高中招生数学试题

合集下载

高中数学招生试题及答案

高中数学招生试题及答案

高中数学招生试题及答案一、选择题(每题3分,共30分)1. 若a, b, c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定2. 函数f(x) = 3x^2 - 2x + 1在x=1处的导数是:A. 4B. 6C. 8D. 103. 下列哪个数是无理数?A. 根号2B. πC. 0.33333(无限循环小数)D. 1/34. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B的结果是:A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {1, 4}5. 若sinθ + cosθ = 1,且θ∈[0, π],则θ的值为:A. 0B. π/4C. π/2D. π6. 已知等差数列的首项a1=2,公差d=3,第5项a5的值是:A. 17B. 14C. 11D. 87. 抛物线y = x^2 - 4x + 4的顶点坐标是:A. (2, 0)B. (2, 4)C. (-2, 0)D. (-2, 4)8. 函数y = log2(x)的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)9. 已知向量a = (3, 4),b = (-1, 2),向量a在向量b上的投影是:A. 5/3B. 5C. 2D. 310. 圆的方程为(x-2)^2 + (y-3)^2 = 9,圆心坐标是:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)二、填空题(每题4分,共20分)11. 若二次方程x^2 - 5x + 6 = 0的根为r和s,则r + s =_______。

12. 已知数列1, 1/2, 1/4, 1/8, ...的通项公式为a_n = _______。

13. 函数y = sinx在区间[-π/2, π/2]上的最大值是_______。

2024年省示范高中自主招生素质检测数学试题及参考答案

2024年省示范高中自主招生素质检测数学试题及参考答案

学校姓名考场座位号2024年自主招生素质检测数学试题注意事项:1.本试卷满分为150分,考试时间为120分钟㊂2.全卷包括 试题卷 (4页)和 答题卡 (2页)两部分㊂3.答题一律要求用0.5m m 黑色签字笔在答题卡上规定的地方答卷,作图题使用2B 铅笔作答,考试不使用计算器㊂4.考试结束后,请将 试题卷 和 答题卡 一并交回㊂一㊁选择题:共10小题,每小题5分,共50分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂1.由5个相同的小立方体搭成的几何体如图所示,现拿走一个小立方体,得到几何体的主视图与左视图均没有变化,则拿走的小立方体是A .①B .②C .③D .④2.黄山景色绝美,景观奇特. 五一 假期,黄山风景区进山游客近13万人,黄山景区门票旺季190元/人,以此计算, 五一 假期黄山景区进山门票总收入用科学计数法表示为A .0.247ˑ107B .2.47ˑ107C .2.47ˑ108D .247ˑ1053.下列因式分解正确的是A .2x 2+y 2+4x y =(2x +y )2B .x 3-2x y +x y 2=x (x -y )2C .x 2-(3y -1)2=(x -1+3y )(x +1-3y )D .a x 2-a y 2+1=a (x +y )(x -y )+14.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y =a x 2-3x +3上两点,当a -x 1-x 2=2时,y 1=y 2,则该抛物线与坐标轴的交点个数为A .3个或0个B .3个或1个C .2个或0个D .2个5.若关于x 的不等式组x +2a <03x +a <15的解集中的任意x 的值,都能使不等式x -4<0成立,则实数a 的取值范围为A .a <-3B .a <-2C .a ȡ-2D .a ȡ36.如图,已知әA B C 中,A D 为øB A C 的平分线,A B =8,B C =6,A C =10,则D C 的值为A .10B .2C .5D .17.如图,B (-2,0),C (4,0),且B E 所在的直线与A C 垂直,øA C B -øB A O =45ʎ,连接O D ,若射线O D 上有一点M ,横坐标为6,则әB O M 的面积为A .3B .6C .23D .728.定义:用M a ,b ,c 表示这三个数的中位数,用M i n {a ,b ,c }表示这三个数的最小数.例如:M {-1,12,0}=0,M i n {-1,12,0}=-1.如果M {4,x 2,2x -1}=M i n {4,x 2,2x -1},则x 的值为A .2或-2B .1或12C .2或12D .1或529.如图,әA B C 中,A B =B C ,øB =120ʎ,E 为平面内一点,若A E =3,C E =2,则B E 的值可能为A .2.5B .3C .0.3D .0.510.如图,直线A B :y =13x +b 与反比例函数y =kx相交于点A (3,5),与y 轴交于点B ,将射线A B 绕点A 逆时针旋转45ʎ,交反比例函数图象于点C ,则点A ㊁B ㊁C 构成的三角形面积为A .12B .1110C .232D .554二㊁填空题:共4小题,每小题5分,共20分㊂11.某市为改善市容,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均绿地面积的增长率为.12.若x 9+x 8+ +x 2+x +1=0,则x 的值为.13.定义:对于函数y =l g x (x >0),y 随x 的增大而增大,且l g 10=1,l g xy=l g x -l g y ,l g x y =l g x +l g y .若1a +5b =5,则l g a +l g b 的最大值为.14.已知二次函数y =2x 2+b x +c 图象的对称轴为直线x =34,且过点(3,10),若其与直线y =3交于A ㊁B 两点,与直线y =x +5交于P ㊁Q 两点,则P Q 2A B值为.三㊁解答题:共5题,共80分㊂解答应写出文字说明,证明过程和解题步骤㊂15.(12分)(1)若13a +25b =1,23a +35b =3,求a 2-b 2+8b -172025;(2)先化简再求值:m +2m -m -1m -2ːm -4m 2-4m +4,其中m =2s i n 30ʎ㊃t a n 45ʎ-32t a n 30ʎ.16.(12分)请按以下要求完成尺规作图.(1)如图1,菱形A B C D 中,点P 在对角线B D 上,请作出一对以B D 所在直线为对称轴的全等三角形,使交B A 于点M ,交B C 于点N ,әP B M ɸәP B N .你有几种解法?请在下图中完成;(保留必要作图痕迹,不写作法)(2)如图2,点P 是菱形A B C D 内部一点,请作出一条过点P 的直线,交射线B A ㊁射线B C 于点M ㊁N ,且B M =B N ,聪明的你肯定有多种不同作法?请在下图中完成两种作法,并选择其中一种证明:B M =B N .(保留必要作图痕迹,不写作法)17.(15分)如图,直角三角形A B C中,以直角边A B为直径作圆交A C于点D,过点D作D MʅA B于点M,E为D M的中点,连接A E并延长交B C于点F,B F=E F.(1)求证:C F=B F;(2)求t a nøD E F;(3)若D F=2,求圆的面积.18.(19分)已知四边形A B C D,A B=4,点P在射线B C上运动,连接A P.(1)若四边形A B C D为正方形,点M在A P上,且øA D M=øA P D.请判断A M㊁A P㊁A C之间数量关系,并说明理由;(2)若四边形A B C D为菱形呢?øB=60ʎ,其他条件与(1)同,则(1)中的结论还成立吗?并说明理由;(3)若四边形A B C D为正方形,将线段A P绕点P顺时针旋转90ʎ于P Q,此时D Q的最小值为多少?A Q+D Q的最小值呢?并说明理由.19.(22分)已知抛物线y=a x2+b x+c的顶点坐标为A(1,4),与x轴交点分别为点B㊁C(点B在点C 左侧),与y轴交点为D,一次函数y=k x+4(k>0)与x轴所形成的夹角的正切值为4,方程k x+4=a x2+b x+c有两个相等的实数根.(1)求该抛物线的解析式;(2)点M是该抛物线上一动点,则在抛物线对称轴上是否存在点N,使得以A㊁B㊁M㊁N为顶点的四边形为平行四边形?若存在,请求出所有满足条件的点N坐标及该平行四边形的面积;若不存在,请说明理由;(3)若将该抛物线向左平移1个单位,再向下平移4个单位得到抛物线y',点D关于x轴的对称点为D',若过点D'的直线与y'交于P㊁Q两点(点P在点Q左侧),点Q关于y轴的对称点为Q',若әP Q O与әP Q Q'面积相等,求直线P Q的解析式.2024年自主招生素质检测数学参考答案选择题:共10小题,每小题5分,满分50分㊂题号12345678910答案CBCBCABDAD填空题:共4小题,每小题5分,满分20分㊂11.20% 12.-1 13.1 14.2654.ʌ解析ɔ x 1+x 2=a -2,抛物线的对称轴x =--32a,ʑ32a =a -22⇒a 2-2a -3=0⇒(a +1)(a -3)=0⇒a 1=-1,a 2=3,ʑ①当a 1=-1时,y =-x 2-3x +3,Δ=9+12>0,与坐标轴的交点个数为3个;②当a 2=3时,y =3x 2-3x +3,Δ=9-4ˑ3ˑ3<0,与坐标轴的交点个数为1个.5.ʌ解析ɔ x <-2a ,x <15-a 3,①-2a >15-a 3,解得a <-3,ʑx <15-a 3,ȵx <4,ʑ15-a 3ɤ4,解得a ȡ3(舍去);②-2a ɤ15-a 3,解得a ȡ-3,ʑx <-2a ,ȵx <4,ʑ-2a ɤ4,解得a ȡ-2.6.ʌ解析ɔ 由角平分线定理S әA B D S әA C D =A B ㊃h A C ㊃h =45=B D D C ,ʑ45=6-D C D C ,解得D C =103.7.ʌ解析ɔ øB E O =øB A E +øA B E ,øA C B =øB A O +45ʎ,R t әB O E ʐR t әB D C ,ʑøB E O =øA C B ,ʑøA B D =45ʎ,则әA B D 为等腰直角三角形,A D =B D ,ʑR t әA E D ɸR t әB C D ,ʑA E =B C ,S әA E D =S әB C D ,ʑh 1=h 2,ʑ点D 在øA O C 的角平分线上,M (6,6),S әB O M =2ˑ62=6.8.ʌ解析ɔ 由图像知x 2=2x -1,解得x =1;或2x -1=4,解得x =52.9.ʌ解析ɔ 设B E =x ,将әA B E 绕B 点顺时针旋转120ʎ到әC B E ',C E '=A E =3,øE B E '=120ʎ,B E =B E '=x ,易得E E '=3x ,在әC E E '中,C E '-C E <E E '<C E '+C E ,即3-2<3x <2+3,解得33<x <533.10.ʌ解析ɔ 由题知,直线y =13x +b 与反比例函数y =k x相交于点A(3,5),则13ˑ3+b =5,解得b =4,k =15,法一:直线A C 与y 轴交于点M ,从M 点作直线A B 的垂线,垂足为N ,A M =(m -5)2+32,MN =(4-m )s i n θ=(4-m )310,A M =2MN ,ʑ(m -5)2+9=95(m -4)2⇒5(m -5)2+45=9(m -4)2,2m 2-11m -13=0⇒(2m -13)(m +1)=0,ʑm =132(舍)或m =-1,直线A C 的方程为y =2x -1.2x -1=15x ⇒2x 2-x -15=0⇒(2x +5)(x -3)=0,解得x 1=-52,x 2=3,ʑ点C (-52,-6),S әA B C =5ˑ(3+52)2=554.法二:易知l A B :y =13x +4,设l A C :y =k 2x +b ,由倒角公式得t a n 45ʎ=k 2-k 11+k 1k 2=k 2-131+13k 2=1,k 2-13=13k 2+1,两边平方得k 2=2或k 2=-12(舍),又l A C 过点A ,ʑl A C :y =2x -1(与y 轴交点为M ),与y =15x 联立得x C =-52,ʑS әA B C =12BM |x A -x C |=554.12.ʌ答案ɔ -1ʌ解析ɔ 若x =0,等式不成立,则x ʂ0,等式两边同乘x ,ʑx 10+x 9+x 8+ +x 2+x =0⇒x 10-1=0⇒x 10=1,解得x =ʃ1.当x =1时,等式不成立;当x =-1时,等式成立.13.ʌ解析ɔ l g a +l g b =l ga b ,即求a b 的最大值,12a +54b ȡ212a ㊃54b =258a b ,258a b ɤ5⇒a b ɤ10.14.ʌ解析ɔ 由题知,-b 4=34,解得b =-3,抛物线过点(3,10),代入数据解得c =1,抛物线y =2x 2-3x +1,当y =3时,2x 2-3x +1=3,解得x 1=-12,x 2=2,A B =52,当y =x +5时,2x 2-3x +1=x +5⇒x 2-2x -2=0⇒x 3+x 4=2,x 3x 4=-2,(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=12,P Q =(1+k 2)(x 3-x 4)2=26,P Q 2A B =265.15.(12分)ʌ解析ɔ (1)13a +25b =1, ①23a +35b =3, ②①+②得a +b =4,(2分) a 2-b 2+8b -17=(a +b )(a -b )+8b -17=4a -4b +8b -17=4a +4b -17=-1,(4分)a 2-b 2+8b -17 2025=-1.(6分)(2)原式=m +2m -m -1m -2㊃(m -2)2m -4=m 2-4-(m 2-m )m (m -2)㊃(m -2)2m -4=m -4m (m -2)㊃(m -2)2m -4=m -2m,(8分)m =2ˑ12-32ˑ33=12,(10分) ʑ原式=12-212=-3.(12分) 16.(12分)ʌ解析ɔ (1)提示:作P M ㊁P N 分别垂直于A B ㊁A C ,如图1;(2分)过P 点作MN 垂直于B D ,如图2;(4分)P 作E F ʊB C A B 于点E C D 于点F E M =E P M P 交B C 于点N作法二:先作B M '=B N ',交A B 于点M ',交B C 于点N ',连接M 'N ',将直线M 'N '平移过点P ,交A B 于点M ,交B C 于点N ,即MN 为所求直线,如图4;(8分)选择作法一证明:ȵE M =E P ,ʑøE M P =øE P M ,ȵE F ʊB C ,ʑøE P M =øB NM ,ʑøE M P =øB NM ,ʑB M =B N .(12分)选择作法二证明:ȵB M '=B N ',ʑøB M 'N '=øB N 'M ',M 'N 'ʊMN ,ʑøB MN =øB M 'N ',øB NM =øB N 'M ',ʑøB MN =øB NM ,ʑB M =B N .(12分)(作法不限,合理即可)17.ʌ解析ɔ (1)ȵD M ʊB C ,ʑәA D E ʐәA C F ,әA E M ʐәA F B ,ʑA E A F =D E C F ,A E A F =E M B F,(2分) ȵD E =E M ,ʑC F =B F ;(4分)(2)取A B 的中点O ,即为圆心,连接O F ,设圆O 的半径为r ,延长A B 交D F 延长线于G ,由(1)知,F 为R t әB C D 中斜边B C 的中点,ʑD F =B F =E F ,ʑøF D E =øD E F =øA E M ,ȵøG +øG D M =øE A M +øA E M =90ʎ,则øG =øE A M ,ʑA F =F G ,在әA F G 中,F B ʅA G ,则A B =B G =2r ,A O =r ,O G =3r ,(6分)ȵO F ʊA C ,ʑO G A O =F G D F=3,即F G =3D F ,(8分) ȵD F =B F ,ʑF G =3B F ,ʑc o s øB F G =B F F G =13,ʑt a n øD E F =t a n øE D F =t a n øB F G =B G B F=22;(10分)(3)ȵD F =B F ,ʑB F =2,由(2)知,t a n øB F G =B G B F=22,ʑB G =42,(12分)ȵB G =2r ,ʑr =22.(13分)S 圆O =πr 2=8π.(15分)18.ʌ解析ɔ (1)A C 2=2A M ㊃A P .(2分)理由如下:如图1,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D ,ʑA D 2=A M ㊃A P ,在正方形A B C D 中,A D =22A C,ʑ(22A C )2=A M ㊃A P ,ʑA C 2=2A M ㊃A P .(6分)(2)(1)中的结论不成立.(7分) 理由如下:如图2,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D,ʑA D 2=A M ㊃A P ,ȵ在菱形A B C D 中,øB =60ʎ,则B C =A B =A C =A D ,ʑA C 2=A M ㊃A P .(11分)(3)如图3,过点Q 分别作Q E ʅB C 的延长线于点E ,Q F ʅC D 于点F ,ʑQ F =C E ,设B P =m ,A P =Q P ʑR t әA B P ɸR t әP E Q ,则B P =Q E =m ,A B =P E =4,ȵC E +P C =B P +P C =4,ʑC E =B P =m ,在R t әD F Q 中,Q F =C E =m ,D F =C D -C F =4-m ,(15分) D Q 2=D F 2+Q F 2=(4-m )2+m 2=2m 2-8m +16=2(m -2)2+8,当m =2时,D Q 取得最小值,D Q m i n =22,(17分) 分析易知Q 在C D '上运动,作D 关于C D '的对称点C ',连接Q C ',则(A Q +D Q )m i n =(A Q +Q C ')m i n =A C '=42+82=45.(19分) 19.ʌ解析ɔ (1)由题可知k =4,ʑy =4x +4(2分) 2的顶点坐标为A y =a x -12即4x +4=a (x -1)2+4⇒a x 2-(2a +4)x +a =0有两个相等的实数根,ʑΔ=(2a +4)2-4a 2=0,解得a =-1,ʑ抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(5分)(2)设M 点坐标为(m ,-m 2+2m +3),N 点坐标为(1,n ),A (1,4),令-x 2+2x +3=0,解得x 1=-1,x 2=3,所以B (-1,0),C (3,0),(7分)若A B 为对角线,1-12=m +12,解得m =-1(舍去);若A M 为对角线,m +12=1-12,解得m =-1(舍去);若A N 为对角线,1+12=m -12,解得m =3;(9分) 4+n 2=0-m 2+2m +32,解得n =-4,此时M (3,0),N (1,-4),(10分)S ▱A B M N =4ˑ82=16;(12分) (3)由题可知,抛物线y '=-x 2,点D (0,3)关于x 轴的对称点D '(0,-3),直线P Q 过点D ',设直线P Q 的解析式为y P Q =k x -3,若k >0,如图1,S әP Q O =S әP Q Q ',则Q 'O ʊP Q ,则әQ 'H O ɸәQ H D ',所以O H =12O D '=32,H (0,-32),所以Q (62,-32),Q '(-62,-32),直线P Q 的解析式为y P Q =62x -3;(16分)若k <0,如图2,过点Q '作直线l ʊP Q ,取l 与y 轴交点M ,作O L ʅP Q 于点L ,MH ʅP Q 于点H ,所以O L ʊHM ,S әP Q O =S әP Q O ',所以O L =HM ,所以四边形O L MH 为平行四边形,则对角线互相平分,所以M (0,-6),同理,әD 'K Q ɸәM K Q ',所以D 'K =K M =12D 'M =32,所以K (0,-92),(20分) 因为点Q 的纵坐标为-92,所以Q (322,-92),直线P Q 的解析式为y P Q =-22x -3.(21分)综上,直线P Q 的解析式为y P Q =6x -3或y P Q =-2x -3.分)。

