正方体的认识课件.ppt
合集下载
人教版五年级数学下册《认识正方体》课件
棱长:16÷4 = 4(dm) 棱长总和:4×12 = 48(dm) 答:它的棱长总和是48分米。
拓展延伸 能力提升
1.左边的长方体是用棱长1 cm的小正方体拼成的。右边的图形中哪一个 是这个长方体6个面中的一个?用“✔”标出来,并注明有几个这样 的面。(教材P22第6题)
2 cm
2 cm
2 cm
分析:先算出这根铁丝的总长度,再计算正方体的棱长。
这根铁丝的总长度 =(9+4+2)×4 = 60(cm) 正方体的棱长为:60÷12 = 5(cm) 答:这个正方体的棱长是5厘米。
你知道吗?
几何学和欧几里得
几何学是数学学科的一个重要分支,它源于土地测量等实 际需要。
古希腊数学家欧几里得被称为“几何学之父”,他的著作 《原本》在数学发展史上有着深米。
随堂练习 巩固新知
1.判断。(对的画“✔”,错的画“✘”) (1)底面是正方形的长方体,一定是正方体。
(✘)
(2)如果长方体的长和宽相等,那么它一定是正方体。 (✘)
(3)相交于同一个顶点的三条棱相等的长方体一定是正方体。 (✔ )
2.(教材P21第4题) (1)这个魔方是什么形状的?
3 长方体和正方体
第2课时 认识正方体
【学习目标】
1.掌握正方体的特征,建立正方体的概念。 2.理解长方体和正方体之间的关系,掌握正方体与长方体的 区别与联系。
【学习重点】
认识正方体,掌握正方体的特征。
【学习难点】
掌握正方体与长方体的区别与联系。
创设情境 引入新课
引入 看图填空。
10 cm
20 cm 10 cm
正方体形状 (2)它的棱长是多少?
10 cm (3)它有几个面的形状完全相同?
拓展延伸 能力提升
1.左边的长方体是用棱长1 cm的小正方体拼成的。右边的图形中哪一个 是这个长方体6个面中的一个?用“✔”标出来,并注明有几个这样 的面。(教材P22第6题)
2 cm
2 cm
2 cm
分析:先算出这根铁丝的总长度,再计算正方体的棱长。
这根铁丝的总长度 =(9+4+2)×4 = 60(cm) 正方体的棱长为:60÷12 = 5(cm) 答:这个正方体的棱长是5厘米。
你知道吗?
几何学和欧几里得
几何学是数学学科的一个重要分支,它源于土地测量等实 际需要。
古希腊数学家欧几里得被称为“几何学之父”,他的著作 《原本》在数学发展史上有着深米。
随堂练习 巩固新知
1.判断。(对的画“✔”,错的画“✘”) (1)底面是正方形的长方体,一定是正方体。
(✘)
(2)如果长方体的长和宽相等,那么它一定是正方体。 (✘)
(3)相交于同一个顶点的三条棱相等的长方体一定是正方体。 (✔ )
2.(教材P21第4题) (1)这个魔方是什么形状的?
3 长方体和正方体
第2课时 认识正方体
【学习目标】
1.掌握正方体的特征,建立正方体的概念。 2.理解长方体和正方体之间的关系,掌握正方体与长方体的 区别与联系。
【学习重点】
认识正方体,掌握正方体的特征。
【学习难点】
掌握正方体与长方体的区别与联系。
创设情境 引入新课
引入 看图填空。
10 cm
20 cm 10 cm
正方体形状 (2)它的棱长是多少?
10 cm (3)它有几个面的形状完全相同?
《正方体的认识》课件
正方体在家具设计中也有着广泛的应用,如书架、衣柜、电视柜等 。
游戏道具
正方体在游戏设计中也经常被使用,如魔方、骰子等,其形状和规 则简单易懂,便于玩家操作和游戏进行。
05
正方体的相关定理 与公式
正方体的表面积公式
总结词
正方体的表面积计算公式
详细描述
正方体的表面积计算公式为6 * (边长)^2,其中边长是正方体的棱长。这个公式用于计算正方体的表面积,即其 六个面的总面积。
正方体的性质
总结词
正方体的所有边长都相等,所有 面都是正方形,所有角都是直角 。
详细描述
正方体的所有边长都相等,所有 的面都是正方形,所有的角都是 直角。这是正方体最基本和最重
正方体的体积和表面积都可以通过其边长计算得出。
详细描述
正方体的体积和表面积都可以通过其边长计算得出。具体来说,正方体的体积是 边长的三次方,表面积是边长的平方乘以6。
。
数学建模
正方体是数学建模中的基础模型 之一,可以用来描述和解决各种 实际问题,如空间定位、最短路
径等。
数学竞赛
正方体也是数学竞赛中常见的题 目类型,涉及到正方体的性质、 面积、体积等方面的计算和证明
。
日常生活中的应用
包装盒
正方体在包装盒设计中应用广泛,因为其形状规整、容量大,便 于存储和运输。
家具
展开
将四个三角形展开,得到正方 体的平面展开图。
03
正方体的立体结构
正方体的面
总结词
正方体有六个面,每个面都是正方形 。
详细描述
正方体是一个特殊的长方体,它的六 个面都是正方形,并且所有的面都相 等。
正方体的棱
总结词
正方体有十二条棱,每条棱的长度都相等。
游戏道具
正方体在游戏设计中也经常被使用,如魔方、骰子等,其形状和规 则简单易懂,便于玩家操作和游戏进行。
05
正方体的相关定理 与公式
正方体的表面积公式
总结词
正方体的表面积计算公式
详细描述
正方体的表面积计算公式为6 * (边长)^2,其中边长是正方体的棱长。这个公式用于计算正方体的表面积,即其 六个面的总面积。
正方体的性质
总结词
正方体的所有边长都相等,所有 面都是正方形,所有角都是直角 。
详细描述
正方体的所有边长都相等,所有 的面都是正方形,所有的角都是 直角。这是正方体最基本和最重
正方体的体积和表面积都可以通过其边长计算得出。
详细描述
正方体的体积和表面积都可以通过其边长计算得出。具体来说,正方体的体积是 边长的三次方,表面积是边长的平方乘以6。
。
数学建模
正方体是数学建模中的基础模型 之一,可以用来描述和解决各种 实际问题,如空间定位、最短路
径等。
数学竞赛
正方体也是数学竞赛中常见的题 目类型,涉及到正方体的性质、 面积、体积等方面的计算和证明
。
日常生活中的应用
包装盒
正方体在包装盒设计中应用广泛,因为其形状规整、容量大,便 于存储和运输。
家具
展开
将四个三角形展开,得到正方 体的平面展开图。
03
正方体的立体结构
正方体的面
总结词
正方体有六个面,每个面都是正方形 。
详细描述
正方体是一个特殊的长方体,它的六 个面都是正方形,并且所有的面都相 等。
正方体的棱
总结词
正方体有十二条棱,每条棱的长度都相等。
五年级下册数学课件3.1 长方体和正方体的认识 人教版(共32张PPT)【完美版课件】
实际上长方体的长、宽、高的位置不是固 定不变的
看图说出每个长方体的长、宽、 高各是多少。
3cm 6dm 15mm
7cm
长:7cm 宽:4cm 高:3cm
5dm
长:5dm 宽:4dm 高:6m
8mm
长:8mm 宽:8mm 高:15mm
长,宽,高都相等的长方体叫正方体,也叫立方体。
讨论: 1.正方体的面有几个?有什么特点? 2.正方体的棱有几条?有什么特点? 3.正方体的顶点有几个?
