高考数学复习 专题17 复数(解析版)
高考数学复习专题:复数
考法一 高考数学复习专题:复数复数的实部与虚部【例1-1】(2023·山西临汾·统考一模)复数()+=+z i 2i 54i 2)(的虚部为( )A .−3iB .−6iC .−3D .−6【答案】D【解析】+−+−+−−=====−−+−−−−z i(2i)12i (12i)(12i)536i 5(4i )1515(12i)1530i2,虚部为−6.故选:D. 【例1-2】(2023·河南·长葛市第一高级中学统考模拟预测)已知复数=−z 1i ,则+z z212的实部为( ) A .101 B .−101 C .51D .−51【答案】A【解析】:因为=−z 1i ,所以+=−+−=−z z 2(1i)2(1i)24i 22, 所以+−−+====+++z z 224i (24i)(24i)20105i 1124i 24i 112,所以+z z 212的实部为101.故选:A.【例1-3】(2023·重庆·统考一模)设复数z 满足+⋅=z z i i 1,则z 的虚部为( )A .−21B .21C .−1D .1【答案】B【解析】设=+∈z a b a b i(,R),则=−z a b i ,所以+−+a b a b i(i)i=1i, −−+=a b a b (i )i+1,得=b 21,解得=b 21,所以复数z 的虚部为21.故选:B. 考法二 共轭复数【例2-1】(2023·黑龙江·黑龙江实验中学校考一模)复数z 满足+=−z (1i)24i 2,则复数z 的共轭复数=z ( ) A .−12i B .−−2i C .−+2i D .+2i【答案】C【解析】将式子+=−z (1i)24i 2化简可得,()+===−−−−z 1i 2i2i 24i24i2,根据共轭复数定义可知=−+z 2i ,故选:C【例2-2】(2023·陕西西安·统考一模)复数−=z 1i ()2i 2的共轭复数为( ) A .−2i B .−4iC .2iD .4i【答案】C 【解析】=−+−+==−+z ((1i)(1i))2i 1[]i 2i(1i)22,则=z 2i ,所以复数−=z 1i()2i 2的共轭复数为2i .故选:C【例2-3】(2023·全国·唐山市第十一中学校考模拟预测)已知复数z 满足−−+=z z 2i 3i 0,则z 的共轭复数=z ( ) A .+1i B .−1i C .+5i 1D .−5i 1【答案】B【解析】由−−+=z z 2i 3i 0,得−=−z 12i 3i −+=−+(12i)(12i)(3i)(12i)==++51i 55i ,所以=−z 1i .故选:B考法三 复数的模长【例3-1】(2022·北京·统考高考真题)若复数z 满足⋅=−z i 34i ,则=z ( ) A .1 B .5C .7D .25【答案】B【解析】由题意有()⋅−===−−−−−z i i i 43i 34i 34i i )()(,故==z ||5.故选:B .【例3-2】(2023秋·山西太原·高三太原五中校考期末)已知+=−zz 12i 3,则=z ( )AB .3C .2D 【答案】D 【解析】由+=−zz 12i 3,得−=+z z 3i 2i ,−=+z 12i 3i )(,所以()()−−+===++++z 12i 12i 12i 55i 3i 173i 12i )()(,所以=z D .【例3-3】(2023·全国·模拟预测)若复数z 满足⋅⋅+⋅−=z z z z 1112)()(,则+=z i ( )AB C .3D .5【答案】B【解析】设=+z x y i ,∈x y ,R .所以+⋅−⋅++⋅−+=x y x y x y x y (i)(i)1i 1i 12)()(, 所以+−−+x y x y xy ()(12i)=122222,所以−−−−++=x y x y xy x y 122()i 0442222,所以⎩+=⎨−−−−=⎧xy x y x y x y 2()0120224422,所以⎩+=⎨+−−−=⎧xy x y x y x y 2()0()(1)120222222, 当+=x y 022时,方程组无解;当=≠x y 0,0时,++=y y 12042没有实数解; 当x 0,y=0≠时,−−=∴=∴=±x x x x 120,4,2422,所以=z 2或−2.所以当=z 2时,+=+z i |2;当=−z 2时,+=−+z i |2所以+=z i 故选:B考法四 复数对应的象限【例4-1】(2021·全国·统考高考真题)复数−−13i2i在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】−===−++−+13i 101022i 55i 1i2i 13i )()(,所以该复数对应的点为⎝⎭ ⎪⎛⎫22,11,该点在第一象限, 故选:A.【例4-2】(2023·全国·模拟预测)若复数=−+z a 2i 1i )()(在复平面内对应的点位于第四象限,则实数a 的取值范围为( ) A .+∞2,)( B .−∞−,2)( C .−2,2)( D .0,2)(【答案】A【解析】由于=−+=+−−=++−z a a a a a 2i 1i 22i i i 22i 2)()()(,所以复数z 在复平面内对应的点的坐标为+−a a 2,2)(,则⎩−<⎨⎧+>a a 2020,解得>a 2,所以实数a 的取值范围为+∞2,)(,故选:A .【例4-3】(2023·湖南·模拟预测)已知i 是虚数单位,复数R =−=+∈z z a a 12i,2i 12)(在复平面内对应的点为P ,Q ,若OP OQ ⊥(O 为坐标原点),则实数a =( ) A .−2 B .−1 C .0 D .1【答案】D【解析】复数=−=+z z a 12i,2i 12,则−P 1,2)(,Q a 2,1)(,则(1,2OP =−),(2,1OQ a =), OP OQ ⊥,∴−=a 220,解得=a 1,故选:D.考法五 复数的分类【例5-1】(2023·全国·高三专题练习)已知i 为虚数单位,复数++=z a 2i 1i 3)()(为纯虚数,则=z ( ) A .0 B .21C .2D .5【答案】D【解析】由题意,在++=z a 2i 1i 3)()(中,=−+=+−+=++−z a a a a a 2i 1i 22i i 221i)()()(∵z 为纯虚数,∴,+=−≠a a 20210,∴=−a 2,∴=−z 5i ∴=z 5,故选:D . 【例5-2】(湖北省武汉市2023届高三下学期二月调研数学试题)若虚数z 使得z 2+z 是实数,则z 满足( ) A .实部是−21B .实部是21C .虚部是0D .虚部是21【答案】A【解析】设=+z a b i (∈a b ,R 且≠b 0)+=+++=+−++=+−++z z a b a b a ab b a b a a b ab b (i)(i)2i i (2)i 222222, +z z 2是实数,因此+=ab b 20,=b 0(舍去),或=−a 21.故选:A . 【例5-3】(2022秋·江苏南京·高三校考期末)设a 为实数,若存在实数t ,使得+−−t a 2i(1)i 12为实数(i 为虚数单位),则a 的取值范围是( )A .≥−a 2B .0a<C .≥−a 1D .−≤≤−a 21【答案】C 【解析】由题知,⎝⎭⎪+−=+−=−−⎛⎫−−−t t t a a a 2i 2i 2(1)i (1)i 1i 111i 2222)(, 因为存在实数t ,使得+−−t a 2i (1)i 12为实数,所以关于t 的方程−−=−t a 21012有实数根, 所以,=+t a 212有实数根,所以=≥+t a 2012,即≥−a 1所以,a 的取值范围是≥−a 1故选:C考法六 相等复数【例6-1】(2022·全国·统考高考真题)设++=a b (12i)2i ,其中a b ,为实数,则( ) A .==−a b 1,1 B .==a b 1,1 C .=−=a b 1,1 D .=−=−a b 1,1【答案】A【解析】因为a b ,R ,++=a b a 2i 2i )(,所以+==a b a 0,22,解得:==−a b 1,1.故选:A.【例6-2】(2023·云南红河· )A .⎝⎭⎝⎭ ⎪ ⎪−+−⎛⎫⎛⎫33cos isin ππB 2i 1C .−1iD .3i π【答案】A⎝⎭⎝⎭==211,由⎝⎭ ⎪−==⎛⎫332cos cos 1ππ,⎝⎭⎪−=−=−⎛⎫332sin sin ππ,A 正确,B 、C 、D 错误.故选:A .考法七 在复数范围内解方程【例7-1】(2022·高一课时练习)复数2i 的平方根是( ) A .+1i 或−−1i B .2iC .+1iD .−−1i【答案】A【解析】设2i 的平方根为+∈x y x y i(,R),则+=x y (i)2i 2,即−+=x y xy 2i 2i 22,从而⎩=⎨−=⎧xy x y 22,0,22解得⎩=⎨⎧=y x 11,或⎩=−⎨⎧=−y x 1.1,所以复数2i 的平方根是+1i 或−−1i ,故选:A【例7-2】(2021·湖南衡阳·衡阳市八中校考模拟预测)已知复数−i 2是关于x 的方程++=∈x px q p q R 0,2)(的一个根,则+=pi q ( )A.25 B .5C D .41【答案】C【解析】因为复数−i 2是关于x 的方程++=x px q 02的一个根,所以−+−+=i p i q 2202)()(,所以+=+−pi q i p 423,所以==−p q p 4,23,所以==p q 4,5,则+=+=pi q i 45 C.【例7-3】(2021·江苏·一模)已知+i 2是关于x 的方程++=x ax 502的根,则实数a =( ) A .−i 2 B .−4 C .2 D .4【答案】B【解析】因为+i 2是关于x 的方程++=x ax 502的根,则另一根为−i 2 由韦达定理得++−=−i i a 22)()(,所以=−a 4 故选:B考法八 复数的综合运用【例8-1】(2023春·浙江·高三校联考开学考试)复数=−−z 2211,复数z 2满足⋅=z z 112,则下列关于z 2的说法错误的是( )A .=−z 212B .=z 12C .z 2D .z 2在复平面内对应的点在第二象限【答案】C【解析】对于A ,由已知可得,==z z 112==21=−421)(=−21,故A 正确.对于B ,因为=−z 212,所以==z 12,故B 正确;对于C ,根据复数的概念可知z 2,故C 错误;对于D ,根据复数的概念可知z 2在复平面内对应的点为⎝⎭⎪ ⎪−⎛⎫221,故D 正确.故选:C.【例8-2】(2023·高一课时练习)已知z 1、∈z C 2,且=z 11,若+=z z 2i 12,则−z z 12的最大值是( ). A .6 B .5 C .4 D .3【答案】C【解析】设=+∈z a b a b i,,R 1)(,=z 11,故+=a b 122,+=z z 2i 12,则=−+−z a b 2i 2)(,−=+−===z z a b 222i 12)(∈−b 1,1][,当1b时,−z z 12有最大值为4.故选:C【例8-3】(2023江苏镇江)(多选)已知复数=+z a b i 111,=+z a b i 222(a 1,b 1,a 2,b 2均为实数),下列说法正确的是( ) A .若=z z 212,则>z z 12B .z 1的虚部为b 1C .若z z =12,则=z z 1222D .=z z 1122【答案】BD【解析】对于A ,复数不等比较大小,A 项错误;对于B ,复数=+z a b i 111,a 1是实部,b 1是虚部,B 项正确;对于C ,z z =12==−+z a b a b 2i 11111222,=−+z a b a b 2i 22222222,不能得到=z z 1222,所以C 项错误;对于D ,=+z a b 111222,=−+z a b a b 2i 11111222,==+z a b 111222,所以=z z 1122,D 项正确;故选:BD.强化训练1.(2022·全国·统考高考真题)若=−z 1,则−=zz z1( )A .−1 B .−1C .−31D .−31【答案】C【解析】=−=−−=+=z zz 1(1113 4.−==−zz z 131故选 :C2.(2023秋·湖北·高三湖北省云梦县第一中学校联考期末)若复数z 满足+⋅=+z (12i)34i (其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是115 B .z 的虚部是52C .复数z 在复平面内对应的点在第一象限D .=z 5 【答案】C【解析】由题设++−===−++−z 12i (12i)(12i)55i 34i (34i)(12i)112,==z ||=+z 55i 112, A 选项,z 的实部是511,故A 错误;B 选项,z 的虚部是−52,故B 错误; C 选项,复数z 对应的坐标为⎝⎭⎪⎛⎫55,112,在复平面内对应的点在第一象限,故C 正确;D 选项,z D 错误.故选:C3.(2023秋·江苏·高三统考期末)若复数z 满足≤−z 12,则复数z 在复平面内对应点组成图形的面积为( ) A .π B .π2 C .π3 D .π4【答案】D【解析】z 在复平面对应的点是半径为2的圆及圆内所有点,=S π4,故选:D.4.(2023·内蒙古赤峰·统考模拟预测)已知R ∈a ,+=+a (5i)i 15i (i 为虚数单位),则a =( ) A .−1 B .1 C .−3 D .3【答案】A【解析】由题意知,+=−+=+a a (5i)i 5i 15i ,则=−a 1.故选:A.5.(2023春·湖南·高三校联考阶段练习)若复数z 满足−=z z 2i ,则++=z 32i ( )A B C .D 【答案】B【解析】+==−z 1i1i 2,则++=+=z 32i 4i B. 6.(2023·辽宁·校联考模拟预测)已知复数=−z 2i ,且−+=z az b i ,,其中a ,b 为实数,则−=a b ( ) A .-2 B .0C .2D .3【答案】C【解析】由题意得=+z 2i ,则代入原式得:+−−+=a b 2i 2i i )(,即−+++=a b a i 221i )()(,所以⎩+=⎨⎧−+=a a b 11220,解得⎩=−⎨⎧=b a 20,所以−=a b 2.故选:C .7.(2023·四川凉山·统考一模)已知复数z 满足=+−z1i 13i,z 是z 的共轭复数,则+z z 等于( ) A .−2i B .−2C .−4iD .−1【答案】B【解析】由题意在=+−z 1i 13i 中,()()++−−====−=−−−−++−−z 1i 1i 1i 1i 212i 13i 3i 4i 14i 213i 1i 22)()( ∴=−+z 12i ∴+=−−−+=−z z 12i 12i 2故选:B.8.(2023·浙江·永嘉中学校联考模拟预测)若+=z 12i i (i 为虚数单位),则=z ( )A.5 B CD 【答案】B【解析】由+=z 12i i 得==−+z i2i 12i,所以==z ,故选:B 9.(2023·江苏南通·统考一模)在复平面内,复数z z ,12对应的点关于直线−=x y 0对称,若=−z 1i 1,则−=z z 12( )A B .2C .D .4【答案】C【解析】=−z 1i 1对应的点为1,1,其中1,1关于−=x y 0的对称点为−1,1)(,故=−+z 1i 2,故−=−−=−==z z 1i+1i 22i 12故选:C10.(2023·陕西西安·校考模拟预测)已知复数z 满足=+z i21,其中i 为虚数单位,则z 的共轭复数在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A【解析】=+z i2=2-i 1,所以z 的共轭复数为=+z 2i ,对应在复平面内的点为(2,1),在第一象限, 故选:A11(2023·陕西榆林·统考一模)已知+−−=−z z z z 282i )()(,则+=z i ( )A.B .CD 【答案】A【解析】设R =+∈z a b a b i ,)(,则+−−=+=−=−z z z z z z a b 2342i 82i )()(,则==a b 2,1,故+=+=z i 22i 故选:A12.(2023·贵州毕节·统考一模)已知复数=+++z a a a 1i 2)(为纯虚数,则实数a 的值为( ) A .0 B .0或−1C .1D .−1【答案】A【解析】因为复数=+++z a a a 1i 2)(为纯虚数,则⎩+≠⎨+=⎧a a a 1002,解得=a 0.故选:A.13.(2023·全国·模拟预测)已知复数z 满足−=+z z 2537i )(,则z 的虚部为( ) A .−1311B .511 C .1329 D .−529 【答案】C【解析】对−=+z z 2537i )(移项并整理,得−=+z 23i 57i )(, ∴()()−−+===−++++z 23i 23i 23i 1313i 57i 112957i 23i )()(,∴z 的虚部为1329.故选:C. 14.(2022·全国·统考高考真题)若=+z 1i .则+=z z |i 3|( )A .B .C .D .【答案】D【解析】因为=+z 1i ,所以+=++−=−z z i 3i 1i 31i 22i )()(,所以+==z z i 3 故选:D.15.(2023春·江苏常州·高三校联考开学考试)若复数R +=∈+z a a 3i3i)(是纯虚数,则=z ( ) A .−1 B .−iC .−a iD .3i【答案】B 【解析】==+−++−z a a a 10103i 3i 339i )()()(为纯虚数,=−=a z 1,i ,=−z i ,故选:B .16.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)i 是虚数单位,设复数z 满足−=+z i 113i )(,则z 的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】因为+==13i 2,所以−−+−====−+++−+z i 1(i 1)(i 1)222i 23i (23i)(i 1)15i 15, 所以=+z 22i 15,所以z 的共轭复数对应的点位于第一象限,故选:A 17.(2023秋·浙江·高三期末)已知复数=+∈=z b b z i2i(R),212(其中i 为虚数单位),若−z z 12=b ( ) A .1 B .−5 C .1或−5 D .−1或5【答案】C【解析】由题意得==−z i2i 22,则−=++z z b 2(2)i 12,所以−==z z 12−b =5或=b 1,故选:C18.(2023广东深圳)设复数z 满足⋅+=−+z 12i 34i )(,则z 的虚部为( ) A .−2i B .2iC .−2D .2【答案】D【解析】由⋅+=−+z 12i 34i )(可得++====−−−+z 12i 12i 512i 55(12i)34i ,故=+z 12i ,则z 的虚部为2,故选:D19.(2022·山东济南·山东省实验中学校考模拟预测)虚数单位i 的平方根是( ) A .−1B.−−i 22C+22D.+22或 【答案】D【解析】设i 的平方根为+∈a bi a b R (,),则+=−+=a bi a b abi i ()2222,所以⎩=⎨−=⎧ab a b 21022,解得⎩⎪=⎪⎨⎪⎪=⎧b a 22或⎩⎪=⎪⎨⎪⎪=−⎧b a 2. 所以i的平方根为+i 22或−22. 故选:D .20.(2023·山西大同·大同市实验中学校考模拟预测)若复数z 满足+−=+z z z z 2+323i )()(,则z =( ) A .+22i 11B .−22i 11C .+22iD .−22i【答案】A【解析】设=+∈z a b a b i ,R )(,则=−z a b i ,所以+=++−=z z a b a b a i i 2)()(,−=+−−=z z a b a b b i i 2i )()(,所以+−=++z z z z a b 2+346i=23i )()(,所以===+a b z 2222,,i 1111.故选:A 21.(2023·广东佛山·统考一模)设复数z 满足+=−z 1i 52i 2)(,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵+=−z 1i 52i 2)(,则()+===−−−−z 1i 2i 21i 52i52i 52,∴z 在复平面内对应的点为⎝⎭ ⎪−−⎛⎫21,5,位于第三象限.故选:C.22.(2023·辽宁·辽宁实验中学校考模拟预测)已知复数+z1i 为纯虚数,且+=z 1i1 ,则z =( ) A .−1i B .+1i C .−+1i 或−1i D .−−1i 或+1i【答案】C【解析】设=+z a b i (a ,b ∈R ),则++===+++−+−z a b a b b aa b 1i 1i 222i i i 1i )()( , 因为复数+z 1i 为纯虚数,所以⎩⎪≠⎪−⎨⎪⎪=⎧+b a a b 20,20,解得⎩≠⎨⎧=−a b a b ,, 又+=z 1i 1,所以=−b a 21或=−−b a21,解得=b 1或1b ,所以=−+z 1i 或=−z 1i .故选:C23.(2023·安徽马鞍山·统考一模)若复数z 满足−=−zz z i 3i ,则z 的虚部为( ) A .−1 B .2C .1或2D .−1或2【答案】D【解析】设复数=+∈z a b a b i(,R),因为−=−zz z i 3i ,即+−−=−a b a b i 3i 22,所以⎩=⎨+−=⎧a a b b 1322,解得:1b或=b 2,所以z 的虚部为−1或2,故选:D .24.(2023·云南昆明·昆明一中校考模拟预测)已知复数z 满足−=z (12i)i 2023,则=z ( ) A .−55i 21 B .+55i 21C .−55i 12D .+55i 12【答案】A【解析】因为=⨯=−ii ii 202321011)(,所以()()−−−+====−−−+z 12i 12i 12i 12i 55i i i 21i 12i 2023)(,故选:A. 25.(2023·河南郑州·统考一模)已知i 是虚数单位,若复数z 的实部为1,⋅=z z 4,则复数z 的虚部为( )A.B .C .−1或1D .【答案】A【解析】由题意,设=+z b 1i ,则=−z b 1i ,所以⋅=+−=z z b b 1i 1i 4)()(,即+=b 142,所以=b =−z 1或z =+1,所以复数z 的虚部为故选:A.26.(2023·陕西宝鸡·校联考模拟预测)已知复数=++z 1i i 3)(,则复数z 的模为( )AB .CD 【答案】C【解析】因为=++=−+z 2i(1i)i 23i ,所以=z C.27.(2023·陕西咸阳·武功县普集高级中学统考一模)已知复数=−z i 12的共轭复数为z ,则−=z i2( ) A .−1i B .+2iC .+1iD .−+1i【答案】A【解析】由题知=+z 12i ,所以−+==−z i1i 1i 22故选:A 28.(2023·浙江·校联考模拟预测)已知复数=−z 12i 1,=+z 1i 2,则复数z z 12的模z z 12等于( )A B C .D .【答案】B【解析】复数=−z 12i 1,=+z 1i 2,则=−+=−z z (12i)(1i)3i 12,所以==z z 12故选:B29.(2023·广东梅州·统考一模)已知复数z 满足z +=−1i 2i )(,i 是虚数单位,则z 在复平面内的对应点落在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】由z +=−1i 2i )(可得+===−−−−−z 1i 21i 2i (2i)(1i), 则z 在复平面内的对应点为−−(1,1),落在第三象限,故选:C 30.(2023秋·辽宁·高三校联考期末)已知z 是纯虚数,−+z 1i2是实数,那么=z ( ) A .2i B .iC .−iD .−2i【答案】A【解析】因为z 是纯虚数,故可设)=≠z b b i(0,所以()()−−−+=+−−+z b b 1i 1i 1i 1i =22i 2i 1i )()(=++−b b 222i)(,因为−+z 1i 2是实数,所以−=b 20,即=b 2,所以=z 2i .故选:A31.(2023秋·江苏南京·高三南京师范大学附属中学江宁分校校联考期末)设a 为实数,若存在实数t ,使+−−t a 2i(1)i i2为实数(i 为虚数单位),则a 的取值范围是( ) A .≥−a 2 B .0a< C .≤−a 1 D .≤−a 2【答案】A 【解析】⎝⎭⎪+−+−−−+−−+−−⎛⎫−−−t t t t a a a a 2i 222221i=1i=i 1i=1i i11i i 2222)()()()()(, 因为存在实数t ,使+−−t a 2i (1)i i 2为实数,a 为实数,所以存在实数t ,−−=t a2102,故存在实数t ,−=t a 222, 所以≥−a 2,故选:A.32.(2023·吉林·长春十一高校联考模拟预测)设复数z 满足+=z i 2,z 在复平面内对应的点为x y ,)(,则( ) A .−+=x y 1422)( B .++=x y 1422)( C .+−=x y 1422)( D .++=x y 1422)(【答案】D【解析】z 在复平面内对应的点为,x y (),则复数=∈z x y x y +i,,R ,则+=++=z x y i (1)i 2,由复数的模长公式可得++=x y (1)422,故选:D .33.(2023秋·广东广州·高二广东实验中学校考期末)设复数z 满足−=−z z z 1,则z 在复平面上对应的图形是( ) A .两条直线 B .椭圆 C .圆 D .双曲线【答案】A【解析】设=+z x y i ,则=−z x y i ,−=−z z z 1可得:−+=x y y 12222)()(,化简得:−=x y 1322)(,即−=x y 13或−=−x y 13,则z 在复平面上对应的图形是两条直线.故选:A34.(2022春·上海黄浦·高三上海市敬业中学校考开学考试)满足条件−=+z i 34i (i 是虚数单位)的复数z 在复平面上对应的点的轨迹是( ) A .直线 B .圆 C .椭圆 D .双曲线【答案】B【解析】因为+==34i 5,设=+z x y i ∈x y ,R )(,所以−=+−z x y i 1i )(,所以i −==z 5,两边平方得+−=x y 12522)(,满足条件的复数在复平面上对应的点的轨迹是圆, 故选:B35(2023春·湖南株洲·高二株洲二中校考开学考试)已知复数z 满足+=+ααz 1i sin i cos )((i 是虚数单位),则=z ( )A .21B C .2D .1【答案】B【解析】因为+=+ααz 1i sin i cos )(, 所以()()++−===+++−++−ααααααααz 1i 1i 1i 22i sin i cos sin cos sin cos sin i cos 1i )()(,解得==z 故选:B36.(2022秋·安徽阜阳·高三安徽省临泉第一中学校考期末)已知复数+1i 是关于x 的方程++=∈x px q p q 0(,R)2的一个根,则+=p q i ( )A.4 B .C .8D .【答案】D【解析】因为复数+1i 是关于x 的方程++=x px q 02的一个根,所以⎩+=⎨++++=⇒+++=⇒⎧+=p p q p q p p q 201i 1i 02i 002)()()(,解得=−=p q 2,2,所以+==p qi另解:因为复数+1i 是关于x 的方程++=∈x px q p q 0(,R)2的一个根, 所以复数−1i 也是关于x 的方程++=∈x px q p q 0(,R)2的一个根, 所以有++−==−+−==p q 1i 1i 2,1i 1i 2)()(解得=−=p q 2,2,所以+=p qi 故选:D37.(2023·全国·模拟预测)若复数=+++⋅⋅⋅+z n i i i i 23,∈n N *则z 的最大值为( )A.1 B C D .2【答案】B【解析】因为=i i 1,=−i 12,=−i i 3,=i 14,,=+k i i 41,=−+k i 142,=−+k i i 43,=k i 14,∈k N ,且+++=i i i i 0234,所以当=n k 4,∈k N *)(时=z 0,则=z 0,当=+n k 41,∈k N )(时=z i ,则=z 1,当=+n k 42,∈k N )(时=−+z 1i ,则==z当=+n k 43,∈k N )(时=−z 1,则=z 1,所以z 故选:B38.(2021秋·上海浦东新·高三上海南汇中学校考阶段练习)已知函数+=−−x f x x 1()log (1)212的定义域为A ,复数−=−−z a 12ii 3i,若∈a A ,则z ||的取值范围是( )A .<z 1B .≤<z 1C .≤≤z 1D .<≤z 1【答案】B 【解析】由+−>−x x 11021,得+>−+x x 102,即−<<x 12,所以=−A (1,2) 因为复数−=−=−+−=+−−z a a a 12i 5i (3i)(12i)i 1(1)i 3i 1所以z ||因为∈−a (1,2),所以z || 故选:B39.(2023春·上海浦东新·高三上海市实验学校校考开学考试)设z 1,z 2为复数,下列命题一定成立的是( )A .如果=z a 1,a 是正实数,那么=z z a 112B .如果z z =12,那z z =±12C .如果≤z a 1,a 是正实数,那么−≤≤a z a 1D .如果+=z z 01122,那么==z z 012 【答案】A【解析】设)(,=+=+∈z x y z x y x y x y i,i ,,,R 1112221122,对A :∵==z a 1,则+=x y a 11222,∴=+−=+=z z x y x y x y a i i 11111111222)()(,A 正确;对B :∵z z =12=+=+x y x y 11222222,不能得到=±=±x x y y ,1212,更不能得到z z =±12,例如==z z 1,i 12,则==z z 112,但≠±z z 12,B 错误;对C :∵=z a 1,则+≤x y a 11222,但只有实数才能比较大小,对于虚数无法比较大小,C 错误;对D :∵+=z z 01122,则+++=−++−+=+−−++x y x y x y x y x y x y x x y y x y x y i i 2i 2i 2i=0112211112222121211222222222222)()()()()()(,可得⎩+=⎨+−−=⎧x y x y x x y y 00112212122222,不能得到====x y x y 01122,例如==z z 1,i 12,则+=−=z z 1101122,但显然≠≠z z 0,012,D 错误.故选:A.40.(2022秋·山西阳泉·高三统考期末)已知复数1232023i i i i 1i +++++=z ,则复数z 的虚部是( ) A .21B .−21C .2i 1D .−2i 1【答案】A 【解析】1232023i i i i 1i 1i 1i++++===+++−−+−−+++++++z i 1i 505i 1i 1i i i 505i i i i 1231234)()()()(+===−−+−−1i 2211i1i )(,故虚部为21 ,故选:A 41.