高中数学招生试题及答案

高中数学招生试题及答案

高中数学招生试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = 2x^2 - 3x + 1,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知等差数列{an}的首项a1=2,公差d=3,则a5的值为:A. 14B. 17C. 20D. 233. 函数y=x^3 - 3x^2 + 2的导数为:A. 3x^2 - 6xB. 3x^2 - 6x + 2C. x^2 - 6x + 2D. x^3 - 3x^24. 以下哪个选项是复数z=1+i的共轭复数?A. 1-iB. 1+iC. -1+iD. -1-i5. 已知双曲线的方程为x^2/a^2 - y^2/b^2 = 1,其中a和b为正实数,若该双曲线的渐近线方程为y=±x,则a和b的关系为:A. a=bB. a=2bC. b=2aD. a=√2b6. 以下哪个选项是函数y=sin(x)的周期?A. 2πB. πC. 1D. 1/27. 已知向量a=(2, -1),b=(1, 3),则向量a和b的数量积为:A. 3B. 5C. -1D. 18. 以下哪个选项是不等式x^2 - 4x + 4 ≤ 0的解集?A. (-∞, 2] ∪ [2, +∞)B. (-∞, 2) ∪ (2, +∞)C. [2, 2]D. (-∞, 2) ∪ [2, +∞)9. 已知抛物线y=x^2 - 6x + 9,其顶点坐标为:A. (3, 0)B. (3, 9)C. (-3, 0)D. (-3, 9)10. 以下哪个选项是函数y=ln(x)的定义域?A. (-∞, 0)B. (0, +∞)C. [0, +∞)D. (-∞, +∞)二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 - 4x + 3,求f(2)的值为______。

12. 已知等比数列{bn}的首项b1=3,公比q=2,则b3的值为______。

13. 已知圆的方程为(x-1)^2 + (y-2)^2 = 9,求圆心坐标为______。

重点高中自主招生数学试题

重点高中自主招生数学试题

重点高中自主招生数学试题一、选择题1.若函数$f(x)=\frac{2x-1}{x+3}$, 当$x$趋近于无穷大时,$f(x)$的值趋近于A. 2B. -2C. 1D. -12.已知函数$f(x)$的定义域为$x \in (-\infty, 2)$, 那么函数$g(x)=f(e^{2x})$的定义域是A. $x \in (-\infty, \ln4)$B. $x \in (-\infty, 2)$C. $x \in (-\infty, \ln2)$D. $x \in (-\infty, \ln\frac{1}{4})$3.已知函数$f(x)=\frac{x-1}{x+1}$,则$f(x+1)$等于A. $f(x)$B. $f(x)+1$C. $f(x-1)$D. $\frac{1}{f(x)}$二、填空题1.设$a$为正整数,若$a^3-4a^2+5a-2=0$有一个正整数解,则$a$的值是\anst{2}。

2.设等差数列$\{a_n\}$满足$a_1=5$,$a_9=29$,则$a_{15}$的值是\anst{47}。

3.已知$\frac{3^x+3^{-x}}{3^x-3^{-x}}=7$,则$x$的值是\anst{1}。

三、解答题1.解方程:$\log_3(x^2+2x)-2\log_3(x+1)=\log_3(x+2)-2$解答:首先,我们可以利用对数的性质进行简化。

将题目中的等式两边都取对数底为3,得到:$\log_3(x^2+2x)-\log_3(x+1)^2=\log_3(x+2)-1$然后,利用对数的运算相关规律合并右侧表达式:$\log_3\left(\frac{x^2+2x}{(x+1)^2}\right)=\log_3(x+2)-1$进一步简化为:$\log_3\left(\frac{x^2+2x}{x^2+2x+1}\right)=\log_3(x+2)-1$由于等式两边底数相同,因此可以去掉对数符号:$\frac{x^2+2x}{x^2+2x+1}=x+2$接下来,我们将方程进行整理化简为二次方程:$x^2+2x=(x^2+2x+1)(x+2)$展开并合并同类项:$x^2+2x=x^3+4x^2+5x+2$整理得到:$x^3+3x^2+3x+2=0$通过观察,我们可以发现当$x=-1$时,方程成立。

重点高中自主招生考试数学试卷精选全文

重点高中自主招生考试数学试卷精选全文

可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。

2024年河南省普通高中招生考试《数学》试卷(附答案)

2024年河南省普通高中招生考试《数学》试卷(附答案)