( ×)
第三关:
21cm 15cm 1cm
6cm 6cm
6cm
四:课堂小结
通过本节课的学习, 你有什么收获?
五:作业布置
找出长方体和正方体 的相同点和不同点。
每个人都有潜在的能量,只是很容易被习惯所掩盖,被时间所迷离,被惰性所消磨。把命运寄托在自己身上,这是这个世界上最美妙的心思。为此努力,拼搏,不舍昼夜。每个人的内心都充 满了魔鬼,学会控制他。如果你还认为自己还年轻,还可以蹉跎岁月的话,你终将一事无成,老来叹息。在实现理想的路途中,必须排除一切干扰,特别是要看清那些美丽的诱惑。忍一时之 气,免百日之忧信心、毅力、勇气三者具备,则天下没有做不成的事改变自己是自救,影响别人是救人。当你感到无助的时候,还有一种坚实的力量可以依靠,那就是你自己。想过去是杂念, 想未来是妄想,最好把握当下时刻。幸福不在得到多,而在计较少。改变别人,不如先改变自己。一个人能走多远,要看他有谁同行;一个人有多优秀,要看他有谁指点;一个人有多成功, 要看他有谁相伴。同样的一瓶饮料,便利店里2块钱,五星饭店里60块,很多的时候,一个人的价值取决于所在的位置。忙碌是一种幸福,让我们没时间体会痛苦;奔波是一种快乐,让我们真 实地感受生活;疲惫是一种享受,让我们无暇空虚。10、我是世界上独一无二的,我一定会成功!成功者往往有个计划,而失败者往往有个托辞。成功者会说:“我帮你做点什么吧!而失败者 说:那不是我的事。成功三个条件:机会;自己渴望改变并非常努力;贵人相助亿万财富买不到一个好的观念;好的观念却能让你赚到亿万财富。一个讯息从地球这一端到另一端只需要0.05 秒,而一个观念从脑外传到脑里却需要一年,三年甚至十年。要改变命运,先改变观念。人生的成败往往就在于一念之差。鸟无翅膀不能飞,人无志气不成功。成功99%是心志,1%是能力。一 个人不成功是因为两个字——恐惧。一个会向别人学习的人就是一个要成功的人。人要是惧怕痛苦,惧怕种种疾病,惧怕不测的事情,惧怕生命的危险和死亡,他就什么也不能忍受了,人格 的完善是本,财富的确立是末。傲不可长,欲不可纵,乐不可极,志不可满。在人之上,要把人当人;在人之下,要把自己当人。锲而舍之,朽木不折;锲而不舍,金石可镂。真者,精诚之 至也,不精不诚,不能动人。我觉得坦途在前,人又何必因为一点小障碍而不走路呢?对时间的慷慨,成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。天下之事常成于困 约,而败于奢靡。企业家收获着梦想,又在播种着希望;原来一切辉煌只代表过去,未来永远空白。一个最困苦、最卑贱、最为命运所屈辱的人,只要还抱有希望,便无所怨惧。你生而有翼, 为何一生匍匐前进,形如蝼蚁世界上只有想不通的人,没有走不通的路。世上那有什么成功,那只是努力的另一个代名词罢了。所谓英雄,其实是指那些无论在什么环境下都能够生存下去的 人。微笑不用本钱,但能创造财富。赞美不用花钱,但能产生气力。分享不用过度,但能倍增快乐。微笑向阳,无畏悲伤。我们不知道的事情并不等于没发生,我们不了解的事情并不代表不 存在。我们渴望成功,首先要志在成功。我要让未来的自己为现在的自己感动。想哭就哭,想笑就笑,不要因为世界虚伪,你也变得虚伪了。小鸟眷恋春天,因为它懂得飞翔才是生命的价值。 笑对人生,能穿透迷雾;笑对人生,能坚持到底;笑对人生,能化解危机;笑对人生,能照亮黑暗。学在苦中求,艺在勤中练。不怕学问浅,就怕志气短。一个细节足以改变一生。一切成就 都缘于一个梦想和毫无根据的自信。永远不要嘲笑你的教师无知或者单调,因为有一天当你发现你用瞌睡来嘲弄教师实际上很愚蠢时,你在社会上已经碰了很多钉子了。幽默胜过直白,话少 胜过多言;坦率胜过伪装,自然胜过狡辩;心静何来多梦,苦索不如随缘。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。最可怕的不是有人比你优秀,而是比你优秀的人还比 你更努力。最有希望的成功者,并不是才干出众的人而是那些最善利用每一时机去发掘开拓的人。昨天如影——记住你昨天的挫折和失败的教训;今天如画快乐和幸福的人生要靠你自己去描 绘;明天如梦——珍惜今天,选择好自己的目标,努力地为自己的明天去寻求和拼搏。不曾扬帆,何以至远方。不论你在什么时候开始,重要的是开始之后就不要轻言放弃。不去耕耘,不去播 种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要盘算太多,要顺其自然。该是你的终会得到。成大事不在于力量多少,而在能坚持多久。成为一个成功 者最重要的条件,就是每天精力充沛的努力工作,不虚掷光阴。从未跌倒算不得光彩,每次跌倒后能再战起来才是最大的荣耀。脆弱的心灵创伤太多,追求才是愈合你伤口最好的良药。挫折 经历的太少,所以总是把一些琐碎的小事看得很重。当你知道你不在是你的时候,你才是真正的你!漫无目的的生活就像出海航行而没有指南针。人生多一份感恩,就多一份美化。所有的豪 言都收起来,所有的呐喊都咽下去。成功六机握机当你握着两手沙子时,一定就拿不到地上那颗珍珠了。快乐在满足中求,烦恼多从欲中来。人若有志,万事可为。为明天做准备的最好方法, 就是要集中你所有的智慧,所有的热诚,把今天的事情做得尽善尽美。在茫茫沙漠,唯有前进时的脚步才是希望的象征。在我们了解什么是生命之前,我们已将它消磨了一半。这个世界既不 是有钱人的世界,也不是有权人的世界,它是有心人的世界。这个世界上任何奇迹的产生都是经过千辛万苦的努力而得的,首先承认自己的平凡,然后用千百倍的努力来弥补平凡。真正的导 者,其厉害之处不在于能指挥多少君子,而在于能驾驭多少小人。追逐着鹿的猎人看不到脚下的高山。