(2022春·广西)下列关于复数的命题中(其中i 为虚数单位),说法正确的是( )A .若关于x 的方程+++−=∈i x ax i a R 11402)()(有实根,则=−a 25B .复数z 满足+=z i i12020)(,则z 在复平面对应的点位于第二象限C .=−+++z a a a i 412312)(,=++i z a a a 222)((i 为虚数单位,∈a R ),若>−a 21,则>z z 12D .+i 12是关于x 的方程++=x px q 02的一个根,其中p 、q 为实数,则=q 5 【答案】D【解析】对于A 中,设方程的实数根为t ,代入方程可得+++−=i i t at 11402)(,所以⎩−=⎨++=⎧t t at 401022,解得=±a 25,所以A 不正确;对于B 中,复数+=z i i 12020)(,可得==−++=i i i i z 12112112020,则复数z 在复平面内对应的点为−22(,)11,位于第四象限,所以B 不正确;对于C 中,复数=−+++z a a a i 412312)(,=++i z a a a 222)(,当>−a 21时,可知当+≠a a 02时 ,因为虚数不能比较大小,所以C 不正确;对于D 中,+i 12是关于x 的方程++=x px q 02的一个根, 根据复数方程的性质,可得−i 12也是方程的根,可得⎩+−=⎨⎧++−=−i i q i i p (12)(12)1212,解得=−=p q 2,5,所以D 正确.故选:D.42.(2023秋·河北唐山·高三统考期末)(多选)已知i 为虚数单位,复数,,=−=+∈z a z a a 2i 2i R 12)(,下列结论正确的有( )A .z z =12B .=z z 12C .若+=⋅z z z z 21212)(,则=a 2D .若=−z i 2,则=a 0 【答案】AC【解析】A 选项,==z z 12,A 选项正确. B 选项,=+≠z a z 2i 12,B 选项错误. C 选项,+=++−z z a a 22424i 12)()(, ⋅=+−z z a a 44i 122)(,若+=⋅z z z z 21212)(,则⎩−=−⎨⎧+=a a a a 2442442,解得=a 2,所以C 选项正确. D 选项,当=a 0时,=≠−z 2i 2,所以D 选项错误. 故选:AC43.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)(多选)设i 为虚数单位,下列关于复数的命题正确的有( ) A .=⋅z z z z 1212B .若z z ,12互为共轭复数,则z z =12C .若z z =12,则=z z 1222D .若复数=++−z m m 11i )(为纯虚数,则=−m 1【答案】ABD 【解析】由题意得:对于选项A :令=+=+z a b z c d i,i 12则⋅=++=−++z z a b c d ac bd ad bc i i i 12)()()( =−++ac bd ad bc 22)()(=⋅z z 12所以=⋅z z z z 1212,故A 正确;对于选项B :令=+=−z a b z a b i,i 12,z z 12z z =12,故B 正确;对于选项C :令=+=−z a b z a b i,i 12,==z z 12,根据复数的乘法运算可知:=+=−+z a b a b ab i 2i 12222)(,=−=−−z a b a b ab i 2i 22222)( ,≠z z 1222,所以C 错误;对于选项D :若复数=++−z m m 11i )(为纯虚数,则+=m 10,即=−m 1,故D 正确. 故选:ABD44.(2023春·安徽·高三校联考开学考试)(多选)若复数=+z i 121,=−z 73i 2,则下列说法正确的是( ).A .=z 1B .在复平面内,复数z 2所对应的点位于第四象限C .⋅z z 12的实部为13D .⋅z z 12的虚部为−11 【答案】ABC【解析】由题意得,==z 1A 正确;在复平面内,复数z 2所对应的点为−7,3)(,位于第四象限,故B 正确; ∵⋅=+−=−++=+z z 12i 73i 73i 14i 61311i 12)()(, ∴⋅z z 12的实部为13,虚部为11,故C 正确,D 错误. 故选:ABC .45.(2023秋·浙江宁波·高三期末)(多选)已知∈z z C ,12,且=+=z z z 10112,则( )A .当R =−=+∈z z x y x y 1i,i(,)12时,必有++−=x y (1)(1)1022B .复平面内复数z 1C .−=z i 1min 1D .=+z z 1max12【答案】BD【解析】A 项:+=⇒++−=z z x y 10111001222)()(,故错误;B 项:因为=z 1,故正确;C 项:−≥−=z i z i ||||111,当z 1与i 对应向量同向时取等,故错误;D 项:==≤==+z z 112+z z 12与z 1对应向量反向时取等,故正确. 故选:BD.46.(2023秋·湖北·高三校联考阶段练习)(多选)设z 1,z 2为复数,则下列四个结论中正确的是( )A .−=+−z z z z z z 412121222)(B .−z z 11是纯虚数或零C .+≤+z z z z 1212恒成立D .存在复数z 1,z 2,使得<z z z z 1212【答案】BC【解析】对于A :+−=−z z z z z z 412121222)()(,令−=+z z x y i 12, 则−=+=−+z z x y x y xy i 2i 122222)()(,−==+z z x y 12222,+xy 22与−+x y xy 2i 22不一定相等,故A 错误;对于B :=+z a b i 1,则=−z a b i 1,−=z z b 2i 11,当=b 0时为零,当≠b 0时为纯虚数,故B 正确;对于C :=+=+==z x y z a b z z i,i,1212则+=z z 12+=z z ||||12,(ay bx −≥02),则+−≥a y b x abxy 202222,∴+++≥++a x b x a y b y a x b y abxy 442222222222222)()(∴++≥+x y a b ax by 42222222)()()(∴+ax by 22∴++++≥+++++x y a b x y a b ax by 2222222222,∴≥22,∴+−+≥z z z z ||||0121222)()(故C 正确;对于D :设=+=+==z x y z a b z z i,i,1212则z z ||||12=+++=−++z z ax xb ay by ax by xb ay i i i i 122)()(==z z 12z z ||||12,故D 错误.故选:BD.47.(2022秋·甘肃甘南)(多选)已知=+∈z a b a b i ,R )(为复数,z 是z 的共轭复数,则下列命题一定正确的是( )A .若z 2为纯虚数,则=≠a b 0B .若∈z R 1,则∈z RC .若−=z i 1,则z 的最大值为2D .⋅=z z z ||2【答案】BCD【解析】对于A ,=+=−+z a b a b ab (i)2i 2222)(为纯虚数,所以⎩≠⎨−=⎧ab a b 20022,即=±≠a b 0,所以A 错误;对于B ,()()++−++===−−z a b a b a b a b a ba b a bi i i i 11i 2222, 因为∈zR 1,所以=b 0,从而∈z R ,所以B 正确;对于C , 由复数模的三角不等式可得=−+≤−+=z z z i i i i 2)(,所以C 正确;对于D ,⋅=+−=+=z z a b a b a b z i i ||222)()(,所以D 正确.故选:BCD .48.(2023秋·吉林长春·高三长春市第二中学校考期末)(多选)已知复数z 1,z 2,则下列结论中一定正确的是( ) A .若=z z 012,则=z 01或=z 02B .若+=z z 01222,则==z z 012 C .若=z z 1222,则z z =12D .若z z =12,则=z z 1222【答案】AC【解析】对于A , 设=+=+∈z x y z a b x y a b i,i,,,,R 12)(, 若=z z 012,则=++=−=z z x y a b xa yb xb ya i i ++i 012)()()(,所以⎩=⎨⎧−=xb ya xa yb +00,即⎩=−⎨⎧=xb ya xa yb,所以=−x y ab ab 22,若0a b ,则=−x y ab ab 22成立,此时=z 02;若,=≠a b 00,由=xa yb 得=y 0,由=−xb ya 得=x 0,此时=z 01; 若,≠≠a b 00,由=−x y ab ab 22得=−x y 22,所以==x y 0,此进=z 01, 所以若=z z 012,则=z 01或=z 02,故A 正确;对于B ,设=+=−z z 1i,1i,12则+=+−=z z 1i +1i 0122222)()(,故B 不正确; 对于C ,设=+=+∈z x y z a b x y a b i,i,,,,R 12)(,所以=+−=−∈z x y x y xy z a b ab x y a b i =+2i,+2i ,,,R 12222222)()(,若=z z 1222,则⎩⎩==⎨⎨⇒⎧−=−⎧=xy ab y b x y a b x a 222222或⎩=−⎨⎧=−y b x a , 所以z z =12,故C 正确;对于D , 由z z =12,取=+z 1i 1,=−z 1i 2满足条件,而=≠=−z z 2i 2i 1222,故D 不正确. 故选:AC.49.(2023·高一课时练习)在复平面上的单位圆上有三个点Z 1,Z 2,Z 3,其对应的复数为z 1,z 2,z 3.若−=+=z z z 1213△Z Z Z 123的面积S =______.【解析】由题意知,===z z z 1123, 由复数的加减法法则的几何意义及余弦定理,得⋅∠==−+−−z z Z OZ z z z z 22cos 112121212222,即∠=︒Z OZ 12012,⋅∠=−=+−+z z Z OZ z z z z 22cos 113131313222,即∠=︒Z OZ 6013,当OZ 2与OZ 3反向,=⨯⨯=S 22221;当线段OZ3在∠Z OZ12的内部时,==S2211所以△Z Z Z123..50(2023·高三课时练习)已知复数=−θz cos i1,=+θz sin i2,则⋅z z12的最大值为______.【答案】23【解析】⋅=⋅== z z z z1212===∵∈θsin20,12][,∴当=θsin212时,⋅z z12=23.故答案为:23.51.(2023·=______.====21)52.(2023·高一课时练习)设z 1,z 2,∈z C 3,下列命题中,假命题的个数为______. ①z z −=11;②若=z z 1222,则⋅=⋅z z z z 1122;③⋅=z z z z z z 3333121222; ④若−+−=z z z z 0122322)()(,则==z z z 123;⑤+≤z z z z 2121222.【答案】2【解析】令+z a b =i 1,+z c d =i 2,则−z a b =i 1,−z c d =i 2.则①−==z z 11,判断正确;②若=z z 1222,则=z z 1222,则=z z 1222又⋅=z z z 1112,⋅=z z z 2222,则⋅=⋅z z z z 1122.判断正确;③==⋅z z z z z z z z z 333333121212222.判断正确; ④若令z =2i 1,z =i 2,+z =1i 3,则−+−=−+=z z z z 110122322)()(, 但此时≠≠z z z 123.判断错误; ⑤当+z =23i 1,+z =2i 2时,=<+−=−=−z z z z z z 22i 402212121222)()(,即+>z z z z 2121222.判断错误.故答案为:253.(2023·上海·统考模拟预测)设∈z z ,C 12且=⋅z z i 12,满足−=z 111,则−z z 12的取值范围为_____.【答案】⎣⎡0,2【解析】设=+=+∈z a b z c d a b c d i,i,,,,R 12,=−z c d i 2,则+=⋅−=+a b c d d c i i i i )(,所以⎩=⎨⎧=b c a d ,−=−+==z a b 11i 11)(,所以−+=a b 1122)(,即z 1对应点a b ,)(在以1,0)(为圆心,半径为1的圆−+=x y 1122)(上.=+=+z c d b a i i 2,z 2对应点为b a ,)(,a b ,)(与b a ,)(关于=y x 对称,所以点b a ,)(在以0,1)(为圆心,半径为1的圆+−=x y 1122)(上,−z z 12表示a b ,)(与b a ,)(两点间的距离,圆−+=x y 1122)(与圆+−=x y 1122)(,如图所示,所以−z z 12的最小值为0+=112所以−z z 12的取值范围为⎣⎡0,2.故答案为:⎣⎡0,254.(2023·高三课时练习)复数z 1与z 2在复平面上对应的向量分别为OZ 1与OZ 2,已知=z i 1,OZ OZ ⊥12,且=OZ OZ 12,则复数=z 2______.【答案】1或−1【解析】依题意,(3,1)OZ =1,设(,)OZ x y =2,由OZ OZ ⊥12得:30OZ OZ ⋅=+=x y 12,由=OZ OZ 12得:+=x y 422,联立解得⎩⎪=⎨⎪⎧=y x 1⎩⎪⎨⎪⎧=−y x 1(1,3)OZ =−2或(1,3)OZ =−2,所以=z 12或=−z 12.故答案为:1或−155(2023·高三课时练习)已知复数z 满足−−≤−−+z z 12log 11121,则z 在复平面上对应的点Z所围成区域的面积为______. 【答案】π21 【解析】12log 1,2,215z z z z −+−+−−−−≤−∴≥<−≤z 12121111,∴=−=s π(52)21π22. 故答案为: π2156(2022春·上海闵行·高三上海市七宝中学校考阶段练习)已知=+z x y i ,x 、∈y R ,i 是虚数单位.若复数++z1ii 是实数,则z ||的最小值为______.【【解析】复数++−+=+=+=++−++−+−+z x y x y y x x y y x 1i (1i)(1i)222i i i i (i)(1i)()i 2是实数, 所以=−+y x 202,得=+x y 2.所以===≥z ||当且仅当=−y 1,=x 1取等号,所以z ||.。
专题17 反比例函数篇(解析版)
专题17 反比例函数1. 反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号>k 0<k 所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。
在一个支上(每一个象限内),y 随x 的增大而增大。
对称性图像关于原点对称2. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。
②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。
这个三角形的面积等于2k 。
3. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。
4. 反比例函数与一次函数的不等式问题:若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。
反比例函数与一次函数的交点把自变量分成三部分。
1.(2022•湘西州)如图,一次函数y =ax +1(a ≠0)的图象与x 轴交于点A ,与反比例函数y =xk的图象在第一象限交于点B (1,3),过点B 作BC ⊥x 轴于点C .(1)求一次函数和反比例函数的解析式.(2)求△ABC 的面积.【分析】(1)利用待定系数法解答即可;(2)利用直线的解析式求得点A 坐标,利用坐标表示出线段CA ,BC 的长度,利用三角形的面积公式解答即可.【解答】解:(1)∵一次函数y =ax +1(a ≠0)的图象经过点B (1,3),∴a +1=3,∴a =2.∴一次函数的解析式为y =2x +1,∵反比例函数y =的图象经过点B (1,3),∴k =1×3=3,∴反比例函数的解析式为y =.(2)令y =0,则2x +1=0,∴x =﹣.∴A (﹣,0).∴OA =.∵BC ⊥x 轴于点C ,B (1,3),∴OC =1,BC =3.∴AC =1=.∴△ABC 的面积=×AC •BC =.2.(2022•德州)已知蓄电池的电压为定值,使用该蓄电池时,电流I (单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)请求出这个反比例函数的解析式;(2)蓄电池的电压是多少?(3)如果以此蓄电池为电源的用电器限制电流不能超过10A,那么用电器的可变电阻应控制在什么范围?【分析】(1)先由电流I是电阻R的反比例函数,可设I=,将点(8,6)代入I=,利用待定系数法即可求出这个反比例函数的解析式;(2)根据电压=电流×电阻即可求解;(3)将I≤10代入(1)中所求的函数解析式即可确定电阻的取值范围.【解答】解:(1)电流I是电阻R的反比例函数,设I=,∵图象经过(8,6),∴6=,解得k=6×8=48,∴I=;(2)蓄电池的电压是6×8=48;(3)∵I≤10,I=,∴≤10,∴R≥4.8,即用电器可变电阻应控制在4.8欧以上的范围内.3.(2022•大连)密闭容器内有一定质量的二氧化碳,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示,当V =5m 3时,ρ=1.98kg /m 3.(1)求密度ρ关于体积V 的函数解析式;(2)若3≤V ≤9,求二氧化碳密度ρ的变化范围.【分析】(1)设密度ρ关于体积V 的函数解析式为ρ=(k ≠0),利用反比例函数图象上点的坐标特征,即可求出k 值,进而可得出密度ρ关于体积V 的函数解析式;(2)由k =9.9>0,利用反比例函数的性质可得出当V >0时ρ随V 的增大而减小,结合V 的取值范围,即可求出二氧化碳密度ρ的变化范围.【解答】解:(1)设密度ρ关于体积V 的函数解析式为ρ=(k ≠0).∵当V =5m 3时,ρ=1.98kg /m 3,∴1.98=,∴k =9.9,∴密度ρ关于体积V 的函数解析式为ρ=(V >0).(2)∵k =9.9>0,∴当V >0时,ρ随V 的增大而减小,∴当3≤V ≤9时,≤ρ≤,即二氧化碳密度ρ的变化范围为1.1≤ρ≤3.3.4.(2022•淄博)如图,直线y =kx +b 与双曲线y =xm相交于A (1,2),B 两点,与x 轴相交于点C (4,0).(1)分别求直线AC 和双曲线对应的函数表达式;(2)连接OA ,OB ,求△AOB 的面积;(3)直接写出当x >0时,关于x 的不等式kx +b >xm的解集.【分析】(1)将已知点坐标代入函数表达式,即可求解;(2)直线AC :y =﹣x +与双曲线:y =(x >0)相交于A (1,2),B 两点,联立方程组,求出点B 的坐标为(3,),根据组合法(即基本图形面积的和差)即可以解决问题;(3)根据图象即可解决问题.【解答】解:(1)将A (1,2),C (4,0)代入y =kx +b ,得,解得:,∴直线AC 的解析式为y =﹣x +,将A (1,2)代入y =(x >0),得m =2,∴双曲线的解析式为y =(x >0);(2)∵直线AC 的解析式为y =﹣x +与y 轴交点D ,∴点D 的坐标为(0,),∵直线AC :y =﹣x +与双曲线:y =(x >0)相交于A (1,2),B 两点,∴,∴,,∴点B 的坐标为(3,),∴△AOB 的面积=4×﹣4×﹣×1=;(3)观察图象,∵A (1,2),B (3,),∴当x >0时,关于x 的不等式kx +b >的解集是1<x <3.5.(2022•镇江)如图,一次函数y =2x +b 与反比例函数y =xk(k ≠0)的图象交于点A (1,4),与y 轴交于点B .(1)k = ,b = ;(2)连接并延长AO ,与反比例函数y =xk(k ≠0)的图象交于点C ,点D 在y 轴上,若以O 、C 、D 为顶点的三角形与△AOB 相似,求点D 的坐标.【分析】(1)将点A (1,4)分别代入反比例函数y =(k ≠0)和一次函数y =2x +b 的解析式中,求解即可;(2)根据题意,需要分类讨论:当点D 落在y 轴的正半轴上,当点D 落在y 轴的负半轴上,△COD ∽△AOB 或△COD ∽△BOA ,依次根据比例关系,求解即可.【解答】解:(1)将点A (1,4)代入反比例函数y =(k ≠0)的解析式中,∴k =1×4=4;将A (1,4)代入一次函数y =2x +b ,∴2×1+b =4,解得b =2.故答案为:4;2.(2)当点D 落在y 轴的正半轴上,则∠COD >∠ABO ,∴△COD 与△ABO 不可能相似.当点D 落在y 轴的负半轴上,若△COD ∽△AOB ,∵CO =AO ,BO =DO =2,∴D (0,﹣2).若△COD ∽△BOA ,则OD :OA =OC :OB ,∵OA =CO =,BO =2,∴DO =,∴D (0,﹣),综上所述:点D 的坐标为(0,﹣2),(0,﹣).6.(2022•宁夏)如图,一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴分别相交于C 、B 两点,与反比例函数y =xm(m ≠0,x >0)的图象相交于点A ,OB =1,tan ∠OBC =2,BC :CA =1:2.(1)求反比例函数的表达式;(2)点D 是线段AB 上任意一点,过点D 作y 轴平行线,交反比例函数的图象于点E ,连接BE .当△BDE 面积最大时,求点D 的坐标.【分析】(1)根据正切函数的定义可得出OC 长,过点A 作AF ⊥x 轴于点F ,则△ACF ∽△BCO ,由相似比可得出CF 和AF 的长,进而可得出点A 的坐标,代入反比例函数可得出m 的值,进而可得结论;(2)由(1)可得直线AB 的解析式.设点D 的横坐标为t ,由此可表达点D ,E 的坐标,根据三角形的面积公式可表达△BDE 的面积,根据二次函数的性质可得结论.【解答】解:(1)如图,过点A 作AF ⊥x 轴于点F ,∴AF ∥y 轴,∴△ACF ∽△BCO ,∴BC :AC =OB :AF =OC :CF =1:2.∵OB =1,tan ∠OBC =2,∴OC =2,∴AF =2,CF =4,∴OF =OC +CF =6,∴A (6,2).∵点A 在反比例函数y =(m ≠0,x >0)的图象上,∴m =2×6=12.∴反比例函数的表达式为:y =(x >0).(2)由题意可知,B (0,﹣1),∴直线AB 的解析式为:y =x ﹣1.设点D 的横坐标为t ,则D (t ,t ﹣1),E (t ,).∴ED =﹣t +1.∴△BDE 的面积为:(t ﹣0)(﹣t +1)=﹣t 2+t +6=﹣(t ﹣1)2+.∵﹣<0,∴t =1时,△BDE 的面积的最大值为,此时D (1,﹣).7.(2022•鞍山)如图,在平面直角坐标系中,一次函数y =x +2的图象与反比例函数y =xk(x >0)的图象交于点A (1,m ),与x 轴交于点C .(1)求点A 的坐标和反比例函数的解析式;(2)点B 是反比例函数图象上一点且纵坐标是1,连接AB ,CB ,求△ACB 的面积.【分析】(1)由一次函数的解析式求得A 的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)作BD ∥x 轴,交直线AC 于点D ,则D 点的纵坐标为1,利用函数解析式求得B 、D 的坐标,然后根据三角形面积公式即可求得.【解答】解:(1)∵一次函数y =x +2的图象过点A (1,m ),∴m =1+2=3,∴A (1,3),∵点A 在反比例函数y =(x >0)的图象上,∴k =1×3=3,∴反比例函数的解析式为y =;(2)∵点B 是反比例函数图象上一点且纵坐标是1,∴B (3,1),作BD ∥x 轴,交直线AC 于点D ,则D 点的纵坐标为1,代入y =x +2得,1=x +2,解得x =﹣1,∴D (﹣1,1),∴BD =3+1=4,∴S △ABC =×4×3=6.8.(2022•菏泽)如图,在平面直角坐标系xOy 中,一次函数y =ax +b 的图象与反比例函数y =xk的图象都经过A (2,﹣4)、B (﹣4,m )两点.(1)求反比例函数和一次函数的表达式;(2)过O 、A 两点的直线与反比例函数图象交于另一点C ,连接BC ,求△ABC 的面积.【分析】(1)把A ,B 两点的坐标代入y =中可计算k 和m 的值,确定点B 的坐标,根据待定系数法即可求得反比例函数和一次函数的解析式;(2)如图,设AB 与x 轴交于点D ,证明CD ⊥x 轴于D ,根据S △ABC =S △ACD +S △BCD 即可求得.【解答】解:(1)将A (2,﹣4),B (﹣4,m )两点代入y =中,得k =2×(﹣4)=﹣4m ,解得,k =﹣8,m =2,∴反比例函数的表达式为y =﹣;将A (2,﹣4)和B (﹣4,2)代入y =ax +b 中得,解得,∴一次函数的表达式为:y =﹣x ﹣2;(2)如图,设AB 与x 轴交于点D ,连接CD ,由题意可知,点A 与点C 关于原点对称,∴C (﹣2,4).在y =﹣x ﹣2中,当x =﹣2时,y =0,∴D (﹣2,0),∴CD 垂直x 轴于点D ,∴S △ABC =S △ADC +S △BCD =×4×(2+2)+×4×(4﹣2)=8+4=12.9.(2022•安顺)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在y 轴上,A ,C 两点的坐标分别为(4,0),(4,m ),直线CD :y =ax +b (a ≠0)与反比例函数y =xk (k ≠0)的图象交于C ,P (﹣8,﹣2)两点.(1)求该反比例函数的解析式及m 的值;(2)判断点B 是否在该反比例函数的图象上,并说明理由.【分析】(1)把P (﹣8,﹣2)代入y =可得反比例函数的解析式为y =,即得m ==4;(2)连接AC ,BD 交于H ,由C (4,4),P (﹣8,﹣2)得直线CD 的解析式是y =x +2,即得D (0,2),根据四边形ABCD 是菱形,知H 是AC 中点,也是BD 中点,由A (4,0),C (4,4)可得H(4,2),设B (p ,q ),有,可解得B (8,2),从而可知B 在反比例函数y =的图象上.【解答】解:(1)把P (﹣8,﹣2)代入y =得:﹣2=,解得k =16,∴反比例函数的解析式为y =,∵C (4,m )在反比例函数y =的图象上,∴m ==4;∴反比例函数的解析式为y=,m=4;(2)B在反比例函数y=的图象上,理由如下:连接AC,BD交于H,如图:把C(4,4),P(﹣8,﹣2)代入y=ax+b得:,解得,∴直线CD的解析式是y=x+2,在y=x+2中,令x=0得y=2,∴D(0,2),∵四边形ABCD是菱形,∴H是AC中点,也是BD中点,由A(4,0),C(4,4)可得H(4,2),设B(p,q),∵D(0,2),∴,解得,∴B(8,2),在y=中,令x=8得y=2,∴B在反比例函数y=的图象上.10.(2022•绵阳)如图,一次函数y =k 1x +b 与反比例函数y =xk 2在第一象限交于M (2,8)、N 两点,NA垂直x 轴于点A ,O 为坐标原点,四边形OANM 的面积为38.(1)求反比例函数及一次函数的解析式;(2)点P 是反比例函数第三象限内的图象上一动点,请简要描述使△PMN 的面积最小时点P 的位置(不需证明),并求出点P 的坐标和△PMN面积的最小值.【分析】(1)利用待定系数法求得反比例函数的解析式,进而利用四边形的面积得出(8+)•(m ﹣2)=30,解方程即可求得N 的坐标,然后把M 、N 的坐标代入y =k 1x +b ,进一步求得一次函数的解析式;(2)求出与直线MN 平行且在第三象限内与反比例函数y =有唯一公共点的坐标即为点P 的坐标,此时△PMN 面积的最小,利用三角形、梯形面积以及各个部分面积之间的关系进行计算即可.【解答】解:(1)∵反比例函数y =过点M (2,8),∴k 2=2×8=16,∴反比例函数的解析式为y =,设N (m ,),∵M (2,8),∴S △OMB ==8,∵四边形OANM 的面积为38,∴四边形ABMN 的面积为30,∴(8+)•(m ﹣2)=30,解得m 1=8,m 2=﹣(舍去),∴N (8,2),∵一次函数y =k 1x +b 的图象经过点M 、N ,∴,解得,∴一次函数的解析式为y =﹣x +10;(2)与直线MN 平行,且在第三象限与反比例函数y =有唯一公共点P 时,△PMN 的面积最小,设与直线MN 平行的直线的关系式为y =﹣x +n ,当与y =在第三象限有唯一公共点时,有方程﹣x +n =(x <0)唯一解,即x 2﹣nx +16=0有两个相等的实数根,∴n 2﹣4×1×16=0,解得n =﹣8或x =8(舍去),∴与直线MN 平行的直线的关系式为y =﹣x ﹣8,∴方程﹣x ﹣8=的解为x =﹣4,经检验,x =﹣4是原方程的解,当x =﹣4时,y ==﹣4,∴点P (﹣4,﹣4),如图,过点P 作AN 的垂线,交NA 的延长线于点Q ,交y 轴于点D ,延长MB 交PQ 于点C ,由题意得,PD =4,DQ =8,CD =2,MC =8+4=12,NQ =2+4=6,∴S △PMN =S △MPC +S 梯形MCQN ﹣△=×6×12+(12+6)×6﹣×12×6=36+54﹣36=54,答:点P (﹣4,﹣4),△PMN 面积的最小值为54.11.(2022•巴中)如图,在平面直角坐标系中,直线y =21x +b 与x 轴、y 轴分别交于点A (﹣4,0)、B 两点,与双曲线y =xk (k >0)交于点C 、D 两点,AB :BC =2:1.(1)求b ,k 的值;(2)求D 点坐标并直接写出不等式21x +b ﹣x k ≥0的解集;(3)连接CO 并延长交双曲线于点E ,连接OD 、DE ,求△ODE 的面积.【分析】(1)根据点A在直线上,把点A代入,求出b的值;过C作CF⊥x轴于点F,得△AOB∽△AFC,根据AB:BC=2:1,可求出点F的坐标,可得点C的坐标,代入反比例函数,即可求出k的值;(2)根据交点坐标的性质,可求出点D的坐标,根据,得,根据函数图象,即可得到解集;(3)根据同底同高,得S△ODE =S△COD,S△COD=S△COA+S△ADO即可.【解答】解:(1)∵点A在直线上,A(﹣4,0),∴,解得b=2,过C作CF⊥x轴于点F,∴△AOB∽△AFC,∵AB:BC=2:1,∴,∴AF=6,∴OF=2,在中,令x=2,得y=3,∴C(2,3),∴,∴k=6.(2)∵D点是和交点,∴,解得或,∵D点在第三象限,∴D(﹣6,﹣1),由图象得,当﹣6≤x<0或x≥2时,,∴不等式的解集为﹣6≤x <0或x ≥2.(3)∵△ODE 和△OCD 同底同高,∴S △ODE =S △OCD ,∵S △COD =S △COA +S △ADO ,∴.12.(2022•资阳)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=x6的图象交于点A (1,m )和点B (n ,﹣2).(1)求一次函数的表达式;(2)结合图象,写出当x >0时,满足y 1>y 2的x 的取值范围;(3)将一次函数的图象平移,使其经过坐标原点.