2024年河南省普通高中招生考试试卷数 学注意事项:1. 本试卷共6页,三个大题,满分 120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1.如图,数轴上点 P 表示的数是A. -1B.0C.1D.22. 据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为 A.5784×10⁸ B.5.784×10¹⁰ C.5.784×10′′ D.0.5784×10¹² 3.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为 A.60° B.50° C.40° D.30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为(第4题)A. x>2B. x<0C. x<-2D. x>-36. 如图,在▱ABCD 中,对角线AC,BD 相交于点O,点E 为OC 的中点,EF∥AB 交BC 于点 F.若AB = 4,则EF 的长为 A. 12 B.1 C. 43 D.2 7. 计算 (a ⋅a ,⋯⋅a )3的结果是a 个A. a ⁵B. a ⁶C. a ⁴⁺³D. a³a数学试卷 第1页(共6页)8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为A. 19B. 16C. 15D. 139. 如图,⊙O 是边长为4 √3的等边三角形ABC 的外接圆,点D 是BC 的中点,连接BD,CD.以点 D为圆心,BD 的长为半径在⊙O 内画弧,则阴影部分的面积为 A.8π3 B.4π C.16π3 D.16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误..的是A. 当P =440 W 时, I =2 AB. Q 随I 的增大而增大C. I 每增加 1 A,Q 的增加量相同D.P 越大,插线板电源线产生的热量Q 越多二、填空题(每小题3分,共15分)11. 请写出2m 的一个同类项: .12.2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为 分.数学试卷 第 2页(共6页)13. 若关于x的方程12x2−x+c=0有两个相等的实数根,则c的值为 .14. 如图,在平面直角坐标系中,正方形ABCD的边AB在x轴上,点A的坐标为(-2,0),点 E在边 CD 上. 将△BCE沿BE折叠,点C落在点F 处. 若点 F的坐标为(0,6),则点 E 的坐标为 .15. 如图,在Rt△ABC 中,∠ACB =90°,CA = CB =3,线段 CD 绕点 C 在平面内旋转,过点B作AD的垂线,交射线AD于点E.若CD=1,则AE的最大值为,最小值为 .三、解答题(本大题共8个小题,共75分)16. (10分)(1) 计算:√2×√50−(1−√3)0; (2) 化简:(3a−2+1)÷a+1a2−4.17.(9分)为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.比赛得分统计图队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是 (填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误×(-1),且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.数学试卷第 3 页(共6页)18.(9分)如图,矩形ABCD的四个顶点都在格点(网格线的交点)上,对角线AC,BD相交(x⟩0)的图象经过点 A.于点 E,反比例函数y=kx(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A的三个格点,再画出反比例函数的图象.(3)将矩形ABCD向左平移,当点E落在这个反比例函数的图象上时,平移的距离为 .19.(9分)如图,在Rt△ABC中,CD是斜边AB上的中线,BE‖DC交AC的延长线于点 E.(1)请用无刻度的直尺和圆规作∠ECM,使∠ECM=∠A,且射线 CM交 BE 于点 F(保留作图痕迹,不写作法).(2) 证明(1) 中得到的四边形 CDBF是菱形.20.(9分)如图1,塑像AB在底座BC上,点D 是人眼所在的位置.当点 B 高于人的水平视线DE时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A,B两点的圆与水平视线DE相切时(如图2),在切点P处感觉看到的塑像最大,此时∠APB为最大视角.(1)请仅就图2的情形证明∠APB>∠ADB.(2) 经测量,最大视角∠APB为30°,在点P处看塑像顶部点A 的仰角∠APE为60°,点P到塑像的水平距离PH为6m . 求塑像AB的高(结果精确到0.1m.参考数据:√3≈1.73).数学试卷第4页(共6页)21.(9分)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1) 若要从这两种食品中摄入4600 kJ热量和70g蛋白质,应选用A,B 两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?22.(10分)从地面竖直向上发射的物体离地面的高度h(m)满足关系式ℎ=−5t²+v₀t,其中t(s)是物体运动的时间,v₀(m/s)是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后 s时离地面的高度最大(用含v₀的式子表示).(2)若小球离地面的最大高度为20m,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s.”已知实验楼高15 m,请判断他的说法是否正确,并说明理由.数学试卷第5页(共6页)23. (10分) 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验.请运用已有经验,对“邻等对补四边形”进行研究.定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有 (填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD是邻等对补四边形,AB=AD,,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若.BC=m,DC=n,∠BCD=2θ,,求AC 的长(用含m,n,θ的式子表示).(3)拓展应用如图3,在Rt△ABC中,∠B=90°,AB=3,BC=4,,分别在边BC,AC上取点M,N,使四边形ABMN是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出 BN的长.数学试卷第6页(共6页)2024年河南省普通高中招生考试数学试题参考答案(注:第15题只填对1空得2分)三、解答题(本大题共8个小题,共75分)16.(1)原式=10-1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分=9.……………………………………………………………………5分(2) 原式=a+1a−2⋅(a+2)(a−2)a+1…4分=a+2.………………………………………………………………………5分17.(1)甲29⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(2)因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好.(注:答案不唯一,合理即可)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分(3) 甲的综合得分为:26.5×1+8×1.5+2×(-1)=36.5.乙的综合得分为:26×1+10×1.5+3×(-1)= 38.因为38>36.5,所以乙队员表现更好.…………………………………………9分18.(1)∵ 反比例函数y=kx(x⟩0)的图象经过点A(3,2),∴2=k3.∴ k = 6.∴ 这个反比例函数的表达式为y=6x.………………3分数学试题参考答案第1页(共4页)(2) 如图.7分(3)92………………………………………………………9分19.(1) 如图.……………………… ……… 4分(2) 由(1),得∠ECF =∠A.∴ CF∥AB.∵ BE∥DC,∴四边形CDBF是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∵ CD 是Rt△ABC斜边AB上的中线,∴ CD =BD.∴□CDBF是菱形.…………………………………………………………9分20.(1) 如图,连接BM.则∠AMB=∠APB.∵ ∠AMB>∠ADB,∴∠APB>∠ADB.…………………………3分(2) 在Rt△AHP 中,∠APH = 60°,PH = 6.,∵tan∠APH=AHPH∴ AH = PH·tan 60°=6×√₃ =6√₃. …… 6分∵ ∠APB = 30°,∴ ∠BPH =∠APH--∠APB =60°-30°=30°.数学试题参考答案第2页(共4页)在Rt△BHP 中, tan∠BPH =BHPH ,∴BH =PH ⋅tan30∘=6×√33=2√3. … …8分∴AB =AH −BH =6√3−2√3=4√3≈4×1.73≈6.9(m).答:塑像AB 的高约为6.9m.……………………………………………………9分21.(1) 设选用A 种食品x 包,B 种食品y 包,根据题意,得{700x +900y =4600,10x +15y =70.…3分解方程组,得 {x =4,y =2.答:选用A 种食品4包,B 种食品2包.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)设选用A 种食品a 包,则选用B 种食品(7-a)包,根据题意,得10a+15(7-a)≥90.∴a≤3.…………………………………………………………………………7分设总热量为wkJ ,则w=700a+900(7-a)=-200a+6300.∵ -200<0,∴ w 随a 的增大而减小. ∴ 当a=3时,w 最小.∴ 7-a=7-3 =4.答:选用A 种食品3包,B 种食品4包.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分22.(1)ⁿ₀…………………………………3分(2)根据题意,得当 t =v10时,h=20.∴−5×(v 010)2+v 0×v 010=20.∴v₀=20(m s ⁄). …………………………………………………6分 (3)小明的说法不正确.(注:若没写出结果,但后续说理正确,不扣分)⋯7分理由如下:由(2),得 ℎ=−5t²+20t.当h = 15时, 15=−5t²+20t.解方程,得 l₁=1,t₂=3.……………………………………………9分 ∵ 3-1=2(s),∴小明的说法不正确.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分数学试题参考答案 第3 页(共4页)23.(1)②④(注:全部填对的得2分,对但不全的得1分,有错的得0分)⋯⋯⋯2分(2)①∠ACD=∠ACB.(注:若没写出结果,但后续说理正确,不扣分)………4分理由如下:延长CB至点 E,使 BE = DC. 连接AE.∵ 四边形ABCD 是邻等对补四边形,∴∠ABC+∠D=180°.∵∠ABC+∠ABE=180°,∴ ∠ABE =∠D.∵AB=AD,∴△ABE≅△ADC.∴∠E=∠ACD,AE=AC.∴ ∠E =∠ACB.∴∠ACD=∠ACB.………………………………………………………6分②过点A作AF⊥EC,垂足为点 F.∵ AE=AC,∴CF=12CE=12(BC+BE)=12(BC+DC)=m+n2.∵ ∠BCD =2θ,∴ ∠ACB =∠ACD=θ.在Rt△AFC中,cosθ=CFAC,∴AC=CFcosθ=m+n2cosθ.…8分(3)12√25或12√27.…10分数学试题参考答案第4页(共4页)。

2025年重点高中自主招生考试数学模拟试卷试题(含答案)

2025年重点高中自主招生考试数学模拟试卷试题(含答案)

2025重点高中自主招生数学针对性模拟试卷(本试卷满分150分,时间2小时)一、选择题(每小题6分,共60分)1.若“14人中至少有2人在同一个月过生日”这一事件发生的概率为P ,则()A.P=0B.0<P<1C.P=1P>12.下列命题中,真命题的个数是()①一组对边平行且对角线相等的四边形是矩形②对角线互相垂直且相等的四边形是菱形③两组对角分别相等的四边形是平行四边形④一组对边平行,另一组对边相等的四边形是平行四边形A.0个 B.1个 C.2个 D.3个3.方程()1112=--x x 的根共有()A.1个B.2个C.3个D.4个4.设{}d c b a ,,,max 表示d c b a ,,,中最大的数,则⎭⎫⎩⎨⎧-210,2,260tan 2,45cos 2max 0π=()A.045cos 2 B.260tan 20- C.2π D.2105.若关于x 的方程012)14(2=-+++m x m x 的两根分别为1x 、2x ,且321=+x x ,则m =()A.-1或21 B.-1或1C.21-或21 D.21-或16.如图,在△ABC 中,点D 在线段AC 上,点F 在线段BC 延长线上,BF=5CF,且四边形CDEF 是平行四边形,△BDE 与△ADE 的面积之和为7,则△ABC 面积为()A.28 B.29 C.30 D.327.用数字0,1,2,3,4可以组成没有重复数字的四位数共有()A.64个 B.72个 C.96个 D.不同于以上答案8.已知y x ,是整数,则满足方程03432=---y x xy 的数对),(y x 共有()A.4对B.6对C.8对D.12对9.如图,在△ABC 中,AC=BC=4,D 是BC 的中点,过A,C,D 三点的圆O 与AB 边相切于点A,则圆O 的半径为()A.2B.5C.214D.714410.若关于x 的方程x k x =-23有三个不同解321,,x x x ,设,321x x x m ++=则m 的取值范围为()A.2<m B.23->m C.20<<m D.223<<-m 二、填空题(每小题6分共36分)11.已知△ABC 中,BC=1,AC=2,AB=3,则△ABC 的内切圆半径为.12.若y x 、满足⎪⎪⎩⎪⎪⎨⎧=+=+2454545yx xy y x xy ,则=+y x .13.如图,在平面直角坐标系中,抛物线22--=x x y 与x 轴交于A、B 两点(点A 在点B 左边),点E 在对称轴MN 上,点F 在以点C(-1,-4)为圆心,21为半径的圆上,则AE+EF 的最小值为.14.已知直线)0(1>+=k kx y 与双曲线xy 2=交于A、B 两点,设A、B 两点的坐标分别为),(11y x A 、),(22y x B ,则=-+-)1()1(1221y x y x .15.若21≤---a x x 对任意实数x 都成立,则实数a 的取值范围是.16.已知互不相等的正整数20321,,,,a a a a 满足202420321=+++a a a a ,设d 是20321,,,,a a a a 的最大公约数,则d 的最大值为.三、解答题(共54分)17.(12分)已知实数215-=a .(1)求a a +2的值;(2)求3223111aa a a a a +++++的值.18.(12分)已知一次函数)0(1)2(<+-=k x k y 的图象与y x 、轴分别交于点A、B.(1)若2-=k ,试在第一象限内直接写出点),(y x M 的坐标,使得A、B、M 三点构成一个等腰直角三角形;(2)设O 为坐标原点,求△OAB 的面积的最小值.19.(14分)如图,已知0120=∠AOB ,PT 切圆O 于T,A、B、P 三点共线,∠APT 的平分线依次交AT、BT 于C、D,连接BC、AD.(1)求证:△CDT 为等边三角形;(2)若AC=8,BD=2,求PC 的长.20.(16分)已知函数a x a x y -+-+=3)4(2.(1)若此函数的图象与x 轴交于点)0,()0,(21x B x A 、,且2021≤<≤x x ,求a 的取值范围;(2)若20≤≤x ,求y 的最大值;(3)记a x a x x f -+-+=3)4()(2,若对于任意的40<<a ,都能找到200≤≤x ,使t x f ≥)(0,求t 的取值范围参考答案:一、选择题:1-5CBBDC6-10ACBDD 二、填空题:11、2321-+12、913、2914、-415、31≤≤-a 16、817.(1)∵215-=a ,512=+∴a ,5)12(2=+∴a .4442=+∴a a ,12=+∴a a .(3)a a -=12,12)1()1(23-=--=-=-=∴a a a a a a a a .∴原式==++++-3321112aa a a a 122222112333-+=+=++a a a a a a a .当215-=a 时,原式=353)25(2152521511522152+=++-=-+-=--+-⨯.18.(1)当2-=k 时,52+-=x y ,满足题意的M 点有3个,分别为415,415(),215,5(),25,215(321M M M .(2)易求得)21,0(),0,12(k B kA --.k kk k OB OA S OAB 2212)2112(2121--=--=⋅=∴∆,0<k ,021>-∴k ,02>-k .有均值不等式得4)2(2122=-⋅-+≥∆k kS OAB ,当且仅当k k 221-=-,即21-=k 时,等号成立.∴△ABC 的面积的最小值为4.19.(1)证明:0120=∠AOB ,06021=∠=∠∴AOB ATB .∵PT 切⊙O 于T,∴∠BTP=∠TAP.∵PC 平分∠APT,∴∠APC=∠CPT.∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT.∴∠TCD=∠CDT=00060260180=-.∴△CDT 为等边三角形.(3)解:设CT=DT=x ,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB.∴BDCTPD PC =①,∵∠DTP=∠PAC,∠APC=DPT,∴△ACP∽△TDP.∴PD PC TD AC =,∴TD AC BD CT =.∴xx 82=.∴4=x (负值舍去).∴CD=DT=CT=4.由①得244=-PC PC ,解得PC=8.20.解:(1)∵0)2()3(4)4(22>-=---=∆a a a ,2≠∴a .①当a x x -==3,121时,则231≤-<a ,∴21<≤a ;②当1,321=-=x a x 时,则130<-≤a .32≤<∴a .综上所述,a 的取值范围为31≤≤a 且2≠a .(2)对称轴为直线24a x -=.分三种情况讨论:①当024<-a,即4>a 时,当2=x 时,1-=a y 为最大值.②当2240≤-≤a,即40≤≤a 时,此时y 最大值在0=x 或2=x 处取得.(ⅰ)当242024a a --≥--时,则20≤≤a .此时,当0=x 时,a y -=3为最大值;(ⅱ)当242024aa --<--时,则42≤<a ,此时,当2=x 时,1-=a y 为最大值.③当224>-a,即0<a 时,当0=x 时,a y -=3为最大值.综上所述,当2<a 时,y 的最大值为a -3;当2>a 时,y 的最大值为1-a .(3)对称轴为直线24a x -=.∵40<<a ,∴2240<-<a.∴函数a x a x x f -+-+=3)4()(21在区间⎥⎦⎤⎢⎣⎡-24,0a 上是减函数,在区间⎥⎦⎤⎢⎣⎡-2,24a 上是增函数.∴对任意的)4,0(∈a ,存在]2,0[0∈x 使得t x f ≥|)(|0可化为对任意的)4,0(∈a ,t f ≥|)0(|或t f ≥|)2(|或t af ≥-)24(有一个成立即可.即t a f f f ≥⎭⎬⎫⎩⎨⎧-max 24(||,)2(||,)0(|即可.①当242024a a --≥--时,则20≤≤a ,|)2(||)0(|f f ≥.∴a a a a f f t -=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤3|2)2(||,3||24(||,)0(|max2max ,∴1)3(min =-≤a t .②当242024aa --<--时,则42≤<a ,此时,|)0(||)2(|f f >.1|4)2(||,1||24(),2(|max2-=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤∴a a a a f f t .∴1)1(min =-≤a t .综上所述,t 的取值范围为1≤t .。

