换热设备典型焊接结构设计分析
固定管板式换热器结构设计
固定管板式换热器的结构设计摘要换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改善关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。
换热器的型式繁多,不同的使用场合使用目的不同。
其中常用结构为管壳式,因其结构简单、造价低廉、选材广泛、清洗方便、适应性强,在各工业部门应用最为广泛。
固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。
这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。
固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。
固定管板式换热器主要由壳体、换热管束、管板、前端管箱(又称顶盖或封头)和后端结构等部件组成。
管束安装在壳体内,两端固定在管板上。
管箱和后端结构分别与壳体两端的法兰用螺栓相连,检修或清洗时便于拆卸。
换热器设计的优劣最终要看是否适用、经济、安全、运行灵活可靠、检修清理方便等等。
一个传热效率高、紧凑、成本低、安全可靠的换热器的产生,要求在设计时精心考虑各种问题.准确的热力设计和计算,还要进行强度校核和符合要求的工艺制造水平。
关键词:换热器;固定管板式换热器;结构;设计The Structural Design of Fixed Tube Plate Heat ExchangerAuthor : Chen Hui -juanTutor : Li HuiAbstractHeat exchanger is one of the most important equipments which is used in the fields of chemical, oil, power, metallurgy, transportation, national defense industry. Its right setting and the improvements of performance play an important role in the rationality o technology, economy, energy utilization and saving, which has a very important impact on the national economy.The type of heat exchanger is various, the different use occasions and the purpose is are commonly used for the tube shell type structure, because of its simple structure, low cost and wide selection, easy to clean, strong adaptability, themost widely used in various industry departments.Fixed tube plate heat exchanger is a kind of typical structure of tube and shell heat exchanger, also is a kind of heat exchanger is applied more widely. This kind of heat exchanger has simple and compact structure, high reliability, the characteristics of wide adaptability, and the production of low cost, wide range of selection of materials, heat exchange surface cleaning more convenient. Fixed tube plate heat exchanger can operate under high pressure and temperature, therefore, the heat exchanger in high temperature and high pressure and large in its possession of absolute advantage. Fixed tube plate heat exchanger is mainly composed of shell, heat exchange tube bundle, tube plate, the front tube box (also known as the roof or head) and the back-end structure parts. Tube bundle is installed on both ends of casing, which is fixed on the tube plate. Tube box and the back-end respectively connected to theflange bolts at the ends of the shell structure, maintenance or cleaning for easy disassembly. The merits of the heat exchanger design ultimately depends on whether applicable, economic, safe, flexible and reliable running, convenient maintenance cleaning, etc. A high heat transfer efficiency, compact, low cost, safe and reliable production of heat exchanger, requires carefully considered in the design of all sorts of problems. The accurate thermal design and calculation, but also for intensity and conform to the requirement of process manufacturing level.Keywords: Heat exchanger,Fixed tube plate heat exchanger, Structure,Design目录1 绪论.......................................... 错误!未定义书签。