直接写出一个反比例函数表达式,使它的图象与平移后的一次函数图象无交点.【分析】(1)将A 、B 两点的坐标解出来,然后利用待定系数法求一次函数的解析式;(2)当x >0,求得一次函数的图像在反比例函数的图像上方对应x 的即可;(3)将一次函数平移后即可得到新的一次函数的解析式,根据一次函数图象即可判断反比例函数的系数k ,进而得到反比例函数的解析式.【解答】解:(1)由题意得:,,∴m =6,n =﹣3,∴A (1,6),B (﹣3,﹣2),由题意得:,解得:,∴一次函数的表达式为:y =2x +4;(2)由图象可知,当x >0时,一次函数的图象在反比例函数的图像上方对应x 的值为x >1,当x >0时,满足y 1>y 2的x 的取值范围为x >1;(3)一次函数y =2x +4的图象平移后为y =2x ,函数图象经过第一、三象限,要使正比例函数y =2x 与反比例函数没有交点,则反比例的函数图象经过第二、四象限,则反比例函数的k <0,∴当k =﹣1时,满足条件,∴反比例函数的解析式为(答案不唯一).13.(2022•徐州)如图,一次函数y =kx +b (k >0)的图象与反比例函数y =x8(x >0)的图象交于点A ,与x 轴交于点B ,与y 轴交于点C ,AD ⊥x 轴于点D ,CB =CD ,点C 关于直线AD 的对称点为点E .(1)点E 是否在这个反比例函数的图象上?请说明理由;(2)连接AE 、DE ,若四边形ACDE 为正方形.①求k 、b 的值;②若点P 在y 轴上,当|PE ﹣PB |最大时,求点P 的坐标.【分析】(1)设点A 的坐标为(m ,),根据轴对称的性质得到AD ⊥CE ,AD 平分CE ,如图,连接CE交AD 于H ,得到CH =EH ,求得E (2m ,),于是得到点E 在这个反比例函数的图象上;(2)①根据正方形的性质得到AD =CE ,AD 垂直平分CE ,求得CH =AD ,设点A 的坐标为(m ,),得到m =2(负值舍去),求得A (2,4),C (0,2),把A (2,4),C (0,2)代入y =kx +b 得,解方程组即可得到结论;②延长ED 交y 轴于P ,根据已知条件得到点B 与点D 关于y 轴对称,求得|PE ﹣PD |=|PE ﹣PB |,则点P 即为符合条件的点,求得直线DE 的解析式为y =x ﹣2,于是得到结论.【解答】解:(1)点E 在这个反比例函数的图象上,理由:∵一次函数y =kx +b (k >0)的图象与反比例函数y =(x >0)的图象交于点A ,∴设点A 的坐标为(m ,),∵点C 关于直线AD 的对称点为点E ,∴AD⊥CE,AD平分CE,如图.连接CE交AD于H,∴CH=EH,∵BC=CD,OC⊥BD,∴OB=OD,∴OC=AD,∵AD⊥x轴于D,∴CE∥x轴,∴E(2m,),∵2m×=8,∴点E在这个反比例函数的图象上;(2)①∵四边形ACDE为正方形,∴AD=CE,AD垂直平分CE,∴CH=AD,设点A的坐标为(m,),∴CH=m,AD=,∴m=×,∴m=2(负值舍去),∴A(2,4),C(0,2),把A(2,4),C(0,2)代入y=kx+b得,∴;②延长ED交y轴于P,∵CB=CD,OC⊥BD,∴点B与点D关于y轴对称,∴|PE﹣PD|=|PE﹣PB|,则点P 即为符合条件的点,由①知,A (2,4),C (0,2),∴D (2,0),E (4,2),设直线DE 的解析式为y =ax +n ,∴,∴,∴直线DE 的解析式为y =x ﹣2,当x =0时,y =﹣2,∴P (0,﹣2).故当|PE ﹣PB |最大时,点P 的坐标为(0,﹣2).14.(2022•济南)如图,一次函数y =21x +1的图象与反比例函数y =xk (x >0)的图象交于点A (a ,3),与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接CB .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.【分析】(1)将点A 的坐标代入y =求得a ,再把点A 坐标代入y =求出k ;(2)先求出A ,B ,C 三点坐标,作CD ⊥x 轴于D ,交AB 于E ,求出点E 坐标,从而求得CE 的长,进而求得三角形ABC的面积;(3)当AB为对角线时,先求出点P的纵坐标,进而代入反比例函数的解析式求得横坐标;当AB为边时,同样先求出点P的纵坐标,再代入y=求得点P的横坐标.【解答】解:(1)把x=a,y=3代入y=x+1得,,∴a=4,把x=4,y=3代入y=得,3=,∴k=12;(2)∵点A(4,3),D点的纵坐标是0,AD=AC,∴点C的纵坐标是3×2﹣0=6,把y=6代入y=得x=2,∴C(2,6),①如图1,作CD⊥x轴于D,交AB于E,当x=2时,y==2,∴E(2,2),∵C(2,6),∴CE=6﹣2=4,∴x A==8;②如图2,当AB是对角线时,即:四边形APBQ是平行四边形,∵A(4,3),B(0,1),点Q的纵坐标为0,∴y P=1+3﹣0=4,当y=4时,4=,∴x=3,∴P(3,4),当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),由y Q′﹣y B=y P′﹣y A得,0﹣1=y P′﹣3,∴y P′=2,当y=2时,x==6,∴P′(6,2),综上所述:P(3,4)或(6,2).15.(2022•枣庄)为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:时间x(天)3569……硫化物的浓度y(mg/L)4.5 2.7 2.25 1.5……(1)在整改过程中,当0≤x<3时,硫化物的浓度y与时间x的函数表达式;(2)在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L?为什么?【分析】(1)设AC的函数关系式为:y=kx+b,将A和C代入,从而求得k,b,进而求得的结果;(2)可推出x•y=13.5为定值,所以当x≥3时,y是x的反比例函数,进而求得结果;(3)将x=15代入反比例函数关系式,从而求得y的值,进而根据反比例函数图象性质,从而得出结论.【解答】解:(1)设线段AC的函数表达式为:y=kx+b,∴,∴,∴线段AC的函数表达式为:y 2.5x+12(0≤x<3);(2)∵3×4.5=5×2.7=...=13.5,∴y是x的反比例函数,∴y=(x≥3);(3)该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L,理由如下:当x=15时,y==0.9,∵13.5>0,∴y随x的增大而减小,∴该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L.。
高考数学复习备战:最新真题解析—复数
高考数学真题解析—复数考向一 复数的概念及运算【母题来源】2022年高考浙江卷【母题题文】已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A. 1,3a b ==- B. 1,3a b =-=C. 1,3a b =-=-D. 1,3a b ==【答案】B【试题解析】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B. 【命题意图】本题考查复数的四则运算,属于较为简单题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度不大,多为低档题,是历年高考的热点,考查学生的基本运算能力. 常见的命题角度有:(1)求复数的概念;(2)复数的模;(3)复数相等的四则运算;(4)复数在复平面内对应的点. 【得分要点】 解复数问题方法:(1)理解复数的基本概念.(2)解答中熟练应用复数的运算法则化简.(3)复数的乘法:复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类项,不含i 的看作另一类项,分别合并同类项即可.一、单选题1.(2022·青海·海东市第一中学模拟预测(理))设()31i 2z -=,则z =( ) A 2B 2C .1D .2【答案】A【解析】 【分析】根据复数的四则运算法则及模的运算即可求得答案. 【详解】由题意,3(1i)2i(1i)2(1i)-=--=-+,2i 12(1i)2-=-+,2||z = A. 2.(2022·全国·模拟预测)若复数z 满足()32i 3i z +(i 为虚数单位),则在复平面内z 所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D 【解析】 【分析】根据复数的模长与乘法除法运算求解可得42i 55z =-,再根据复数的几何意义分析即可 【详解】 因为()32i 3i z +,即()2i 3i z +,故()()()22i 242i 2i 2i 2i 55z -===-++-,所以在复平面内z 所对应的点为42,55⎛⎫- ⎪⎝⎭,位于第四象限.故选:D .3.(2022·全国·南京外国语学校模拟预测)已知复数211i 1iz =+-+(i 为虚数单位),则复数z 在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】根据复数的运算求解复数z ,得到z ,根据复数的几何意义即可求解. 【详解】()()()()()21i 211i 11311i i i 1i 1i 1i 1i 1i 1i 2222z +-=+=+=++-=+-+-++-, 则31i 22z =-,在复平面上对应的点的坐标为31,22⎛⎫- ⎪⎝⎭,位于第四象限故选:D .4.(2022·海南海口·二模)复数213i+的虚部为( ) A .35B .15C .15-D .35【答案】D 【解析】 【分析】利用复数的除法运算法则即可求解. 【详解】由已知得()()()213i 226i 13i 13i 13i 13i 1055--===-++-,则复数13i 55-的虚部为35,故选:D. 5.(2022·江苏无锡·模拟预测)已知复数z 满足()i i 43i z -=+,则z =( ) A .25B .3 C .3D .32【答案】D 【解析】 【分析】利用复数的除法运算求出z ,再利用共轭复数及模的意义求解作答. 【详解】 依题意,43ii iz +-=,则有(43i)(i)+i 34i i 33i i (i)z +-==-+=-⋅-,于是得33i z =+,所以223332z =+故选:D6.(2022·全国·模拟预测)已知i 32i z -=,i 为虚数单位,则z =( ) A .23i + B .23i - C .23i -+ D .23i --【答案】B 【解析】 【分析】根据复数的代数运算法则即可解出. 【详解】因为i 32i z -=,所以()232i i 32i 23i23i i i 1z ++-+====--.故选:B . 7.(2022·青海·模拟预测(理))若2i21ix y -=+(x ,R y ∈,i 为虚数单位),则复数i x y +在复平面内所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】根据给定条件,利用复数乘法结合复数相等求出x ,y 即可求解作答. 【详解】因2i21i x y -=+,则有2i 22i x y y -=+,而,R x y ∈,有222x y y =⎧⎨-=⎩,解得2,1x y =-=-,所以复数i x y +在复平面内所对应的点(2,1)--位于第三象限. 故选:C8.(2022·广东茂名·二模)已知复数z 在复平面内对应的点为()11,,z 是z 的共轭复数,则1z=( ) A .11i 22-+B .11i 22+C .11i 22-D .11i 22--【答案】B 【解析】 【分析】求出z ,再由复数的除法运算可得答案. 【详解】∵复数z 在复平面内对应的点为()11,,∴1i z =+,1i z =-,()()11i 1i 11i 1i 1i 222++===+-+z .故选:B .9.(2022·浙江湖州·模拟预测)已知a R ∈,若复数(i)(1i)z a =+-,复数z 的实部是4,则z 的虚部是( ) A .2i - B .2-C .2iD .2【答案】B 【解析】 【分析】先化简复数z ,再根据复数z 的实部是4求解. 【详解】解:()(i)(1i)11i =+-=++-z a a a ,因为复数z 的实部是4,所以14a +=,解得3a =,所以42i z =-,则z 的虚部是-2,故选:B10.(2022·浙江绍兴·模拟预测)人们对数学研究的发展一直推动着数域的扩展,从正数到负数、从整数到分数、从有理数到实数等等.16世纪意大利数学家卡尔丹和邦贝利在解方程时,首先引进了2i 1=-,17世纪法因数学家笛卡儿把i 称为“虚数”,用i(R)a b a b +∈、表示复数,并在直角坐标系上建立了“复平面”.若复数z 满足方程2250z z ++=,则z =( ) A .12i -+ B .2i --C .12i -±D .2i -±【答案】C 【解析】 【分析】设出复数z 的代数形式,再利用复数为0列出方程组求解作答. 【详解】设i(,R)z a b a b =+∈,因2250z z ++=,则2(i)2(i)50a b a b ++++=,即22(25)2(1)i 0a b a b a -++++=,而,R a b ∈,则222502(1)0a b a b a ⎧-++=⎨+=⎩,解得12a b =-⎧⎨=±⎩,所以12i z =-±.故选:C 二、填空题11.(2022·上海闵行·二模)若i1im ++为纯虚数(i 为虚数单位),则实数m =___________; 【答案】-1 【解析】 【分析】先利用复数的除法法则化简得到()()()()()i 1i 11i 1i 1i 2m m m +-++-=+-,根据i1im ++为纯虚数,得到方程,求出1m =-,检验后得到答案. 【详解】()()()()()i 1i 11i 1i 1i 2m m m +-++-=+-,因为i1im ++为纯虚数,所以10m +=,解得:1m =-,此时ii 1im +=+,符合要求, 故答案为:-112.(2022·天津·静海一中模拟预测)已知复数z 满足()1i 34i z +=-(其中i 为虚数单位),则||z =________ 52【解析】 【分析】根据复数的乘除运算法则,化简得z ,进而根据共轭复数得到z ,根据模长公式即可求解. 【详解】由()1i 34i z +=-得()()3-4i 1-i 34i 33i-4i 417i 1i 2222z ---====--+,所以17i 22z =-+,故221752||=222z ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭.故答案为:522 13.(2022·江苏·扬中市第二高级中学模拟预测)若i 为虚数单位,复数z 满足11i 2z ≤++≤,则1i z --的最大值为_______. 【答案】32 【解析】 【分析】利用复数的几何意义知复数z 对应的点Z 到点(1,1)C --的距离d 满足12d ≤≤,1i z --表示复数z 对应的点Z 到点(1,1)P 的距离,数形结合可求得结果.【详解】复数z 满足112z i ≤++≤,即()11i 2z ≤---≤ 即复数z 对应的点Z 到点(1,1)C --的距离d 满足12d ≤≤ 设(1,1)P ,1i z --表示复数z 对应的点Z 到点(1,1)P 的距离数形结合可知1i z --的最大值22||||222232AP CP =+=++= ,故答案为:3214.(2022·浙江·三模)中国古代数学著作《九章算术》中记载了平方差公式,平方差公式是指两个数的和与这两个数差的积,等于这两个数的平方差.若复数53i,43i a b =+=+(i 为虚数单位),则22a b -=__________.【答案】96i + 【解析】 【分析】先要平方差公式,再按照复数的四则运算规则计算即可. 【详解】()()()()2253i 43i 53i 43i 96i a b a b a b -=+-=++++--=+ ;故答案为:96i + .15.(2022·全国·模拟预测)请写出一个同时满足①2i 2z z -=-;②22z =的复数z ,z =______. 【答案】()1i ±+ 【解析】 【分析】设i R z a b a b =+∈,,,根据模长公式得出1a b ==±,进而得出z . 【详解】设i R z a b a b =+∈,,,由条件①()()222222a b a b +-=-+a b =,故222221z a b a b =⇒+=⇒==±,()1i z =±+;故答案为:()1i ±+16.(2022·上海交大附中模拟预测)已知1z 、2C z ∈,且12i z =+,234z i =-(其中i 为虚数单位),则12z z -=____________.【答案】15i -+##5i 1- 【解析】 【分析】利用复数的减法化简可得结果. 【详解】122i 34i 15i z z -=+-+=-+.故答案为:15i -+.。
高考数学考点专项突破 复数的概念与性质(含解析)
学习资料复数的概念与性质一、单选题1、(2020届山东省日照市高三上期末联考)已知复数满足(为虚数单位),则复数的模为( ) A .2B .C .5D .【答案】D 【解析】因为,所以.2、(2020年高考北京)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅= A .1i 2+ B .2i -+C .12i -D .2i --【答案】B【解析】由题意得12i z =+,i i 2z ∴=-。
故选:B . 3、(2020届山东实验中学高三上期中)i 是虚数单位,若复数21z i =-,则z 的虚部为( ) A .1- B .0C .i -D .1【答案】A 【解析】i 是虚数单位,复数22(1)2(1)11(1)(1)2i i z i i i i ++====----+-, z ∴的虚部为1-.故选:A .4、(2020年高考全国Ⅰ卷理数)若z =1+i,则|z 2–2z |=A .0B .1C D .2【答案】D【解析】由题意可得:2i (2i)(12i)5ii 12i (12i)(12i)5----===-++-,则()222212z z i i -=-+=-。
故2222z z -=-=.故选:D .5、(2020届山东省泰安市高三上期末)已知复数z 满足11ii z+=-,则z =( )A .B .2CD .1【答案】D【解析】∵11ii z+=-, ∴11i z i +=-()()()2111i i i +=-+1211(1)i i +-==--, ∴1z =,故选:D .6、(2020年高考全国III 卷理数)复数113i-的虚部是 A .310- B .110-C .110D .310【答案】D【解析】因为i i i i 1131313(13)(i 13)1010z +===+--+, 所以复数113i z =-的虚部为310。
故选:D .7、(2020年新高考全国Ⅰ)2i12i-=+ A .1 B .−1 C .iD .−i【答案】D【解析】2(2)(12)512(12)(i i i ii i 12)i i 5----===-++- 故选:D8、(2020·山东省淄博实验中学高三期末)已知复数133iz i-=+,i 为虚数单位,则( ) A .z i =B .z i =C .21z =D .z 的虚部为i -【答案】B 【解析】由题:2213(13)(3)3103=3(3)(3)9i i i i i z i i i i i ----+===-++--, 所以:1z =,z i =,22()1z i =-=-,z 的虚部为1-。
高考数学专题《复数》习题含答案解析
专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【解析】因为1131313(13)(13)1010i z i i i i +===+--+,所以复数113z i =-的虚部为310.故选:D.2.(2020·全国高考真题(文))(1–i )4=( )A .–4B .4C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( )A .1i --B .1i-+C .1i-D .1i+【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果.【详解】由题意可得:()()()()2121211112i i z i i i i ++====+--+.故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i-C .62i+D .42i+【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( )A .312i--B .312i-+C .32i-+D .32i--【答案】B 【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( )A .12i -B .12i+C .1i+D .1i-【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( )A .–34i -B .34i-+C .34i-D .34i+【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值.【详解】由题意可得:()2434343341i i i i z i i i ++-====--.故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( )A .1-B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( )ABC .3D .5【答案】D 【解析】∵ 故选D.10.(2019·全国高考真题(文))设,则=( )A.2B CD .1【答案】C 【解析】因为,所以,所以,故选C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( )A .-1B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312iz i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,,所以,则,故选B.2.(全国高考真题(理))复数的共轭复数是( )A .B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( )A .B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( )A .B .C .D .【答案】B 【解析】由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,22222a i ai i ai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i-35i()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i+2i--2i-+R a ∈i z a =4z z ⋅=则( )A .1或B或C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( )A .2i -B .2i-+C .2i+D .2i--【答案】C 【分析】根据复数除法运算求出z ,即可得出答案.【详解】()2i 35z +=+= ,()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+.故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】先由欧拉公式计算可得312e π=,然后根据复数的几何意义作出判断即可.【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝,在第一象限.故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =(i 为虚数单位),则下列说法正确的是()A .复数z 在复平面内对应的点坐标为()sin 3cos3,sin 3cos3+-a =1-,4z a z z =+⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解.【详解】复数3cos3i sin 3cos3z =++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin 3cos30->,所以原式()()sin 3cos3i sin 3cos3=-++-,所以选项A 错误;复数z B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确.故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( )A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确.对选项B ,因为11cos isin cos isin z z θθθθ+=+++()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=,所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>,所以88cos isin 33z ππ=+在复平面对应的点落在第二象限.故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ(O为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.【答案】16 ()22cossin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ+=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解: 2(cos sin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos 6sin 61i ωθθ=+=,所以sin 60cos 61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( )A .4B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-.【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-.故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置.【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限,故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( )A .0B .1C D .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( )A .0B .1CD .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】由得则对应点(-3,-2)位于第三象限.故选C .6.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【解析】因为,则,则的实部为.z 32,z i =-+32,z i =--32,z i =--z i 12i z ⋅=+z i 12i z ⋅=+12i2i iz +==-z 2。
高中数学《复数》高考真题汇总(详解)——精品文档
高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
高考数学压轴专题(易错题)备战高考《复数》知识点总复习含解析
