root@localhost ~]# dmesg 显示开机信息[root@localhost ~]#dmesg | more[root@localhost ~]#uptime 查看系统开机时间[root@localhost ~]# uptime08:52:55 up 16 min, 1 user, load average: 0.02, 0.51, 0.55 [root@localhost ~]#whoroot pts/1 2011-11-10 08:49 (:0.0)[root@localhost ~]#[root@localhost ~]# whoamiroot[root@localhost ~]# [root@localhost ~]#last -5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验3 Linux的进程管理
1.显示终端上的所有进程及没有控制终端的进程的详细状态,并截图。
2.执行top命令,并对显示的结果分别根据内存的使用量和CPU占有率来排序,并分别
截图保存,比较两幅图的区别。
3.创建vim进程,指定vim程序的优先级为“—1学号最后一位”,并通过进程查看命令
验证命令执行的结果,截图并用红色线条标出。
4.重新调整之前vim程序的优先级,使其优先级为“1学号最后一位”,并通过进程查看
命令验证命令执行的结果,截图并用红色线条标出。
5.创建3个vim进程,设置为3个不同的优先级,通过进程查看命令验证进程创建成功。
6.向其中一个vim进程发送sinkill信号,结束其运行,并查看结果。
7.向系统中剩余vim进程发送sinkill信号,结束当前系统中多个vim进程,并查看结果。