换热器的结构讲解
换热器的结构管壳式换热器就是具有换热管和壳体的一种换热设备,换热管与管板连接,再用壳体固定。
按其结构型式,主要分为:固定管板式换热器、浮头式换热器、U形管式换热器、填料函式换热器、方形壳体翅片管换热器等。
详细结构如下:固定管板式换热器:固定管板式换热器结构如上图所示,换热器的两端管板采用焊接方法与壳体连接固定。
换热管可为光管或低翅管。
其结构简单,制造成本低,能得到较小的壳体内径,管程可分成多样,壳程也可用纵向隔板分成多程,规格范围广,故在工程中广泛应用。
其缺点是壳侧不便清洗,只能采用化学方法清洗,检修困难,对于较脏或对材料有腐蚀性的介质不能走壳程。
壳体与换热管温差应力较大,当温差应力很大时,可以设置单波或多波膨胀节减小温差应力浮头式换热器浮头式换热器结构如图所示,其一端管板与壳体固定,而另一端的管板可以在壳体内自由浮动。
壳体和管束对热膨胀是自由的,故当两种介质的温差较大时,管束与壳体之间不会产生温差应力。
浮头端设计成可拆结构,使管束可以容易地插入或抽出,这样为检修和清洗提供了方便。
这种形式的换热器特别适用于壳体与换热管温差应力较大,而且要求壳程与管程都要进行清洗的工况。
浮头式换热器的缺点是结构复杂,价格较贵,而且浮头端小盖在操作时无法知道泄漏情况, 所以装配时一定要注意密封性能U形管式换热器上图为双壳程U形管式换热器。
U形管式换热器是将换热管弯成U形,管子两端固定在同一块管板上。
由于换热管可以自由伸缩,所以壳体与换热管无温差应力。
因U形管式换热器仅有一块管板,所以结构较简单,管束可从壳体内抽出,壳侧便于清洗,但管内清洗稍困难,所以管内介质必须清洁且不易结垢。
U形管式换热器一般用于高温高压情况下,尤其是壳体与换热管金属壁温差较大时。
壳程可设置纵向隔板,将壳程分为两程(如图中所示)。
填料函式换热器上图为填料函式双管程双壳程换热器,填料函式换热器的换热管束可以自由滑动,壳侧介质靠填料密封。
对于一些壳体与管束温差较大,腐蚀严重而需经常更换管束的换热器,可采用填料函式换热器。
管板式换热器结构分析及改进
管板式换热器结构分析及改进张学青(广东省博罗九能高新技术工程有限公司,广东博罗516100)工程技术睛蜀本文概括地介绍了管板式换热器的结构及其特点。
根据分析研究结果,在原换热器结构设计的基础上,通过分析原来管扳式换热器的优缺点.合理的提出了采用减少管板厚度、在管板兼法兰和壳体问增加筋板等措施,陇进设计了换热器。
对该换热器重新进行分析和枝核,该设计完全满足要求,并可以将其应用于工程实际中。
瞎键词管栖武缺热器;结构分析;改进设计换热器是一种实现物科之间热量传递的节能工艺设备,在炼油、化工装置中换热器占总数量的40%左右,占总投资的35-450/0。
近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。
换热设备是合理利用与节约现有能源、开发新能源的关键设备。
当今世界,现有能源以石由、天然气等为主,其储量难以满足工业及人们生活日益增长的需要。
从上个世纪七十年代能源危机开始,如何合理利用现有能源及开发新能源己成为世界性的研究课题。
在生产中大部分燃烧释放的能量是通过换热设备传递的,换热器的合理设计、性能改善将直接关系着现有能源的合理利用。
同时,可供开发的新能源如核能、太阳能、地热能等,要提供给工业及生活使用,需要大量符合使用要求的各式换热器。
1管板式换热器结构分析及其特点1.1管板式换热器的基本结构管壳式换热器主要包括固定管板式、浮头式、U形管式、填料函式等结构。
根据介质的种类、压力、温度、污垢,以及管板与壳体的连接方式、换热管的形式与传热条件、造价和维修检查情况等,结合各种结构形式的特点选择、设计和制造各种管板式换热器。
管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。
管板式换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板E,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在—起,管束内根据换热管的长度设置了若干块折流板。
换热器管子和管板焊接接头浅见分析
换热器管子和管板焊接接头浅见分析史建涛(江苏省特种设备安全监督检验研究院苏州分院,江苏苏州215128)摘要:通过对管板换热器设计参数、介质特性、使用环境以及承载情况的分析研究,比较不同焊缝接头形式以及焊接工艺过程的选择对最终焊接质量的影响,同时阐述了合理的焊缝检验工艺对于确保在焊接前、焊接过程中以及焊接完成之后保证焊接质量的重要意义,总结出管板换热器管子和管板焊接接头在制造过程中的关键控制点。
关键词:管板换热器;焊接接头;焊接质量;焊接检验工艺管板换热器是利用传热原理,通过对冷、热物料与被加热或冷却的介质进行逆向流动,即热交换,从而达到物料被冷却或加热作用[1]。
由于其结构简单,制造成本低,能得到较小的壳体直径,管程可分成多样,壳程也可用纵向隔板分成多程,规格范围广,可用作蒸发器、加热器、冷凝器和冷却器等,在工程中应用十分广泛。
作者在参与某德国U公司石化项目过程中,有幸作为现场监造到广东省茂名重力石化机械制造厂进行制造过程的质量监检。
由于此项目合同中要求设计由德国公司负责,图纸细化则由CPM(重力石化机械制造厂简称)完成,且CPM负责全程的制造质量,而且该德国公司此次采购的主要设备为管板式换热器, 设计中采用了德国公司的企业标准,因此对于制造厂而言,要准确理解德国公司的企业标准,并且利用现有的设备及人员完成不同于国标要求的石化设备相应难度加大。
而在管板换热器的制造过程中,换热管与管板的连接是整个制造过程中的关键环节。
1 管子-管板连接型式换热管与管板的连接方式有胀接、焊接、胀焊并用等型式。
常用的工艺制造方法有强度胀接、贴胀、强度焊以及密封焊。
强度胀接指为保证换热管与管板连接的密封性能以及抗拉脱强度的胀接;贴胀指为消除换热管与管孔之间缝隙的轻度胀接;强度焊指保证换热管与管板连接的密封性能及抗拉脱强度的焊接; 密封焊指保证换热管与管板连接密封性能的焊接[2]。
目前对常规的换热管通常采用“贴胀+强度焊”的模式;而重要的或使用条件苛刻的换热器则要求采用“强度胀+密封焊”的模式。
螺纹锁紧环换热器的结构分析及检修步骤
南哲 ( 神华 鄂 尔 多斯 煤制 油分 公 司催化 重 整装 置 , 内蒙 古 乌兰 木伦镇
出的可靠的解决方法。 详细阐述 了本次榭 爹步骤, 对行业内同类检修的处理 , 具有一定的借鉴意 义。 关键词 : 螺纹锁 紧环换 热器;结构分析 ; 检 修步骤
( 8 ) 拆卸密封盘使用头部带螺纹的 专业杆 , 在吊车配合下拆 卸后将其放在橡胶垫上 , 以防碰坏 。 小心取 出外密封垫圈, 拆卸后 的外密封垫 圈认真检查密封面是否有损伤 , 并用棉布包裹存放 。
2 t … 一
3 、 日
4 舅 I _
i
一
.