【高中数学】《复数》考试知识点(1)一、选择题1.在复平面内,已知复数z 对应的点与复数2i --对应的点关于实轴对称,则zi=( ) A .12i - B .12i +C .12i -+D .12i --【答案】B 【解析】 【分析】 由已知求得z ,代入zi,再由复数代数形式的乘除运算化简得答案. 【详解】由题意,2z i =-+,则22(2)()12z i i i i i i i -+-+-===+-. 故选:B . 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.2.在复平面内,若复数z 满足|z +1|=|1+i z |,则z 在复平面内对应点的轨迹是( ) A .直线 B .圆 C .椭圆 D .抛物线【答案】A 【解析】 【分析】设()z x yi x y R =+∈、,代入11z iz +=+,求模后整理得z 在复平面内对应点的轨迹是直线. 【详解】设()z x yi x y R =+∈、,1x yi ++=,()11iz i x yi +=++=y x =-,所以复数z x yi =+对应点的轨迹为直线,故选A. 【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,动点的轨迹问题,是基础题.3.若复数21z i i=+-(i 为虚数单位),则||z =( )A .2B .3C .5D .5【答案】C 【解析】 【分析】根据复数的运算,化简复数,再根据模的定义求解即可. 【详解】22(1)121(1)(1)i z i i i i i i +=+=+=+--+,22||125z =+=.故选C. 【点睛】本题主要考查了复数的除法运算,复数模的概念,属于中档题.4.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅= A .25- B .25C .7-D .7【答案】A 【解析】 【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可 【详解】Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A 【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题5.若复数z 满足232,z z i +=-其中i 为虚数单位,则z= A .1+2i B .1-2iC .12i -+D .12i --【答案】B 【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.6.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e 2i 表示的复数在复平面中对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】 【分析】由题意得2cos 2sin 2i e i =+,得到复数在复平面内对应的点(cos 2,sin 2),即可作出解答. 【详解】由题意得,e 2i =cos 2+isin 2,∴复数在复平面内对应的点为(cos 2,sin 2). ∵2∈,∴cos 2∈(-1,0),sin 2∈(0,1),∴e 2i 表示的复数在复平面中对应的点位于第二象限, 故选B. 【点睛】本题主要考查了复数坐标的表示,属于基础题.7.在复平面内与复数21iz i=+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( ) A .1i -- B .1i -C .1i +D .1i -+【答案】D 【解析】 【分析】根据复数的运算法则求出1z i =+,即可得到其对应点关于虚轴对称点的坐标,写出复数. 【详解】 由题()()()2122211112i i i i z i i i i -+====+++-,在复平面对应的点为(1,1), 关于虚轴对称点为(-1,1),所以其对应的复数为1i -+. 故选:D 【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.8.已知两非零复数12,z z ,若12R z z ∈,则一定成立的是A .12R z z ∈B .12R z z ∈ C .12R z z +∈D .12R z z ∈ 【答案】D 【解析】 利用排除法:当121,1z i z i =+=-时,12z z ∈R ,而()21212z z i i R =+=∉,选项A 错误,1211z i i R z i+==∉-,选项B 错误, 当121,22z i z i =+=-时,12z z ∈R ,而123z z i R +=-∉,选项C 错误, 本题选择D 选项.9.设i 是虚数单位,则复数734ii++在复平面内所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 因为734i i++(7)(34)2525=1(34)(34)25i i i i i i +--==-+-, 所以所对应的点为(1,1)-,位于第四象限,选D.10.已知z C ∈,2z i z i ++-=,则z 对应的点Z 的轨迹为( ) A .椭圆 B .双曲线C .抛物线D .线段【答案】D 【解析】 【分析】由复数模的几何意义,结合三角不等式可得出点Z 的轨迹. 【详解】2z i z i ++-=的几何意义为复数z 对应的点Z 到点()0,1A -和点()0,1B 的距离之和为2,即ZA ZB AB +=,另一方面,由三角不等式得ZA ZB AB +≥.当且仅当点Z 在线段AB 上时,等号成立. 因此,点Z 的轨迹为线段. 故选:D. 【点睛】本题考查复数模的几何意义,将问题转化为距离之和并结合三角不等式求解是解题的关键,考查分析问题和解决问题的能力,属于中等题.11.复数12i2i+=-( ). A .iB .1i +C .i -D .1i -【答案】A 【解析】 试题分析:12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.12.若复数1a iz i+=-,且3·0z i >,则实数a 的值等于( ) A .1 B .-1C .12D .12-【答案】A 【解析】 【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可. 【详解】()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q ,所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.13.若z C ∈且342z i ++≤,则1z i --的最大和最小值分别为,M m ,则M m -的值等于( )A .3B .4C .5D .9【答案】B 【解析】 【分析】根据复数差的模的几何意义可得复数z 在复平面上对应的点的轨迹,再次利用复数差的模的几何意义得到,M m ,从而可得M m -的值. 【详解】因为342z i ++≤,故复数z 在复平面上对应的点P 到134z i =--对应的点A 的距离小于或等于2, 所以P 在以()3,4C --为圆心,半径为2的圆面内或圆上, 又1z i --表示P 到复数21z i =+对应的点B 的距离, 故该距离的最大值为()()22231412412AB +=--+--+=+,最小值为2412AB -=-,故4M m -=. 故选:B. 【点睛】本题考查复数中12z z -的几何意义,该几何意义为复平面上12,z z 对应的两点之间的距离,注意12z z +也有明确的几何意义(可把12z z +化成()12z z --),本题属于中档题.14.下列命题中,正确命题的个数是( ) ①若,,则的充要条件是;②若,且,则;③若,则.A .B .C .D . 【答案】A 【解析】对①,由于x ,y ∈C ,所以x ,y 不一定是x +yi 的实部和虚部,故①是假命题; 对②,由于两个虚数不能比较大小,故②是假命题; ③是假命题,如12+i 2=0,但1≠0,i≠0. 考点:复数的有关概念.15.已知复数134z i=+,则下列说法正确的是( ) A .复数z 的实部为3B .复数z 的虚部为425iC .复数z 的共轭复数为342525i + D .复数的模为1【答案】C 【解析】 【分析】直接利用复数的基本概念得选项. 【详解】1343434252525i z i i -===-+, 所以z 的实部为325,虚部为425-, z 的共轭复数为342525i +,模为2234125255⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 故选C. 【点睛】该题考查的是有关复数的概念和运算,属于简单题目.16.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( ) A .1i -- B .1i +C .312i -D .312i +【答案】D 【解析】21z z +=-323122i i i -=+- ,选D.17.已知复数z 满足()11z i i +=-,则z = ( ) A .i B .1C .i -D .1-【答案】B 【解析】()()1i 1i z +=-,则()()()21i 1i 2i 1i 1i 1i 2z ---====-++-i ,1z ∴=,故选B.18.若复数满足,则复数的虚部为( )A .B .C .D .【答案】B 【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果. 详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为19.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .2【答案】B 【解析】 【分析】 化简得到,根据纯虚数概念计算得到答案. 【详解】为纯虚数,故且,即.故选:.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.。
十年(2010-2019年)高考数学真题分类汇编:专题17 复数 (含答案解析)
十年(2010-2019年)高考数学真题分类汇编专题17复数1.(2019·全国1·文T1)设z=3-i1+2i ,则|z|= ( ) A.2 B.√3 C.√2 D.1【答案】C 【解析】∵z=3-i1+2i , ∴z=(3-i )(1-2i )(1+2i )(1-2i )=15−75i,∴|z|=√(15)2+(-75)2=√2.故选C.2.(2019·全国3·理T2文T2)若z(1+i)=2i,则z=( ) A.-1-i B.-1+i C.1-i D.1+i【答案】D 【解析】z=2i 1+i=2i (1-i )(1+i )(1-i )=2+2i2=1+i.故选D.3.(2019·北京·理T1文T2)已知复数z=2+i,则z ·z =( ) A.√3 B.√5 C.3 D.5【答案】D【解析】∵z=2+i,∴z =2-i. ∴z ·z =(2+i)(2-i)=5. 故选D.4.(2019·全国2·文T2)设z=i(2+i),则z =( ) A.1+2i B.-1+2i C.1-2i D.-1-2i【答案】D【解析】z=2i+i 2=-1+2i,则z =-1-2i.故选D.5.(2019·全国1·理T2)设复数z 满足|z-i|=1,z 在复平面内对应的点为(x,y),则( ) A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1D.x2+(y+1)2=1 【答案】C【解析】设z=x+yi(x,y ∈R). 因为z-i=x+(y-1)i, 所以|z-i|=√x 2+(y -1)2=1, 则x2+(y-1)2=1.故选C.6.(2019·全国2·理T2)设z=-3+2i,则在复平面内 对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C【解析】由z=-3+2i,得z =-3-2i,则在复平面内z 对应的点(-3,-2)位于第三象限,故选C. 7.(2018·全国1·理T1文T2)设z=1-i1+i +2i,则|z|=( ) A.0 B.12C.1D.√2【答案】C 【解析】因为z=(1-i )2(1+i )(1-i )+2i=-2i2+2i=i,所以|z|=1.8.(2018·全国2·理T1)1+2i1-2i =( ) A.-45−35i B.-45+35iC.-35−45i D.-35+45i【答案】D 【解析】1+2i 1-2i=(1+2i )(1+2i )(1-2i )(1+2i )=1-4+4i 5=-35+45i. 9.(2018·全国2·文T1)i(2+3i)=( ) A.3-2i B.3+2iC.-3-2iD.-3+2i【答案】D【解析】i(2+3i)=2i+3i2=-3+2i.10.(2018·全国3·理T2文T2)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i【答案】D【解析】(1+i)(2-i)=2+i-i2=3+i.11.(2018·北京·理T2文T2)在复平面内,复数11-i的共轭复数对应的点位于( ) A.第一象限 B.第二象限C.第三象限D.第四象限【答案】D【解析】∵11-i =1+i(1-i)(1+i)=1+i2=12+12i,∴12+12i的共轭复数为12−12i,而12−12i对应的点的坐标为(12,-12),点(12,-12)位于第四象限,故选D.12.(2018·浙江·4)复数21-i(i为虚数单位)的共轭复数是( ) A.1+i B.1-iC.-1+iD.-1-i【答案】B【解析】∵21-i =2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∴复数21-i的共轭复数为1-i.13.(2017·全国1·理T3)设有下面四个命题p1:若复数z满足1z∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=z2;p4:若复数z∈R,则z∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 【答案】B【解析】p1:设z=a+bi(a,b∈R),则1z =1a+bi=a-bia2+b2∈R,所以b=0,所以z∈R.故p1正确;p2:因为i2=-1∈R,而z=i∉R,故p2不正确;p3:若z1=1,z2=2,则z1z2=2,满足z1z2∈R,而它们实部不相等,不是共轭复数,故p3不正确;p4:实数的虚部为0,它的共轭复数是它本身,也属于实数,故p4正确.14.(2017·全国2·理T1)3+i1+i=( )A.1+2iB.1-2iC.2+iD.2-i【答案】D【解析】3+i1+i =(3+i)(1-i)(1+i)(1-i)=4-2i2=2-i,故选D.15.(2017·全国2·文T2)(1+i)(2+i)= ( )A.1-iB.1+3iC.3+iD.3+3i【答案】B【解析】(1+i)(2+i)=2+3i+i2=1+3i,故选B.16.(2017·山东·文T2)已知i是虚数单位,若复数z满足zi=1+i,则z2=( )A.-2iB.2iC.-2D.2【答案】A【解析】(方法一)∵z=1+ii =1+1i=1-i,∴z2=(1-i)2=1-2i+i2=-2i.(方法二)由zi=1+i,得(zi)2=(1+i)2,即-z2=2i.所以z2=-2i.17.(2017·全国3·理T2)设复数z满足(1+i)z=2i,则|z|=( )A.12B.√22C.√2D.2【答案】C【解析】由题意,得z=2i=1+i,故|z|=√12+12=√2.18.(2017·全国1·文T3)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)【答案】C【解析】∵i(1+i)2=2i2=-2,i2(1-i)=-1+i,(1+i)2=2i,i(1+i)=-1+i,∴(1+i)2=2i为纯虚数,故选C.19.(2017·山东·理T2)已知a∈R,i是虚数单位.若z=a+√3i,z·z=4,则a=()A.1或-1B.√7或-√7C.-√3D.√3 【答案】A【解析】由z=a+√3i,得z ·z =|z|2=a 2+3=4,所以a 2=1,a=±1,选A. 20.(2017·全国3·文T2)复平面内表示复数z=i(-2+i)的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C【解析】由题意可得z=-1-2i,在复平面内对应点(-1,-2),则该点位于第三象限.故选C.21.(2017·北京·理T2)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a 的取值范围是( ) A.(-∞,1)B.(-∞,-1)C.(1,+∞)D.(-1,+∞) 【答案】B【解析】设z=(1-i)(a+i)=(a+1)+(1-a)i,因为复数z 在复平面内对应的点 (a+1,1-a)在第二象限,所以{a +1<0,1-a >0,解得a<-1.故选B.22.(2016·全国2·理T1)已知z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3) 【答案】A【解析】要使复数z 在复平面内对应的点在第四象限,应满足{m +3>0,m -1<0,解得-3<m<1,故选A.23.(2016·全国3·理T2)若z=1+2i,则zz -1=( ) A.1 B.-1C.iD.-I【答案】C【解析】由题意知z=1-2i,则zz-1=4i(1+2i)(1-2i)-1=4i5-1=i,故选C.24.(2016·北京·文T2)复数1+2i2-i=() A.i B.1+iC.-iD.1-I【答案】A【解析】1+2i2-i =(1+2i)(2+i)(2-i)(2+i)=2+i+4i-25=i,故选A.25.(2016·全国1·理T2)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=( )A.1B.√2C.√3D.2【答案】B【解析】(定义、性质)因为(1+i)x=1+yi,x,y∈R,所以x=1,y=x=1.所以|x+yi|=|1+i|=√2,故选B.26.(2016·全国1·文T2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=( )A.-3B.-2C.2D.3【答案】A【解析】由已知(1+2i)(a+i)=a-2+(2a+1)i.∵(1+2i)(a+i)的实部与虚部相等,∴a-2=2a+1,解得a=-3,故选A.27.(2016·全国2·文T2)设复数z满足z+i=3-i,则z=( )A.-1+2iB.1-2iC.3+2iD.3-2i【答案】C【解析】由z+i=3-i,得z=3-2i,所以z=3+2i,故选C.28.(2016·全国3·文T2)若z=4+3i,则z|z|= ()A.1B.-1C.45+35i D.45−35i【答案】D【解析】因为z=4+3i,所以它的模为|z|=|4+3i|=√42+32=5,共轭复数为z =4-3i.故z |z |=4−3i,选D.29.(2016·山东·理T1)若复数z 满足2z+z =3-2i,其中i 为虚数单位,则z=( ) A.1+2i B.1-2i C.-1+2i D.-1-2i【答案】B【解析】设z=a+bi(a,b ∈R),则2z+z =3a+bi=3-2i,故a=1,b=-2,则z=1-2i,选B. 30.(2015·全国2·理T2)若a 为实数,且(2+ai)·(a-2i)=-4i,则a=( ) A.-1 B.0 C.1 D.2【答案】B【解析】∵(2+ai)(a-2i)=4a+(a 2-4)i=-4i, ∴{4a =0,a 2-4=-4,解之,得a=0. 31.(2015·全国·文T3)已知复数z 满足(z-1)i=1+i,则z=( ) A.-2-i B.-2+i C.2-i D.2+i【答案】C【解析】∵(z-1)i=1+i, ∴z=1+ii +1=(1+i )(-i )-i 2+1=1-i+1=2-i.32.(2015·全国2·文T2)若a 为实数,且2+ai1+i=3+i,则a=( )A.-4B.-3C.3D.4【答案】D【解析】由题意,得2+ai=(3+i)(1+i)=2+4i,则a=4.33.(2015·安徽·文T1)设i 是虚数单位,则复数(1-i)(1+2i)=( ) A.3+3i B.-1+3i C.3+i D.-1+i【答案】C【解析】由复数的乘法运算法则,得(1-i)(1+2i)=1-i+2i-2i2=1+i+2=3+i,因此选C. 34.(2015·湖南·文T1)已知(1-i )2z=1+i(i 为虚数单位),则复数z=( )A.1+iB.1-iC.-1+iD.-1-i【答案】D【解析】由已知得z=(1-i )21+i=-2i 1+i =-2i (1-i )(1+i )(1-i )=-2-2i2=-1-i. 35.(2015·全国1·理T1)设复数z 满足1+z1-z =i,则|z|=( ) A.1 B.√2 C.√3 D.2【答案】A 【解析】∵1+z =i,∴z=i -1=(i -1)(-i+1)(i+1)(-i+1)=i,∴|z|=1.36.(2015·湖北·理T1)i 为虚数单位,i 607的共轭复数....为( ) A.i B.-i C.1 D.-1【答案】A【解析】∵i607=i151×4+3=i3=-i,∴i607的共轭复数为i.37.(2015·安徽·理T1)设i 是虚数单位,则复数2i1-i 在复平面内所对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限 【答案】B【解析】由复数除法的运算法则可得,2i1-i =2i (1+i )(1-i )(1+i )=2i -22=-1+i,对应点为(-1,1)在第二象限.故选B. 38.(2014·全国2·理T2)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=( ) A.-5 B.5 C.-4+i D.-4-i【答案】A【解析】由题意知:z2=-2+i.又z1=2+i,所以z1z2=(2+i)(-2+i)=i2-4=-5.故选A.39.(2014·重庆·理T1)复平面内表示复数i(1-2i)的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限 【答案】A【解析】因为i(1-2i)=i+2,其在复平面内对应的点为(2,1),位于第一象限.故选A. 40.(2014·全国1·理T2)(1+i )3(1-i )2=()A.1+iB.1-iC.-1+iD.-1-I【答案】D 【解析】(1+i )3(1-i )2=(1+i )2(1+i )(1-i )2=2i (1+i )-2i=-1-i.故选D.41.(2014·全国2·文T2)1+3i1-i =( ) A.1+2i B.-1+2i C.1-2i D.-1-2i【答案】B 【解析】1+3i1-i=(1+3i )(1+i )(1-i )(1+i )=-2+4i2=-1+2i,故选B.42.(2014·全国1·文T3)设z=11+i +i,则|z|=( ) A.12B.√22C.√32D.2【答案】B 【解析】因为z=11+i +i=1-i (1+i )(1-i )+i=1-i 2+i=12+12i,所以|z|=|12+12i|=√(12)2+(12)2=√22,故选B.43.(2013·全国1·理T2)若复数z 满足(3-4i)z=|4+3i|,则z 的虚部为( ) A.-4 B.-45C.4D.45【答案】D【解析】∵(3-4i)z=|4+3i|, ∴z=53-4i =5(3+4i )(3-4i )(3+4i )=35+45i. 故z 的虚部为45,选D.44.(2013·全国2·文T2)|21+i |=( )A.2√2B.2C.√2D.1【答案】C 【解析】∵21+i =1-i,∴|21+i|=|1-i|=√2. 45.(2013·全国2·理T2)设复数z 满足(1-i)z=2i,则z=( ) A.-1+i B.-1-i C.1+i D.1-i【答案】A【解析】z=2i 1-i =2i (1+i )(1-i )(1+i )=-2+2i2=-1+i. 46.(2013·全国1·文T2)1+2i(1-i )2=()A.-1-12i B.-1+12i C.1+12i D.1-12i【答案】B 【解析】1+2i (1-i )2=1+2i-2i =(1+2i )i 2=-2+i 2=-1+12i.47.(2012·全国·理T3)下面是关于复数z=2-1+i 的四个命题: p1:|z|=2, p2:z2=2i, p3:z 的共轭复数为1+i, p4:z 的虚部为-1, 其中的真命题为( ) A.p2,p3 B.p1,p2C.p2,p4 D.p3,p4【答案】C 【解析】z=2(-1-i )(-1+i )(-1-i )=-1-i,故|z|=√2,p 1错误;z 2=(-1-i)2=(1+i)2=2i,p 2正确;z 的共轭复数为-1+i,p 3错误;p 4正确.48.(2012·全国·文T2)复数z=-3+i2+i的共轭复数是( )A.2+iB.2-iC.-1+iD.-1-i【答案】D【解析】z=-3+i 2+i =(-3+i )(2-i )(2+i )(2-i )=-5+5i5=-1+i,故z 的共轭复数为-1-i.49.(2011·全国·文T2)复数5i1-2i =( )A.2-iB.1-2iC.-2+iD.-1+2i【答案】C【解析】5i 1-2i =5i (1+2i )(1-2i )(1+2i )=-10+5i5=-2+i.50.(2010·全国·理T2)已知复数z=√3+i(1-√3i )2,z 是z 的共轭复数,则z ·z =() A.1 B.1C.1D.2【答案】A【解析】∵z=√3+i (1-√3i )2=√3+i1-2√3i+3i 2 =√3+i -2-23i =√3+i √3i (-2-23i )(-2+23i )=-√34+i 4, ∴z =-√34−i 4.∴z ·z =(-√34-i 4)(-√34+i 4)=316+116=14.51.(2010·全国·文T3)已知复数z=√3+i(1-√3i )2,则|z|等于( ) A.14 B.12 C.1 D.2【答案】B【解析】z=√3+i 1+3i 2-23i =-√3+i 2+2√3i =-12×2√3-2i 4=i -√34,|z|=14×2=12.52.(2018·天津·理T9文T9)i 是虚数单位,复数6+7i1+2i = .【答案】4-i【解析】6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i+7i+145=20-5i5=4-i.53.(2019·天津·理T9文T9)i 是虚数单位,则|5-i 1+i |的值为___________.【答案】√13【解析】5-i 1+i =(5-i )(1-i )2=4-6i2=2-3i.|5-i 1+i |=√4+9=√13.54.(2019·江苏·T 2)已知复数(a+2i)(1+i)的实部为0,其中i 为虚数单位,则实数a 的值是____ .【答案】2【解析】∵(a+2i)(1+i)=a+ai+2i+2i2=a-2+(a+2)i,∴a-2=0,∴a=2.55.(2018·上海·5)已知复数z 满足(1+i)z=1-7i(i 是虚数单位),则|z|= .【答案】5【解析】因为(1+i)z=1-7i,所以|1+i||z|=|1-7i|,即√2|z|=5√2,解得|z|=5.56.(2017·浙江·12)已知a,b ∈R,(a+bi)2=3+4i(i 是虚数单位),则a2+b2=_____,ab=________.【答案】5 2【解析】由题意可得a2-b2+2abi=3+4i,则{a 2-b 2=3,ab =2,解得{a 2=4,b 2=1,则a 2+b 2=5,ab=2. 57.(2017·江苏·T 2)已知复数z=(1+i)(1+2i),其中i 是虚数单位,则z 的模是 .【答案】√10【解析】由已知得z=(1+i)(1+2i)=-1+3i,故|z|=√(-1)2+32=√10,答案为√10.58.(2017·天津·理T9文T9)已知a ∈R,i 为虚数单位,若a -i 为实数,则a 的值为 .【答案】-2【解析】∵a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -15−a+25i 为实数,∴-a+25=0,即a=-2. 59.(2016·江苏·T 2)复数z=(1+2i)(3-i),其中i 为虚数单位,则z 的实部是 .【答案】5【解析】因为z=(1+2i)(3-i)=5+5i,所以z 的实部是5.60.(2016·天津·理T9)已知a,b ∈R,i 是虚数单位,若(1+i)(1-bi)=a,则ab 的值为 .【答案】2【解析】(1+i)(1-bi)=1+b+(1-b)i=a,则{1+b =a ,1-b =0,所以{a =2,b =1,即a b =2.故答案为2. 61.(2016·北京·理T9)设a ∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= .【答案】-1【解析】∵(1+i)(a+i)=a-1+(a+1)i∈R,∴a+1=0,即a=-1.62.(2015·天津·理T9)i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为. 【答案】-2【解析】(1-2i)(a+i)=a+2+(1-2a)i.∵(1-2i)(a+i)是纯虚数,∴a+2=0,且1-2a≠0,∴a=-2.63.(2015·江苏·T 3)设复数z满足z2=3+4i(i是虚数单位),则z的模为.【答案】√5【解析】因为z2=3+4i,所以|z2|=√32+42=5,所以|z|=√5.64.(2015·重庆·理T11)设复数a+bi(a,b∈R)的模为√3 ,则(a+bi)(a-bi)= .【答案】3【解析】因为复数a+bi的模为√3,所以2+b2=√3,即a2+b2=3.于是(a+bi)(a-bi)=a2-(bi)2=a2+b2=3.。
高考数学《复数与极限》专题复习