看图说出每个长方体的长、宽、 高各是多少。
3cm 6dm 15mm
7cm
长:7cm 宽:4cm 高:3cm
5dm
长:5dm 宽:4dm 高:6m
8mm
长:8mm 宽:8mm 高:15mm
长,宽,高都相等的长方体叫正方体,也叫立方体。
讨论: 1.正方体的面有几个?有什么特点? 2.正方体的棱有几条?有什么特点? 3.正方体的顶点有几个?
( ×)
第三关:
21cm 15cm 1cm
6cm 6cm
6cm
四:课堂小结
通过本节课的学习, 你有什么收获?
五:作业布置
找出长方体和正方体 的相同点和不同点。
每个人都有潜在的能量,只是很容易被习惯所掩盖,被时间所迷离,被惰性所消磨。把命运寄托在自己身上,这是这个世界上最美妙的心思。为此努力,拼搏,不舍昼夜。每个人的内心都充 满了魔鬼,学会控制他。如果你还认为自己还年轻,还可以蹉跎岁月的话,你终将一事无成,老来叹息。在实现理想的路途中,必须排除一切干扰,特别是要看清那些美丽的诱惑。忍一时之 气,免百日之忧信心、毅力、勇气三者具备,则天下没有做不成的事改变自己是自救,影响别人是救人。当你感到无助的时候,还有一种坚实的力量可以依靠,那就是你自己。想过去是杂念, 想未来是妄想,最好把握当下时刻。幸福不在得到多,而在计较少。改变别人,不如先改变自己。一个人能走多远,要看他有谁同行;一个人有多优秀,要看他有谁指点;一个人有多成功, 要看他有谁相伴。同样的一瓶饮料,便利店里2块钱,五星饭店里60块,很多的时候,一个人的价值取决于所在的位置。忙碌是一种幸福,让我们没时间体会痛苦;奔波是一种快乐,让我们真 实地感受生活;疲惫是一种享受,让我们无暇空虚。10、我是世界上独一无二的,我一定会成功!成功者往往有个计划,而失败者往往有个托辞。成功者会说:“我帮你做点什么吧!而失败者 说:那不是我的事。成功三个条件:机会;自己渴望改变并非常努力;贵人相助亿万财富买不到一个好的观念;好的观念却能让你赚到亿万财富。一个讯息从地球这一端到另一端只需要0.05 秒,而一个观念从脑外传到脑里却需要一年,三年甚至十年。要改变命运,先改变观念。人生的成败往往就在于一念之差。鸟无翅膀不能飞,人无志气不成功。成功99%是心志,1%是能力。一 个人不成功是因为两个字——恐惧。一个会向别人学习的人就是一个要成功的人。人要是惧怕痛苦,惧怕种种疾病,惧怕不测的事情,惧怕生命的危险和死亡,他就什么也不能忍受了,人格 的完善是本,财富的确立是末。傲不可长,欲不可纵,乐不可极,志不可满。在人之上,要把人当人;在人之下,要把自己当人。锲而舍之,朽木不折;锲而不舍,金石可镂。真者,精诚之 至也,不精不诚,不能动人。我觉得坦途在前,人又何必因为一点小障碍而不走路呢?对时间的慷慨,成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。天下之事常成于困 约,而败于奢靡。企业家收获着梦想,又在播种着希望;原来一切辉煌只代表过去,未来永远空白。一个最困苦、最卑贱、最为命运所屈辱的人,只要还抱有希望,便无所怨惧。你生而有翼, 为何一生匍匐前进,形如蝼蚁世界上只有想不通的人,没有走不通的路。世上那有什么成功,那只是努力的另一个代名词罢了。所谓英雄,其实是指那些无论在什么环境下都能够生存下去的 人。微笑不用本钱,但能创造财富。赞美不用花钱,但能产生气力。分享不用过度,但能倍增快乐。微笑向阳,无畏悲伤。我们不知道的事情并不等于没发生,我们不了解的事情并不代表不 存在。我们渴望成功,首先要志在成功。我要让未来的自己为现在的自己感动。想哭就哭,想笑就笑,不要因为世界虚伪,你也变得虚伪了。小鸟眷恋春天,因为它懂得飞翔才是生命的价值。 笑对人生,能穿透迷雾;笑对人生,能坚持到底;笑对人生,能化解危机;笑对人生,能照亮黑暗。学在苦中求,艺在勤中练。不怕学问浅,就怕志气短。一个细节足以改变一生。一切成就 都缘于一个梦想和毫无根据的自信。永远不要嘲笑你的教师无知或者单调,因为有一天当你发现你用瞌睡来嘲弄教师实际上很愚蠢时,你在社会上已经碰了很多钉子了。幽默胜过直白,话少 胜过多言;坦率胜过伪装,自然胜过狡辩;心静何来多梦,苦索不如随缘。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。最可怕的不是有人比你优秀,而是比你优秀的人还比 你更努力。最有希望的成功者,并不是才干出众的人而是那些最善利用每一时机去发掘开拓的人。昨天如影——记住你昨天的挫折和失败的教训;今天如画快乐和幸福的人生要靠你自己去描 绘;明天如梦——珍惜今天,选择好自己的目标,努力地为自己的明天去寻求和拼搏。不曾扬帆,何以至远方。不论你在什么时候开始,重要的是开始之后就不要轻言放弃。不去耕耘,不去播 种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要盘算太多,要顺其自然。