/ } u
一 一
J } ‘
f
…
螺栓 上和对应螺 孔边上做 好记号 , 外压 紧螺 栓和螺孔的 编号从 Al 开始, 顺 时针 排 列 , 起 点在 上 ; 内压 紧螺 栓的 编号 从B1 开 始顺时 针排列 , 起点也在 上。 拆卸后 的螺 栓进 行煤油 清洗 , 抹上 黄油保 管好 , 目的是 为 了防腐蚀 和生锈 , 并且减少螺 栓摩擦 力。 ( 6 ) 通过 管程 简体 上部的 注油孔 注入润 滑油 , 以便 润滑 油 渗进螺纹 承压环的螺纹 部分 , 减少旋动摩擦 力。 ( 7 ) 拆卸螺纹 承压环 。 螺纹承压 环采用啮 合度高 , 抗 剪抗 弯 能力 强的短齿梯形 螺纹结 构 , 这种 结构设计 可以承受较 大的管
( 3 ) 拆除管 、 壳程 出入 口法兰连接 。 ( 4 ) 沿管程 简体 圆周 均分八等分 , 做好 角度值方向标记 , 最 上 一点设 定 为0 。, 顺时针 方 向每 隔4 5 。为一 点标记 定位 角度 值, 并在每 个测点 用深度游标 卡尺测量螺纹 承压环端面 到管程
双管板换热器的结构设计
双管板换热器的结构设计双管板换热器在工业生产中普遍使用,做好其结构设计尤为重要。
本文就双管板换热器的结构设计进行了探讨,详细概述了双管板换热器的应用场合、结构和内外管板计算要点及内外管板间距的计算,并总结了设计中需要注意的问题,以期能为双管板换热器的结构设计提供参考借鉴。
标签:双管板换热器;结构;设计要点引言在工业生产中,实现物料之间热量交换的节能设备统称为换热器,它广泛应用于国民经济的各个领域。
在生产中为了防止腐蚀和污染,以及满足工艺流程、劳动保护、安全生产等方面的要求,通常采用双管板换热器来解决。
而由于双管板换热器与一般的换热器相比结构较为复杂,因此在设计过程中各细节必须充分考虑,产品质量才能得到有效的保证。
1 应用场合双管板换热器分为整体式双管板、连接式双管板、分离式双管板3种形式。
双管板换热器主要用于当两程之间的物料相混后,将会产生严重后果,一般用于下列情况:(1)产生严重腐蚀;(2)使极毒流体波及到大面积的场合;(3)发生燃烧或爆炸;(4)产生聚脂状物质或聚合物,形成设备污垢;(5)使催化剂中毒,或使化学反应停止或反向进行,以致减少产量;(6)使产品不纯。
在这些情况下,尽管双管板换热器比普通单管板换热器投资费用大,为了确保安全,还是应考虑在管子两端或一端采用双管板的换热器,以防止壳程流体与管程流体之间的泄漏。
2 双管板换热器的结构所谓双管板换热器就是在换热器一端或两端设有一定间隙的双管板且两块双管板间用一段筒节相连。
最常见的结构示意图如图1所示。
隔离腔用于封闭相邻的内管板与外管板之间漏出的气(液)体,防止有毒气(液)体的外溢。
隔离腔最高和最低处需分别设置放空口和排净口,用于及时导出渗漏气(液)体。
换热器与管板的连接,通常外管板与换热管采用强度焊加贴胀,内管板与换热管采用强度胀接。
外管板采用强度焊加贴胀的目的是通过焊接结构来保证换热管与管板连接的密封性能以及抗拉脱强度,通过贴胀来消除换热管与管孔之间间隙。
钎焊式板式换热器
钎焊式板式换热器钎焊式板式换热器(Brazed Plate Heat Exchanger, BPHE)是一种高效、紧凑和轻便的换热设备,在多个行业中被广泛应用。
它通过利用板与板之间的焊接且密封的接触,实现热量的传递和交换。
本文将详细介绍钎焊式板式换热器的工作原理、结构特点、应用领域以及优势。
一、工作原理钎焊式板式换热器的工作原理主要基于换热板之间的传热机制。
设备由许多平行排列的薄板组成,这些板之间靠钎焊工艺连接起来。
热交换液通过一侧的流道流动,而冷却液则通过另一侧的流道流动。
当两种液体在板的接触点相遇时,热量从高温液体通过板传递给低温液体,完成了热量的传递和交换。
二、结构特点1. 紧凑型设计:钎焊式板式换热器采用紧凑型设计,使得它占据的空间非常小,适用于有限空间的场合。
相比传统的换热设备,它的体积和重量更轻,更易于安装和维护。
2. 高效传热:由于板和板之间的焊接接触,可以实现更高的传热效率。
钎焊式板式换热器具有较高的热传导率和较低的热阻,从而提高了换热器的能效。
3. 强大的耐压性能:通过钎焊工艺连接的板式换热器具有强大的耐压能力,能够承受高压力和高温环境下的工作。
4. 可拆卸和可清洗的结构:钎焊式板式换热器的结构使得它非常容易拆卸和清洗。
这对于长期使用和维护非常重要,可以确保设备的正常运行。
三、应用领域钎焊式板式换热器在众多领域中都有广泛的应用。
它们常常被用于以下场合:1. 制冷与空调系统:用于冷却或加热制冷剂,实现冷热传递和温度控制。
2. 工业生产过程中的热能回收:用于回收污水、废气等中的热能,提高能源利用效率。
3. 化工工艺中的热量传递:可以在化工过程中实现热量的转移和控制,提高生产效率和产品质量。
4. 太阳能热水系统:用于实现太阳能收集器和储水器之间的热量传递和转换。
5. 锅炉和热水供应系统:用于加热水和提供热能,实现舒适的生活环境。
四、优势1. 高效节能:钎焊式板式换热器的高效传热性能可以显著提高换热效率,从而节省能源和减少运行成本。
固定管板式换热器结构设计
固定管板式换热器的结构设计摘要换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改善关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。
换热器的型式繁多,不同的使用场合使用目的不同。
其中常用结构为管壳式,因其结构简单、造价低廉、选材广泛、清洗方便、适应性强,在各工业部门应用最为广泛。
固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。
这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。
固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。