复数与极限一、17届 一模 一、复数 1、(崇明县2017届高三第一次模拟)复数(2)i i +的虚部为 . 2、(虹口区2017届高三一模)已知i iz+=-21,则复数z 的虚部为 . 3、(黄浦区2017届高三上学期期终调研)若复数z 满足i 1=12z -(i 为虚数单位),则z =_________. 4、(静安区2017届向三上学期期质量检测)若复数z 为纯虚数, 且满足i )i 2(+=-a z (i 为虚数单位),则实数a 的值为 .5、(闵行区2017届高三上学期质量调研)若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a = ( )(A) 1- (B) 0 (C) 1 (D) 26、(浦东新区2017届高三上学期教学质量检测)若复数()()12ai i +-在复平面上所对应的点在直线y x =上,则实数a =____________.7、(青浦区2017届高三上学期期末质量调研)已知复数i z +=2(i 为虚数单位), 则=2z8、(松江区2017届高三上学期期末质量监控)已知a b R ∈、,i 是虚数单位,若2a i bi +=-,则 2()a bi += ▲ .9、(徐汇区2017届高三上学期学习能力诊断)若复数z 满足:i z i ⋅=(i 是虚数单位),则z =______.10、(杨浦区2017届高三上学期期末等级考质量调研)294z z i +=+(i 为虚数单位),则||z =________. 11、(长宁、嘉定区2017届高三上学期期末质量调研)设i 为虚数单位,在复平面上,复数2)2(3i -对应的点到原点的距离为__________.12、(徐汇区2017届高三上学期学习能力诊断)若1-(i 是虚数单位)是关于x 的实系数方程20x bx c ++=的一个复数根,则( )(A )2,3b c == (B )2,1b c ==- (C )2,1b c =-=- (D )2,3b c =-=13、(奉贤区2017届高三上学期期末)已知复数z 满足2)1(=-i z ,其中i 是虚数单位,则z =____________. 14、(金山区2017届高三上学期期末)若复数z 满足232z z i +=-,其中i 为虚数单位,则z =复数参考答案:1、22、13、1+2i4、215、B6、37、34i -8、34i -9、2 10、5 11、【解析】复数===对应的点到原点的距离==.故答案为:12、D 13、1i + 14、12i - 二、极限1、(宝山区2017届高三上学期期末)23lim1n n n →∞+=+2、(崇明县2017届高三第一次模拟)已知无穷数列{}n a 满足1*1()2n n a a n N +=∈,且21a =,记n S 为数列{}n a 的前n 项和,则lim n n S →∞= .3、(虹口区2017届高三一模)数列{}n a 是首项为1,公差为2的等差数列,n S 是它前n 项和,则2limnn nS a →∞= .4、(黄浦区2017届高三上学期期终调研)在数列{}n a 中,若对一切*n ∈N 都有13n n a a +=-,且2462lim()n n a a a a →∞++++92=,则1a 的值为 . 5、(静安区2017届向三上学期期质量检测)在无穷等比数列{}n a 中,21)(lim 21=+⋅⋅⋅++∞→n n a a a ,则1a 的取值范围是【 】 A .⎪⎭⎫ ⎝⎛210,;B .⎪⎭⎫ ⎝⎛121,; C .()10,; D . ⎪⎭⎫ ⎝⎛210,⎪⎭⎫ ⎝⎛121, 6、(松江区2017届高三上学期期末质量监控)已知数列{}n a 满足11a =,23a =,若*12()n n n a a n N +-=∈,且21{}n a -是递增数列、2{}n a 是递减数列,则212limn n na a -→+∞= ▲ .7、(徐汇区2017届高三上学期学习能力诊断)25lim1n n n →∞-=+____________.8、(杨浦区2017届高三上学期期末等级考质量调研)设常数0a >,9()a x x+展开式中6x 的系数为4,则2lim()n n a a a →∞++⋅⋅⋅+=_______.9、(长宁、嘉定区2017届高三上学期期末质量调研)若数列}{n a 的所有项都是正数,且n n a a a n 3221+=+++ (*N ∈n ),则=⎪⎭⎫⎝⎛++++∞→1321lim212n a a a n n n _____________.10、(金山区2017届高三上学期期末)若n a 是(2)n x +(*n N ∈,2n ≥,x R ∈)展开式中2x 项的二项式系数,则23111lim()n na a a →∞++⋅⋅⋅+=参考答案:1、解析:23lim 1n n n →∞+=+32lim 11x n n→∞++=2 2、4 3、14 4、-12 5、D6、12-7、2 8、12 9、【解析】∵++…+=n 2+3n (n ∈N *),∴n=1时,=4,解得a 1=16.n ≥2时,且++…+=(n ﹣1)2+3(n ﹣1),可得:=2n +2,∴a n =4(n +1)2.=4(n +1).∴()==2.10、2二模一、填空题1、(崇明县2016届高三二模)设复数z 满足 (4)32i z i -=+(i 是虚数单位),则复数z 的虚部 为2、(奉贤区2016届高三二模)若()1i bi +是纯虚数,是虚数单位,则实数b =_______.3、(虹口区2016届高三二模)已知虚数1+2i 是方程20()x ax b a b R ++=∈、的一个根,则_______.a b +=4、(静安区2016届高三二模)设复数z 满足(34i)5z -=(i 为虚数单位),则z = .5、(闵行区2016届高三二模)若复数1i 11i 2b ++-(i 为虚数单位)的实部与虚部相等,则实数b 的值为 6、(浦东新区2016届高三二模)已知复数z 满足(1)2z i i ⋅-=,其中i 为虚数单位,则z = . 7、(徐汇、金山、松江区2016届高三二模)若复数z 满足1,ii z-=-其中i 为虚数单位,则z =________________.8、(杨浦区2016届高三二模)若复数1234,12z i z i =+=-,其中i 是虚数单位,则复数12||z z i+的虚部为9、(闸北区2016届高三二模)如果复数z 满足||1z =且2z a bi =+,其中,a b R ∈,则a b +的最大值是 10、(长宁、青浦、宝山、嘉定四区2016届高三二模)已知i 为虚数单位,复数z 满足i 11=+-zz,则=||z __________.二、选择题1、(黄浦区2016届高三二模)若1m iz i+=-(,m R i ∈为虚数单位)在复平面上的点不可能是位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限三、解答题1、(闵行区2016届高三二模)复数21sin i cos2z x x =+⋅,22sin i cos z x x =+⋅(其中x ∈R ,i 为虚数单位). 在复平面上,复数1z 、2z 能否表示同一个点,若能,指出该点表示的复数;若不能,说明理由. 1、(静安区2016届高三二模)算法流程图如图所示,则输出的k 值是复数参考答案 一、填空题1、3-2、03、34、3455i + 5、2 62 7、1i - 8、-3 92 10、1二、选择题 1、D三、解答题1、解:设复数1z ,2z 能表示同一个点,则cos2cos x x = ……………………3分 解得cos 1x =或1cos 2x =-, ………………………………7分 当cos 1x =时,得2sin 0x =,此时12i z z ==; ……………9分当1cos 2x =-时,得23sin 4x =,此时1231i 42z z ==-; ……………11分综上,复平面上该点表示的复数为i 或31i 42-. ……………12分二、16届一模1、(宝山区2016届高三上学期期末)已知:(1-2)5+10i z i =(i 是虚数单位 ),则z = .2、(崇明县2016届高三上学期期末)已知 z =(a −i )(1+i )(a ∈R ,i 为虚数单位),若复数 z 在复平面内对应的点在实轴上,则a =3、(奉贤区2016届高三上学期期末)复数()1i i +(i 是虚数单位)的虚部是__________4、(虹口区2016届高三上学期期末)若复数z 满足201520161zi i i=++(i 为虚数单位),则复数z =______. 5、(黄浦区2016届高三上学期期末)已知复数z ,“0z z +=”是“z 为纯虚数”的 [答] ( B ). A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件 6、(长宁区2016届高三上学期期末)若复数z 满足z 2 -z +1 =0,则|z |= __________ 7、(金山区2016届高三上学期期末)若复数z 满足i21i43-+=z (i 为虚数单位),则z = 8、(静安区2016届高三上学期期末)已知复数z 满足28z z i +=+,其中i 为虚数单位,则z = 9、(闵行区2016届高三上学期期末)若复数z满足i i z =(i 为虚数单位),则||z = .10、(浦东新区2016届高三上学期期末)若复数z 满足1012ii z=-(i 为虚数单位),则z = 11、(青浦区2016届高三上学期期末)已知32i -是关于x 的方程220x px q ++=的一个根,则实数p q +=_____________12、(青浦区2016届高三上学期期末)复数1a i z i-=+(a R ∈, i是虚数单位)在复平面上对应的点不可能位于………( ).(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限13、(松江区2016届高三上学期期末)若复数1z ai =+(i 是虚数单位)的模不大于2,则实数a 的取值范围是 ▲14、(徐汇区2016届高三上学期期末)设12,x x 是实系数一元二次方程20ax bx c ++=的两个根,若1x 是虚数,212x x 是实数,则24816321111112222221x x x x x x S x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=_______________15、(杨浦区2016届高三上学期期末)已知虚数z 满足i 61z z 2+=-,则 =z __________16、(徐汇区2016届高三上学期期末)设x 、y 均是实数,i 是虚数单位,复数(2)(52)i x y x y -+--的实部大于0,虚部不小于0,则复数z x yi =+在复平面上的点集用阴影表示为下图中的---------------------------------------( )17、(长宁区2016届高三上学期期末)关于x 的不等式的解集为.(1)求实数a ,b 的值; (2)若为纯虚数,求tan α的值.参考答案:1、-3-4i2、13、14、25、B6、17、58、17z =9、2 10、5 11、34 12、a 13、]3,3[- 14、-2 15、5 16、A 17、。
专题17 相反数(基础检测)(解析版)
专题1.7 相反数(基础检测)一、单选题1.2021的相反数的倒数是( ).A .2021-B .2021C .12021-D .12021 【答案】C【分析】根据相反数和倒数的性质计算,即可得到答案.【详解】2021的相反数是:2021-2021的相反数的倒数是:12021-故选:C .【点睛】本题考查了相反数、倒数的知识;解题的关键是熟练掌握相反数、倒数的性质,从而完成求解. 2.如果+(-13)=0,则“”内应填实数是( ) A .0B .13C .-13D .3【答案】B【分析】根据相反数的性质即可求得.【详解】根据:“互为相反数的两数和为零”可知: 11=033+-() 13∴= 故选B .【点睛】本题考查了相反数的性质,实数的概念,理解相反数的性质是解题的关键.3.一个数的相反数是非负数,这个数一定是( )A .零B .负数C .正数D .非正数【答案】D【分析】一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.由此得出结果.【详解】解:非负数是指正数或 0,而负数的相反数是正数,0 的相反数是 0,所以这个数一定是负数或 0.故选:D .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.4.若a 的相反数为﹣52,则a 的值为( ) A .﹣25 B .﹣52 C .52 D .﹣25【答案】C【分析】根据相反数的定义,即可求解.【详解】∵a 的相反数为﹣52, ∴a 的值为52, 故选C .【点睛】本题主要考查相反数,熟练掌握相反数的定义,是解题的关键.5.下列说法错误的是( )A .+(﹣3)的相反数是3B .﹣(+3)的相反数是3C .﹣(﹣8)的相反数是﹣8D .﹣(+18)的相反数是8 【答案】D【分析】根据相反数的定义及表示方法判断即可.【详解】解:A 、+(﹣3)=﹣3,﹣3的相反数是3,故本选项正确;B 、﹣(+3)=﹣3,﹣3的相反数是3,故本选项正确;C 、﹣(﹣8)=8,8的相反数是﹣8,故本选项正确;D 、﹣(+18)=﹣18,﹣18的相反数是18,故本选项错误. 故选:D .【点睛】本题主要考查相反数相关知识,理解记忆相反数的定义以及表示是解题的关键.6.如果54x +的值与2(1)x -的值互为相反数,那么x 等于( )A .32B .2C .-32D .-2【答案】D【分析】根据互为相反数的两数之和为0,列出方程(5x+4)+2(1-x)=0,再求解;【详解】解:根据题意得;(5x+4)+2(1-x)=0,解得:x=-2.那么x 等于-2.故选D.【点睛】本题考查相反数及解一元一次方程,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题7.若一个数的相反数是7-,则这个数为___________.【答案】7【分析】根据相反数的定义即可直接解答.【详解】∵7的相反数是-7,∴这个数为7.故答案为:7.【点睛】本题考查相反数.理解相反数的定义是解答本题的关键.8.34-的相反数是________,数a的相反数是________.【答案】34-a【分析】互为相反数的两个数符号不同,也就是说一个数的相反数就是在这个数前面添上-号,由此求出各个数的相反数.【详解】解:34-的相反数是34,数a的相反数是-a,故答案为:34,-a.【点睛】本题主要考查互为相反数的概念.只有符号不同的两个数互为相反数,难度较小.9.如果﹣a=2,则a=_____.【答案】-2.【分析】根据相反数的定义直接求解即可.【详解】解:∵﹣a=2,∴a=﹣2,故答案为:-2.【点睛】本题考查了相反数的定义,解题关键是明确相反数的意义.10.如果一个数的相反数等于它本身,那么这个数是____.【答案】0【分析】根据相反数的定义解答即可【详解】如果一个数的相反数等于他的本身那么这个数就是0.【点睛】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.11.数轴上在原点左侧与表示数1的点的距离为3的数是a,则a的相反数是_________.【答案】2【分析】数轴上在原点左侧即是负数,结合与表示数1的点的距离为3的数,即可得到a表示的数是-2,再根据相反数的定义解题.【详解】数轴上在原点的左侧且距离数1为3的数是-2,故-2的相反数为2,故答案为:2.【点睛】本题考查数轴上的点表示有理数、相反数等知识,是基础考点,难度较易,掌握相关知识是解题关键.12.化简下列各数:(1)1-(-)2=________________;(2)-(+3.5)=_____________;(3)+(-4)=_______________;【答案】12-3.5 -4【分析】根据多重符号的化简规律进行化简即可.【详解】解:11-(-)=22,-(+3.5)=-3.5,+(-4)=-4;故答案为:12,-3.5,-4【点睛】本题考查符号的化简.化简符号的规律是:非0数的正负与前边的正号的个数无关,而与负号的个数有关,当有奇数个负号时,值是负数,当有偶数个负号时,值是正数.13.如图,数轴上A,B,C三点所表示的数分别是a,6,c,已知AB=8,a+c=0,则c的值为____________.【答案】2【分析】根据数轴的特点先求出A点表示的数,再根据a+c=0即可求出C点表示的数.【详解】∵AB=8,B点所表示的数分别是6∴A点表示的数为6-8=-2,又a+c=0∴A,C两点表示的数互为相反数,∴C点表示的数为2故答案为:2.【点睛】此题主要考查数轴上表示的数,解题的关键是熟知熟知的特点.14.2的相反数是2-,则()220+-=:0的相反数是0,则000+=;1-的相反数是1,则()110-+=,故若a ,b 互为相反数,则0a b +=;反之若0a b +=,则a ,b 互为相反数.说明了______;相反,______.(用文字叙述)【答案】互为相反数的两个数的和为零; 若两个数的和为零,则这两个数互为相反数【分析】根据相反数的意义可直接进行求解.【详解】解:由题意得:互为相反数的两个数的和为零;若两个数的和为零,则这两个数互为相反数; 故答案为互为相反数的两个数的和为零;若两个数的和为零,则这两个数互为相反数.【点睛】本题主要考查相反数的意义,正确理解相反数的意义是解题的关键.三、解答题15.如果,那么表示的点在数轴上的什么位置?【答案】原点处【分析】根据相反数等于本身的数为0即可得到结果.【详解】a=-a 表示有理数a 的相反数是它本身,那么这样的有理数只有0,所以a=0,表示a 的点在原点处.【点睛】本题考查的是相反数的定义,熟练掌握0的相反数是它本身是解题的关键.16.已知32m -与7-互为相反数,求的m 值.【答案】3【分析】根据互为相反数的两个数的和等于0列出方程求解即可.【详解】∵3m−2与−7互为相反数,∴(3m−2)+(−7)=0,解得m =3.【点睛】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.17.求出下列各数,并在数轴上把它们表示出来:(1) 3 的相反数;(2) 2- 的相反数;(3) 112- 的相反数的相反数; (4) 0 的相反数. 【答案】(1)3-,在数轴上表示见解析;(2)2,在数轴上表示见解析;(3)112-,在数轴上表示见解析;(4)0,在数轴上表示见解析.【分析】各小题先根据相反数的概念分别求出相反数,再画出数轴.【详解】(1)3的相反数为-3;数-3在数轴上表示为:(2)-2的相反数为2;数2在数轴上表示为:(3)112-的相反数的相反数为112-,;数112-在数轴上表示为:(4)0的相反数为0;数0在数轴上表示为:【点评】本题考查了相反数的概念和数轴,熟记相反数的概念是解题的关键.18.在一条东西走向的马路上,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校西边300 m 处,商场在学校西边600 m 处,医院在学校西边500 m 处,若将该马路近似地看作一条直线,向东为正方向,1个单位长度表示100 m.找一个公共场所作为原点,在数轴上表示出这四家公共场所的位置,并使得其中两个公共场所所在位置表示的数互为相反数.【答案】见解析.【分析】规定向东为正,注意单位长度是以100米为1个单位,数轴上两点之间的距离是表示这两点的数的差的绝对值画出数轴即可.【详解】解:若将青少年宫作为原点,则商场在原点左侧3个单位长度处,医院在原点左侧2个单位长度处,学校在原点右侧3个单位长度处(如图所示).此时商场和学校所在位置表示的数互为相反数.【点睛】考查的是数轴,熟知数轴上两点间距离的定义是解答此题的关键.19.求5,0,(4)--的相反数,并将这些数及它们的相反数标在数轴上,按从大到小的顺序用“>”连接.【答案】-5,0,-4,数轴见解析,()54045>-->>->-【分析】先求出各数的相反数,再在数轴上表示出来,从右到左用“>”号连接起来即可.【详解】解:5,0,(4)--的相反数分别为:-5,0,-4,如图所示:用“>”连接为:()54045>-->>->-.【点睛】本题考查的是有理数的大小比较,熟知数轴上右边的是总比左边的大是解答此题的关键. 20.a 、b 在数轴上的位置如图所示,则:(1)在数轴上标出-a,b -,并用“>”把a,,,b a b --连结起来;(2)若在数轴上,b 与-b 之间的整数有11个(不含b 与-b ),下列b 的取值中满足条件的数可能是 (填写番号)①-5,②-6,③154-,④5.5 【答案】(1)图见详解,b a a b ->>->;(2)②③【分析】(1)根据相反数的意义可在数轴上标出,a b --,然后由数轴可得大小关系;(2)由题意易得b 与b -之间已有三个整数,则需在它们之间再有8个整数即可,由此可得b 的取值需在-5与-6之间(包含-6),进而问题可求解.【详解】解:(1)由题意可得数轴:则用“>”连接起来为b a a b ->>->;(2)由题意得:b 与b -之间已有三个整数,则需在它们之间再有8个整数即可,则有:b 的取值需在-5与-6之间(不包含-5,包含-6),∴b 的值满足条件的只有②③,故答案为②③.【点睛】本题主要考查数轴、相反数的意义及有理数的大小比较,熟练掌握数轴、相反数的意义及有理数的大小比较是解题的关键.。
高考数学压轴专题新备战高考《复数》图文解析
新《复数》专题解析一、选择题1.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则ab的值为( ) A .32-B .23-C .23D .32【答案】B 【解析】 【分析】先根据复数乘法计算,再根据复数概念求a,b 比值. 【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=, 因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi2.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( ) A .[0,1] B .[1,1]- C .(0,1)(1,)⋃+∞ D .(1,)-+∞【答案】C 【解析】 【分析】首先根据复数的几何意义得到z 的轨迹方程2xy t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2ax ay b t=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ ,解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.3.已知复数z 满足21zi z i +=-,则z = A .12i + B .12i - C .1i + D .1i -【答案】C 【解析】 【分析】设出复数z ,根据复数相等求得结果. 【详解】设(),z a bi a b R =+∈,则z a bi =-,故()()()()22221zi z a bi i a bi b a a b i i +=++-=-++-=-,故2121b a a b -+=⎧⎨-=-⎩,解得11a b =⎧⎨=⎩. 所以1z i =+. 故选:C . 【点睛】本题考查复数的运算,共轭复数的求解,属综合基础题.4.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案. 【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件.故选C. 【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.5.若202031i iz i+=+,则z 在复平面内对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】化简得到2z i =+,得到答案. 【详解】()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限.故选:A . 【点睛】本题考查了复数对应象限,意在考查学生的计算能力.6.设复数4273iz i-=-,则复数z 的虚部为( ) A .1729-B .1729C .129-D .129【答案】C 【解析】 【分析】根据复数运算法则求解1712929z i =-,即可得到其虚部. 【详解】 依题意,()()()()427342281214634217173737358582929i i i i i i z i i i i -+-+-+-=====---+ 故复数z 的虚部为129- 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握运算法则,准确计算,正确辨析虚部的概念.7.若43i z =+,则zz=( ) A .1 B .1-C .4355i + D .4355i - 【答案】D 【解析】 【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.8.若1z i =+,则31izz =+( ) A .i - B .iC .1-D .1【答案】B 【解析】因为1z i =+,所以1z i =- ,()()3112,1izz i i i zz =+-==+,故选B.9.已知i 是虚数单位,则131ii +=+( ) A .2i - B .2i +C .2i -+D .2i --【答案】B 【解析】 【分析】利用复数的除法运算计算复数的值即可. 【详解】由复数的运算法则有:13(13)(1)422(1)(11)2i i i ii i i i ++-+===++-+. 故选B . 【点睛】对于复数的乘法,类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可;对于复数的除法,关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.10.设i 是虚数单位,则()()3211i i -+等于()A .1i -B .1i -+C .1i +D .1i --【答案】B 【解析】 【分析】 化简复数得到答案. 【详解】()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++故答案选B 【点睛】本题考查了复数的计算,意在考查学生的计算能力.11.已知i 是虚数单位,则31ii+-=( ) A .1-2i B .2-iC .2+iD .1+2i【答案】D 【解析】试题分析:根据题意,由于33124121112i i i ii i i i ++++=⨯==+--+,故可知选D. 考点:复数的运算点评:主要是考查了复数的除法运算,属于基础题.12.已知复数134z i=+,则下列说法正确的是( ) A .复数z 的实部为3 B .复数z 的虚部为425i C .复数z 的共轭复数为342525i + D .复数的模为1【答案】C 【解析】直接利用复数的基本概念得选项. 【详解】1343434252525i z i i -===-+, 所以z 的实部为325,虚部为425-,z 的共轭复数为342525i +15=, 故选C. 【点睛】该题考查的是有关复数的概念和运算,属于简单题目.13.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( ) A .1i -- B .1i +C .312i -D .312i +【答案】D 【解析】21z z +=-323122i i i -=+- ,选D.14.复数52i -的共轭复数是( ) A .2i + B .2i - C .2i -+ D .2i --【答案】C 【解析】 【分析】先化简复数代数形式,再根据共轭复数概念求解.【详解】因为522i i =---,所以复数52i -的共轭复数是2i -+,选C. 【点睛】本题考查复数运算以及共轭复数概念,考查基本求解能力.15.已知复数z 满足()11z i i +=-,则z = ( ) A .i B .1C .i -D .1-【答案】B()()1i 1i z +=-,则()()()21i 1i2i 1i 1i 1i 2z ---====-++-i,1z ∴=,故选B.16.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( ) A .22i - B .22i + C .22i -+ D .22i --【答案】A 【解析】 【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=,整理可得:()()2440b a i b b ++++=,所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A .17.若复数z 满足()12z i i +=(i 为虚数单位),则z =( ) A .1 B .2CD.【答案】C 【解析】试题分析:因为(1)2z i i +=,所以22(1)1,12i i i z i i -===++因此1z i =+= 考点:复数的模18.复数满足48i z z +=+,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】 【分析】设(,)z a bi a b R =+∈,则48z z a bi i +=+=+,可得48a b ⎧⎪+=⎨=⎪⎩,即可得到z ,进而找到对应的点所在象限. 【详解】设(,)z a bi a b R =+∈,则48z z a bi i +=++=+,48a b ⎧⎪+=∴⎨=⎪⎩,6,68i 8a z b =-⎧∴∴=-+⎨=⎩, 所以复数z 在复平面内所对应的点为()6,8-,在第二象限. 故选:B 【点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.19.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限. 详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅-Q 22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.20.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z=( ) A .i B .i -C .2iD .2i -【答案】A 【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-.。
专题17立体几何解答题【2023高考】2013-2022十年全国高考数学真题分类汇编(解析版)
2013-2022十年全国高考数学真题分类汇编专题17 立体几何解答题一、解答题1.(2022年全国甲卷理科·第18题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥.(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.【答案】(1)证明见解析:; .解析:(1)证明:在四边形ABCD 中,作DE AB ⊥于E ,CF AB ⊥于F ,因为//,1,2CD AB AD CD CB AB ====,所以四边形ABCD 为等腰梯形,所以12AE BF ==,故DE =BD ==,所以222AD BD AB +=,所以AD BD ⊥,因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD BD ⊥,又PD AD D ⋂=,所以BD ⊥平面PAD ,又因PA ⊂平面PAD ,所以BD PA ⊥;(2)解:如图,以点D 为原点建立空间直角坐标系,BD =,则()()(1,0,0,,A B P ,则(((,0,,AP BP DP =-== ,设平面PAB 的法向量(),,n x y z = ,则有0{0n AP x n BP ⋅=-=⋅=+=,可取)n = ,则cos ,n DP n DP n DP ⋅== ,所以PD 与平面PAB.【题目栏目】立体几何\立体几何的综合问题【题目来源】2022年全国甲卷理科·第18题2.(2022年全国乙卷理科·第18题ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面A B D 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面A B D所成的角的正弦值为解析:【小问1详解】因为AD CD =,E 为AC 的中点,所以AC DE ⊥;在ABD △和CBD 中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥;又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .【小问2详解】连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED ,所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小.因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,B E 因为AD CD ⊥,所以112DE AC ==,在DEB 中,222DE BE +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -,则()()()1,0,0,0,0,0,1A B D ,所以()()1,0,1,1,0AD AB =-=- ,设平面A B D 的一个法向量为(),,n x y z = ,则00n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取y()3n = ,又因为()31,0,0,4C F ⎛⎫- ⎪ ⎪⎝⎭,所以314CF ⎛⎫= ⎪ ⎪⎝⎭,所以cos ,n CF n CF n CF ⋅=== ,设CF 与平面A B D 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以sin cos ,n CF θ== 所以CF 与平面A B D.【题目栏目】立体几何\立体几何的综合问题【题目来源】2022年全国乙卷理科·第18题3.(2022新高考全国II 卷·第20题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --正弦值.【答案】(1)证明见解析 (2)1113解析:(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P ABC -的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC ,所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,的又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒,所以ODA OAD∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD ,又OE ⊄平面PAC ,PD ⊂平面PAC ,所以//OE 平面PAC(2)解:过点A 作//Az OP ,如图建立平面直角坐标系,因为3PO =,5AP =,所以4OA ==,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD,AB =所以12AC =,所以()2,0O,()B,()2,3P ,()0,12,0C,所以32E ⎛⎫ ⎪⎝⎭,则32AE ⎛⎫= ⎪⎝⎭,()AB = ,()0,12,0AC =,设平面AEB 的法向量为(),,n x y z =,则3020n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩ ,令2z =,则3y =-,0x =,所以()0,3,2n =- ;设平面AEC 的法向量为(),,m a b c =,则302120m AE b c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a =6c =-,0b =,所以)6m =- ;所以cos ,n m n m n m⋅=== 设二面角C AE B --为θ,由图可知二面角C AE B --为钝二面角,所以cos θ=,所以11sin 13θ==故二面角C AE B --的正弦值为1113;【题目栏目】立体几何\立体几何的综合问题【题目来源】2022新高考全国II 卷·第20题4.