高中数学招生试题及答案

高中数学招生试题及答案

高中数学招生试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = -2D. x = -32. 函数y = 2x + 1的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知集合A={1, 2, 3},集合B={2, 3, 4},则A∩B等于:A. {1, 2, 3}B. {2, 3}C. {3, 4}D. {1, 2}4. 圆的一般方程x^2 + y^2 + Dx + Ey + F = 0中,圆心坐标为:A. (-D/2, -E/2)B. (D/2, E/2)C. (-D, -E)D. (D, E)5. 函数f(x) = x^3 - 3x^2 + 4在x = 1处的导数值是:A. 0B. 1C. 2D. 36. 一个等差数列的首项是2,公差是3,那么它的第五项是:A. 14B. 17C. 20D. 237. 已知向量a = (3, 4),向量b = (-1, 2),则向量a与向量b的点积是:A. 10B. 8C. 6D. 28. 一个等比数列的首项是3,公比是2,那么它的第五项是:A. 48B. 96C. 192D. 3849. 函数y = sin(x)在区间[0, π]上的最大值是:A. 0B. 1C. πD. -110. 一个三角形的三个内角分别为α,β,γ,且α + β + γ = π,那么α + β的取值范围是:A. (0, π)B. (0, 2π)C. (π/2, π)D. (π/2, 3π/2)二、填空题(每题4分,共20分)11. 等差数列的前n项和公式为:______。

12. 圆的面积公式为:______。

13. 函数y = 3x - 2的反函数是:______。

14. 一个三角形的三边长分别为3, 4, 5,则该三角形是:______。

15. 函数y = x^2 - 4x + 4的最小值是:______。

各类高中招生考试及答案

各类高中招生考试及答案

一、选择题1 .2 的相反数是 ( )1A .2 B.-2 C . D . 222 .y=(x-1)2+2 的对称轴是直线 ( )A .x=-1B .x=1C .y=-1D .y=1 A3.如图:DE 是ΔABC 的中位线:则ΔADE 与ΔABC 的面积之比是( ) D EA .1:1B .1:2C .1:3D .1:4B C4.右图是一块手表:早上8 时的时针、分针的位置如图所示:那末分针与时针所成的角的度数是( )A .60°B .80°C .120°D .150°5.函数y 中自变量x 的取值范围是 ( )A .x≠-1B .x>-1C .x≠1D .x≠06.下列计算正确的是 ( )A .a2 ·a3=a6B .a3 ÷a=a3C .(a2)3=a6D .(3a2)4=9a47.在下列图形中:既是中心对称图形又是轴对称图形的是 ( )A.等腰三角形B.圆C.梯形D.平行四边形8.右边给出的是2004 年3 月份的日历表:任意日一二三四五六圈出一竖列上相邻的三个数:请你运用方程思想来研 1 2 3 4 5 67 8 9 10 11 12 13究:发现这三个数的和不可能是( )14 15 16 17 18 19 20A .69B .54 21 22 23 24 25 26 27C .27D .40 28 29 30 319.相交两圆的公共弦长为16cm:若两圆的半径长分别为10cm 和17cm:则这两圆的圆心距为( )A .7cmB .16cmC .21cmD .27cm10.小明骑自行车上学:开始以正常速度匀速行驶:但行至中途自行车出了故障:只好停下来修车。

车修好后:因怕耽误上课:他比修车前加快了骑车速度匀速行驶。

下面是行驶路程 s(米)关于时间 t(分)的函数图象:那末符合这个同学行驶情况的图象大致是 ( )A B C D11.已知方程x 2+(2k+1)x+-2=0的两实根的平方和等于11:k 的取值是( ) A .-3 或者 1 B .-3 C .1 D .312.某超级市场失窃: 大量的商品在夜间被罪犯用汽车运走。

高中创新班提前招生考试数学系列题

高中创新班提前招生考试数学系列题

高中创新班提前招生考试数学系列题1.题目:创新班提前招生考试数学系列题题目要求:1.给定一个等腰梯形OABC,其中OA∥BC。

在平面直角坐标系中,已知A(4,0)和B(3,2)。

点M从O点以每秒2个单位的速度向终点A运动,点N从B点出发以每秒1个单位的速度向终点C运动。

过点N作NP垂直于x轴于P点,连接AC交NP于Q,连接MQ。

求解以下问题:1) 求点C的坐标;2) 若动点N运动t秒,求点Q的坐标,并用含t的式子表示;3) 求△AMQ的面积S与时间t的函数关系式,并给出自变量t的取值范围;4) 当t取何值时,△AMQ的面积最大;5) 当t为何值时,△AMQ为等腰三角形。

2.给定点F(1,1)和函数f(x)=2x-x+1.求解以下问题:1) 求函数f(x)对应的抛物线C1的顶点坐标;2) 若抛物线C1与y轴的交点为A,连接AF并延长交抛物线C1于点B,证明AFBF=2;3) 取抛物线C1上任意一点P(xP,yP)(0<xp<1),连接PF并延长交抛物线C1于点Q(xQ,yQ),判断11+2是否成立,并给出理由;4) 将抛物线C1作适当的平移得到抛物线<x≤m时,y2≤___成立,求m的最大值;5) 已知抛物线1.给定一个等腰梯形OABC,其中OA∥BC。

在平面直角坐标系中,已知A(4,0)和B(3,2)。

点M从O点以每秒2个单位的速度向终点A运动,点N从B点出发以每秒1个单位的速度向终点C运动。

过点N作NP垂直于x轴于P点,连接AC交NP于Q,连接MQ。

解决以下问题:1) 求点C的坐标;2) 若动点N运动t秒,求点Q的坐标,并用含t的式子表示;3) 求△AMQ的面积S与时间t的函数关系式,并给出自变量t的取值范围;4) 当t取何值时,△AMQ的面积最大;5) 当t为何值时,△AMQ为等腰三角形。

2.给定点F(1,1)和函数f(x)=2x-x+1.解决以下问题:1) 求函数f(x)对应的抛物线C1的顶点坐标;2) 若抛物线C1与y轴的交点为A,连接AF并延长交抛物线C1于点B,证明AFBF=2;3) 取抛物线C1上任意一点P(xP,yP)(0<xp<1),连接PF并延长交抛物线C1于点Q(xQ,yQ),判断11+2是否成立,并给出理由;4) 将抛物线C1作适当的平移得到抛物线<x≤m时,y2≤___成立,求m的最大值;5) 已知抛物线。