固定管板式换热器主要由壳体、换热管束、管板、前端管箱(又称顶盖或封头)和后端结构等部件组成。
管束安装在壳体内,两端固定在管板上。
管箱和后端结构分别与壳体两端的法兰用螺栓相连,检修或清洗时便于拆卸。
换热器设计的优劣最终要看是否适用、经济、安全、运行灵活可靠、检修清理方便等等。
一个传热效率高、紧凑、成本低、安全可靠的换热器的产生,要求在设计时精心考虑各种问题.准确的热力设计和计算,还要进行强度校核和符合要求的工艺制造水平。
关键词:换热器;固定管板式换热器;结构;设计The Structural Design of Fixed Tube Plate Heat ExchangerAuthor : Chen Hui -juanTutor : Li HuiAbstractHeat exchanger is one of the most important equipments which is used in the fields of chemical, oil, power, metallurgy, transportation, national defense industry. Its right setting and the improvements of performance play an important role in the rationality o technology, economy, energy utilization and saving, which has a very important impact on the national economy.The type of heat exchanger is various, the different use occasions and the purpose is are commonly used for the tube shell type structure, because of its simple structure, low cost and wide selection, easy to clean, strong adaptability, themost widely used in various industry departments.Fixed tube plate heat exchanger is a kind of typical structure of tube and shell heat exchanger, also is a kind of heat exchanger is applied more widely. This kind of heat exchanger has simple and compact structure, high reliability, the characteristics of wide adaptability, and the production of low cost, wide range of selection of materials, heat exchange surface cleaning more convenient. Fixed tube plate heat exchanger can operate under high pressure and temperature, therefore, the heat exchanger in high temperature and high pressure and large in its possession of absolute advantage. Fixed tube plate heat exchanger is mainly composed of shell, heat exchange tube bundle, tube plate, the front tube box (also known as the roof or head) and the back-end structure parts. Tube bundle is installed on both ends of casing, which is fixed on the tube plate. Tube box and the back-end respectively connected to theflange bolts at the ends of the shell structure, maintenance or cleaning for easy disassembly. The merits of the heat exchanger design ultimately depends on whether applicable, economic, safe, flexible and reliable running, convenient maintenance cleaning, etc. A high heat transfer efficiency, compact, low cost, safe and reliable production of heat exchanger, requires carefully considered in the design of all sorts of problems. The accurate thermal design and calculation, but also for intensity and conform to the requirement of process manufacturing level.Keywords: Heat exchanger,Fixed tube plate heat exchanger, Structure,Design目录1 绪论.......................................... 错误!未定义书签。