(2022新高考全国I 卷·第19题)如图,直三棱柱111ABC A B C -的体积为4,1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】解析:(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111111143333A A BC A A ABC A ABC A B BC C C B V S h V S A A V ---=⋅===⋅== ,解得h = 所以点A 到平面1A BC;(2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC 平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =,所以12AA AB ==,1A B =2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC == ,设平面ABD 的一个法向量(),,m x y z = ,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c = ,则020m BD a b c m BC a ⎧⋅=++=⎨⋅==⎩ ,可取()0,1,1n =-r ,则1cos ,2m n m n m n⋅===⋅ ,所以二面角A BD C --=.【题目栏目】立体几何\立体几何的综合问题【题目来源】2022新高考全国I 卷·第19题5.(2021年新高考全国Ⅱ卷·第19题)在四棱锥Q ABCD -中,底面ABCD是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面;(2)求二面角B QD A --平面角的余弦值.【答案】解析:(1)取AD 的中点为O ,连接,QO CO .因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA =2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =,因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥,因为OC AD O = ,故QO⊥的平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=- .设平面QBD 的法向量(),,n x y z = ,则00n BQ n BD ⎧⋅=⎪⎨⋅=⎪⎩ 即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭ .而平面QAD 的法向量为()1,0,0m = ,故12cos ,3312m n ==⨯ .二面角B QD A --的平面角为锐角,故其余弦值为23.【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年新高考全国Ⅱ卷·第19题6.(2021年新高考Ⅰ卷·第20题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】解析:(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD 因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD(2)作EF ⊥BD 于F, 作FM ⊥BC 于M,连FM因为AO ⊥平面BCD ,所以AO ⊥BD, AO ⊥CD所以EF ⊥BD, EF ⊥CD, BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FM EF F =I ,所以BC ⊥平面EFM ,即BC ⊥MF 则EMF ∠为二面角E-BC-D 的平面角, 4EMF π∠=因为BO OD =,OCD 为正三角形,所以OCD 为直角三角形因为2BE ED =,1112(1)2233FM BF ∴==+=从而EF=FM=213AO ∴=AO ⊥Q 平面BCD,所以11111332BCD V AO S ∆=⋅=⨯⨯⨯=的【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年新高考Ⅰ卷·第20题7.(2020年新高考I 卷(山东卷)·第20题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.【答案】(1)证明见解析;.解析:(1)证明: 在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D = ,所以l ⊥平面PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B ,设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则cos ,n PB n PB n PB ⋅<>==线与平面所成角的正弦值等于|cos ,|n PB <>=r u ur==≤≤=1m =时取等号,所以直线PB 与平面QCD.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年新高考I 卷(山东卷)·第20题8.(2020新高考II 卷(海南卷)·第20题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l.(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.【答案】(1)证明见解析;.解析:(1)证明: 在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D = ,所以l PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B ,设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩ ,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则cos ,n PB n PB n PB ⋅<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于|cos ,|n PB <>=r u ur==≤≤=1m =时取等号,所以直线PB 与平面QCD.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020新高考II 卷(海南卷)·第20题9.(2021年高考全国乙卷理科·第18题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】;解析:(1)PD ⊥ 平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =- ,(),1,0AM a =-,PB AM ⊥ ,则2210PB AM a ⋅=-+=,解得a =2BC a ==;(2)设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP = ,由11110m AM x y m AP z ⎧⋅=+=⎪⎨⎪⋅=+=⎩,取1x =,可得)2m = ,设平面PBM 的法向量为()222,,n x y z =,BM ⎛⎫= ⎪ ⎪⎝⎭,()1,1BP =- ,由222200n BM x nBP y z ⎧⋅==⎪⎨⎪⋅=-+=⎩ ,取21y =,可得()0,1,1n =r,cos ,m n m n m n⋅<>===⋅,所以,sin ,m n <>==因此,二面角A PM B --【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标;(2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年高考全国乙卷理科·第18题10.(2021年高考全国甲卷理科·第19题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)见解析;(2)112B D =解析:因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥,又1BB BF B ⋂=,所以AB ⊥平面11BCC B .所以1,,BA BC BB 两两垂直.的以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-= ,所以BF DE ⊥.(2)设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅===⋅ .当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ==,此时112B D =.【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年高考全国甲卷理科·第19题11.(2020年高考数学课标Ⅰ卷理科·第18题)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO上一点,PO .(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.【答案】(1)证明见解析;.【解析】(1)由题设,知DAE △为等边三角形,设1AE =,则DO =,1122CO BO AE ===,所以PO ==PC PB ====又ABC 为等边三角形,则2sin 60BA OA =,所以BA =,22234PA PB AB +==,则90APB ∠= ,所以PA PB ⊥,同理PA PC ⊥,又PC PB P = ,所以PA ⊥平面PBC ;(2)过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则111(,0,0),((,244E P B C ---,1(,4PC =-,1(4PB =-,1(,0,2PE =- ,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得11111100x x ⎧-=⎪⎨-=⎪⎩,令1x =,得111,0z y =-=,所以1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222020x x ⎧-=⎪⎨--=⎪⎩,令21x =,得22z y ==,所以m =故cos ,||||n m m n n m ⋅<>===⋅设二面角B PC E --的大小为θ,则cos θ=【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年高考数学课标Ⅰ卷理科·第18题12.(2020年高考数学课标Ⅱ卷理科·第20题)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;解析:(1) ,M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA∴在ABC 中,M 为BC 中点,则BC AM ⊥又 侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BB MN BC⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN∴BC ⊥平面1A AMN又 11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又 11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF=11//B C EF ∴//EF BC∴又BC ⊥ 平面1A AMN∴EF ⊥平面1A AMNEF ⊂ 平面11EB C F ∴平面11EB C F ⊥平面1A AMN(2)连接NP//AO 平面11EB C F ,平面AONP ⋂平面11EB C F NP =∴//AO NP根据三棱柱上下底面平行,其面1A NMA ⋂平面ABC AM =,面1A NMA ⋂平面1111A B C A N=∴//ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m >)可得:ON AP =,6NP AB m== O 为111A B C △的中心,且111A B C △边长为6m∴16sin 603ON =⨯⨯︒=故:ON AP ==//EF BC ∴AP EPAM BM =∴3EP =解得:EP m=在11B C 截取1B Q EP m ==,故2QN m= 1B Q EP =且1//B Q EP∴四边形1B QPE 是平行四边形,∴1//B E PQ由(1)11B C ⊥平面1A AMN故QPN ∠为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得:PQ ===sin QN QPN PQ ∴∠===∴直线1B E 与平面1A AMN 【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年高考数学课标Ⅱ卷理科·第20题13.(2020年高考数学课标Ⅲ卷理科·第19题)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【答案】(1)证明见解析;.解析:(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG、1C E 、1C F ,在在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG = ,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =-- ,()2,0,2AF =--,()10,1,2A E =- ,()12,0,1A F =- ,设平面AEF 的法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =- ,设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,cos,m nm nm n⋅<>===⋅设二面角1A EF A--的平面角为θ,则cosθ=,sinθ∴==因此,二面角1A EF A--.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年高考数学课标Ⅲ卷理科·第19题14.(2019年高考数学课标Ⅲ卷理科·第19题)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A 的大小.【答案】(1)见详解;(2)30 .【官方解析】(1)由已知得//AD DE ,//CG BE ,所以//AD CG ,故,AD CG 确定一个平面.从而,,,A C G D 四点共面.由已知得,AB BE AB BC ⊥⊥,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH BC ⊥,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,60EBC ∠=︒,可求得1,BH EH ==.以H 为坐标原点,HC的方向为x 轴的的正方向,建立如图所示的空间直角坐标系H xyz -,则(1,1,0),(1,0,0),(2,1,0)A C G CG AC -==-.设平面ACGD 的法向量为(,,)n x y z =,则CG n AC n ⎧=⎪⎨=⎪⎩即0,20.x x y ⎧=⎪⎨-=⎪⎩所以可取(3,6,n =- .图2图1AA又平面BCGE 的法向量可取为(0,1,0)m =,所以cos ,n mn m |n||m|〈〉=因此二面角B - CG - A 的大小为30︒.【点评】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力.【题目栏目】立体几何\立体几何的综合问题【题目来源】2019年高考数学课标Ⅲ卷理科·第19题15.(2019年高考数学课标全国Ⅱ卷理科·第17题)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.()1证明:BE ⊥平面11EB C ;()2若1AE A E =,求二面角1B EC C --的正弦值.【答案】()1证明见解析;(2.【官方解析】证明:()1由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .()2由()1知190BEB ∠=︒.由题设知11Rt ABE Rt A B E ≅△△,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA的方向为x 轴正方向,DA 为单位长,建立如图所示的空间直角坐标系D xyz -,则()0,1,0C ,()1,1,0B ,()10,1,2C ,()1,0,1E ,()1,0,0CB = ,()1,1,1CE =- ,()10,0,2CC =.设平面EBC 的法向量为()111,,n x y z =,则00CB n CE n ⎧⋅=⎪⎨⋅=⎪⎩,即11110,0,x x y z =⎧⎨-+=⎩所以可取()0,1,1n =-- .设平面1ECC 的法向量为()222,,m x y z =,则100CC m CE m ⎧⋅=⎪⎨⋅=⎪⎩即222220,0z x y z =⎧⎨-+=⎩所以可取()1,1,0m = .于是1cos ,2n m n m n m⋅==-⋅.所以,二面角1B EC C --.【分析】()1利用长方体的性质,可以知道11B C ⊥侧面11A B BA ,利用线面垂直的性质可以证明出11B C EB ⊥,这样可以利用线面垂直的判定定理,证明出BE ⊥平面11EB C ;()2以点D 坐标原点,以1,,DA DC DD分别为,,x y z 轴,建立空间直角坐标系,设正方形ABCD 的边长为a ,1B B b =,求出相应点的坐标,利用1BE EC ⊥,可以求出,a b 之间的关系,分别求出平面EBC 、平面1ECC 的法向量,利用空间向量的数量积公式求出二面角1B EC C --的余弦值的绝对值,最后利用同角的三角函数关系,求出二面角1B EC C --的正弦值.【解析】()1因为1111ABCD A B C D -是长方体,所以11B C ⊥侧面11A B BA ,而BE ⊂平面11A B BA ,所以11BE B C ⊥,又1BE EC ⊥,1111B C EC C = ,111,B C EC ⊂平面11EB C ,因此BE ⊥平面11EB C ;()2以点B坐标原点,以1,,BA BC BB分别为,,x y z 轴,建立如下图所示的空间直角坐标系,1(0,0,0),(0,,0),(0,,),(,0,)2b B C a C a b E a ,因为1BE EC ⊥,所以2210(,0,(,,002224b b b BE EC a a a a b a ⋅=⇒⋅-=⇒-+=⇒= ,所以(,0,)E a a ,1(,,),(0,0,2),(,0,)EC a a a CC a BE a a =--==,设111(,,)m x y z =是平面BEC 的法向量,所以111110,0,(1,0,1)0.0.ax az m BE m ax ay az m EC +=⎧⎧⋅=⇒⇒=-⎨⎨-+-=⋅=⎩⎩,设222(,,)n x y z =是平面1ECC 的法向量,所以2122220,0,(1,1,0)0.0.az n CC n ax ay az n EC =⎧⎧⋅=⇒⇒=⎨⎨-+-=⋅=⎩⎩,二面角1B EC C --12,所以二面角1B EC C --=【点评】本题考查了利用线面垂直的性质定理证明线线垂直,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.【题目栏目】立体几何\立体几何的综合问题【题目来源】2019年高考数学课标全国Ⅱ卷理科·第17题16.(2019年高考数学课标全国Ⅰ卷理科·第18题)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60,,,AA AB BAD E M N ==∠=︒分别是BC ,1BB ,1A D的中点.D 1C 111(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.【答案】解:(1)连结1,B C ME .因为,M E 分别为1,BB BC 的中点,所以1//ME B C ,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =.由题设知11A B ,可得11B C A D ,故ME ND ,因此四边形MNDE 为平行四边形,//MN ED .又MN ⊄平面1C DE ,所以//MN 平面1C DE .(2)由已知可得DE DA ⊥.以D 为坐标原点,DA的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -,则1(2,0,0),(2,0,4),2),(1,0,2)A A M N ,1(0,0,4)A A =-,1(2)A M =-- ,1(1,0,2)A N =-,(0,MN =.设(,,)m x y z = 为平面1A MA 的法向量,则1100m A M m A A ⎧⋅=⎪⎨⋅=⎪⎩ ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取m =.设(,,)n p q r = 为平面1A MN 的法向量,则100n MN n A N ⎧⋅=⎪⎨⋅=⎪⎩ ,.所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)n =- .于是cos ,m n m n m n ⋅===⋅,所以二面角1A MA N --.【题目栏目】立体几何\立体几何的综合问题【题目来源】2019年高考数学课标全国Ⅰ卷理科·第18题17.(2018年高考数学课标Ⅲ卷(理)·第19题)(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD所在的平面垂直,M 是弧CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】【官方解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD因为BC CD ⊥,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC DM⊥因为M 为 CD上异于,C D 的点,且DC 为直径,所以DM CM ⊥又BC CM C = ,所以DM ⊥平面BMC而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz-当三棱锥M ABC -体积最大时,M 为 CD的中点,由题设得()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,1,1M ()2,1,1AM =- ,()0,2,0AB = ,()2,0,0DA = 设(),,n x y z = 是平面MAB 的法向量,则00n AM n AB ⎧⋅=⎪⎨⋅=⎪⎩ ,即2020x y z y -++=⎧⎨=⎩可取()1,0,2n = 易知DA 是平面MCD的法向量,因此cos ,n DA n DA n DA⋅<>==⋅所以sin ,n DA <>== 所以面MAB 与面MCD【民间解析】(1)证明:因为面ABCD ⊥半圆面CMD ,且面ABCD 半圆面CMD CD=而四边形ABCD 为正方形,所以AD CD ⊥,所以AD ⊥平面MCD又CM ⊂平面MCD ,所以AD CM ⊥①又因为点M 在以CD 为直径的半圆上,所以CM MD ⊥②又MD 、AD ⊂面MAD ,且MD AD D = ③由①②③可得CM ⊥面MAD ,而CM ⊂平面BMC所以平面AMD ⊥平面BMC(2)如图,以DC 所在直线作为y 轴,以DC 中点为坐标原点O ,过点O 作DA 的平行线,作为x 轴,过点O 作面ABCD 的垂线,作为z轴,建立空间直角坐标系因为13M ABC ABC M ABC V S d --=⋅△,而12222ABC S =⨯⨯=△所以当点M 到平面ABCD 的距离最大时,三棱锥M ABC -的体积最大,此时MO CD⊥所以()0,0,1M ,()2,1,0AA -,()2,1,0B ;()0,1,0C ,()0,1,0D -设面MAB 的法向量为()111,,m x y z = ,易知面MCD 的法向量为()2,0,0n DA == 所以()2,1,1MA =-- ,()2,1,1MB =- 由00m MA m MB ⎧⋅=⎪⎨⋅=⎪⎩ 即1111112020x y z x y z --=⎧⎨+-=⎩,解得11102y z x =⎧⎨=⎩,可取()1,0,2m =所以cos ,m n m n m n ⋅<>=== 故所求面MAB 与面MCD==.【题目栏目】立体几何\空间角\二面角【题目来源】2018年高考数学课标Ⅲ卷(理)·第19题18.(2018年高考数学课标Ⅱ卷(理)·第20题)(12分)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM所成角的正弦值.【答案】解析:(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =.连接OB.因为AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知PO OB ⊥.由OP OB ⊥,OP AC ⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB u u u r 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0)O ,(2,0,0)B ,(0,2,0)A -,(0,2,0)C,P,AP =u u u r .取平面PAC 的法向量为(2,0,0)OB =u u u r .设(,2,0)(02)≤M a a a -<,则(,4,0)AM a a =-u u u r .设平面PAM 的法向量为(,,)x y z =n ,由0AP ⋅=u u u r n ,0AM ⋅=u u u r n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB <>=u u u r n,由已知可得cos ,OB <>=u u u r n PAB M COA=,解得4a =-(舍去),43a =.所以4()3n =-.又(0,2,PC =- ,所以cos ,n PC <>=u u u r .所以PC 与平面PAM .【题目栏目】立体几何\空间角\二面角【题目来源】2018年高考数学课标Ⅱ卷(理)·第20题19.(2018年高考数学课标卷Ⅰ(理)·第18题)(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DCF ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】解析:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH EF ⊥,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H xyz -.由(1)可得,DE PE ⊥.又2DP =,1DE =,所以PE =.又1PF =,2EF =,故PE PF ⊥.可得32PH EH ==.则33(0,0,0),(1,,0),(1,22H P D DP --= 32HP = 为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin ||||||HP DP HP DP θ⋅===⋅ .所以DP 与平面ABFD.【题目栏目】立体几何\空间角\直线与平面所成的角【题目来源】2018年高考数学课标卷Ⅰ(理)·第18题20.(2017年高考数学新课标Ⅰ卷理科·第18题)如图,在四棱锥中,,且.(1)证明:平面平面;(2)若,,求二面角的余弦值.【答案】(1)详见解析;(2)二面角的余弦值为. 【分析】(1)根据题设条件可以得出,,而,就可证明出平面.进而证明平面平面;(2)先找出的中点,找出相互垂直的线,建立以为坐标原点,的方向为轴的正方向,为单位长的空间直角坐标系,列出所需要的点的坐标,设是平面的法向量,是平面的法向量,根据垂直关系,求出和,利用数量积公式可求出二面角的平面角. 【解析】(1)由已知,得,由于,故,从而平面又平面,所以平面平面(2)在平面内做,垂足为,由(1)可知,平面,故,可得平面. P ABCD -//AB CD 90BAP CDP ∠=∠=︒PAB ⊥PAD PA PD AB DC ===90APD ∠=︒A PB C --A PB C --AB AP ⊥CD PD ⊥//AB CD AB ⊥ PAD PAB ⊥PAD AD F FA x AB (),,n x y z = PCB (),,m x y z = PAB (0,1,n =- ()1,0,1m = 90BAP CDP ∠=∠=︒AB AP ⊥CD PD ⊥//AB CD AB PD ⊥AB ⊥PAD AB ⊂PAB PAB ⊥PAD PAD PF AD ⊥F AB ⊥PAD AB PF ⊥PF ⊥ABCD以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,. 所以,,,. 设是平面的法向量,则,即,可取. 设是平面的法向量,则,即,可取. 则,所以二面角的余弦值为. 【考点】面面垂直的证明,二面角平面角的求解.【点评】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.【题目栏目】立体几何\空间角\二面角【题目来源】2017年高考数学新课标Ⅰ卷理科·第18题21.(2017年高考数学课标Ⅲ卷理科·第19题)如图,四面体中,是正三角形,是直角三角形,,.F FA x ||AB F xyz-APB (C(PC =CB =PA = (0,1,0)AB = (,,)x y z =n PCB 00PC CB ⎧⋅=⎪⎨⋅=⎪⎩ nn 00x y z ⎧+=⎪=(0,1,=-n (,,)x y z =m PAB 00PA AB ⎧⋅=⎪⎨⋅=⎪⎩ mm 00z y =⎪=⎩(1,0,1)=n cos ,||||⋅==<>n m n m n m A PB C --ABCD ABC ∆ACD ∆ABD CBD ∠=∠AB BD =(1)证明:平面平面;(2)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.