2022年河南省普通高中招生考试试卷数学含答案

2022年河南省普通高中招生考试试卷数学含答案

2022年河南省普通高中招生考试试卷数学含答案一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.12的相反数是()A.2B.2C.12D.12【答案】D【解析】【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D.【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2.2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【答案】D【解析】【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D.【点睛】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.3.如图,直线AB ,CD 相交于点O ,EO ⊥CD ,垂足为O .若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B 【解析】【分析】根据垂直的定义可得90COE ,根据平角的定义即可求解.【详解】解:∵EO ⊥CD ,90COE ,12180COE ∵,2180905436 .故选:B .【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.4.下列运算正确的是()A.2B.2211a a C.325a a D.2322a a a 【答案】D 【解析】【分析】根据二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式逐项分析判断即可求解.【详解】解:A. ,故该选项不正确,不符合题意;B.22112a a a ,故该选项不正确,不符合题意;C.326a a ,故该选项不正确,不符合题意;D.2322a a a ,故该选项正确,符合题意;故选:D.【点睛】本题考查了二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式,正确地计算是解题的关键.5.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为CD 的中点.若OE =3,则菱形ABCD 的周长为()A.6B.12C.24D.48【答案】C 【解析】【分析】由菱形的性质可得出BO =DO ,AB =BC =CD =DA ,再根据中位线的性质可得26BC OE ,结合菱形的周长公式即可得出结论.【详解】解:∵四边形ABCD 为菱形,∴BO =DO ,AB =BC =CD =DA ,∵OE =3,且点E 为CD 的中点,OE 是BCD △的中位线,∴BC =2OE =6.∴菱形ABCD 的周长为:4BC =4×6=24.故选:C .【点睛】本题考查了菱形的性质以及中位线的性质,解题的关键是求出AD =6.6.一元二次方程210x x 的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根【答案】A 【解析】【分析】计算一元二次方程根的判别式进而即可求解.【详解】解:241450b ac 一元二次方程210x x 的根的情况是有两个不相等的实数根,故选:A.【点睛】本题考查了一元二次方程20ax bx c (0a a b c ,,,为常数)的根的判别式24b ac ,理解根的判别式对应的根的三种情况是解题的关键.当0 时,方程有两个不相等的实数根;当0 时,方程有两个相等的实数根;当 时,方程没有实数根.7.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%【答案】B 【解析】【分析】根据扇形统计图中得分情况的所占比多少来判断即可;【详解】解:由扇形统计图可知:1分所占百分比:5%;2分所占百分比:10%;3分所占百分比:25%;4分所占百分比:45%;5分所占百分比:15%;可知,4分所占百分比最大,故4分出现的次数最多,∴所打分数的众数为4;故选:B .【点睛】本题主要考查众数的概念,扇形统计图,理解扇形统计图中最大百分比是所打分数的众数,这是解本题的关键.8.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于()A.810B.1210 C.1610D.2410【答案】C【解析】【分析】将1万表示成410,1亿表示成810,然后用同底数幂的乘法法则计算即可.【详解】∵1兆=1万×1万×1亿,∴1兆=4481610101010创=,故选:C .【点睛】本题考查同底数幂的乘法法则,科学记数法的表示方法,其中a 的范围是110a ,n 是整数,正确确定a ,n 的值是解答本题的关键.9.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为()A.1B.1, C.1D. 【答案】B 【解析】【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,∴AP =1,AO =2,∠OPA =90°,∴OP∴A (1,第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,);第3次旋转结束时,点A 的坐标为(,1);第4次旋转结束时,点A 的坐标为(1;∵将△OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,),故选:B【点睛】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.10.呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1R ),1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确...的是()A.呼气酒精浓度K 越大,1R 的阻值越小B.当K =0时,1R 的阻值为100C.当K =10时,该驾驶员为非酒驾状态D.当120 R 时,该驾驶员为醉驾状态【答案】C 【解析】【分析】根据函数图象分析即可判断A ,B ,根据图3公式计算即可判定C ,D .【详解】解:根据函数图象可得,A.R 随K 的增大而减小,则呼气酒精浓度K 越大,1R 的阻值越小,故正确,不符合题意;B.当K =0时,1R 的阻值为100,故正确,不符合题意;C.当K =10时,则332200102200101022mg/100ml M K ,该驾驶员为酒驾状态,故该选项不正确,符合题意;D.当120 R 时,40K ,则332200102200401088mg/100ml M K ,该驾驶员为醉驾状态,故该选项正确,不符合题意;故选:C.【点睛】本题考查了函数图像,根据函数图像获取信息是解题的关键.二、填空题(每小题3分,共15分)11.请写出一个y 随x 增大而增大的一次函数表达式_________.【答案】y x (答案不唯一)【解析】【分析】在此解析式中,当x 增大时,y 也随着增大,这样的一次函数表达式有很多,根据题意写一个即可.【详解】解:如y x ,y 随x 的增大而增大.故答案为:y x (答案不唯一).【点睛】此题属于开放型试题,答案不唯一,考查了一次函数的性质,熟练掌握一次函数的增减性是解题关键.12.不等式组30,12x x的解集为______.【答案】23x 【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:3012x x①②解不等式①得:3x 解不等式②得:2x ∴不等式组的解集为:23x 故答案为:23x 【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.13.为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为______.【答案】16【解析】【分析】根据题意,画出树状图,可得一共有12种等可能结果,其中恰好选中甲和丙的有2种,再根据概率公式计算,即可求解.【详解】解:根据题意,画出树状图,如下∶一共有12种等可能结果,其中恰好选中甲和丙的有2种,所以恰好选中甲和丙的概率为21126.故答案为:16【点睛】利用树状图或列表法求概率,明确题意,准确画出树状图或列出表格是解题的关键.14.如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O 处,得到扇形A O B .若∠O =90°,OA =2,则阴影部分的面积为______.【答案】332【解析】【分析】设A O 与扇形AOB 交于点C ,连接OC ,解Rt OCO ,求得3,60O C COB ,根据阴影部分的面积为 OCO A O B OCB S S S 扇形扇形,即可求解.【详解】如图,设A O 与扇形AOB 交于点C ,连接OC ,如图O ∵是OB 的中点11122OO OB OA ,OA =2,∵AOB =90°,将扇形AOB 沿OB 方向平移,90A O O 1cos 2OO COB OC60COB sin 60O C OC阴影部分的面积为OCO A O B OCB S S S扇形扇形OCO AOB OCB S S S 扇形扇形2290601221360360232故答案为:332【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB 是解题的关键.15.如图,在Rt △ABC 中,∠ACB =90°,AC BC,点D 为AB 的中点,点P 在AC 上,且CP =1,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ .当∠ADQ =90°时,AQ 的长为______.【答案】【解析】【分析】连接CD ,根据题意可得,当∠ADQ =90°时,Q 点在CD 上,且1CQ CP ,勾股定理求得AQ 即可.【详解】如图,连接CD ,∵在Rt △ABC 中,∠ACB =90°,AC BC ,4AB ,CD AD ,122CD AB,根据题意可得,当∠ADQ =90°时,Q 点在CD 上,且1CQ CP ,211DQ CD CQ ,在Rt ADQ △中,AQ ,.【点睛】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点Q 的位置是解题的关键.三、解答题(本大题共8个小题,共75分)16.(1)计算:01123;(2)化简:2111x x x.【答案】(1)52;(2)1x 【解析】【分析】(1)根据求一个数的立方根,零指数幂,负整指数幂进行计算即可求解;(2)原式括号中两项通分并利用异分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】(1)解:原式=131252(2)解:原式= 111x x x x x111x x xxx 1x 【点睛】本题考查了求一个数的立方根,零指数幂,负整指数幂,分式的混合运算,正确的计算是解题的关键.17.2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a .成绩频数分布表:成绩x (分)5060x 6070x 7080x 8090x 90100x 频数7912166b .成绩在7080x 这一组的是(单位:分):707172727477787878797979根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是______分,成绩不低于80分的人数占测试人数的百分比为______.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【答案】(1)78.5,44%(2)不正确.理由见解析(3)见解析【解析】【分析】(1)因为共50名学生参加测试,故中位数为第25、26名学生成绩的平均数,用成绩不低于80分的人数除以总人数即可求出所占百分比;(2)根据中位数的意义进行判断;(3)根据测试成绩合理评价即可,答案不唯一.【小问1详解】解:由成绩频数分布表和成绩在7080x 这一组的数据可知,排在第25、26名学生的成绩分别为78分,79分,因此成绩的中位数是:787978.52分.成绩不低于80分的人数占测试人数的百分比为:166100%44%50,故答案为:78.5,44%;【小问2详解】解:不正确.因为甲的成绩77分低于中位数78.5,所以甲的成绩不可能高于一半学生的成绩.【小问3详解】解:成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好.【点睛】本题考查调查统计时中位数的计算方法,以及运用中位数做决策等知识点,利用成绩频数分布表和成绩在7080x 这一组的数据得出中位数是解题的关键.18.如图,反比例函数 0k y x x的图像经过点 2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.【答案】(1)8y x(2)图见解析部分(3)证明见解析【解析】【分析】(1)把点A 的坐标代入反比例函数解析式,即可得出答案;(2)利用基本作图作线段AC 的垂直平分线即可;(3)根据垂直平分线的性质和角平分线的定义可得到BAC DCA ,然后利用平行线的判定即可得证.【小问1详解】解:∵反比例函数 0k y x x的图像经过点 2,4A ,∴当2x 时,42k ,∴8k =,∴反比例函数的表达式为:8y x;【小问2详解】如图,直线EF 即为所作;【小问3详解】证明:如图,∵直线EF 是线段AC 的垂直平分线,∴AD CD ,∴DAC DCA ,∵AC 平分OAB ,∴DAC BAC ,∴BAC DCA ,∴CD AB ∥.【点睛】本题考查了作图—基本作图,用待定系数法求反比例函数的解析式,垂直平分线的性质,等腰三角形的性质,平行线的判定,角平分线的定义等知识.解题的关键是熟练掌握五种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).19.开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC 的高度,如图,在A 处用测角仪测得拂云阁顶端D 的仰角为34°,沿AC 方向前进15m 到达B 处,又测得拂云阁顶端D 的仰角为45°.已知测角仪的高度为1.5m ,测量点A ,B 与拂云阁DC 的底部C 在同一水平线上,求拂云阁DC 的高度(结果精确到1m .参考数据:sin 340.56 ,cos340.83 ,tan 340.67 ).【答案】拂云阁DC 的高度约为32m【解析】【分析】延长EF 交CD 于点G ,则四边形,AEFB AEGC 是矩形,则 1.5CG AE ,15EF AB ,在Rt DGF △,Rt DGE △中,分别表示出,FG EG ,根据15EG FG ,建立方程,解方程求解可得DG ,根据DC DG GC 即可求解.【详解】如图,延长EF 交CD 于点G ,则四边形,AEFB AEGC 是矩形,则 1.5CG AE ,15EF AB ,在Rt DGF △中,tan tan 45DG DG FG DG DFG,在Rt DGE △中,tan tan 340.67DG DG DG EG DEG ,15EG FG ∵,即150.671DG DG ,解得30.5DG ,30.5 1.532DC DG GC (m).拂云阁DC 的高度约为32m .【点睛】本题考查了解直角三角形的应用,掌握直角三角形中的边角关系是解题的关键.20.近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A 种菜苗的价格是菜苗基地的54倍,用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A 种菜苗的价格.(2)菜苗基地每捆B 种菜苗的价格是30元.学校决定在菜苗基地购买A ,B 两种菜苗共100捆,且A 种菜苗的捆数不超过B 种菜苗的捆数.菜苗基地为支持该校活动,对A ,B 两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【答案】(1)20元(2)2250元【解析】【分析】(1)设菜苗基地每捆A 种菜苗的价格为x 元,根据题意列出方程,解出方程即可;(2)设:购买A 种菜苗m 捆,则购买B 种菜苗 100m 捆,花费为y 元,根据A 种菜苗的捆数不超过B 种菜苗的捆数,解出m 的取值范围,列出花费y 与A 种菜苗m 捆之间的关系式,根据关系式求出最少花费多少钱即可.【小问1详解】解:设:菜苗基地每捆A 种菜苗的价格为x 元,300300354x x 51530030044x 15754x 解得20x =检验:将20x =代入55202544x ,值不为零,∴20x =是原方程的解,∴菜苗基地每捆A 种菜苗的价格为20元.【小问2详解】解:设:购买A 种菜苗m 捆,则购买B 种菜苗 100m 捆,花费为y 元,有题意可知:100m m ,解得50m ≤,又∵ 20301000.9y m m ,∴ 9270050y m m ,∵y 随m 的增大而减小∴当50m 时,花费最少,此时95027002250y ∴本次购买最少花费2250元.【点睛】本题考查分式方程与一次函数表达式求最小值,根据题意列出分式方程并检验是解答本题的关键.21.红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立如图所示的平面直角坐标系,并设抛物线的表达式为 2y a x h k ,其中x (m )是水柱距喷水头的水平距离,y (m )是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P 水平距离3m ,身高1.6m 的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【答案】(1) 20.15 3.2y x (2)2或6m【解析】【分析】(1)根据顶点 5,3.2,设抛物线的表达式为 25 3.2y a x ,将点 0,0.7P ,代入即可求解;(2)将 1.6y 代入(1)的解析式,求得x 的值,进而求与点 3,0的距离即可求解.【小问1详解】解:根据题意可知抛物线的顶点为 5,3.2,设抛物线的解析式为 25 3.2y a x ,将点 0,0.7代入,得0.725 3.2a ,解得0.1a ,抛物线的解析式为 20.15 3.2y x ,【小问2详解】由 20.15 3.2y x ,令 1.6y ,得 21.60.15 3.2x ,解得121,9x x ,∵爸爸站在水柱正下方,且距喷水头P 水平距离3m , 当她的头顶恰好接触到水柱时,她与爸爸的水平距离为312 (m),或936 (m).【点睛】本题考查了二次函数的实际应用,掌握顶点式求二次函数解析式是解题的关键.22.为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O 与水平地面相切于点C ,推杆AB 与铅垂线AD 的夹角为∠BAD ,点O ,A ,B ,C ,D 在同一平面内.当推杆AB 与铁环⊙O 相切于点B 时,手上的力量通过切点B 传递到铁环上,会有较好的启动效果.(1)求证:∠BOC +∠BAD =90°.(2)实践中发现,切点B 只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B 是该区域内最低位置,此时点A 距地面的距离AD 最小,测得3cos 5BAD.已知铁环⊙O 的半经为25cm ,推杆AB 的长为75cm ,求此时AD 的长.【答案】(1)见解析(2)50cm 【解析】【分析】(1)根据切线的性质可得OC CD ,AB OB ,根据AD CD ,可得AD OC ∥,过点B 作BE AD ∥,根据平行线的性质可得BAD EBA ,COB OBE ,进而即可得证;(2)过点B 作CD 的平行线,交AD 于点G ,交OC 于点F ,由(1)得到OBF A ,在Rt ABG △,Rt OBF △中,求得,AG BF ,进而求得,OF FC ,根据AD AG GD 即可求解.【小问1详解】证明:∵⊙O 与水平地面相切于点C ,OC CD ,AD CD ∵,AD OC ∥,∵AB 与⊙O 相切于点B ,AB OB ,90OBA ,过点B 作BE AD ∥,BAD EBA ,BE OC ∥,COB OBE ,90COB BAD OBE ABE OBA ,即∠BOC +∠BAD =90°.【小问2详解】如图,过点B 作CD 的平行线,交AD 于点G ,交OC 于点F ,,FG AD FG OC ,则四边形CFGD 是矩形,90BOC BAD ∵,90 ABO ,90OBF FOB A ,在Rt ABG △中,∵3cos 5BAD ,75cm AB ,3cos 75455AG AB BAD (cm),在Rt OBF △中,3cos cos 5OBF A ,25OB cm ,33251555BF OB (cm),2222251520OF OB BF (cm),25205FC OC OF (cm),5DG FC cm ,45550AD AG GD (cm).【点睛】本题考查了切线的性质,平行线的性质,解直角三角形的应用,掌握以上知识是解题的关键.23.综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接PM ,BM .根据以上操作,当点M 在EF 上时,写出图1中一个30°的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD 按照(1)中的方式操作,并延长PM 交CD 于点Q ,连接BQ .①如图2,当点M 在EF 上时,∠MBQ =______°,∠CBQ =______°;②改变点P 在AD 上的位置(点P 不与点A ,D 重合),如图3,判断∠MBQ 与∠CBQ 的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD 的边长为8cm ,当FQ =1cm 时,直接写出AP 的长.【答案】(1)BME 或ABP 或PBM 或MBC(2)①15,15;②MBQ CBQ ,理由见解析(3)4011APcm 【解析】【分析】(1)根据折叠的性质,得12BE BM ,结合矩形的性质得30BME ,进而可得30ABP PBM MBC ;(2)根据折叠的性质,可证 Rt Rt HL BQM BQC ,即可求解;(3)由(2)可得QM QC ,设8AP PM x PD x ,,由勾股定理即可求解;【小问1详解】解:12AE BE AB AB BM ∵,12BE BM ∴90BEM∵30BME∴60MBE∴ABP PBM∵30ABP PBM MBC∴【小问2详解】∵四边形ABCD 是正方形∴AB =BC ,∠A =∠ABC =∠C =90°由折叠性质得:AB =BM ,∠PMB =∠BMQ =∠A =90°∴BM =BC①BM BC BQ BQ∵,∴Rt Rt HL BQM BQC MBQ CBQ∴30MBC Ð=°Q 15MBQ CBQ∴②BM BC BQ BQ∵,Rt Rt HL BQM BQC ∴MBQ CBQ∴【小问3详解】1cm 4cm 8cmFQ DF FC AB ∵,,8413(cm)QC CD DF FQ ∴,DQ =DF +FQ =4+1=5(cm)由(2)可知,QM QC设8AP PM x PD x ,,222PD DQ PQ ∴,即222853x x 解得:4011x∴40cm11 AP【点睛】本题主要考查矩形与折叠,正方形的性质、勾股定理、三角形的全等,掌握相关知识并灵活应用是解题的关键.。