列管式换热器管板接头焊接工艺改进.doc
列管式换热器管板接头焊接工艺改进列管式换热器是乙炔法生产聚氯乙烯旳关键设备,其中旳管子-管板接头在支行中由于应力和介质腐蚀旳共同作用,导致接头破损失效,阻碍了正常生产,针对这一问题,对结构设计和制造工艺、焊接工艺诸方面,进行了相应旳改进。
1换热器差不多结构及工况条件列管式换热器旳材质为16MnR,外形尺寸为φ2400mm*3000mm;换热管为φ57mm*3.5mm。
换热器壳体内装三块折流板,分上下两层冷却。
冷却介质软水,温度为90~100℃,工作压力为0.294MPa左右,管内介质为氯气、乙烯氯化氢,管内压力0.049MPa,温度为180~220℃。
2管板接头及其破损分析列管式换热器管子-连接通常采纳胀管方法或焊接方法,有旳设备只采取用机械胀管或液压胀管方法。
机械胀管方法易使胀接不匀,一旦管子-管板连接失效,再用胀管来修复就十分困难。
液压胀管时,换热管不容易产生“过胀”,也可不能产生“窜动”,因此连接区内应力分布均匀。
连接旳可靠性较机械胀接要好。
液压胀接对加工精度要求严格。
关于密布旳接头,要保证100%胀接成功,也有一定旳困难,假如失效,再胀接修复也较为因难。
管子-管板焊接连接是稳妥而可靠旳工艺方法。
焊接时焊缝不易出现裂纹、气孔及夹渣等缺陷,接头具有足够旳强度、塑性和良好旳密封性、耐蚀性,通常出现失效几率专门小。
因此,焊接方法在管子-管板制造中得到广泛应用。
采纳管子-管板以胀管工艺和焊接新工艺,使接头性能更加可靠。
3结构设计改进通常根椐材质、制造工艺及产品旳技术条件,管子-管板连接选用不同旳接头形式。
常用旳接头形式见图1:当管板比较薄时,多采纳1a形式,连接焊缝呈环状;当管板较厚板时,采纳1b形式,连接焊缝呈环形角焊缝;而关于厚板及导热较好旳铝、铜及其合金管子-管板,那么多采纳1c形式。
本换热器管采纳b形式接头。
在满足产品技术条件前提下,选用了手工电弧焊方法。
严格操纵装配尺寸及焊角尺寸。
4管子-管板接头焊接工艺〔1〕管孔加工:依照GB151规定进行,确保管孔加工尺寸旳公差与精度;〔2〕折流板与管板组装:先将折流板与管板固在一起进行加工,再将它们拆开。
全焊接板式换热器
板的布局在管流侧形成椭圆形管 路,在板侧形成波纹流道。
红色箭头所指为“管” 侧流
板片波纹深度可以根据需要调整, 以满足大流量、低压降或流体中有 较大固体颗粒的要求。APV公司根 据用户工艺要求进行优化设计,既 可通过增大椭圆管流道的直径实现 大管侧流通截面积,同时保持波纹 侧的板距不变。还可能通过在增加 波纹侧板间距,保持管侧流道不变 条件下得到波纹侧宽流道特性。
APV全焊式板式换热器可针对从真 空到6.0MPa的压力范围进行设的尺寸由热交换器的换热板的长度和板片数 量确定。
根据工艺技术要求,长度在216至12000毫米之 间,固定宽度为350毫米的换热板片焊接在一起形 成一个或多个气密封、耐压换热单元。换热片的厚 度根据具体要求确定。通常,换热片的厚度在0.5 到0.8毫米之间。
4 气/液 5 降膜板式蒸发 6 闭式循环蒸发
7 冷凝
[900摄氏度/60巴]
7
[300摄氏度/60巴]
6
[300摄氏度/60巴]
5
[180摄氏度/35巴]
[195摄氏度/35巴]
7
4
7
6
3
1
2
2
2
1
1
1
1
1
ParaFlow 垫片式热交换器 ● 集中供暖 ● 生活热水加热 ● 工业应用 ● 太阳能供暖 ● 食品应用领域 ● 船舶应用 ● 电厂
版权所用 © 2009 SPX 本文中包含的信息,包括任何技术规范和其他产品详细信息,可进行更改而不预先通知。同时我们会尽量小心确保所提供的信息准确,对文中的差错或遗 漏或使用本文中的信息造成任何损失,我们将不承担责任,敬请谅解。
全焊式板式换热器 2
管壳式换热器
铝制板翅式换热器设计要点分析
铝制板翅式换热器设计要点分析摘要:铝制板翅式换热器是一种换热设备,具有高效性的特点,该散热器结构紧凑,可以快速传导热量,而且其重量较小,在当前的工业等领域得到了广泛应用。
为了进一步突出铝制板翅式换热器的优势作用,在对其进行设计的过程中,需要合理进行结构选型,并且注重细节优化,保证铝制板翅式换热器的散热效果。
本文铝制板翅式换热器设计要点进行分析研究,并且提出了几点浅见。
关键词:铝制板;翅式换热器;材料选择;设计要点一、铝制板翅式换热器的特点铝制板翅式换热器是一种高效的散热设备,具有非常明显的应用优势。
铝制板翅式换热器出现于美国,早在1942年,美国科学家Norris就提出了传热系数与Raylow数的关系,研究了平板、钉、波纹等翅片的传热性能。
随着这一技术的积极应用,美国将深化对板翅式换热器与舰船、海军、航空等环节的研究。
近年来,随着我国制造技术的发展,铝板翅片已经取代了传统的金属管壳结构。
其总质量比仅为1/10,传热效果显著,是传统金属的5~10倍。
因此,铝板翅片换热器在化工和天然气液化中得到了广泛应用。
二、板翅式换热器存在问题从结构上来看,板翅式换热器主要由进口管、进口封头、换热器芯、出口封头和出口管组成。
其结构尺寸为:进水管直径200mm,长度176mm,进水封头直径308mm,长度905mm;流体通道的宽度为19 mm,长度为308 mm;出口管的直径为200 mm,长度为246 mm。
由于进入各层中的板翅式换热器的通道的流体的不同流动模式,三个通道中的流动是不同的。
径向通道流是最大的,其次是环形通道流、涡流通道流是最小的。
进气管附近通道内的流速通常比头部末端涡流槽通道内的流速大一个数量级,各通道内的流速随进气管速度的增大而增大。
因此,板翅式换热器横向流动存在严重的不均匀分布,影响了换热器的传热效率。
考虑到锥形分配器可以实现均匀的分配和收集,不影响板翅式换热器的流量分布不均匀,只模拟了换热器的结构,包括进口管和出口管。
换热设备典型焊接结构设计分析