该是你的终会得到。成大事不在于力量多少,而在能坚持多久。成为一个成功 者最重要的条件,就是每天精力充沛的努力工作,不虚掷光阴。从未跌倒算不得光彩,每次跌倒后能再战起来才是最大的荣耀。脆弱的心灵创伤太多,追求才是愈合你伤口最好的良药。挫折 经历的太少,所以总是把一些琐碎的小事看得很重。当你知道你不在是你的时候,你才是真正的你!漫无目的的生活就像出海航行而没有指南针。人生多一份感恩,就多一份美化。所有的豪 言都收起来,所有的呐喊都咽下去。成功六机握机当你握着两手沙子时,一定就拿不到地上那颗珍珠了。快乐在满足中求,烦恼多从欲中来。人若有志,万事可为。为明天做准备的最好方法, 就是要集中你所有的智慧,所有的热诚,把今天的事情做得尽善尽美。在茫茫沙漠,唯有前进时的脚步才是希望的象征。在我们了解什么是生命之前,我们已将它消磨了一半。这个世界既不 是有钱人的世界,也不是有权人的世界,它是有心人的世界。这个世界上任何奇迹的产生都是经过千辛万苦的努力而得的,首先承认自己的平凡,然后用千百倍的努力来弥补平凡。真正的导 者,其厉害之处不在于能指挥多少君子,而在于能驾驭多少小人。追逐着鹿的猎人看不到脚下的高山。
长方体和正方体的认识课件
关知识。
引入先进技术: 利用现代科技手 段,如虚拟现实、 增强现实等技术, 让学生更加直观 地了解长方体和 正方体的形态和
特点。
多元化教学方式: 未来教学将采用 多种教学方式, 如小组合作、探 究式学习等,以 激发学生的学习 兴趣和主动性。
培养学生的创新 思维:未来教学 将注重培养学生 的创新思维和解 决问题的能力, 让学生能够更好 地应对各种挑战。
长方体和正方体在数学中的应用
空间观念的培养:长方体和正方 体作为三维图形,在数学中可以 帮助学生建立空间观念,理解三 维空间中的点、线、面关系。
空间想象能力的提升:通过长方 体和正方体的组合、拼接等操作, 可以培养学生的空间想象能力和 创造力。
添加标题
添加标题
添加标题
添加标题
几何图形的计算:长方体和正方 体的体积、表面积等计算,可以 锻炼学生的计算能力和空间思维 能力。
01
添加章节标题
02
引言
课程背景
课程目标:介绍本节课的学习目标,包括掌握长方体和正方体的基本概念、特征和性质等。
知识储备:回顾学生已经学过的与长方体和正方体相关的知识,如平面几何中的点、线、面等概 念。
现实应用:介绍长方体和正方体在现实生活中的应用,如建筑、家具等,激发学生学习兴趣。
课程意义:阐述学习长方体和正方体的重要性和意义,如培养学生的空间想象能力和几何思维能 力等。
分类:长方体可以分为三类,分别是长方体、正方体和斜方体。其中,正方体是 特殊的长方体,它的六个面都是正方形。
体积:长方体的体积可以通过其底面积和高来计算,公式为:体积 = 底面积 × 高。
表面积:长方体的表面积可以通过其六个面的面积之和来计算,公式为:表面积 = 2 × (底面积 + 侧面积 + 前后面积)。
引入先进技术: 利用现代科技手 段,如虚拟现实、 增强现实等技术, 让学生更加直观 地了解长方体和 正方体的形态和
特点。
多元化教学方式: 未来教学将采用 多种教学方式, 如小组合作、探 究式学习等,以 激发学生的学习 兴趣和主动性。
培养学生的创新 思维:未来教学 将注重培养学生 的创新思维和解 决问题的能力, 让学生能够更好 地应对各种挑战。
长方体和正方体在数学中的应用
空间观念的培养:长方体和正方 体作为三维图形,在数学中可以 帮助学生建立空间观念,理解三 维空间中的点、线、面关系。
空间想象能力的提升:通过长方 体和正方体的组合、拼接等操作, 可以培养学生的空间想象能力和 创造力。
添加标题
添加标题
添加标题
添加标题
几何图形的计算:长方体和正方 体的体积、表面积等计算,可以 锻炼学生的计算能力和空间思维 能力。
01
添加章节标题
02
引言
课程背景
课程目标:介绍本节课的学习目标,包括掌握长方体和正方体的基本概念、特征和性质等。
知识储备:回顾学生已经学过的与长方体和正方体相关的知识,如平面几何中的点、线、面等概 念。
现实应用:介绍长方体和正方体在现实生活中的应用,如建筑、家具等,激发学生学习兴趣。
课程意义:阐述学习长方体和正方体的重要性和意义,如培养学生的空间想象能力和几何思维能 力等。
分类:长方体可以分为三类,分别是长方体、正方体和斜方体。其中,正方体是 特殊的长方体,它的六个面都是正方形。
体积:长方体的体积可以通过其底面积和高来计算,公式为:体积 = 底面积 × 高。
表面积:长方体的表面积可以通过其六个面的面积之和来计算,公式为:表面积 = 2 × (底面积 + 侧面积 + 前后面积)。
五年级下册数学_长方体和正方体的认识人教版ppt(32张)精品课件
(2)正方体的( )个面面积一定相等。 (3)一个长方体(非正方体)最多有( )个面
面积相等。
第二关:判断
(1)相交于一个顶点的三条棱相等的长方体
一定是 正方体。
( √)
(2)在一个长方体中,相对的面完全相同,相对的棱
长度相等。
( √)
(3)正方体表面中有可能有长方形。
( ×)
(4) 相对的4条棱都相等的物体一定是长方体。
( ×)
第三关:
21cm 15cm 1cm
6cm 6cm
6cm
四:课堂小结
通过本节课的学习, 你有什么收获?