2024年四川省成都市高中阶段教育学校统一招生暨初中学业水平考试数学试题

2024年四川省成都市高中阶段教育学校统一招生暨初中学业水平考试数学试题

2024年四川省成都市高中阶段教育学校统一招生暨初中学业水平考试 数学试题一、单选题1.中国是最早采用正负数表示相反意义的量的国家.成都实行的“新中考”中“引体向上”项目男生满分标准为15次,若在平时训练时小成把18次记为3+,则应把14次记为( ) A .1-B .0C .1+D .2+2.2024年3月20日—22日,第110届全国糖酒商品交易会在成都举办,本届糖酒会展览总面积达32.5万平方米,创糖酒会历届之最.将数据32.5万用科学记数法表示为( ) A .33.2510⨯B .43.2510⨯C .53.2510⨯D .63.2510⨯3.如图所示的几何体是由6个大小相同的小立方块搭成,从三个不同方向观察该几何体得到的视图面积相等的是( )A .主视图与左视图B .主视图与俯视图C .俯视图与左视图D .主视图,俯视图,左视图4.下列计算正确的是( ) A .32xy y x -= B .()326328x y x y -=C .()2211x x -=-D .()()2339x x x +-=-5.郑板桥有诗《山中雪后》云:“晨起开门雪满山,雪晴云淡日光寒”描绘了一幅冬日山居雪景图.想感受冬日山居雪景的小颖密切关注寒假期间成都某山区一周的最低气温(℃)以便出行,该山区某周的最低气温预报如下:则最低气温的众数、中位数分别是( )A .4,4--B .4,5--C .5,3--D .5,4--6.如图,点E 、F 、C 、B 在同一直线上,AB DE =,B E ∠=∠,添加下列一个条件,不能判定ABC DEF ≌△△的条件是( )A .BF EC =B .AC DF = C .AD ∠=∠ D .ACB DFE ∠=∠7.我国古代著作《九章算术》中记载了这样一题:“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?”题目大意是:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,则可列方程组为( ) A .911616x y x y -=⎧⎨-=⎩B .911616x y x y -=⎧⎨+=⎩C .911616x y x y +=⎧⎨-=⎩D .911616x y x y-=⎧⎨+=⎩8.如图,二次函数2y ax bx c =++的图象与x 轴交于()1,0A ,()4,0B -两点,下列说法正确的是( )A .0c <B .抛物线的对称轴是直线2x =-C .当1x >-时,y 的值随x 值的增大而减小D .420a b c -+<二、填空题9.在平面直角坐标系中,点()1,2A -向右平移3个单位长度,再向下平移2个单位长度后的对应点A '的坐标是. 10.已知1x =是分式方程3122x ax x--=---的解,则实数a 的值为. 11.如图,在矩形ABCD 中,连接,AC BD ,过点A 作AE BD ⊥于点E .若6AB =,8AD =,则BE 的长为.12.若点19,2A x ⎛⎫⎪⎝⎭,()2,4B x 都在一次函数31y x =+的图象上,则1x 2x (填“>”或“<”).13.如图,在ABC V 中,120BAC ∠=︒,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交,AB BC 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点P ;③作射线BP ,交AC 于点D ;④过点D 作DE BC ⊥于点E .若2AD =,则DE 的长为.三、解答题14.(1)计算:()0π 3.142cos303︒-. (2)解不等式组:()32213115x x x x ⎧+-≥-⎪⎨-<+⎪⎩①② 15.成都大运会闭幕式上,最后出场的“花花”流下的两滴“泪水”表达了不舍的情绪,让人非常感动.花花作为成都大熊猫繁育研究基地的“顶流明星”,无数游客前去成都大熊猫繁育研究基地看花花,园区采用单循环的观赏模式,每30名左右游客看熊猫时间3分钟,保证不会有人群杂音、闪光灯等干扰到幼年熊猫的休息.某中学为了解学生对花花的喜爱程度,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的学生总人数为______人,扇形统计图中“喜欢”对应的扇形圆心角度数为______; (2)若该校共有1200名学生,请你估计对花花的喜爱程度为“一般”的学生人数;(3)本次调查中,“很喜欢”的4人中有一名男生和三名女生,若从中随机抽取两人前往成都大熊猫繁育研究基地观看花花,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16.《无人驾驶航空器飞行管理暂行条例》自2024年1月1日起实施,填补了无人驾驶航空器管理法规空白.有飞行操控梦的佳佳爸爸购买了一款无人机,该款无人机的部分信息如下表:如图,佳佳爸爸想了解该款无人机的最大飞行高度是否达到信息介绍的最低标准,佳佳打算用测角仪和卷尺解决爸爸的困惑,她让爸爸把无人机飞到其能飞行的最大高度A 点处,佳佳站在地面上B 点处用测角仪观测到无人机的仰角为60︒,佳佳向后退30步到达D 点处用测角仪观测到无人机的仰角为55︒,已知佳佳的步长为47cm ,测角仪的高度为1.6m (点,B D 在一条直线上,点,E C 在一条直线上).请帮佳佳解决爸爸的困惑.(结果精确到1m ,参考数据:sin550.82︒≈,cos550.57︒≈,tan55 1.43︒≈ 1.73≈)17.如图,O e 是ABC V 的外接圆,AB 为直径,BD 平分ABC ∠交O e 于点D ,交AC 于点E ,连接OD 交AC 于点F ,连接CD .(1)求证:OD AC ⊥; (2)若2OF =,4cos 5OBD ∠=,求EF 和CD 的长. 18.如图,在平面直角坐标系xOy 中,直线43y x =与反比例函数k y x =的图象交于()3,A m ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 的直线交反比例函数图象于点C ,交y 轴于点D ,连接BD ,当AD BD ⊥时,求ABC V 的面积;(3)在(2)的条件下,当点D 在y 轴负半轴上时,在射线BD 上有一点Q 满足22AB BD BQ =⋅,求点Q 的坐标.四、填空题19.若2230x x +-=,则代数式114222x x x x ⎛⎫-÷ ⎪+--⎝⎭的值为. 20.如图,在等边ABC V 中,,,,,,D E F G M N 分别是边,,AB BC CA 的三等分点,连接,,EF GM ND ,随机在ABC V 内取一点,则这个点恰好在阴影部分的概率为.21.我国古代直至20世纪六七十年代,民间航海主要依靠海图指引航行,海图上有详尽数据,包括岛屿,灯塔,暗礁,水深等,船长结合灯塔的位置,通过测定角度来确定是否会遇到暗礁.如图,A B ,表示灯塔,暗礁分布在经过A B ,两点的一个圆形区域内,C 是有触礁危险的临界点,ACB ∠就是“危险角”,船P 与暗礁在AB 的同侧,若AB =5AC =,7BC =,当船P 位于安全区域时,它与两个灯塔的夹角APB ∠的取值范围是.22.定义:在平面直角坐标系xOy 中,若点(),P a b 满足a b ab +=,则称点P 为“积和点”.例如:()0,0,()2,2就是“积和点”.若直线y x m =-+上所有的点中只有唯一一个“积和点”,则m =.23.如图,在Rt ABC △中,90BAC ∠=︒,3AB =,4AC =,AD BC ⊥于点D ,点P 是线段AD 上一动点,以CP 为直角边作Rt CPE △,且∠=∠PEC ABC ,连接DE ,则当DE AB∥时,AP 的长为;点P 在运动过程中,DE 的最小值为 .五、解答题24.近年来,盲盒备受潮玩商家关注.某潮玩商家推出2024年生肖龙公仔,并将A 类毛绒玩具和B 类毛绒挂件放在一起采用盲盒模式销售,一个盲盒内随机装一个A 类毛绒玩具和一个B 类毛绒挂件(不同盲盒内所装的玩具与挂件仅颜色不同),已知一个盲盒成本为22元/个.该商家销售该盲盒一段时间后,发现该盲盒的周销售量y (个)和盲盒单价x (元)满足一次函数关系的图象如图所示.(1)求该盲盒周销售量y (个)和盲盒单价x (元)的函数表达式;(2)该商家应如何定价才能使盲盒的周销售利润最大?并求出此时的最大利润.25.如图,在平面直角坐标系xOy 中,已知抛物线21y ax bx =++与x 轴交于()3,0A ,()1,0B -两点,与y 轴交于点C ,直线():2l y k x =-与抛物线交于点D ,与x 轴交于点P ,连接CP .(1)求抛物线的函数表达式; (2)若1tan 2CPD ∠=,求点D 的坐标;(3)直线l 交抛物线对称轴于点Q ,过点P 作PM PQ ⊥,交过点C 且平行于x 轴的直线于点M .试探究:无论()0k k ≠取何值,PM PQ =始终成立.26.探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究. 【尝试初探】(1)如图①,在四边形ABCD 中,若90ABC ADC ∠=∠=︒,5AB AD ==,120BAD ∠=︒,求AC 的长; 【深入探究】(2)如图②,在四边形ABCD 中,若90ABC ADC ∠=∠=︒,45BCD ∠=︒,AC =BD 的长;【拓展延伸】(3)如图③,在四边形ABCD 中,若180ABC ADC ∠+∠=︒,60ADC ∠=︒,AD AB ==延长,DA CB 相交于点E ,DE CE ⊥,P 是线段AC 上一动点,连接PD ,求2DP CP +的最小值.。

重点高中高一提前招生选拔考试数学试卷及答案(共5份)

重点高中高一提前招生选拔考试数学试卷及答案(共5份)

重点高中提前招生选拔考试数学试卷(本卷满分100分,时间120分钟)一、选择题(每题4分,共40分) 1.下列运算正确的是( )A.a 5.a 6= a 30B. (a 5)6= a 30C.a 5+a 6= a 11D.a 5÷a 6=65 2.抛物线2)8x (y 2+--=的顶点坐标是( )A .(2,8)B .(8,2)C .(—8,2)D .(—8,—2)3.在平面内有线段AB 和直线L,点A 、B 到直线L 的距离分别是4㎝、6㎝.则线段AB 的中点C到直线l 的距离是 ( )A .1或5B .3或5C .4D .54.已知:3223222⨯=+; 8338332⨯=+;154415442⨯=+;245524552⨯=+,……;809980992⨯=+,若ab10a b 102⨯=+(a,b 为正整数)则a+b 的值不可能是( ) A .109 B .218 C .326 D .4365.无论m 为何实数,直线y=2x+3m 与y=-x+5的交点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知a 、b 、c 为△ABC 的三条边,且满足a 2+ab -ac -bc=0,b 2+bc -ba -ca=0,则 △ABC 是( )A .等边三角形 B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.若关于x 的不等式组 x ≥3a -2 无解,则函数y=(a -3)x 2-x -41的图象与 x<a+4 x 轴的交点个数为( )A.0B.1C.2D.1或28.将任意一张凸四边形的纸片对折,使它的两个不相邻的顶点重合,然后剪去纸片 的不重合部分,展开纸片,再一次对折,使另外的两个顶点重合,再剪去不重合 的部分后展开,此时纸片的形状是( )A.正方形B.长方形C.菱形D.等腰梯形9.如图,点M 是正方形ABCD 的CD 边上的中点, 点P 按A →B →C →M 的顺序在正方形的边上运动, 设AB=1,点P 经过的路程为x ,△APM 的面积为y ,则y 关于x 的函数是( )CP10.为了迎接2010年亚运会的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表:当比赛进行到12轮结束(每队均需比赛12场)时,A 队共积19分,若每 赛一场每名参赛队员均得出场费500元,设A 队其中一名参赛队员所得的奖金与 出场费的和为W (元),试求W 的最大值是( ) .16300 B. 16900 C. 15700 D. 17500二、填空题(每题5分,共30分)11.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .12.某校七年级2班的男生人数是女生人数的1.8倍,在一次数学测试中,全班成绩 的平均分是75分,其中女生的平均分比男生的平均分高20%,则女生的平均分是 ___________分。