图4-6 接管与法兰的焊接接头 图4-7 活塞法兰结构
4.4 管板与筒体及管子的焊接接头 1) 管板与筒体的焊接接头 换热器的型式决定了管板与筒体的连接形式。固定管板换热器的管板与筒体的连接,当无人孔时,采用一端或两端单面焊形式。 ①板兼作法兰时与筒体的连接 如图4-8所示。(a)为不焊透单面焊接接头,只适用于筒体壁厚δ≤12mm,工作压力Ps≤1MPa的场合,不能用于易燃、易爆、易挥发及有毒介质的场合。对于Ps≥1MPa的容器可选用带衬环或带锁口的接头形式,其中(b) 、(c)结构可用于Ps≤4MPa;(d)、(e)结构可用于Ps >4MPa。对于管板与筒体焊接后需经加热处理的结构,可采用带短节的筒体形式,如图(f)所示。 ②管板不兼作法兰时与筒体的连接 可采用图4—9所示结构,其中(a)、(b)结构宜用于Ps≤4MPa的场合,(c)、(d)结宜用于Ps≥6MPa的场合。
4) 角焊缝的焊脚K C、D类焊缝在图样无规定时,取焊件中较薄者之厚度。补强圈的焊脚,当补强圈的厚度大于8mm时,K等于补强圈厚度的70%,且不小于8mm。 5) 焊缝间距 相邻筒体的A类焊缝间的距离,封头上A类焊缝端点与相邻筒体的A类焊缝间的距离均应大于等于3δn,且大于100mm。 公司要求:200-300mm。在符合标准要求的情况下,尽量小,以利于接管开孔(不至于开到焊缝上)。
图4-8 管板兼作法兰时与筒体的连接
图4-9 管板不兼作法兰时与筒体的连接结构
2.2 焊接接头的设计原则
焊接接头的设计应遵循以下原则: 1) 合理选择接头型式。 2) 焊缝填充金属应尽量少。 3) 合理选择坡口角度、钝边高和根部间隙等结构尺寸,使之有利于坡口加工和焊透,以最大限度地减少焊接缺陷。 4) 按等强度要求,接头的强度应不低于母材标准规定的强度下限值。 5) 焊缝外形应尽量连续、圆滑过渡,以减少应力集中。
管式换热器结构设计参考
第二节 列管式换热器机械结构设计
一、传热管与管板的连接 二、管板与壳体及管箱的连接 三、管箱
一、传热管与管板的连接 造成连接处破坏的原因主要有: (1)高温下应力松弛而失效 (2)间隙腐蚀破坏 (3)疲劳破坏 (4)由于热补偿不好引起的破坏 管子与管板的连接形式:强度胀接、强度焊接 与胀焊接混合结构。 应满足以下两个条件: 连接处保证介质无泄漏的充分气密性; 承受介质压力的充分结合力。
(二)纵向隔板 在壳侧介质流量较小的情况 下,在壳程内安装一平行于传热
管的纵向隔板。如图4-2
防止短路的方式: 如图4-3所示: (a)为隔板直接与筒体内壁焊接,但必须 考虑到焊接的可能性; (b)纵向隔板插如导向槽中; (c)、(d)分别是单双向条形密封,防止间 隙短路,对于需要将管束经常抽出清洗者,采 用此结构。
1、分程隔板结构 分程隔板应采用与封头、管箱短节同等材 料、除密封面外,应满焊于管箱上。设计时要 求管箱隔板的密封面与管箱法兰密封面,管板 密封面与分程槽面必须处于同一几基面。结构 如图4-1。 2、分程隔板厚度及有关尺寸 当承受脉动流体或隔板压差很大时,隔板 的厚度应适当增厚,当厚度大于10mm的分程隔 板,在距端部15mm处开始削成楔形,使端部保 持10mm。
(二)弓形折流板排列方式确定(图4-8)
1.水平切口(图a、b,缺口上下布置) 2.垂直切口(图c,缺口左右布置) 3.倾斜切口(图4-5a,缺口倾斜布置) 4.双弓形缺口与双弓形板交替(图4-5b) (三)折流板与壳程间隙 折留板与壳程间隙依据制造安装调节, 在保证 顺利的装入前提下,越小越好,一 般浮头式和U型 管式换热器可允许比固管板 式大1mm,折流板外圆直径和下偏差见表4-2。
(2)管箱最小长度计算 管箱最小长度计算涉及几何尺寸见图。 A型管箱 见图4-35(a), 按流通面积计算
全焊接板式换热器
全焊接板式换热器全焊接板式换热器(Fully Welded Plate Heat Exchanger)是一种高效的换热设备,应用广泛于化工、石油、制药、冶金等领域。
它由一系列焊接在一起的金属板组成,通过板间的流体流动实现热量传递。
本文将对全焊接板式换热器的工作原理、优势以及应用进行详细介绍。
全焊接板式换热器通过将金属板进行焊接,形成了一系列平行的通道。
热量通过板和板之间的壁面传递,实现流体之间的换热。
由于采用全焊接工艺,使得换热器具有较高的热传导效率,换热器的热损失降低。
另外,全焊接板式换热器的设计紧凑,占地面积小,可以节省工程空间。
与传统的板式换热器相比,全焊接板式换热器具有以下几个优势。
首先,全焊接板式换热器的制造工艺相对简单,由于采用全焊接,不需要密封垫片,换热器的维护成本较低。
其次,全焊接板式换热器的传热系数较高,换热效率更高。
实际应用中,全焊接板式换热器可以替代多个传统板式换热器,达到更好的换热效果。
最后,全焊接板式换热器具有较好的耐压性能,可以承受较高的压力。
全焊接板式换热器可以应用于多种场合。
在化工行业中,全焊接板式换热器广泛应用于融剂冷却、废气余热回收、高温加热等工艺。
在石油行业中,全焊接板式换热器可以用于原油加热、蒸汽产生等工艺。
在制药行业中,全焊接板式换热器被用于药液加热、冷却等工艺。
此外,全焊接板式换热器还可以应用于冶金行业的高温煤气冷却等工艺。
尽管全焊接板式换热器具有许多优势,但也存在一些需要注意的问题。
首先,由于全焊接板式换热器的设计结构复杂,所以需要高素质的工程师进行设计。
其次,全焊接板式换热器的制造工艺要求高,需要严格的工艺控制和检测手段。
另外,全焊接板式换热器的清洗和维护相对麻烦,需要采取特殊的清洗方式和设备。
综上所述,全焊接板式换热器是一种高效的换热设备,具有较高的热传导效率和耐压性能。
它的优势包括制造工艺简单、传热系数高、耐压性好等。
全焊接板式换热器广泛应用于化工、石油、制药、冶金等行业,帮助提高了生产效率和能源利用率。
换热器的零部件结构设计
1.绪论换热设备是化工、炼油、食品、轻工、能源、制药机械及其他许多工业部门广泛使用的通用设备。
随着工业的发展,换热设备在能量储存、转化、余热回收以及新能源利用和污染治理中得到广泛应用。