五:作业布置
找出长方体和正方体 的相同点和不同点。
三条棱相交的点叫做顶点
长方体
看图说出每个长方方形
(
)
一定是 正方体。
(
)
实际上长方体的长、宽、高的位置不是固定不变的
(
)
每4条棱相等(可能有8条棱相等)
-------立体图形
(3)一个长方体(非正方体)最多有( )个面
棱可以分为三组,每组的4条是相对且平行的。
看图说出每个长方体的长、宽、 高各是多少。
3cm 6dm 15mm
7cm
长:7cm 宽:4cm 高:3cm
5dm
长:5dm 宽:4dm 高:6m
8mm
长:8mm 宽:8mm 高:15mm
(2)在一个长方体中,相对的面完全相同,相对的棱长度相等。
---------平面图形
相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。
每4条棱相等(可能有8条棱相等)
(1)长方体和正方体都有( )个面,( )条棱,
(2)在一个长方体中,相对的面完全相同,相对的棱长度相等。
面积相等。
第二关:判断
(1)相交于一个顶点的三条棱相等的长方体
一定是 正方体。
( √)
(2)在一个长方体中,相对的面完全相同,相对的棱
长度相等。
( √)
(3)正方体表面中有可能有长方形。
( ×)
(4) 相对的4条棱都相等的物体一定是长方体。
( ×)
第三关:
21cm 15cm 1cm
6cm 6cm
6cm
四:课堂小结
通过本节课的学习, 你有什么收获?
五:作业布置
找出长方体和正方体 的相同点和不同点。
三条棱相交的点叫做顶点
长方体
看图说出每个长方方形
(
)
一定是 正方体。
(
)
实际上长方体的长、宽、高的位置不是固定不变的
(
)
每4条棱相等(可能有8条棱相等)
-------立体图形
(3)一个长方体(非正方体)最多有( )个面
棱可以分为三组,每组的4条是相对且平行的。
看图说出每个长方体的长、宽、 高各是多少。
3cm 6dm 15mm
7cm
长:7cm 宽:4cm 高:3cm
5dm
长:5dm 宽:4dm 高:6m
8mm
长:8mm 宽:8mm 高:15mm
(2)在一个长方体中,相对的面完全相同,相对的棱长度相等。
---------平面图形
相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。
每4条棱相等(可能有8条棱相等)
(1)长方体和正方体都有( )个面,( )条棱,
(2)在一个长方体中,相对的面完全相同,相对的棱长度相等。
五年级下册数学课件 - 长方体和正方体的认识 人教版(共38张PPT)
8x12=96(厘米)
3、有一根150cm的铁丝,用这根铁丝焊接成一个正方 体框150-6)÷12 =144÷12 =12(厘米)
4、小明用一根铁丝围成一个长30厘米、宽20厘米、高 10厘米的长方体框架。如果把它改围成一个正方体框架, 这个正方体框架的棱长是多少厘米? (30+20+10)x4
=(长+宽+高)X 4
随堂练习
1、长方体有( 6 )个面,它们一般都是( 长方形 ), 也有可能有( 2 )个相对的面是正方形。 2、长方体的上面和下面、前面和后面、左面和右面都 叫做( 相对面),他们相对的面积( 相等 )。 3、长方体有( 12)条棱,每相对的( 4 )条棱算作一 组,可以分成( 3 )组。
正方体棱长=棱长总和÷12
例3 用一根铁丝围成一个长方体,它的长是12分米,
宽是8分米,高是4分米。如果把这根铁丝改围成一个
正方体,这个正方体的棱长是多少?
(12+8+4)x4 =24x4 =96(分米) 96÷12=8(分米)
随堂练习
一个棱长6分米的正方体框架,若把它改成一个长10分
米,宽5分米的长方体框架,这个长方体的高是多少分
100÷4-(8+12) =25-20 =5(厘米) 12x5=60(平方厘米)
例3 有一个礼盒需要用彩带捆扎,捆扎效果如图,打结 部分需要10厘米彩带,一共需要多长的彩带?
(30+20)x2+20x4 =100+80 =180(厘米) 180+10=190(厘米)
例4 用一根长28厘米的铁丝做一个棱长是整厘米数的 长方体框架,这个长方体框架的长、宽、高可能是多少 厘米?想一想,填一填。
4、相较于一个顶点的三条棱的长度,叫做长方体的 ( 长)、( 宽)、( 高)。
3、有一根150cm的铁丝,用这根铁丝焊接成一个正方 体框150-6)÷12 =144÷12 =12(厘米)
4、小明用一根铁丝围成一个长30厘米、宽20厘米、高 10厘米的长方体框架。如果把它改围成一个正方体框架, 这个正方体框架的棱长是多少厘米? (30+20+10)x4
=(长+宽+高)X 4
随堂练习
1、长方体有( 6 )个面,它们一般都是( 长方形 ), 也有可能有( 2 )个相对的面是正方形。 2、长方体的上面和下面、前面和后面、左面和右面都 叫做( 相对面),他们相对的面积( 相等 )。 3、长方体有( 12)条棱,每相对的( 4 )条棱算作一 组,可以分成( 3 )组。
正方体棱长=棱长总和÷12
例3 用一根铁丝围成一个长方体,它的长是12分米,
宽是8分米,高是4分米。如果把这根铁丝改围成一个
正方体,这个正方体的棱长是多少?
(12+8+4)x4 =24x4 =96(分米) 96÷12=8(分米)
随堂练习
一个棱长6分米的正方体框架,若把它改成一个长10分
米,宽5分米的长方体框架,这个长方体的高是多少分
100÷4-(8+12) =25-20 =5(厘米) 12x5=60(平方厘米)
例3 有一个礼盒需要用彩带捆扎,捆扎效果如图,打结 部分需要10厘米彩带,一共需要多长的彩带?