2023年佛山市高中阶段学校招生考试数学试卷

2023年佛山市高中阶段学校招生考试数学试卷

佛山市高中阶段学校招生考试数学试卷说 明:本试卷分为第1卷(选择题)和第2卷(非选择题)两部分•共6页,满分120分. 考试时间100分钟. 注意事项:1. 试卷旳选择题和非选择题都在答题卡上作答,不能答在试卷上.2. 要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹旳钢笔或签字笔描黑.3. 其他注意事项.见答题卡.第1卷(选择题共30分)一、选择题(本大题共10小题,毎小题3分,共30分.在毎小题给出旳四个选项中,只有一项是符合题目规定旳.答案选项填涂在答题卡上.) 1.(广东佛山,1,3)如-2旳倒数是 A .-2 B. 2 C 12- D. 12【答案】C2. (广东佛山,2,3)计算332(2)+-旳值是 A. 0 B. 12 C. 16 D. 18 【答案】A3. (广东佛山,3,3)下列说法对旳旳是 A .a 一定是正数 B.20113是有理数C .是有理数 D.平方等于自身旳数只有1 【答案】B4(广东佛山,4,3).若⊙O 旳一条弧所对旳圆周角为60° ,则这条弧所对旳圆心角是A .30° B. 60° C. 120° D.以上答案都不对 【答案】C5. (广东佛山,5,3)在①42a a •;②(-a 2)3;③122a a +;④23a a •中,计算成果为a 6旳个数是 A. 1个 B. 2个 C. 3个 D. 4个【答案】A6. (广东佛山,6,3)依次连接菱形旳各边中点,得到旳四边形是 A.矩形 B.菱形 C.正方形D.梯形【答案】A7. (广东佛山,7,3)—个图形无论通过平移还是旋转,有如下说法: ①对应线段平行②对应线段相等③对应角相等 ④图形旳形状和大小都没有发生变化 其中都对旳旳说法是A.①、②、③B.①、②、④C.①、③、④D.②、③、④ 【答案】D8. (广东佛山,8,3)下列函数旳图象在每一种象限内,y 值随x 值旳增大而增大旳是A y = -x + 1 B. y = x 2-1 C.y=1x D.y=-1x【答案】D9. (广东佛山,9,3)如图,一种由小立方块所搭旳几何体,从不一样旳方向看所得到旳平面图形中(小正方形中旳数字表达在该位置旳小立方块旳个数),不对旳旳是ABCD【答案】B10. (广东佛山,10,3)下列说法对旳旳是A.“作线段CD =AB”是一种命题B.三角形旳三条内角平分线旳交点为三角形旳内心C.命题“若x= 1,则x2=1 ”旳逆命题是真命题D.“具有相似字母旳项称为同类项”是“同类项”旳定义【答案】B第2卷(非选择题共90分)二、填空题(本大题共5小题,每题3分,共15分.把答案填在答题卡中)11. (广东佛山,11,3)地球上旳海洋面积约为km2,用科学记数法可表达为__________km2【答案】3.61×10812. (广东佛山,12,3)己知线段AB=6若C为AB旳中点,则AC=_______.【答案】313. (广东佛山,13,3)在矩形ABCD中,两条对角线AC,BD相交于点O,若AB=OB = 4,则AD=______【答案】14. (广东佛山,14,3)某生数学科课堂体现为90分、平时作业为92分、期末考试为85分,若这三项成绩分别按30%、30%、40%旳比例计入总评成绩,则该生数学科总评成绩是_______分.【答案】88.615. (广东佛山,15,3)如图,物体从A点出发,按照A→ B(第1步) → C(第2步) →D→ E→ F→ G→ A→ B……旳次序循环运动,则第步抵达点_______处.【答案】DFC三、解答题(在答题卡上作答,写出必要旳解题环节.16〜20题毎小题6分,21〜23题毎小题8分,24题10分,25题11分,共75分.) 16. (广东佛山,16,6)化简24422x xx x++-- 【答案】24422x xx x ++-- =24422x x x x ++-- =2(2)2x x --=x-217. (广东佛山,17,6)解不等式组1x2x-3x-1-5x⎧-⎪⎨⎪≥⎩<() 【答案】解:解(1)得x >-2. 解(2)得x≤3因此原不等式旳解集是-2<x≤318. (广东佛山,18,6)如图,D 是 △ABC 旳边AB 上一点,连结CD .若AD = 2,BD = 4, ∠ACD =∠B 求AC 旳长.BA【答案】解:在△ABC和△ACD中,∵∠ACD=∠B,∠A=∠A,∴△ABC∽△ACD∴ACAB=ADAC即AC²=AD×AB=AD×(AD+BD)=2×6=12∴AC=219. (广东佛山,19,6)某市旳用电状况如下图1:(1)求商业用电位与工业用电量之比是多少?(2)请在图2上作出愈加直观、淸楚地反应用电比例状况旳条形图.【答案】(1)商业用电量与工业用电量之比是3000: 4000=3: 4.(2)如图.20. (广东佛山,20,6)如图,己知AB是⊙O旳弦,半径OA = 20cm, ∠AOB = 120°,求△AOB 旳面积.第20题图【答案】解:如图,作OC⊥AB于点C,则有AC=CB,∠AOC=∠AOB=60°在直角Rt△AOC中,OA=30cm,因此AC=10cm,OC=10cm.因此△AOB旳面积=AB×OC=100cm21. (广东佛山,21,8)如图,已知二次函数y =ax²+bx+ c旳图象通过A(-1,-1)、B(0,2)、C(1,3)(1)求二次函数旳解析式;(2)画出二次函数旳图象.【答案】解(1)根据题意,得123 a b cca b c-+=⎧⎪=⎨⎪++=⎩解得a=-1,b=2,c=2因此解析式为y=-x2+2x+2(2)如图22. (广东佛山,22,8)如图,一张纸上有线段AB.(1)请用尺规作图,作出线段旳垂直平分线(保留作图痕迹,不写作法和证明)(2)若不用尺规作图,你尚有其他旳作法吗?请阐明作法(不作图)【答案】解(1)如图(2)对折,使点A与B重叠,则折痕所D旳直线为线段AB旳垂直平分线23. (广东佛山,23,8)在初中书本里所学习旳概率计算问题只有如下两类模型:第一类是可以列举有限个等也许发生旳成果旳概率计算问题(一步试验直接列举,两步以上旳试验可以借助树状图或表格列举),例如掷一枚均匀硬币旳试验;第二类是用试验或者模拟试验旳数据计算频率,并用频率估计概率旳概率计算问题,例如掷图钉旳试验.处理概率计算问题,可以直接运用模型,也可以转化后再运用模型. 请处理如下问题:(1)如图,类似书本旳一种寻宝游戏,若宝物随机藏在某一块砖下(图中毎一块砖除颜色外完全相似),则宝物藏在阴影砖下旳概率是多少(2)在1〜9中随机选用3个整数,若以这3个整数为边长构成三角形旳状况如下表:请你根据表中数据,估计构成钝角三角形旳概率是多少(精确到百分数)【答案】(1)所有等也许旳成果共有16种.藏在阴影砖下旳成果共有4种,....................................(2分)因此P (宝物藏在阴影砖下)=416= 0.25⑵各组试验中构成钝角三角形旳频率依次是0.24,0.26,0.21,0.22,0.22频率计算中•对1至2个给1分、对3至4个给2分、5个全对给3分.因此p (构成钝角三角形)= 0.22 • ..............................................................• (8分)24. (广东佛山,24,10)商场对某种商品进行市场调查,1至6月份该种商品旳销售状况如下:①销售成本p(元/公斤)与销售月份x旳关系如图所示:②销售收入q(元/公斤)与销售月份x满足q=-x+15③销售量m(公斤)与销售月份x满足m=100x+200.试处理如下问题:(1)根据图形,求与p与x之间旳函数关系式:(2)求该种商品每月旳销售利润y(元)与销售月份X旳函数关系式,并求出哪个月旳销售利润最大?【答案】解:(1)根据图形可知;p与x之间旳关系符合一次函数.故可设为p=kx+b并有946k bk b=+⎧⎨=+⎩解得110kb=-⎧⎨=⎩故p与x旳函数关系式为p=-x+10(3)根据题意,月销售利润y=(q-p)m=[(-x+15)-(-x+10)](100x+200)化简得y=-50x²+400x+10000因此4月份销售利润最大。

重点高中提前招生数学试卷

重点高中提前招生数学试卷

)bx重点高中提前招生数学试卷一、选择题(每小题5分)1、方程1116x y+=的正整数解的个数是()A 7个B 8个C 9 个D 10个2、如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至11A B,则a b+的值为()A.2 B.3 C.4 D.53、解关于x的不等式⎩⎨⎧-<>axax,正确的结论是()A、无解B、解为全体实数C、当a>0时无解D、当a<0时无解4、某一天的不同时刻老板把信交给秘书打字,每次都将信放在秘书信堆的最上面,秘书有时间就将信堆最上面的那封信取来打。

假定共有5封信,且老板以1、2、3、4、5的顺序交来,在下列各顺序中,哪一顺序不可能是秘书打字的顺序?(A、12345B、54321C、23541D、235145、二次函数2y ax bx c=++的图象如图所示,)2,(nQ是图象上的一点,且BQAQ⊥,则a的值为().A.13- B.12- C.-1 D.-26、如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=26,那么AC的长等于()(A) 12(B) 16 (C) (D)7、函数y=(m2-1)x2-(3m-1)x+2的图象与x轴的交点情况是( )A、当m≠3时,有一个交点B、1±≠m时,有两个交点C、当1±=m时,有一个交点 D、不论m为何值,均无交点8、已知函数f(x)=x2+λx,p、q、r为⊿ABC的三边,且p﹤q﹤r,若对所有的正整数p、q、r都满足f(p)﹤f(q)﹤f(r),则λ的取值范围是()A、λ﹥-2B、λ﹥-3C、λ﹥-4D、λ﹥-5二、填空题(每小题5分)9、若关于x的分式方程3131+=-+xax在实数范围内无解,则实数=a_____.10、若222a b c bc=+-则的值是ABCEFOc ba b a c+++第13题图11、在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是____________ .12、在平面直角坐标系中,横坐标与纵坐标都是整数的点(y x ,)称为整点,如果将二次函数43982-+-=x x y 的图像与x 轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有 个。

高中自主招生考试数学试题(含答案详解)

高中自主招生考试数学试题(含答案详解)