【答案】(Ⅰ)证明略. 【解析】证明:(1)取的中点为,连接为等边三角形∴∴.∴,即为等腰直角三角形,为直角又为底边中点ACD ⊥ABC AC BD E AEC ABCD D AE C --AC O ,BO DO ABC ∆ BO AC ⊥AB BC =AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆AD CD =ACD ∆ADC ∠O AC∴ 令,则 易得:,∴由勾股定理的逆定理可得即又∵ 由面面垂直的判定定理可得(2)由题意可知即,到平面的距离相等即为中点以为原点,为轴正方向,为轴正方向,为轴正方向,设,建立空间直角坐标系则,,,,DO AC ⊥AB a =AB AC BC BD a ====OD a=OB =222OD OB BD +=2DOB π∠=OD OB ⊥OD AC OD OB AC OB OAC ABC OB ABC ⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩ 平面平面OD ABC ∴⊥平面OD ADC ⊂平面ADC ABC ⊥平面平面V V D ACE B ACE --=B D ACE E BD O OA x OB y OD z AC a =()0,0,0O ,0,02a A ⎛⎫ ⎪⎝⎭0,0,2a D ⎛⎫ ⎪⎝⎭,0B ⎛⎫ ⎪ ⎪⎝⎭,4a E ⎛⎫ ⎪ ⎪⎝⎭易得:,, 设平面的法向量为,平面的法向量为, 则,解得 ,解得 若二面角为,易知为锐角,则.【考点】二面角的平面角;面面角的向量求法【点评】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与<m ,n >互补或相等,故有|cos θ|=|cos<m ,n>|=.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【题目栏目】立体几何\空间角\二面角【题目来源】2017年高考数学课标Ⅲ卷理科·第19题22.(2017年高考数学课标Ⅱ卷理科·第19题)如图,四棱锥 中,侧面 为等比三角形且垂直于底面 , 是 的中点.(1)证明:直线 平面;(2)点 在棱上,且直线 与底面 所成锐角为 ,求二面角 的余弦值.【答案】(1)证明略;,24a a AE ⎛⎫=- ⎪ ⎪⎝⎭ ,0,22a a AD ⎛⎫=- ⎪⎝⎭ ,0,02a OA ⎛⎫= ⎪⎝⎭ AED 1n AEC 2n 1100AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩ 1n = 2200AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩ (20,1,n = D AE C --θθ1212cos n n n n θ⋅==⋅ ⋅m n m n P ABCD -PAD ABCD o 1,90,2AB BC AD BAD ABC =∠=∠=E PD //CE PAB M PC BM ABCD o 45M AB D --【基本解法1】(1)证明:取中点为,连接、因为,所以因为是的中点,所以,所以所以四边形为平行四边形,所以因为平面,平面所以直线平面(2)取中点为,连接因为△为等边三角形,所以因为平面平面,平面平面,平面所以平面因为,所以四边形为平行四边形,所以所以以分别为轴建立空间直角坐标系,如图设,则,所以设,则,因为点在棱上,所以,即所以,所以平面的法向量为因为直线与底面所成角为,所以解得设平面的法向量为,则令,则PA F EF AF90BADABC ∠=∠=︒12BC AD =BC 12AD E PD EF 12AD EF BCEFBC //EC BFBF ⊂PABEC ⊄PAB//CEPABAD O OC OP、PAD PO ⊥ADPAD ⊥ABCD PAD ABCD AD =PO ⊂PADPO ⊥ABCDAO BC OABC //AB OCOC AD⊥,,OC OD OP ,,x yz 1BC =(0,1,0),(1,1,0),(1,0,0)P A B C --(1,0,PC = (,,)M x y z (,,PM x y z =-(1,0,0)AB = M PC (01)PM PC λλ=≤≤ (,,(1,0,x y z λ=()M λ()BM λ=- ABCD (0,0,1)n = BM ABCD 45︒|||sin 45||cos ,|||||BM n BM n BM n ⋅︒=<>=== 1λ=-(BM = MAB (,,)m x y z = 00AB m x BM m x y z ⎧⋅==⎪⎨⋅=+=⎪⎩ 1z =m =所以所以求二面角【基本解法2】(1)证明:取中点为,连接因为,所以,即所以四边形为平行四边形,所以因为平面,平面所以直线平面因为是的中点,所以因为平面,平面所以直线平面因为,所以平面平面因为平面所以直线平面(2)同上【命题意图】线面平行的判定,线面垂直的判定,面面垂直的性质,线面角、二面角的求解【知识拓展】线面平行的证明一般有两个方向,线面平行的判定或面面平行的性质。
新高考数学计算题型精练 复数的四则运算(解析版)
新高考数学计算题型精练复数的四则运算1.34i i +的共轭复数为().A .1i +B .1i-C .1i-+D .1i--【答案】A【详解】因为34i i 1i +=-,则其共轭复数为1i +.故选:A 2.若22i i 1i z +=+,则z =()A .13i22+B .13i22-C .13i22-+D .13i22--【答案】B 【详解】因为2i 1(2i 1)(1i)13i 13i 1i (1i)(1i)222z ---+====+++-,所以13i 22z =-.故选:B 3.已知i i z z +=,则z =()A2B .0C .12D .1【答案】A【详解】设i z a b =+,则()21i i i i a b a b b a ++=+=-+,故1a b b a =-⎧⎨+=⎩,解之得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以2z ==.故选:A 4.已知i1i z=+(其中i 为虚数单位),若z 是z 的共轭复数,则z z -=()A .1-B .1C .i-D .i【答案】D 【详解】由i 1i z=+,则()()()i 1i i 1i 1i 1i 1i 2z -+===++-,则1i 2z -=,所以i z z -=.故选:D .5.543i=-()A .43i-+B .43i +C .43i55-+D .43i55+【答案】D【详解】()()()()543i 543i 543i 43i 43i 43i 2555++===+--+.故选:D 6.若复数z 满足i 43i z ⋅=+,则z =()A .2BC .3D .5【答案】D【详解】()43i i 43i 4i 3i 43i 34i i i i 1z z +⋅+-⋅=+∴====-⋅- ,,5z ∴=.故选:D.7.若a 为实数,且7i2i 3ia +=-+,则=a ()A .2B .1C .1-D .2-【答案】C【详解】由题意得,()()2i 3i 7i1iia -+--===-,故选:C .8.2(1=()A .2+B .2-C .2-+D .2--【答案】C【详解】22(113i 2+=++=-+;故选:C.9.已知复数3i2i 12iz +=++,则z =()A .1BC .2D .【答案】B【详解】因为()()3i 12i 3i2i 2i 1i 2i 1i 12i 5z +-+=+=+=-+=++,所以z =.故选:B10.()1i 1z -=,则z =()A .1i +B .1i -C .22i +D .22i-【答案】B【详解】()1i 12z -=-= ,()()()()21i 21i 21i 1i 1i 1i 2z ++∴====+--+,1i z ∴=-.故选:B.11.设11iz =+,则z z -=()A .i-B .iC .1D .0【详解】由题意可得11i 11i 1i 222z -===-+,则11i 22z =+,所以1111i i i 2222z z ⎛⎫⎛⎫-=--+=- ⎪ ⎪⎝⎭⎝⎭.故选:A12.已知i 为虚数单位,复数13i2iz -=+,则z =()A .2BC D【答案】C 【详解】()()()()13i 2i 13i 17i 17i 2i 2i 2i 555z -----====--++-,则z =故选:C.13.已知i 为虚数单位,复数z满足(13i)i z =,则z =()A .i -B iC 1i2D 1i 2【答案】D【详解】依题意,2i 1i422z -===-,所以1i 22z =+.故选:D 14.若复数()43i i z =-,则z =()A .25B .20C .10D .5【答案】D【详解】因为()43i i 34i z =-=+,所以5z ==,故选:D.15.设复数z 满足()1i 4z -=,则z =()A .B .1C D .2【答案】A【详解】由()1i 4z -=,得()()()41i 444i 22i 1i 1i 1i 2z ⨯++====+--⨯+,所以z ==故选:A.16.已知复数()()()1i 2i z a a =-+∈R 在复平面对应的点在实轴上,则=a ()A .12B .12-C .2D .-2【详解】依题意,()()()()1i 2i 22i z a a a =-+=++-,因为复数z 在复平面对应的点在实轴上,所以20a -=,解得2a =.故选:C.17.已知复数z 满足(1)(23i)32i z --=+,则z =()A .0B .iC .1i-+D .1i+【答案】D【详解】∵(1)(23i)32i z --=+,∴()()()()32i 23i 32i 13i1111i 23i 23i 23i 49z +++=+==+=+--++,故选:D.18.若复数z 满足i 12i z ⋅=-,则z =()A .2i --B .2i-+C .2i+D .2i-【答案】B【详解】由已知可得,12i 2i i z -==--,从而2i z =-+.故选:B.19.设i 为虚数单位,若复数z 满足3i i 1iz -=-,则z 的虚部为()A .2-B .1-C .1D .2【答案】D【详解】由()()()()3i 1i 3i 42i2i i 1i 1i 1i 2z -+-+====+--+,则2i 1z =-,所以z 的虚部为2.故选:D .20.已知复数z 满足(2i)24i z +=-,则z 的虚部为()A .2i -B .2iC .2-D .2【答案】C 【详解】()()()()24i 2i 24i 10i2i 2i 2i 2i 5z ----====-++-,故虚部为2-.故选:C 21.已知i 12iz=-,i 为虚数单位,则z =()A .2i -+B .2i-C .2i+D .2i--【答案】C 【详解】因为i 12iz=-,则()i i 122i z =-=+.故选:C.22.已知复数z 满足()()1i 2i 2i z --=,则z 的虚部为()A .1-B .i-C .3D .3i【答案】C【详解】因为()()()2i 1i 2i2i 2i i 12i 13i 1i 1i 1i z +=+=+=-+=-+--+,所以z 的虚部为3,故选:C.23.已知复数()i z a a =+∈R 满足5z z ⋅=,则a 的值为()A B .2C .D .2±【答案】D【详解】因为i z a =+,所以2(i)(i)15z z a a a ⋅=+-=+=,解得2a =±,故选:D 24.已知复数z 是方程2220x x +=-的一个根,则z =()A .1B .2C D【答案】C【详解】因为方程2220x x +=-是实系数方程,且()224240∆=--⨯=-<,所以该方程有两个互为共轭复数的两个虚数根,即22i1i 2z ±==±,所以z ==故选:C 25.若复数()2iR 2ia z a -=∈+是纯虚数,则=a ()A .-2B .2C .-1D .1【答案】D【详解】由题意设i z b =(0b ≠),2ii 2ia zb -==+,即()2i i 2i 2i a b b b -=+=-+,则22a b b =-⎧⎨=-⎩,解得:1,1a b ==-.故选:D 26.已知复数z 满足()1i 3i z +=-,则复数z =()A .2BC .D【答案】B【详解】因为()1i 3i z +=-,则()()()()3i 1i 3i 24i12i 1i 1i 1i 2z ----====-++-,因此,z ==故选:B.27.已知复数1i 22z =+,则3z =()A .34B C .1D 【答案】C【详解】法一:由复数乘法运算得231111i i i i =i 22222222z ⎫⎫⎛⎫=++=++⎪ ⎪ ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,则31z =,法二:由1||12z ==,则31z =,故选:C 28.已知复数z 满足i 43i z ⋅=+,则z =___________.【答案】5【详解】由i 43i z ⋅=+得2243i 4i 3i 4i 334i i i 1z ++-====--,因为5z ==,所以5z z ==,故答案为:5.29.3ii+=______【答案】13i -【详解】()23i i3i 13i i i ++==-.故答案为:13i -30.复数z 满足26i z z +=-(i 是虚数单位),则z 的虚部为___________.【答案】-1【详解】令i z a b =+,则i z a b =-,所以()()22i i 3i=6i z z a b a b a b +=++-=+-,故z 的虚部为1-.故答案为:-1.31.设复数z 满足()1i 2i z +=(i 为虚数单位),则z =____________.【答案】1i+【详解】∵()1i 2i z +=,则()()()i 1i ii i i i 221111z -===+++-.故答案为:1i +.32.复数1z ,2z 在复平面上对应的点分别为()12,1Z ,()21,2Z -,则12z z +=________.【答案】3i -/-i+3【详解】因为复数1z ,2z 在复平面上对应的点分别为()12,1Z ,()21,2Z -,所以12i z =+,212i z =-,所以123i z z +=-,故答案为:3i -.33.若复数21iz =+(i 为虚数单位),则i z -=___________.【详解】()()()()21i 21i 21i 1i 1i 1i 2z --====-++-,所以i 12i z -=-==.故答案34.若复数z 满足(1i)12i z -=+(i 是虚数单位),则复数z =_____________.【答案】13i 22-+.【详解】由(1i)12i z -=+可得()()()()12i 1i 12i 13i 13i 1i 1i 1i 222z +++-+===--+--+.故答案为:13i 22-+.35.若()12i 1z +=,则()1i z +=______【答案】62i55-【详解】因为()12i 12z +===,所以()212i 224i 12i 145z --===++,故()()24i 22i 4i 4621i 1i i 5555z -+-++=⨯+==-.故答案为:62i 55-.36.若复数z 满足2136i z -=+(其中i 是虚数单位),则z =______.【答案】23i-【详解】由2136i z -=+,得246i z =+,∴23i z =+,则23i z =-.故答案为:23i -.37.已知复数i 12i 2iz=-++,则z 的虚部为______.【答案】4-【详解】解:由题意得(12i)(2i)(43i)i34i i i iz -++-+===+⋅,则34i z =-,所以z 的虚部为-4,故答案为:-438.已知复数z 满足210z z ++=,则z z ⋅=_____________.【答案】1【详解】因为22131024z z z ⎛⎫++=++= ⎪⎝⎭,即2213i 242z ⎛⎫⎛⎫+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以,12z =-或1i 22z =-+,若12z =-,则122z =-+,则111312244z z ⎛⎫⎛⎫⋅=---=+= ⎪⎪ ⎪⎪⎝⎭⎝⎭,若1i 22z =-+,则12z =-,则1113i 1222244z z ⎛⎫⎛⎫⋅=-+-=+= ⎪⎪ ⎪⎪⎝⎭⎝⎭.综上所述,1z z ⋅=.故答案为:1.39.已知复数z 满足()1i i z -=(i 为虚数单位),则z 的虚部为_____________.【答案】12/0.5【详解】由()1i i z -=得:()()()i 1i i 1i 11i 1i 1i 1i 222z +-+====-+--+,z ∴的虚部为12.故答案为:12.40.在复平面内,复数z 所对应的点为(1,1),则z z ⋅=___________.【答案】2【详解】由题意可知1i z =+,所以()()1i 1i 2z z ⋅=+-=,故答案为:241.已知复数z 满足()12i |43i |z +=-(其中i 为虚数单位),则复数z 的共轭复数为___________.【答案】12i+【详解】由()12i 43i 5z +=-==,得()()()()2512i 512i 512i 12i 12i 12i 14i z --====-++--,则复数z 的共轭复数为12i z =+;故答案为:12i +42.复数312i3i ++的值是_____________.【答案】17i 1010+【详解】解:312i 12i (12i)(3i)17i 17i 3i 3i 10101010+++++====++-.故答案为:17i 1010+.。
高考数学复数选择题专项训练(讲义及答案)及解析
高考数学复数选择题专项训练(讲义及答案)及解析一、复数选择题1.设复数1iz i=+,则z 的虚部是( )A .12B .12iC .12-D .12i -答案:A 【分析】根据复数除法运算整理得到,根据虚部定义可得到结果. 【详解】 ,的虚部为. 故选:.解析:A 【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果. 【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12.故选:A . 2.已知复数1=-iz i,其中i 为虚数单位,则||z =( )A .12B .2C D .2答案:B 【分析】先利用复数的除法运算将化简,再利用模长公式即可求解. 【详解】 由于, 则. 故选:B解析:B 【分析】先利用复数的除法运算将1=-iz i化简,再利用模长公式即可求解. 【详解】由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||z ===故选:B3.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( ) A .2 B .1 C .0D .1-答案:D 【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解. 【详解】 ,它为纯虚数, 则,解得. 故选:D .解析:D 【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解. 【详解】2(1)()1(1)i a i a i ai i a a i -+=+--=++-,它为纯虚数,则1010a a +=⎧⎨-≠⎩,解得1a =-.故选:D .4.))5511--+=( )A .1B .-1C .2D .-2答案:D 【分析】先求和的平方,再求4次方,最后求5次方,即可得结果. 【详解】 ∵,, ∴,, ∴, , ∴, 故选:D.解析:D 【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果.【详解】∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--, )()51711+=--+=-,∴))55121-+=--,故选:D.5.已知i 是虚数单位,则复数41ii+在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限答案:A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】,所以复数对应的坐标为在第一象限, 故选:A解析:A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A6.已知复数5i5i 2iz =+-,则z =( )A B .C .D .答案:B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】由题,得,所以. 故选:B.解析:B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】由题,得()()()5i 2+i 5i5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z == 故选:B.7.若(1)2z i i -=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限答案:B 【分析】先求解出复数,然后根据复数的几何意义判断. 【详解】 因为,所以,故对应的点位于复平面内第二象限. 故选:B. 【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计解析:B 【分析】先求解出复数z ,然后根据复数的几何意义判断. 【详解】因为(1)2z i i -=,所以()212112i i iz i i +===-+-, 故z 对应的点位于复平面内第二象限. 故选:B. 【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数. 8.若1m ii+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1D答案:C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题是纯虚数, 为纯虚数, 所以m=1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题1m ii+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则. 9.在复平面内,复数z 对应的点是()1,1-,则1zz =+( ) A .1i -+B .1i +C .1i --D .1i -答案:A 【分析】由得出,再由复数的四则运算求解即可. 【详解】 由题意得,则. 故选:A解析:A 【分析】由()1,1-得出1i z =-+,再由复数的四则运算求解即可. 【详解】由题意得1i z =-+,则1i 1i i 111i 1i i i 1z z -----+==⋅==-++-. 故选:A10.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z 的实部为,则z 为( )A .1BC .2D .4答案:B 【分析】由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果. 【详解】因为的实部为,所以可设复数, 则其共轭复数为,又, 所以由,可得,即,因此. 故选:B.解析:B 【分析】由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果. 【详解】因为z ,所以可设复数(),z yi x R y R =∈∈,则其共轭复数为z yi =,又z z =,所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此z =故选:B.11.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3B .5C .6D .8答案:D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】 ,故 则 故选:D解析:D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D12.复数12z i =-(其中i 为虚数单位),则3z i +=( )A .5BC .2D 答案:B 【分析】首先求出,再根据复数的模的公式计算可得; 【详解】 解:因为,所以 所以. 故选:B.解析:B 【分析】首先求出3z i +,再根据复数的模的公式计算可得; 【详解】解:因为12z i =-,所以31231z i i i i +=-+=+所以3z i +==故选:B .13.设复数z 满足(1)2i z -=,则z =( )A .1BC D .2答案:B 【分析】由复数除法求得,再由模的运算求得模. 【详解】 由题意,∴. 故选:B .解析:B 【分析】由复数除法求得z ,再由模的运算求得模. 【详解】由题意22(1)11(1)(1)i z i i i i +===+--+,∴z == 故选:B . 14.若复数11iz i,i 是虚数单位,则z =( ) A .0B .12C .1D .2答案:C 【分析】由复数除法求出,再由模计算. 【详解】 由已知, 所以. 故选:C .解析:C 【分析】由复数除法求出z ,再由模计算. 【详解】由已知21(1)21(1)(1)2i i iz i i i i ---====-++-, 所以1z i =-=. 故选:C .15.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( ) A .6π B .3πC .23π D .43π 答案:C 【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,所以复数在第二象限,设幅角为, 故选:C 【点睛】在复平面内运用复数的三解析:C 【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解.【详解】11z =,1cos 0sin 0z i ∴=+,121(cos sin )332Z i O OZ ππ=+=2111()222z z --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴=故选:C 【点睛】在复平面内运用复数的三角形式是求得幅角的关键.二、复数多选题16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限答案:AD 【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD 【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果. 【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0ab ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--,所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=答案:AD 【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断. 【详解】因为复数Z 在复平面上对应的向量, 所以,,|z|=,, 故选:AD解析:AD 【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断. 【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=, 故选:AD18.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 答案:BC 【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当时,,,此时复数在复平面内的点【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z 的虚部为sin θ-,D 选项错误. 故选:BC.19.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 答案:AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.20.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限 答案:AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,3z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.21.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限答案:AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确; 2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+=⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C选项错误;22111122212222ω---====-⎛⎛⎫-+⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,22⎛⎫--⎪⎪⎝⎭,在第三象限,故D选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.22.已知复数z的共轭复数为z,且1zi i=+,则下列结论正确的是()A.1z+=B.z虚部为i-C.202010102z=-D.2z z z+=答案:ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD.【解析:ACD【分析】先利用题目条件可求得z,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i=+可得,11iz ii+==-,所以12z i+=-==,z虚部为1-;因为2422,2z i z=-=-,所以()5052020410102z z==-,2211z z i i i z+=-++=-=.故选:ACD.【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.23.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i 5z +=- C .复数z 的实部为1- D .复数z 对应复平面上的点在第二象限 答案:BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.24.下面四个命题,其中错误的命题是( )A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数答案:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.25.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数B .若32a bi i -=+,则3,2a b ==C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z -答案:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题.26.复数21i z i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限 答案:CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.27.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件答案:BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.28.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =答案:AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC29.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω> 答案:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以122ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.30.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z答案:AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.。