(30+20)x2+20x4 =100+80 =180(厘米) 180+10=190(厘米)
例4 用一根长28厘米的铁丝做一个棱长是整厘米数的 长方体框架,这个长方体框架的长、宽、高可能是多少 厘米?想一想,填一填。
4、相较于一个顶点的三条棱的长度,叫做长方体的 ( 长)、( 宽)、( 高)。
认识长方体和正方体PPT课件
第13页/共34页
二、合作交流、探究新知
第14页/共34页
二、合作交流、探究新知 透视图
第15页/共34页
二、合作交流、探究新知
高
宽 长
相交于一个顶点的三条棱,分别叫做长方体
的长、宽、高。
第16页/共34页
二、合作交流、探究新知
12条棱可以分成3组高,每组4条棱。 宽
长
第17页/共34页
二、合作交流、探究新知
高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力正方体是长宽高都相等的长方体是一种特殊的长方体
四、拓展提高
李师傅用铁丝焊一个长10厘米、宽4厘米、高6厘米的 长方体框架,至少需要铁丝多少厘米?
二、合作交流、探究新知
第14页/共34页
二、合作交流、探究新知 透视图
第15页/共34页
二、合作交流、探究新知
高
宽 长
相交于一个顶点的三条棱,分别叫做长方体
的长、宽、高。
第16页/共34页
二、合作交流、探究新知
12条棱可以分成3组高,每组4条棱。 宽
长
第17页/共34页
二、合作交流、探究新知
高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力认识正方体高端白酒文化战略从中国白酒第一坊向中国高尚生活元素的高端文化转变从白酒文化提升至生活文化提升品牌影响力正方体是长宽高都相等的长方体是一种特殊的长方体
四、拓展提高
李师傅用铁丝焊一个长10厘米、宽4厘米、高6厘米的 长方体框架,至少需要铁丝多少厘米?
长方体正方体的认识课件ppt课件
物流运输 在物流运输中,长方体和正方体常被用作货物的装载单元, 通过合理的空间利用和堆放方式,提高运输效率和降低成 本。
艺术设计
长方体和正方体也是艺术设计中常用的元素之一,通过对 其进行变形、组合、叠加等操作,可以创造出丰富多样的 艺术效果和视觉冲击力。
06
练习题与课堂互动环节
判断题练习
正方体的六个面都是正 方形。
THANK YOU
感谢聆听
建筑结构
在建筑结构中,长方体和正方 体常被用作承重结构的基本单 元,如梁、柱、楼板等,其坚 固耐用的特性保证了建筑物的 安全性。
建筑装饰
长方体和正方体也被广泛应用 于建筑装饰中,如门窗、隔断、 装饰画等,通过不同的材质和 颜色搭配,营造出丰富多彩的 室内环境。
包装设计领域应用实例分析
包装容器
长方体和正方体是包装设计中常 用的容器形状,如纸箱、木箱、 塑料盒等,其规整的形态便于堆 放和运输,同时也方便消费者携
长方体与正方体关系
长方体与正方体都属于六面体 的范畴。
正方体是长方体的一种特殊情 况,当长方体的长、宽、高都 相等时,就变成了正方体。
长方体和正方体在几何性质上 有很多相似之处,如都有6个面、 12条棱、8个顶点等。但在一些 特定的性质上,如面的形状和 大小、棱的长度等,两者又有 所不同。
02
长方体与正方体性质探究
计算长方体水池的容积、长方体木块的体积等。
正方体体积公式推导及应用
1 2
正方体体积公式 V = a^3
公式推导 正方体每个面都是正方形,面积相等,因此体积 等于一个面的面积乘以高(即边长)。
3
应用举例 计算正方体骰子的体积、正方体砖块的体积等。
复杂组合图形体积计算方法
艺术设计
长方体和正方体也是艺术设计中常用的元素之一,通过对 其进行变形、组合、叠加等操作,可以创造出丰富多样的 艺术效果和视觉冲击力。
06
练习题与课堂互动环节
判断题练习
正方体的六个面都是正 方形。
THANK YOU
感谢聆听
建筑结构
在建筑结构中,长方体和正方 体常被用作承重结构的基本单 元,如梁、柱、楼板等,其坚 固耐用的特性保证了建筑物的 安全性。
建筑装饰
长方体和正方体也被广泛应用 于建筑装饰中,如门窗、隔断、 装饰画等,通过不同的材质和 颜色搭配,营造出丰富多彩的 室内环境。
包装设计领域应用实例分析
包装容器
长方体和正方体是包装设计中常 用的容器形状,如纸箱、木箱、 塑料盒等,其规整的形态便于堆 放和运输,同时也方便消费者携
长方体与正方体关系
长方体与正方体都属于六面体 的范畴。
正方体是长方体的一种特殊情 况,当长方体的长、宽、高都 相等时,就变成了正方体。
长方体和正方体在几何性质上 有很多相似之处,如都有6个面、 12条棱、8个顶点等。但在一些 特定的性质上,如面的形状和 大小、棱的长度等,两者又有 所不同。
02
长方体与正方体性质探究
计算长方体水池的容积、长方体木块的体积等。
正方体体积公式推导及应用
1 2
正方体体积公式 V = a^3
公式推导 正方体每个面都是正方形,面积相等,因此体积 等于一个面的面积乘以高(即边长)。
3
应用举例 计算正方体骰子的体积、正方体砖块的体积等。
复杂组合图形体积计算方法
长方体和正方体认识ppt课件
涉及两者关系判断或证明问题
01 例题1
判断下列说法是否正确:长方体 的任意两个相邻面都垂直。
02 解析
该说法正确。长方体的任意两个 相邻面都是矩形,而矩形的两组 对边分别平行且相等,所以相邻 的两个面一定垂直。
03 例题2
证明:正方体的任意两个相对面 都平行且相等。
04
解析
设正方体的棱长为a,则任意两个 相对面的面积均为a²,且它们之间 的距离为a。由于两个相对面的面 积相等且它们之间的距离相等, 根据平行面的性质可知这两个相 对面一定平行且相等。
例题2
一个长方体的表面积为150cm²,且其长、宽、高的比为 2:3:5,求其体积。
解析
设长方体的长、宽、高分别为2x、3x、5x,根据表面积公 式可得2(2x×3x+3x×5x+2x×5x)=150,解得x=√3,所以 长=2√3cm,宽=3√3cm,高=5√3cm,体积 =2√3×3√3×5√3=90cm³。
PART 06
学生自主思考与练习环节
REPORTING
提出自己对于课题内容的疑问或建议
疑问
长方体和正方体在哪些方面有相似之处和 不同之处?如何在实际问题中区分和应用 它们?