1.1 换热器的分类1.1.1 换热器的分类及特点按照传热方式的不同,换热器可分为三类:1.直接接触式换热器;2.蓄热式换热器;3.间壁式换热器.1.2 管壳式换热器的分类及特点管壳式换热器可分为五类:1.固定管板式换热器;2.浮头式换热器3.U形管式换热器;4.填料函式换热器;5重沸器。
浮头式换热器的特点浮头式换热器两端管板中只有一端与壳体固定,另一端可相对壳体自由移动,成为浮头。
浮头部分是由浮头管板,钩圈与浮头端盖组成的可拆联接,因此可以容易抽出管束,故管内管外都能进行清洗,也便于检修。
浮头式换热器的优点是管间和管内清洗方便,不会产生热应力;但其结构复杂,造价比固定管板式换热器高,设备笨重,材料消耗量大,且浮头端小盖在操作中无法检查,制造时对密封要求高。
适用于壳体和管束之间壁温差较大的或壳程介质易结垢的场合。
2.换热器的工艺条件与选型2.1 换热器的工艺条件设计条件壳程管程工作介质设计压力工作压力设计温度介质特性换热面积烃循环水-0.0781MPa 0.495MPa -0.071MPa 0.45MPa 80℃60℃易爆/78㎡2.2 换热器的选型根据换热器流体的性质和各种管壳式换热器的特点,本回收塔冷却器选用浮头式换热器。
3. 换热器的零部件结构设计3.1换热管3.1.1 换热管的材料、形式及尺寸.回收塔冷却器采用光管,因为光管加工方便、价格便宜。
根据换热流体的性质选用Φ25mm×2.5mm 长度L=60000mm 的20号无缝钢管作为换热管的材料。
根据GB151-89表3-11(a )I 级换热器换热管外径允许的偏差是Φ25±0.20管板管孔允许的偏差是Φ+0.15025。
3.1.2 换热管的排列方式及管心距如图所示,换热管在管板上的排列形式主要有正三角形、正方形和转角正三角形、转角正方形。
换热器的设计结构与类型
管束分程布置图
管程数 流动顺序 管箱隔板 介质返回 侧隔板 图序 a b c d e f g 1 2
1 2 1 2 3 4 1 4
4
2 3 1 2 4 3 2 5 1 6 3 4
6
2 1 3 4 6 5
每程管数大致相同,温差不超过 ℃ 每程管数大致相同,温差不超过20℃左右为好
流向
44
强度胀
27
1.管板材料 管板材料
力学性能 介质腐蚀性( 间电位差对腐蚀影响) 介质腐蚀性(及tube-tubesheet间电位差对腐蚀影响) 间电位差对腐蚀影响 贵重钢板价格
流体无腐蚀性或有轻微腐蚀性时, 流体无腐蚀性或有轻微腐蚀性时, 管板采用压力容器用碳素钢或低合金钢板或锻件制造; 管板采用压力容器用碳素钢或低合金钢板或锻件制造; 腐蚀性较强时,用不锈钢、 腐蚀性较强时,用不锈钢、铜、铝、钛等材料, 钛等材料, 为经济考虑,采用复合钢板或堆焊衬里。 为经济考虑,采用复合钢板或堆焊衬里。
大管径
粘性大或污浊的流体
22
3.换热管材料 换热管材料
碳素钢 低合金钢 不锈钢 金属材料 铜 铜镍合金 铝合金 钛等
23
石墨 非金属材料 陶瓷 聚四氟乙烯等
4.换热管排列形式及中心距 换热管排列形式及中心距
30° 60°
90°
45°
p
三角形布管多,但不易清洗; 三角形布管多,但不易清洗; 正方形及转角正方形较易清洗
5
基本类型
一、固定管板式换热器 结构
6
双管程固定管板换热器
7
优点
——结构简单、紧凑、能承受较高的压力,造价 结构简单、紧凑、能承受较高的压力, 结构简单 低,管程清洗方便,管子损坏时易于堵管或更换。 管程清洗方便,管子损坏时易于堵管或更换。 ——当管束与壳体的壁温或材料的线膨胀系数相 当管束与壳体的壁温或材料的线膨胀系数相 差较大时,壳体和管束中将产生较大的热应力。 差较大时,壳体和管束中将产生较大的热应力。 ——适用于壳侧介质清洁且不易结垢并能进行溶 ——适用于壳侧介质清洁且不易结垢并能进行溶
全焊接宽通道板式换热器设计与应用
分广泛 :采用 B G L煤熔 渣气 化工艺生产得 出 的合成 气 中 术、 B G L煤熔 渣气化工艺的生产成本与技术要求 , 从原料、 产品 与投 资方面进行 了综 合的 分析 与 比较 ,比较 结果显 甲烷质 量分数为 6 %, 因此 , 该种 方式适 宜用在 合成天然气 与燃 料气 的生产 中 , 而使 用该 种方案时需要额 外增加 污水 示 , 在保 证原 料质 量的前提 条件之下 , 多 喷嘴对置 式水煤 该种生产 方式是值 得进行 推广与使 预 处理 系统、 型煤 制备 系统、 甲烷 非催化 部 分氧化 系统 以 浆气 化技术最为理想 ,
Ke y wo r d s :a l l ; l d e d d e c h a n n e l o l a t  ̄h e a t e x c h a n g e r ; d e s i g n; t e c h n i c l a r e q u i r e me n t s ; a p p l i c a t i o n
0 引 言 低 阻 力 损 失 的换 热 要 求 。
1 . 2产 品构 成 :全焊接 宽 通道板 式 换热 器 由换热 板 束、 侧板 、 夹紧板 、 管箱 、 螺栓 、 螺 母、 密封 垫片 、 分程 隔板 、
作者简介 : 陈静( 1 9 7 9 一) , 女, 满族 , 吉林 永吉人 , 工程 师, 研 究方向
摘要 :本文重点阐述全焊接 宽通道板式换 热器的设 计理念 和技术要 求, 并通过试验检验其 实际应用效果。
Ab s t r a c t :T h i s a r t i c l e e mp h a s i s o n t h e d e s i g n i d e a a n d t e c h n i c a l r e q u i r e me n t s o f a l l - w e l d e d wi d e c h a n n d p l a t e h e a t e x c h a n g e  ̄a n d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可整理ppt