专题17 解决恒成立与存在性问题-2021年高考数学二轮复习核心考点微专题(苏教版)(解析版)
1.存在实数x ∈[-1,1],使不等式x 2+(a -4)x +4-2a≥0成立,则实数a 的取值范围________. 【答案】a≤3【解析】法一:考虑命题的否定,即为热身第1题,取补集即可.所以a≤3. 法二:直接处理分参或图象,例如图象只要控制两端,f (-1)≥0或f (1)≥0即可.2.若不等式(m 2-m)2x -⎝⎛⎭⎫12x<1对一切实数x ∈(-∞,-1]恒成立,则实数m 的取值范围________. 【答案】-2<m<3.【解析】(m 2-m)<⎝⎛⎭⎫122x+⎝⎛⎭⎫12x,x ∈(-∞,-1)恒成立,y =⎝⎛⎭⎫122x+⎝⎛⎭⎫12x,x ∈(-∞,-1)的最小值为6,m 2-m≤6,所以-2<m<3.3.若不等式x 2+2xy≤a(x 2+y 2)对于一切正数x ,y 恒成立,则实数a 的最小值为________. 【答案】5+12.4.存在实数x ∈⎝⎛⎦⎤0,12,使得ax 2-x +1≤0成立,求实数a 的取值范围. 【答案】a≤-2.【考向分析】恒成立与存在性问题主要涉及到函数的图象和性质,渗透着换元、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用.近几年的数学高考和各地的模考联考中频频出现恒成立与存在性问题,其形式逐渐多样化,但它们大都与函数、导数知识密不可分.(一)单变量问题例1. 不等式x 2-ax -1≥0对a ∈[-1,1]恒成立,求实数x 的取值范围. 【答案】x≥1+52或x≤-1+52【解析】设f (a)=(-x)a +x 2-1,⎩⎪⎨⎪⎧f -1≥0f 1≥0,所以x≥1+52或x≤-1+52.学#科网变式1 已知函数f(x)=13x 3+2x ,对任意的实数t ∈[-3,3],不等式f(tx -2)+f(x)<0恒成立,求实数x 的取值范围. 【答案】-1<x<12【解析】易知函数f(x)=13x 3+2x 是R 上的奇函数且单调递增,f (tx -2)+f(x)<0化为f (tx -2)<f (-x),即tx -2<-x ,问题变为g(t)=tx -2+x<0在t ∈[-3,3]上恒成立,故有⎩⎪⎨⎪⎧g -3<0,g3<0,所以-1<x<12.变式2 函数f(x)=x -1-aln x(a<0),对于任意x 1,x 2∈(0,1],且x 1≠x 2,都有|f(x 1)-f(x 2)|<4⎪⎪⎪⎪1x 1-1x 2,求实数a 的取值范围. 【答案】-3≤a<0(二)多变量问题例2. 已知f(x)=x 2,g(x)=⎝⎛⎭⎫12x-m ,若对∃x 1∈[2,3],∀x 2∈[1,2],f(x 1)=g(x 2),求实数m 的取值范围. 【答案】-172≤m≤-154.【解析】g(x 2)的值域是f(x 1)的值域的子集,⎣⎡⎦⎤14-m ,12-m ⊆[4,9],所以⎩⎨⎧12-m≤914-m≥4.所以-172≤m≤-154.变式1 已知f(x)=x 2,g(x)=⎝⎛⎭⎫12x -m ,若对∃x 1∈[2,3],∃x 2∈[1,2],f(x 1)=g(x 2),求实数m 的取值范围.【答案】-354≤m≤-72.【解析】g(x 2)的值域与f(x 1)的值域有交集,即⎣⎡⎦⎤14-m ,12-m ∩[4,9]≠∅,可考虑⎣⎡⎦⎤14-m ,12-m ∩[4,9]=∅,所以12-m<4或14-m>9,所以m>-72或m<-354,补集为-354≤m≤-72.变式2 已知函数f(x)=x 2,g(x 2)=⎝⎛⎭⎫12x-m ,若对∃x 1∈[2,3],∃x 2∈[1,2],f(x 1)≥g(x 2),求实数m 的取值范围.【答案】m≥-354. 【解析】g(x 2)≤f(x 1)max =9所以g(x 2)min =14-m≤9所以m≥-354.学科*网(三)图象法例3. 若关于x 的不等式(ax -20)lg 2ax ≤0对任意的正实数x 恒成立,则实数a 的取值集合是________.【答案】{10}变式1 已知f(x)=ax -1 980,g(x)=ln xa (a ∈R),若在x ∈N *上恒有f(x)g(x)≥0,则实数a 的取值范围是________. 【答案】【解析】两个图象与x 轴的交点在同一个区间内,例如(-∞,1],[1,2],[2,3],…,因为1 980=44×45,所以最后解得[44,45].变式2 已知函数f(x)=(x +1)ln x -ax +a(a 为正常数). (1) 若f(x)在(0,+∞)上单调递增,求a 的取值范围; (2) 若不等式(x -1)f(x)≥0恒成立,求a 的取值范围. 【答案】(1)0<a≤2.(2)0<a≤2.【解析】(1) f(x)=(x +1)ln x -ax +a ,f′(x)=ln x +x +1x -a≥0,a ≤ln x +1x +1恒成立 令g(x)=ln x +1x +1,g′(x)=x -1x2,易得g min (x)=g(1)=2,0<a≤2.1.若存在实数x ∈(1,2)时,使得不等式x 2+mx +4<0成立,则实数m 的取值范围是________. 【答案】m<-4.【解析】-m>x +4x存在x ∈(1,2),⎝⎛⎭⎫x +4x min >4,-m>4,所以m<-4. 2.若不等式bx +c + 9ln x≤x 2对任意实数x ∈(0,+∞),b ∈(0,3)恒成立,则实数c 的取值范围________. 【答案】c≤-9ln 3【解析】g(b)=bx +c +9ln x -x 2,利用图象只需g(3)=3x +c +9ln x -x 2≤0恒成立x ∈(0,+∞),c≤x 2-3x - 9ln x 恒成立x ∈(0,+∞),令g(x)=x 2-3x -9ln x ,g′(x)=x -32x +3x ,易得,c≤-9ln 3.3.设函数f(x)=x -1x ,对任意x ∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m 的取值范围是________.【答案】m<-1【解析】2mx -⎝⎛⎭⎫1mx +m x <0对任意x ∈[1,+∞)恒成立,2mx 2-⎝⎛⎭⎫1m +m <0恒成立x ∈[1,+∞)利用图象,设g(x)=2mx 2-⎝⎛⎭⎫1m +m ,只能⎩⎨⎧m<0g 1<0,所以m<-1. 4.已知函数f(x)=⎩⎪⎨⎪⎧2x 2-3x ,x≤0e x +e 2,x>0,若不等式f(x)≥kx 对x ∈R 恒成立,则实数k 的取值范围是________.【答案】[-3,e 2]【解析】利用函数f(x)的图象,有2个临界位置,当x≤0时,y =2x 2-3x 在x =0处切线斜率为-3,当x>0时,y =e x +e 2与y =kx 相切时,设切点y =(x 0,kx 0)所以⎩⎪⎨⎪⎧kx 0=ex 0+e2ex 0=k ,消k 可得(x 0- 1)ex 0=e 2,猜根x 0=2,p(x)=(x 0-1)ex 0,p′(x)=x 0ex 0>0(x 0>0),因为单调性,所以根唯一,所以k ∈[-3,e 2].1.对任意实数x ∈[-1,1],不等式x 2+(a -4)x +4-2a<0恒成立,则实数a 的取值范围________. 【答案】a>3.2.若不等式(m 2-m)2x -⎝⎛⎭⎫12x<1在[-1,+∞)有解,则实数m 的取值范围________. 【答案】-2<m<3.【解析】首选分离参数法,(m 2-m)<⎝⎛⎭⎫122x+⎝⎛⎭⎫12x在[-1,+∞)有解,y =⎝⎛⎭⎫122x+⎝⎛⎭⎫12x,x ∈[-1,+∞)的最大值为6,m 2-m<6,所以-2<m<3.3.已知a ,b>0,若不等式m 3a +b -3a -1b ≤0恒成立,则实数m 的取值范围________.【答案】m≤16.【解析】首选分离参数法,m≤(3a +b)⎝⎛⎭⎫3a +1b (a ,b>0)恒成立,(3a +b)⎝⎛⎭⎫3a +1b =9+3a b +3ba +1≥16,所以m≤16. 4.已知对满足x +y +4=2xy 的任意正实数x ,y ,都有x 2+2xy +y 2-ax -ay +1≥0,则实数a 的取值范围是________. 【答案】a≤174.【解析】对于正实数x ,y ,由x +y +4=2xy ,得x +y +4=2xy≤2·⎝⎛⎭⎫x +y 22,解得x +y≥4.不等式x 2+2xy +y 2-ax -ay +1≥0可化为(x +y)2-a(x +y)+1≥0,令t =x +y(t≥4),则该不等式可化为t 2-at +1≥0,即a≤t +1t 对于任意的t≥4恒成立,所以a≤174.5. 不等式x 2-ax +1≥0对一切实数恒成立,求实数a 的取值范围. 【答案】-2≤a≤2.【解析】Δ≤0,所以-2≤a≤2.6. 不等式x 2-ax +1≥0对实数x ∈(0,12]恒成立,求实数a 的取值范围.【答案】a≤52【解析】a≤x +1x ⎝⎛⎭⎫0<x ≤12恒成立,所以a≤52.学科.网 7. 已知函数f(x)=x 2,g(x)=⎝⎛⎭⎫12x-m ,若对∀x 1∈[2,3],∃x 2∈[1,2],f(x 1)≥g(x 2),求实数m 的取值范围. 【答案】m≥-154【解析】g(x 2)≤f(x 1)min =4,所以g(x 2)min =14-m≤4,所以m≥-154.8. 已知函数f(x)=x 2,g(x)=⎝⎛⎭⎫12x-m ,若对∀x 1∈[2,3],∀x 2∈[1,2],f(x 1)≥g(x 2),求实数m 的取值范围.9. 存在实数x ∈⎝⎛⎦⎤0,12,使得x 2-x +a>0成立,求实数a 的取值范围. 【答案】a>010. 已知函数f(x)=⎩⎪⎨⎪⎧-|x 3-2x 2+x|,x<1ln x ,x≥1若对于t ∈R ,f(t)≤kt 恒成立,求实数k 的取值范围.【答案】1e≤k≤1【解析】①当t≥1时,ln t≤kt 恒成立,所以k≥ln t t ,t ∈[1,+∞).令g(t)=ln tt ,则g′(t)=1-ln t t 2,当t ∈(1,e)时,g′(t)>0,则g(t)=ln t t 在t ∈(1,e)时为增函数;当t ∈(e ,+∞)时,g′(t)<0,则g(t)=ln tt 在t ∈(e ,+∞)时为减函数.所以g(t)max =g(e)=1e ,所以k≥1e.②当0<t<1时,f (t)=-t(t -1)2,即-t(t -1)2≤kt 对于t ∈(0,1)恒成立,所以k≥-(t -1)2,t ∈(0,1),所以k≥0. ③当t<0时,f (t)=t(t -1)2,即t(t -1)2≤kt 对于t ∈(-∞,0]恒成立,所以k≤(t -1)2,t ∈(-∞,0],所以k≤1, ④当t =0时,k ∈R.综上1e ≤k≤1.【答案】a≤2.【解析】函数y =|x -a|恒在函数y =12-1x 的图象的上方(含相切),因为y =12-1x 在x =2处切线斜率为14<1,可画图知a≤2. 学科#网12. 已知函数f(x)=⎩⎪⎨⎪⎧-x 2+2x ,x≤0ln x +1,x>0,若|f(x)|≥ax -1恒成立,则实数a 的取值范围________.【答案】-4≤a≤0。
2015高考总复习数学(文)课件:17.1 复数的概念及运算
2-i2 3-4i 3-4ii 4+3i 解析: z = i = i = i2 = =- 4 - 3i ,则 -1 -42+-32=5.
答案:C
【方法与技巧】复数的模的运算,先将复数化简为 z=a+
bia,b∈R的形式,再利用公式|z|= a 2 b 2 ;复数与复平面的
点是一一对应的,复数和复平面内以原点为起点的向量也是一 一对应的,因此复数加减法的几何意义可按平面向量的加减法 理解,利用平行四边形法则或三角形法则解决问题.
(3)a+bi 的共轭复数为 a-bi(a,b∈R).
(4)复数 z=a+bi(a,b∈R)与复平面的点 Z(a,b)一一对应.
2 2 (5)复数 z=a+bi(a,b∈R)的模|z|= a +b .
注意:任意两个复数全是实数时能比较大小,其他情况不 能比较大小.
2.复数的运算 复数z1=a+bi,z2=c+di(a,b,c,d∈R),则 ①z1+z2=(a+c)+(b+d)i; ②z1-z2=(a-c)+(b-d)i; ③z1z2=(ac-bd)+(bc+ad)i;
第十七章 复 数
第1讲 复数的概念及运算
考纲要求 1.理解复数的基本概念. 2.理解复数相等的充要 条件. 3.了解复数的代数表示 法及其几何意义. 4.会进行复数代数形式 的四则运算. 5.了解复数代数形式的 加、减运算的几何意义.
考情风向标 从近几年的高考试题来看,复数问题 年年必有.复数的概念及其代数形式的运 算成为命题的热点,通常分两种题型,选 择题和填空题,一是考查复数的概念,如 纯虚数,两个复数相等;二是复数代数形 式的加、减、乘、除四则运算等知识(尤 其对复数除法的考查频率更高). 预测 2015 年的高考,仍会以考查复数 的有关概念,包括实部与虚部、虚数与纯 虚数以及复数的代数形式的运算为重点, 继续稳定在一道选择题或填空题上,且属 于中低档题.
高考数学题解析:高考复数问题分类解析
高考复数问题分类解析由于复数出现在新教材第三册的选修课中,且按新大纲的规定本章内容仅占4课时,说明它在高考中的地位有所下降,题量有所减少,难度有所降低,试题的数量基本稳定在一道选择题或填空题,难度不高于课本习题,本文结合2005年高考试题进行分类解析,供复习时参考: 一、考查复数的概念例1 (全国卷二理科第5题)设a 、b 、c 、d ∈R ,若a bic di++为实数,则 ( ) A. bc+ad ≠0 B. bc-ad ≠0 C. bc-ad=0 D. bc+ad=0解析:a bi c di ++=2a bi c di d +-+2()()c =22ac bd bc ad i c d ++-()(),a bic di++为实数∴ bc-ad=0 ∴选C.点评:本题主要考查复数的基本概念中的复数和实数的关系,另外、像虚数、纯虚数;实部、虚部、共轭复数等概念也经常考查到.如:(北京卷理科第9题)若1z =a+2i ,2z =3-4i ,且12z z 为纯虚数,则实数a 的值为------.(答案:83)二、考查复数的代数运算例2 (全国卷一理科第13=( )A. iB. -iC.iD. -i 解析: 直接计算:原式==13i +)(=i ,选A.点评: 本题主要考查复数的代数运算中的除法运算,要求学生掌握复数除法运算的规律是:分子分母同乘以分母的共轭复数.而复数代数运算中的加、减、乘运算相对比较简单,易于掌握,所以一般不单独考查. 如:(山东卷理科第1题)211i i -+()+211ii +-()=( )(参考答案:-1). 三、考查复数的性质例3(湖南卷理科第1题) 234z i i i i =+++的值是( )A.-1B. 0C. 1D. i 解析: 根据虚数单位i 的周期性,易得:原式=0. 点评: 本题主要考查虚数单位i 的周期性:441424311n n n n i i i iii n Z+++===-=-∈,,,,,实际上像:23221211i i ωϖωϖϖω±=±====3();、、、(其中:122ω=-+)等性质也经常考查:如(重庆卷理科第2题)200511i i+=-()------.(参考答案:i ). 四、考查复数的几何意义例4(浙江卷理科第4题)在复平面内,复数211i i+++(对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限解析: 因为211i i +++(=13222i i -+-=-(),所以根据复数的几何意义得对应的点位于第二象限 选B.点评: 本题主要考查复数的几何意义,属容易题,另外像 : (辽宁卷理科第1题)复数z=111ii-+-+在复平面内对应的点位于第-----象限.( 参考答案:第二象限 ) 五、考查复数方程的解法例5(上海卷文科第18题)在复数范围内解方程2Z Z Z i ++3-i()i=(为虚数单位)2+i. 解析:原方程可化简为2Z Z Z ++()i=1-i.设Z=x+yi,(x 、y ∈R),代入上述方程得:2221,x y xi i ++=-∴2211,2 1.,2x y x x y +==-∴=-=且∴原方程的解为Z=12-±. 点评: 在复数范围内解方程:实质上是综合利用复数模的有关知识,结合复数相等的概念求解未知数的问题.另外像:(上海卷理科的第18题)”证明: 在复数范围内,方程2Z i +5-5i(1-i)Z-(1+i)Z=(为虚数单位)2+i无解”也可以归属为这类问题. 总之,复数复习要以新的教学大纲和<<考试说明>>为准,不易延伸和拓展,以免增加难度,浪费时间.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题17 复数考纲解读三年高考分析1.复数的概念(1)理解复数的基本概念.(2)理解复数相等的充要条件.(3)了解复数的代数表示法及其几何意义.2.复数的四则运算(1)会进行复数代数形式的四则运算.(2)了解复数代数形式的加、减运算的几何意义.复数的运算是考查的重点,解题时常用到复数的运算法则、复数的模的计算、共轭复数的概念,考查学生的数学数学运算能力,题型以选择题,较小难度.主要考查复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算,重点考查复数的除法运算,与向量结合考查复数及其加法、减法的几何意义,突出考查运算能力与数形结合思想.一般以选择题、填空题形式出现,难度为低档.1.【2019年新课标3理科02】若z(1+i)=2i,则z=()A .﹣1﹣i B.﹣1+i C.1﹣i D.1+i【解答】解:由z(1+i)=2i,得z=1+i.故选:D.2.【2019年全国新课标2理科02】设z=﹣3+2i,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵z=﹣3+2i,∴,∴在复平面内对应的点为(﹣3,﹣2),在第三象限.故选:C.3.【2019年新课标1理科02】设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1 D.x2+(y+1)2=1【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z﹣i=x+(y﹣1)i,∴|z﹣i|,∴x2+(y﹣1)2=1,故选:C.4.【2019年北京理科01】已知复数z=2+i,则z•()A.B.C.3 D.5【解答】解:∵z=2+i,∴z•.故选:D.5.【2018年新课标1理科01】设z2i,则|z|=()A.0 B.C.1 D.【解答】解:z2i2i=﹣i+2i=i,则|z|=1.故选:C.6.【2018年新课标2理科01】()A.i B.C.D.【解答】解:.故选:D.7.【2018年新课标3理科02】(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i【解答】解:(1+i)(2﹣i)=3+i.故选:D.8.【2018年浙江04】复数(i为虚数单位)的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【解答】解:化简可得z1+i,∴z的共轭复数1﹣i故选:B.9.【2018年北京理科02】在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数,共轭复数对应点的坐标(,)在第四象限.故选:D.10.【2017年新课标1理科03】设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1;p 4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p4【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1,故命题p3为假命题;p 4:若复数z∈R,则z∈R,故命题p4为真命题.故选:B.11.【2017年新课标2理科01】()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:2﹣i,故选:D.12.【2017年新课标3理科02】设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.2【解答】解:∵(1+i)z=2i,∴(1﹣i)(1+i)z=2i(1﹣i),z=i+1.则|z|.故选:C.13.【2017年北京理科02】若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.14.【2019年天津理科09】i是虚数单位,则||的值为.【解答】解:由题意,可知:2﹣3i,∴||=|2﹣3i|.故答案为:.15.【2019年江苏02】已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.【解答】解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.16.【2019年浙江11】复数z(i为虚数单位),则|z|=.【解答】解:∵z.∴|z|.故答案为:.17.【2018年江苏02】若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为.【解答】解:由i•z=1+2i,得z,∴z的实部为2.故答案为:2.18.【2018年上海05】已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=.【解答】解:由(1+i)z=1﹣7i,得,则|z|.故答案为:5.19.【2018年天津理科09】i是虚数单位,复数.【解答】解:4﹣i,故答案为:4﹣i20.【2017年江苏02】已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|.故答案为:.21.【2017年浙江12】已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=,ab=.【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.22.【2017年上海05】已知复数z满足z0,则|z|=.【解答】解:由z0,得z 2=﹣3,设z =a +bi (a ,b ∈R ),由z 2=﹣3,得(a +bi )2=a 2﹣b 2+2abi =﹣3, 即,解得:.∴. 则|z |.故答案为:.23.【2017年天津理科09】已知a ∈R ,i 为虚数单位,若为实数,则a 的值为 .【解答】解:a ∈R ,i 为虚数单位,i由为实数,可得0,解得a =﹣2. 故答案为:﹣2.1.【吉林省舒兰一中、吉化一中、九台一中、榆树实验中学等八校联考】若复数z 满足(34)43i z i -=+,则z 的虚部为( )A.45i -B.45-C.45D.45i 【答案】C 【解析】 由题意得,()()()534534z 34343455i i i i i +===+--+ 所以z 的虚部为45. 故本题答案为452.【2019年9月广东省梅州市高三上学期第一次质量检测】设复数z 满足(3)3i z i +=-,则||z =(). A .12B .1C 2D .2【答案】B 【解析】由题意得:()()()23386433331055i i i z i i i i ---====-++-2243155z ⎛⎫⎛⎫∴=+-= ⎪ ⎪⎝⎭⎝⎭本题正确选项:B 【点睛】本题考查复数模长的求解,关键是能够利用复数的除法运算整理出复数.3.【2019年9月广东省梅州市高三上学期第一次质量检测】已知p ,q ∈R ,1i +是关于x 的方程20x px q ++=的一个根,则p q ⋅=()A .4-B .0C .2D .4【答案】A 【解析】依题意,复数1i +是关于x 的方程20x px q ++=的一个根,可得21)(1)=0i p i q +++(+,即:(2)=0p q p i +++, 所以020p q p +=⎧⎨+=⎩,解得22p q =-⎧⎨=⎩,所以4p q ⋅=-,故选A.4.【湖南省怀化市2018-2019学年高三下学期期末】已知i 是虚数单位,则复数122ii+-等于( ) A .i B .i -C .5iD .45i + 【答案】A 【解析】 复数122ii +-化简可得 122ii+- ()()()()122+=22+i i i i +-22+52=5i i + =i所以选A5.【安徽省合肥一中2019-2020学年9月高三阶段性检测】复数z 满足()1i z i +=,其中i 为虚数单位,则z 的实部与虚部之和为( ) A .1 B .0C .12i- D .12i+ 【答案】B 【解析】 因为()1i z i += 所以111122z i i ==-+ 所以z 的实部与虚部之和为11022-=,故选B 项. 6.【湖南省长沙市第一中学2020届高三第一次月考】已知i 为虚数单位,a ∈R ,若复数z =a +(1-a ) i 的共轭复数在复平面内对应的点位于第一象限,且5z z ⋅=,则z =( ) A .2-i B .-1+2i C .-1-2i D .-2+3i【答案】A 【解析】由5z z ⋅=可得()2215a a +-=,解得1a =-或2a =, ∴12z i =-+或2z i =-,∵在复平面内对应的点位于第一象限, ∴2z i =-,故选A.7.【河南省南阳市第一中学2019-2020学年高三上学期第二次开学考试】设复数1z 在复平面内对应的点为(,)x y ,1(12)z i z =+,若复数z 的实部为1,则() A .21x y += B .21x y -=C .21x y +=D .21x y -=【答案】D 【解析】因为1z x yi =+,()()()()1222z i x yi x y x y i =++=-++,所以21x y -=.故选D . 8.【广东省广雅中学、执信、六中、深外四校2020届高三8月开学联考】若复数z 满足()1i 13i z +=+,则复数z 的共轭复数的模为A .1B 2C .2D .2【答案】B 【解析】由于213i =1+(3)2+=,则22(1)11(1)(1)i z i i i i -===-++-, 所以复数z 的共轭复数1z i =+,则22112z =+=故答案选B9.【广东省台山市华侨中学2020届高三级10月模考】设i 为虚数单位,m R ∈,“复数()1m m i -+是纯虚数”是“1m =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】B 【解析】复数()1m m i -+是纯虚数,则0m =或1m =,所以“复数()1m m i -+是纯虚数”不是“1m =”的充分条件;当1m =时,复数为i ,是纯虚数,“复数()1m m i -+是纯虚数”是“1m =”的必要条件, 所以“复数()1m m i -+是纯虚数”是“1m =”的必要不充分条件. 故选B .10.【2019年河南省八市重点高中联盟高三9月“领军考试”】已知复数z 的共轭复数为z ,若11z z i-=+,则z 在复平面内对应的点为( ) A .(2,1)-- B .(2,1)-C .(2,1)-D .(2,1)【答案】A 【解析】设R z x yi x y =+∈(,),由11z z i-=+,得()()11x yi i x yi -+=+-, 即()()1x y x y i x yi ++-=-+,则1x y x x y y+=-⎧⎨-=⎩,解得2,1x y =-=-. ∴z 在复平面内对应的点为()2,1--, 故选:A11.【2019年安徽省江淮十校高三上学期第一次联考】复数z 满足342z i ++=,则z z ⋅的最大值是( ) A .7 B .49 C .9 D .81【答案】B 【解析】设z x yi =+,则()()()()223434342z i x y i x y ++=+++=+++=,()()22344x y ∴+++=,则复数z 在复平面内所对应的点的轨迹是以()3,4--为圆心,以2为半径的圆,22z z x y ⋅=+,其几何意义是原点到圆()()22344x y +++=上一点距离的平方,原点到圆()()2230405--+--=,因此,z z ⋅的最大值为()22549+=,故选:B.12.【2019年广东省珠海市高三9月月考】已知i 为虚数单位,若复数z 满足31iz i-=+,则z =( ) A .12i + B .3i +C 5D 10【答案】C 【解析】()()()()31324121112i i i iz i i i i ----====-++-, 故5z =,选B.13.【2019年山东省济南市外国语学校高三9月阶段测试】复数11i i-+(i 为虚数单位)的虚部是() A .-1B .1C .i -D .i【答案】B 【解析】因为21(1)(1)(1)21222i i i i i i i ----==-==+,所以虚部是1,故选B.14.【山西省大同市2020届高三开学学情调研测试】设x ,y R ∈,i 为虚数单位,且3412ii Z+=+,则Z x yi =+的共轭复数在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】由3412ii Z+=+可得,3412)i i x yi +=+⋅+()(,即342(2)i x y x y i +=-++, 23,24x y x y ∴-=+=,112,55x y ∴==-,故Z x yi =+的共轭复数为11255i +,故Z x yi =+的共轭复数在复平面内对应的点为112(,)55,故选:A 。