VS
建议
可以通过更多的实例和图形展示来帮助我 们更好地理解和区分长方体和正方体。
分享自己在生活中遇到的相关实例或应用场景
实例
两者在实际应用中的联系与区别
联系
在实际应用中,长方体和正方体常常被用来描述和计算物体的体积、表面积等参数。例 如,在建筑设计中,设计师需要计算房间的体积以确定需要多少材料;在工程绘图中,
工程师需要绘制长方体和正方体以表示物体的形状和大小。
区别
《长方体和正方体的认识》PPT课件
包装设计应用
包装容器
长方体和正方体是常见的 包装容器形状,如纸箱、 木箱等,用于装载和保护 物品。
节约空间
在物流运输和仓储过程中 ,使用长方体和正方体形 状的包装可以更有效地利 用空间,降低成本。
美观实用
长方体和正方体的包装设 计可以实现美观与实用的 平衡,提升产品的整体形 象和市场竞争力。
其他领域应用
02
长方体和正方体性质探究
长方体性质
01
长方体有6个面,每个面 都是矩形,相对的两个 面完全相同。
02
长方体有12条棱,其中 4条长、4条宽、4条高 ,分别对应三组相对的 面。
03
长方体有8个顶点,每个 顶点由3条棱相交而成。
04
长方体的对角线相等, 且互相平分。
正方体性质
01
02
03
04
正方体是特殊的长方体,它的 6个面都是正方形,且每个面
正方体表面积公式推导
正方体表面积 = 6 × 边长^2
公式推导:正方体有6个面,每个面的面积都是边长×边长。因为正方体所有面都 相等,所以表面积计算公式为上述公式。
实例分析与计算
实例1
一个长方体的长、宽、高分别为5cm、 3cm、2cm,求其表面积。
实例2
一个正方体的边长为4cm,求其表面积。
计算
根据长方体表面积公式,表面积 = 2 × (5cm × 3cm + 5cm × 2cm + 3cm × 2cm) = 2 × (15cm^2 + 10cm^2 + 6cm^2) = 2 × 31cm^2 = 62cm^2。
计算
根据正方体表面积公式,表面积 = 6 × 4cm^2 = 96cm^2。
《长方体和正方体的认识》PPT课件
正方体性质
正方体具有长方体的所有性质;此外, 正方体的每个面都是中心对称和轴对 称的图形;正方体的体对角线长度等 于棱长的根号3倍。
03
长方体和正方体表面积计算
表面积概念引入
表面积定义
长方体或正方体六个面的面积之和。
与体积的区别
表面积是物体外部的大小,体积是物 体内部空间的大小。
为什么要学习表面积
空间想象力培养方法
观察实物模型
通过观察实物模型,了解几何体的形状、结构 和空间位置关系。
绘制三视图
通过绘制几何体的三视图(主视图、俯视图、 左视图),培养空间想象力和图形表达能力。
制作几何体模型
通过动手制作几何体模型,加深对几何体形状 和结构的理解。
实际应用场景举例
机械制造领域
在机械制造中,需要运用几何体 知识来设计和制造各种零部件和 机器设备,如发动机、齿轮等。
正方体体积计算公式推导
引导学生理解正方体的特点,即长、 宽、高都相等。
让学生通过具体计算,掌握正方体体 积的计算方法。
通过实例演示,推导出正方体体积的 计算公式:体积 = 边长 × 边长 × 边 长。
空间观念培养方法
通过观察实物和图形,培养学生的空间想象力。 引导学生通过动手操作,理解物体的空间位置和关系。
长方体与正方体的关系
01
正方体是长方体的特例,当长方体的长、宽、高都相等时,就
变成了正方体。
相似性质
02
长方体和正方体都有六个面、十二条棱和八个顶点;它们的对
面都是平行且相等的;它们的角都是直角。
不同之处
03
长方体的长、宽、高可以不相等,而正方体的长、宽、高必须
相等。
其他相似几何体介绍
正方体具有长方体的所有性质;此外, 正方体的每个面都是中心对称和轴对 称的图形;正方体的体对角线长度等 于棱长的根号3倍。
03
长方体和正方体表面积计算
表面积概念引入
表面积定义
长方体或正方体六个面的面积之和。
与体积的区别
表面积是物体外部的大小,体积是物 体内部空间的大小。
为什么要学习表面积
空间想象力培养方法
观察实物模型
通过观察实物模型,了解几何体的形状、结构 和空间位置关系。
绘制三视图
通过绘制几何体的三视图(主视图、俯视图、 左视图),培养空间想象力和图形表达能力。
制作几何体模型
通过动手制作几何体模型,加深对几何体形状 和结构的理解。
实际应用场景举例
机械制造领域
在机械制造中,需要运用几何体 知识来设计和制造各种零部件和 机器设备,如发动机、齿轮等。
正方体体积计算公式推导
引导学生理解正方体的特点,即长、 宽、高都相等。
让学生通过具体计算,掌握正方体体 积的计算方法。
通过实例演示,推导出正方体体积的 计算公式:体积 = 边长 × 边长 × 边 长。
空间观念培养方法
通过观察实物和图形,培养学生的空间想象力。 引导学生通过动手操作,理解物体的空间位置和关系。
长方体与正方体的关系
01
正方体是长方体的特例,当长方体的长、宽、高都相等时,就
变成了正方体。
相似性质
02
长方体和正方体都有六个面、十二条棱和八个顶点;它们的对
面都是平行且相等的;它们的角都是直角。
不同之处
03
长方体的长、宽、高可以不相等,而正方体的长、宽、高必须
相等。
其他相似几何体介绍
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不是长方体,就是正方体。 ( × )
精选
通过这节课的学习你有哪 些收获?
精选
都相等
精选
根据你的观察和研究, 长方体和正方体之间
有何关系?