一中自主招生考试数学试题一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.2.(4分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟3.(4分)如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式的值等于()A.B.﹣6C.D.64.(4分)(2008•青岛)如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)5.(4分)如图,四边形BDCE内接于以BC为直径的⊙A,已知:,则线段DE的长是()A.B.7C.4+3D.3+46.(4分)如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm二.填空题(共6小题,满分24分,每小题4分)7.(4分)若x+=3,则x2+=_________.8.(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________cm2.9.(4分)如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.10.(4分)对于正数x,规定f(x)=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(98)+f(99)+f(100)=_________.11.(4分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每﹣局的输方去当下﹣局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是_________.12.(4分)(2002•广州)如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,则正方形ABCD的面积为_________.三.解答题(共6小题,满分52分)13.(6分)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3},{2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.(1)请你判断集合{1,2},{1,4,7}是不是好的集合;(2)请你写出满足条件的两个好的集合的例子.14.(8分)(2007•丽水)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明)(2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.15.(8分)某中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?16.(10分)如图,⊙O的直径EF=cm,Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=cm.E、F、A、B 四点共线.Rt△ABC以1cm/s的速度沿EF所在直线由右向左匀速运动,设运动时间为t(s),当t=0s时,点B与点F重合.(1)当t为何值时,Rt△ABC的直角边与⊙O相切?(2)当Rt△ABC的直角边与⊙O相切时,请求出重叠部分的面积(精确到0.01).17.(10分)(2008•广东)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.18.(10分)(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.答案与评分标准一.C ,C ,A ,C ,D ,D甲,256,二.7,40,3,,三.解:(1)集合{1,2}不是好的集合,这是因为8﹣1=7,而7不是{1,2}中的数,所以{1,2}不是好的集合,{1,4,7}是好的集合,这是因为8﹣1=7,7是{1,4,7}中的数,8﹣4=4,4也是{1,4,7}中的数,8﹣7=1,1又是{1,4,7}中的数.所以{1,4,7}是好的集合;(2)答案不唯一.集合{4}、{3,4,5}、{2,6}、{1,2,4,6,7}、{0,8}等都是好的集合.解:(1)踺子踢到小华处的概率是.树状图如下:列表法如下:小丽小王小华小王(小丽,小王)(小王,小华)小华(小华,小丽)(小华,小王)(2)小王.树状图如下:理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是,踢到其它两人处的概率都是,因此,踺子踢到小王处的可能性是最小.解:(1)由题意可设拆旧舍x平方米,建新舍y平方米,则答:原计划拆建各4500平方米.(2)计划资金y1=4500×80+4500×800=3960000元实用资金y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+3240000=3636000∴节余资金:3960000﹣3636000=324000∴可建绿化面积=平方米答:可绿化面积1620平方米.解:(1)∵∠BAC=30°,AB=,∴BC=又∵⊙O的直径EF=,即半径为,∠ACB=90°,∴当点B运动到圆心O时,AC边与⊙O相切.(如图1所示)(1分)此时运动距离为FO=,∴t=s.(2分)当BC边与⊙O相切时(如图2所示),设切点为G.连接OG,则OG⊥BC.(3分)由已知,∠BOG=∠BAC=30°,OG=,∴BO=2.(4分)又FO=,∴BF=.(此步亦可利用相似求解,请参照给分)∴此时s.(5分)由上所述,当秒时,Rt△ABC的直角边与⊙O相切.(6分)(2)由图1,此时⊙O与Rt△ABC的重叠部分为扇形COF.(7分)由已知,∠COF=60°,∴.(8分)由图2,设AC与⊙O交于点M,此时⊙O与Rt△ABC的重叠部分为扇形OMGE加上△OAM.(9分)过点M作MN⊥OG于N,则MN=GC.由(1)可知BG=1则MN=GC=.(10分)∴,∴∠MON=25°,即∠MOE=55°.(11分)∴.(12分)又∵OM=,∴点M到AB的距离h=OM•sin∠MOE≈1.419,(13分)∴S△AOM =•OA•h≈1.229cm2此时⊙O与Rt△ABC的重叠部分的面积为S扇形OMEF+S△AOM≈2.67cm2.(14分)解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.解:(1)根据题意可得:A(﹣1,0),B(3,0);则设抛物线的解析式为y=a(x+1)(x﹣3)(a≠0),又∵点D(0,﹣3)在抛物线上,∴a(0+1)(0﹣3)=﹣3,解之得:a=1∴y=x2﹣2x﹣3(3分)自变量范围:﹣1≤x≤3(4分)(2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM,在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=在Rt△MCE中,∵MC=2,∠CMO=60°,∴ME=4∴点C、E的坐标分别为(0,),(﹣3,0)(6分)∴切线CE 的解析式为(8分)(3)设过点D(0,﹣3),“蛋圆”切线的解析式为:y=kx ﹣3(k≠0)(9分)由题意可知方程组只有一组解即kx﹣3=x2﹣2x﹣3有两个相等实根,∴k=﹣2(11分)∴过点D“蛋圆”切线的解析式y=﹣2x﹣3.(12分)。

2022年河南省中招考试数学试卷及参考答案(Word版)

2022年河南省中招考试数学试卷及参考答案(Word版)

2022年河南省中招考试数学试卷及参考答案(Word版)2022 年河南省普通高中招生考试数学试题一、选择题(每小题 3 分,共 30 分)下列各小题均有四个答案,其中只有一个是正确的.1.-1的绝对值是()2A.-12B.12C.2D.-22.成人每天维生素 D 的摄入量约为0.0000046 克,数据“0.0000046”用科学记数法表示为()A.46?10-7B.4.6?10-7C.4.6?10-6D.0.46?10-53.如图,A B∥CD ,∥B = 75?,∥E = 27?,则∥D 的度数为() A.45?B.48?C.50?D.58?4.下列计算正确的是()A.2a + 3a = 6aC.(x-y)2=x2-y2D CB.(-3a)2=6a2D.3 2 -= 25.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同 B.左视图相同C.俯视图相同D.三种视图都不相同正面图①图②6.一元二次方程(x +1)(x -1)= 2x +3 的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根2022 年河南省普通高中招生考试数学试题一、选择题(每小题 3 分,共 30 分)下列各小题均有四个答案,其中只有一个是正确的.1.-1的绝对值是()2A.-12B.12C.2D.-22.成人每天维生素 D 的摄入量约为0.0000046 克,数据“0.0000046”用科学记数法表示为()A.46?10-7B.4.6?10-7C.4.6?10-6D.0.46?10-53.如图,A B∥CD ,∥B = 75?,∥E = 27?,则∥D 的度数为() A.45?B.48?C.50?D.58?4.下列计算正确的是()A.2a + 3a = 6aC.(x-y)2=x2-y2D CB.(-3a)2=6a2D.3 2 -= 25.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同 B.左视图相同C.俯视图相同D.三种视图都不相同正面图①图②6.一元二次方程(x +1)(x -1)= 2x +3 的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根。

重点高中招生试题(数学)

重点高中招生试题(数学)

重点高中招生模拟试题(数学)卷I一、填空题(4×14)1、实数a 、b 满足332,33222=+=+b b a a ,那么代数式a 2+ab+b 2的值为_________.2、a 是自然数,x 是实数,并且式子21-a 有意义而式子a x x ++412无意义,那么ax 的值为____________。

3、有一块三角形材料测得其三边长分别为3米,4米和5米,现要把它加工成正方形的半成品,那么所得半成品的最大面积是________平方米。

4、某三角形的一边长为8,这边上的中线长为5,则该三角形的周长x 的取值范围是_________。

5、若不等式组1)3)(1(||+<-+≥x x x a x 有且只有2个整数解,则a 的最小值为______。

6、如图,(1ABCD 有一个内切圆⊙O ,若∠A=120°,38,则⊙O 的 半径为________。

7、实数x 、y 满足方程组6522=+=++xy y x y x xy试写出一个以x 2·y 2为根的一元三次方程.8、如图(2)梯形ABCD 中,AB//DC ,∠C=90°,沿直线BE 折叠,点C 恰好落在腰AD 的中点F 处,若BE=10,BF=8,则梯形ABCD 的面积为___________. 9、下列图形中:正n 边形、圆、双曲线、平行四边形、等腰梯形,平面直角坐标系一定既是中心对称图形,又是轴对称图形的个数是 。

10、如图(3),△ABC 中,∠C=60°,AD 是高,BE 是中线,且BE=23AC ,则∠CBE= 。

11、从K 个不同的正整数中任取两个数x 1、x 2,如要使得x 1+x 2+x 1·x 2<2004恒成立,则k 的最大值为 。

12、单位面积的四边形ABCD 中,E 、F 是AD 边上三等分点,G 、H是BC 边上的三等分点,则四边形EFGH 的面积为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中招生数学试题
一. 选择题(每小题3分,共30分) 1. –3的相反数是( ) A.
13 B.3 C. - 1
3
D.-3 2.“天上星星有几颗,7后跟上22个0”这是国际天文学联合会上宣布的消息,用科学记数法表示宇宙空间星星颗数为( )
A.700×1020
B.7×1023
C.0.7×1023
D.7×1022 3.如图,圆和圆的位置关系是( )
A.相交
B.外离
C.相切
D.内含 4.不等式2-x<1的解是( )
A. x>1
B.x>-1
C.x<1
D.x<-1
5.如图,AB ∥CD,∠B=230, ∠D=420
,则∠E=( ) A.230 B.420 C.650 D.19
6.一元二次次方程x 2
+2x -5=0的两个根的倒数和等于( ) A.25
B.-
25 C.5
2
D.- 52
7.若四边形的两条对角线相等,则顺次连结该四边形各边中点所得的四边形是( )
A.梯形
B.矩形
C.菱形
D.正方形
8.正比例函数y=x 与反比例函数y=
1
x 的图象相交于A 、C
D(如图),则四边形ABCD 的面积为( )
A.1
B.
32 C.2 D.52 9.边长分别为3,4,5
A.1∶5
B.2∶5
C.3∶5
D.4∶5
10.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色的概率是( ) A.12 B.13 C.14 D.16
二. 填空;(每小题3分,共24分)
11.分解因式2x 2-18 = .
12.实数a 在数轴上的位置如图所示, = .
13.如图,△ABC 内接于⊙O, ∠B=300
,AC=2cm 则⊙O 半径长为 cm. 14.已知抛物线解析式为y=x 2-3,则此抛物线的顶点坐标为 .
15.已知一个底面直径为10cm,母线长为8cm 的圆锥形漏斗,它的侧面积是 cm.
16.在航天知识竞赛中包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为 分.
17.矩形纸片ABCD 中,AD=4cm ,AB=10cm,按如图方式折叠,使点B 与点D 重合,折痕为EF,则DE= cm.
A B C E D
A O
B
C A E
B C
D
F C 1
18.已知a-b=b-c=3
5
,a2+b2+c2=1则ab+bc+ca的值等于.
三.解答题(第19、20题各5分,21~23题各6分,24~25题各8分,26题10分,27题12分,
共66分)
19
.计算:
202
2
223
-⎛⎫⎛⎛⎫-+--
⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭
20.已知关于x的方程
3
23
a x bx
--
=的解是x=2,其中a≠0且b≠0,求代数式
a b
b a
-的
值。

21
(1)画出
1
B1
C1D1使1B1C1D1与关于直线MN对称;
(2)画出A2B2C2D2,A2B2C2D2与ABCD关于点O中心对称;
(3) A1B1C1D1与A2B2C2D2是对称图形吗?若是,
请在图上画出对称轴或对称中心
22.已知一次函数物图象经过A(-2,-3),B(1,3)两点.
(1)求这个一次函数的解析式;
(2)试判断点P(-1,1)是否在这个一次函数的图象上?
B
N
23.如图,△ABC 中,AB=AC,过点A 作GE ∥BC,角平分线BD 、CF 相交于点H,它们的延长线分别交GE 于点E 、G.试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.
24.已知关于x 的方程x 2
-2(m+1)x+m=0 (1) 当m 取何值时,方程有两个实数根;
(2) 为m 选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.
25.泸杭甬高速公路拓宽宁波段工程进入全面施工阶段,在现有双向四车道的高速公路两侧经加宽形成双向八车道.如图,路基原横断面为等腰梯形ABCD,AD ∥BC,斜坡DC 的坡度为i 1,在其一侧加宽DF=7.75米,点E 、F 分别在BC 、AD 的延长线上,斜坡FE 的坡度为i 2(i 1<i 2).设路
基的高DM=h 米,拓宽后横断面一侧增加的四边形DCEF 的面积为s 米2
. (1)已知i 2=1:1.7,h=3米,求ME 的长. (3) 不同路段的i 1、i 2、、
、h 是不同的,请你设计一个求面积S 的公式(用含i 1、i 2的代数式表示).(通常把坡面的铅直高度与水平宽度的比叫做坡度.坡度常用字母i 表示,即i=h
l
,通常写成1:m 的形式)
26.宁波港是一个多功能、综合性的现代化大港,年货物吞吐量位于中国大陆第二,世界排名第五,成功跻身于国际大港行列。

如图是宁波港xx 年~xx 年货物吞吐量统计图。

(1)统计图中你能发现哪些信息,请说出两个;
(2)有人断定宁波港贷物吞吐量每年的平均增长率不超过15%,你认为他的说法正确吗?
A B C
D H
F E
G A
B C M D
E
F
请说明理由。

27.已知抛物线y=-x 2-2kx+3k 2
(k>0)交x 轴于A 、B 两点,交y 轴于点C,以AB 为直径的⊙E 交y 轴于点D 、F(如图),且DF=4,G 是劣弧A D 上的动点(不与点A 、D 重合),直线CG 交x 轴于点P.
(1) 求抛物线的解析式;
(2) 当直线 CG 是⊙E 的切线时,求tan ∠PCO 的值.
(3) 当直线CG 是⊙E 的割线时,作GM ⊥AB,垂足为H,交PF 于点M,交⊙E 于另一点N,设
MN=t,GM=u,求u 关于t 的函数关系式.
年份
货物吞吐量(万吨)
Y
G
P
A
E
F
O
D
C
X Y
C
G
A
P E H M
O F
D
B X
N。

相关文档
最新文档