3
2 .换热设备焊接结构设计要求及原则 2.1 总的设计要求
总的设计要求:结构的整体和各部分在使用过程中不应产生失效(弹性 失效、塑性失效及断裂等),并达到所要求的使用性能。
结构所要求的使用性能决定于以下因素:载荷的大小和种类、使用温度、 使用环境以及由这些条件相应确定的设计原则。设计过程中,依据操作 载荷的大小和种类,准确分析结构各部分在操作条件下的应力,确定合 理、经济的结构方案,以满足结构的各项设计要求。
焊缝深度δ (mm)
≤12 12<δ≤25 25<δ≤50
50<δ
表3-2 焊缝余高h
手工焊
0~1.5 0~2.5 0~3 0~4
焊缝余高(h) (mm)
自动焊
0~4 0~4 0~4 0~4
可整理ppt
11
4) 角焊缝的焊脚K
C、D类焊缝在图样无规定时,取焊件中较薄者之厚度。补强圈的焊脚, 当补强圈的厚度大于8mm时,K等于补强圈厚度的70%,且不小于8mm。
果对100%探伤的,I级为合格;局部探伤的,Ⅱ级为合格。 公称直径小于250mm,且壁厚小于等于28mm时仅做表面无损检测(磁
粉或着色),其合格级别为JB4730规定的I级。 注:进行100%无损检测或局部无损检测由标准:GB150、GB151等规
定。 2) 对口错边量b和棱角度E 对口错边量b直接导致结构不连续影响容器的应力分布均匀性。而错边 量b对应力分布的影响,主要取决于b与板厚δ之比b/δ,考虑工艺实现的 可能性,我国标准参照ASMEⅧ-1,按δ的不同,确定b的允许值,且A类 焊缝严于B类焊缝。详见图3-2和表3-1。
换热设备典型焊接结构设计分析
二OO五年十一月四日
可整理ppt
1
主要内容:
换热设备焊接结构的重要性 换热设备焊接结构设计要求及原则 压力容器焊缝形式及分类 换热设备典型焊接结构 结束语
可整理ppt
2
1、换热设备焊接结构的重要性
换热设备的一大特点是压力容器数量多,操作条件复杂,具有爆炸危险, 而且一旦爆炸,危害极大。事实证明,换热设备的断裂和爆炸事故,大 多源于其上的焊接接头。因此,良好的焊接结构设计与制造,是确保换 热设备安全、可靠运行的关键。
劣势:余高h本身相当于局部形状突变,会产生应力集中,可能成为发 生疲劳断裂,脆断的根源。
根据余高h对疲劳强度影响的试验表明,裂纹均从余高边缘产生,内壁 焊缝余高打磨加工的比保留余高的疲劳强度高2.1~2.5倍。目前,国外的 标准除了日本《压力容器构造规范》外,多数标准允许—定尺寸的余高, 我国标准据国内制造工艺、工装水平,规定见表3-2。
7
3.3 对不钢制压力容器》对分类不同的焊缝有不同的规定要求: 1) 探伤方法和合格等级 A、B类焊缝的射线探伤按JB4730《压力容器无损检测》进行,检查结
果对100%探伤的,II 级的为合格;局部探伤的III级为合格。 A、B类焊缝超声波探伤按JB4730《压力容器无损检测》进行,检查结
焊接结构的好坏,决定于结构的焊接接头实际性能能否较好地达到所要 求的性能要求。焊接结构的设计与材料及加工方法有关。为提高焊接结 构的可靠性,重要的是从设计、材料、加工等各方面综合考虑,使焊接 接头满足要求。
可整理ppt
4
2.2 焊接接头的设计原则
焊接接头的设计应遵循以下原则: 1) 合理选择接头型式。 2) 焊缝填充金属应尽量少。 3) 合理选择坡口角度、钝边高和根部间隙等结构尺寸,使之有利于坡口
加工和焊透,以最大限度地减少焊接缺陷。 4) 按等强度要求,接头的强度应不低于母材标准规定的强度下限值。 5) 焊缝外形应尽量连续、圆滑过渡,以减少应力集中。
可整理ppt
5
3.压力容器焊缝形式及分类 3.1 压力容器焊接接头形式
换热设备的结构型式是多种多样的,换热器壳体符合压力容器要求的制造 要求最高,其基本主体的构成多为圆柱形、圆锥形、球形的壳体,这些壳 体与封头、接管、法兰、支座、密封元件的组合,构成一种典型的焊接结 构。 压力容器中,焊接接头主要形式有:对接、角接、搭接接头。 1)对接 容器的主体、筒体与封头等重要部位的连接均采用对接接头,
A类焊缝:筒节的拼接纵缝、封头瓣片拼接缝、筒节与半球封头的环缝, 嵌入式接管与圆筒、封头的对接缝等。
B类焊缝:筒节的环缝,锥形封头小端与接管连接的焊缝等。 C类焊缝:法兰、平封头、管板等与壳体、接管连接的焊缝等。 D类焊缝:接管、人孔、凸缘等与壳体连接的焊缝。
图3-1 压力容器焊缝分类
可整理ppt
可整理ppt
8
图3-2
图3-3
复合钢板的对口错边量b不大于复层板厚度的50%,且不大于2mm。见图3-3。
可整理ppt
9
可整理ppt
10
3) 焊缝余高h(要过程不要结果)
优势:压力容器的焊缝多为多层焊(电渣焊除外),下一层焊缝对上一 层起保温、缓冷的作用,可使焊接残余应力下降,改善组织性能,而余 高h对最后一层焊缝有上述作用,所以h是工艺需要的。
因对接接头受力比较均匀,强度可达到与母材相等。 2)角接 管接头与壳体的连接多用角接头。 3)搭接 搭接接头主要用于非受压部件与受压壳体的连接。鞍座,裙座,
补强圈等。
可整理ppt
6
3.2 压力容器焊缝分类
按GB150-1998《钢制压力容器》,对于温度 t ≥20℃的钢制单层、多层包 扎、热套压力容器的焊缝,按其所在的位置,分为A、B、C、D四类。 如图3-1所示。举例1; 举例2.
换热设备的焊接结构是由:筒体、封头、接管、法兰、管板及换热管等 基本构件通过焊接接头(或胀接)连接成的整体。该整体构成换热设备 的重要组成部分。因此,掌握好这些基本构件和焊接接头的设计,对进 行换热设备的整体设计至关重要。
合理的设计可以减轻设备重量,节约金属,提高经济效益。例如:薄管 板与常规厚管板设计比较。
5) 焊缝间距
相邻筒体的A类焊缝间的距离,封头上A类焊缝端点与相邻筒体的A类焊 缝间的距离均应大于等于3δn,且大于100mm。
公司要求:200-300mm。在符合标准要求的情况下,尽量小,以利于接 管开孔(不至于开到焊缝上)。