长方体
正方体
正方体可以说成是长、宽、 高都相等的长方体,正方体 是特殊的长方体
精选
精选
10cm
这个正方体的棱长和 是多少?
10×12=120(cm) 正方体的棱长和公式 是什么?
正方体棱长和=棱长×12
精选
10cm
正方体棱长和=棱长×12 根据公式,如果要求棱长 和,要先求出什么?
方体有( )条棱,它们的长度
( )。正方体也有( )个
顶点
精选
正方体是有( 6 )个( 完全相同)的正方
形围成的( 立体)图形。正方体有( 12 ) 条棱,它们的长度( 相等)。正方体也有
( 8 )个顶点.
精选
长方体和正方体有哪些相同点, 有哪些不同点?
精选
学习提示:
在小组内交流长方体和正方体的特点, 说一说长方体和正方体有什么相同点和 不同点,完成下面表格。
形
相同点
不同点
体
面 棱 顶点 面的形状 面积 棱长
长方体
正方体
精选
形 体
长方体
相同点
不同点
面 棱 顶点 面的形状 面积 棱长
6个
12条
8个
都是长方形( 相对面的 相对的4 也有可能有2个面积完全 条棱的长
相对面是正方 一样
度相等
形)
正方体6个 12条 8个来自都是正方形 6个面的面 12条棱
积都相等 的长度
精选
2、 判断。正确的在括号里画“√”,
错误的在括号里画“×”。
(1)长方体的六个面一定是长方形;( × )
(2)正方体的六个面面积一定相等;( √ )
(3)一个长方体(非正方体)最多有四个面
面积相等;
(√ )
(4)相交于一个顶点的三条棱相等的长方体
一定是正方体。
(√ )
(5)有6个面,12条棱,8个顶点的物体形状
先求出棱长是多少 知道正方体的棱长和,怎 么求正方体的棱长?
正方体棱长=棱长和÷12
精选
用棱长1cm的小正方体摆成稍大一些的正 方体,至少需要多少个小正方体?动手摆 一摆。
精选
用12个小正方体搭一个长方体,有几 种不同的搭法,并记录长方体的长、 宽、高。
搭一个四面都是正方形的长方体,你 发现了什么?
精选
精选
正方体还有一个名 字你知道吗? 正方体也叫立方体
精选
思考: 正方体有几个面?每个面的大小、形状一样吗? 正方体有几条棱?每条棱的长短一样吗? 正方体有几个顶点?每个顶点有几条棱相交?
精选
自学指导:
自学20页的内容完成下面的填空。 完成后和同桌交流。
正方体是有( )个(
)
的正方形围成的( )图形。正
精选
学习目标
1.认识正方体,掌握正方 体的特征。
2.知道长方体与正方体的 联系与区别。
精选
名
称 数量
面
棱
顶点
形状
哪些面完 全相同
数量
哪些棱长 度相等
数量
长
6个
长方形 (特殊情况有
相对面完全相
12条
相对的棱的长
8个
方
两个相对的面 同
度相等
体
是正方形)
精选
() ()
()
精选
(高) (宽)
(长)
精选
精选
通过这节课的学习你有哪 些收获?
精选
都相等
精选
根据你的观察和研究, 长方体和正方体之间
有何关系?
长方体
正方体
正方体可以说成是长、宽、 高都相等的长方体,正方体 是特殊的长方体
精选
精选
10cm
这个正方体的棱长和 是多少?
10×12=120(cm) 正方体的棱长和公式 是什么?
正方体棱长和=棱长×12
精选
10cm
正方体棱长和=棱长×12 根据公式,如果要求棱长 和,要先求出什么?
方体有( )条棱,它们的长度
( )。正方体也有( )个
顶点
精选
正方体是有( 6 )个( 完全相同)的正方
形围成的( 立体)图形。正方体有( 12 ) 条棱,它们的长度( 相等)。正方体也有
( 8 )个顶点.
精选
长方体和正方体有哪些相同点, 有哪些不同点?
精选
学习提示:
在小组内交流长方体和正方体的特点, 说一说长方体和正方体有什么相同点和 不同点,完成下面表格。
形
相同点
不同点
体
面 棱 顶点 面的形状 面积 棱长
长方体
正方体
精选
形 体
长方体
相同点
不同点
面 棱 顶点 面的形状 面积 棱长
6个
12条
8个
都是长方形( 相对面的 相对的4 也有可能有2个面积完全 条棱的长
相对面是正方 一样
度相等
形)
正方体6个 12条 8个来自都是正方形 6个面的面 12条棱
积都相等 的长度
精选
2、 判断。正确的在括号里画“√”,
错误的在括号里画“×”。
(1)长方体的六个面一定是长方形;( × )
(2)正方体的六个面面积一定相等;( √ )
(3)一个长方体(非正方体)最多有四个面
面积相等;
(√ )
(4)相交于一个顶点的三条棱相等的长方体
一定是正方体。
(√ )
(5)有6个面,12条棱,8个顶点的物体形状
先求出棱长是多少 知道正方体的棱长和,怎 么求正方体的棱长?
正方体棱长=棱长和÷12
精选
用棱长1cm的小正方体摆成稍大一些的正 方体,至少需要多少个小正方体?动手摆 一摆。
精选
用12个小正方体搭一个长方体,有几 种不同的搭法,并记录长方体的长、 宽、高。
搭一个四面都是正方形的长方体,你 发现了什么?
精选
精选
正方体还有一个名 字你知道吗? 正方体也叫立方体
精选
思考: 正方体有几个面?每个面的大小、形状一样吗? 正方体有几条棱?每条棱的长短一样吗? 正方体有几个顶点?每个顶点有几条棱相交?
精选
自学指导:
自学20页的内容完成下面的填空。 完成后和同桌交流。
正方体是有( )个(
)
的正方形围成的( )图形。正
精选
学习目标
1.认识正方体,掌握正方 体的特征。
2.知道长方体与正方体的 联系与区别。
精选
名
称 数量
面
棱
顶点
形状
哪些面完 全相同
数量
哪些棱长 度相等
数量
长
6个
长方形 (特殊情况有
相对面完全相
12条
相对的棱的长
8个
方
两个相对的面 同
度相等
体
是正方形)
精选
() ()
()
精选
(高) (宽)
(长)
精选