华东师大初中数学八年级上册乘法公式(基础)知识讲解[精选]

合集下载

华师大版数学八上13.3乘法公式word教案

华师大版数学八上13.3乘法公式word教案

学以至用理解公式训练公式强化公式: 公式应用:探索天地:——a——H下列各式都能用平方差公式吗?(课件)A. (a-3)(a+3)()B・(a+3)(a・2)()C. (-a+r3)(-a-3r)()D. (a+3)(-a-3)()E. (-a-3) (a-3)(.)能否用平方差公式,你有什么更快更好的判断方法吗? 两个多项式中:两项相等,两项互为相反数在平方差这个结果中谁作被减数,谁作减数,你还有什么办法确定?相等数的平方减去相反数的平方公式的主要作用是简化运算:现在我们掌握了公式的特点,就可以更快更准确地去运算了•请看例题:[例1]计算:(1) . (2x+-) (2x■丄)2 2(3) (3a+2b)(3a—2b)例「2]计算:(1) (x+6)(6-x) r (2)(3) (―H—)(———)2 2(5)(丄a-b)(-b-—a)3 3(2)・(1) (2.v+y)(2x-y)(4) X200+1)(200-1)(-x+*)(-X-g)(4) (x+y-z)(x+y + z)(6) (3a+b-2) (3a-b+2)(7) (3“一2b)⑵+3G) (8) ( —— +y) ( —+y)4 4(一卜+ 2y)(一卜一2刃(10) (-4a-l) (4a-l )主要用于判断一起分析公式•的关键字教•给学生用公式时如何利用转化的方法确怎两个数的和、两个数的差,从而确泄平方差转化变形灵活应用文档从网络中收集,已重新整理排版.word版本可编辑:•欢迎下载支持.例3]计算:、1998 X 2002 999X1001 59^8 X 60.2(1) 498X502 (2) 20-X19-7 71.(a-b + c\a-b-c);2.求(x + y\x -+〉')的值,其中x = 5, y = 2 .3.若A2 - y2 = 12 , x + y = 6 ,求x , y的值。

4.(2 +1)(22 +1)(24 +1)(28 +1) + 15.(22 +42 +... + 1002)-(12 +32 +... + 992)1、本节课我们学了什么?2、公式有什么作用?3、公式如何使用,注意什么?4、公式的i正明用的是数形结合(等而积法)的方法, 这是今后我们常用的方法.课本:练习册:思考提升能力分层教学小结: 作业文档从网络中收集,已重新整理排版.word版本可编辑:•欢迎下载支持.教学反思:。

华东师大版数学八年级上册《第12章 整式的乘除》知识点总结

华东师大版数学八年级上册《第12章 整式的乘除》知识点总结

华东师大版数学八年级上册《第12章整式的乘除》知识点总结知识点内容备注幂的运算同底数幂的乘法同底数幂相乘,底数不变,指数相加逆用:=幂的乘方幂的乘方,底数不变,指数相乘逆用:例:积的乘法积的乘方,把积的每一个因式分别相乘,再把所得的幂相乘==逆用:例=1同底数幂的除法同底数幂相处,底数不变,指数相减逆用:例:若=2,则的值是?整式的乘法单项式与单项式相单项式与单项式相乘,只要将它们的系数、相同的字母的幂分别相乘,对于只在一个单项式中出现的字母,连同它的指数例:·=[3·(-2)]·(·x)·(y·)=乘一起作为积的一个因式单项式与多项式相乘单项式与多项式相乘,将单项式分别乘以多项式的每一项,再将所得的积相加例:(-2=(-2+(-2) =-6+10多项式与多项式多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加例:(X+2)(X—3)==整式的除法单项式除于单项式单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式例:24=(24)()()=8多项式除于单项式多项式除于单项式,先用这个多项式的每一项除于这个单项式,再把所得的商相加例: (9)(3x)=9=3乘法公式平方差公式两数和与这两数差的积,等于这两数的平方差例:(a+b)(a-b)=逆用:=(a+b)(a-b)两数和的平方公式两数和的平方,等于这两数的平方和加上它们的积的2倍例:逆用两数差的平方公式两数差的平方,等于这两数的平方和减去它们的积的2倍例:逆用因式分解定义:把一个多项式化为几个整式的积的形式,叫做多项式的因式分解因式分解的方法:①提公因式法②运用乘法公式法=(a+b)(a-b)常考点:①两种因式分解法一起运用(先提公因式,然后再运用公式法)例:=②“1”常常要变成“”例:。

华东师大3013版八年级上册数学定理公式

华东师大3013版八年级上册数学定理公式

华东师大3013版八年级上册数学定理公式一、整式运算法则1)幂的运算同底数幂的乘法:同底数幂相乘,底数不变,指数相加。

a m·a n=a m+n(m、n为正整数) 幂的乘方:幂的乘方,底数不变,指数相乘。

(a m)n=a mn (m、n为正整数)积的乘方:把积的每一个因式分别乘方,再把所得的幂相乘。

(ab)n=a n b n(n为正整数)同底数幂的除法:同底数幂相除,底数不变,指数相减。

a m÷a n=a m-n2)整式的乘法单项式与单项式相乘:只要将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,连同它的指数一起作为积的一个因式。

多项式与多项式相乘:先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。

(m+n)(a+b)=ma+mb+na+nb3)整式的除法单项式除以单项式:单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式。

多项式除以单项式:先用这个多项式的每一项除以这个单项式,再把所得的商相加。

4)乘法公式平方差公式:(a+b)(a-b)=a2- b2完全平方公式:(a+b)2=a2 +2ab+ b2(a-b)2=a2 - 2ab+ b25)因式分解一提(提公因式):ma+mb+mc=m(a+b+c)二套(公式法):a2 +2ab+ b2 = (a+b) 2 a2 - 2ab+ b2= (a-b)2 a2- b2 = (a+b)(a-b)三分组乘法与因式分解:a3+b3=(a+b)(a2 - ab+ b2) a3- b3=(a-b)(a2 +ab+ b2)二、数据的处理频数:表示每个对象出现的次数。

频率:每个对象出现的次数与总次数的比值(或者百分比)。

频数和频率都能够反映每个对象出现的频繁程度。

三、定理两点确定一条直线两点之间,线段最短过一点有且只有一条直线与已知直线垂直过直线外一点有且只有一条直线与这条直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行全等三角形的判定条件边角边(SAS) 两边及其夹角分别相等的两个三角形全等角边角(ASA) 两角及其夹边分别相等的两个三角形全等角角边(AAS) 两角分别相等且其中一组等角的对边相等的两个三角形全等边边边(SSS) 三边分别相等的两个三角形全等斜边直角边(HL) 斜边和一条直角边分别相等的两个直角三角形全等等腰三角形的性质等腰三角形的两底角相等(等边对等角)等腰三角形底边上的高、中线及顶角的平分线互相重合(三线合一)三条边都相等的三角形是等边三角形等边三角形的各个角都相等,并且每一个角都等于60°等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)三个角都相等的三角形是等边三角形有一个角等于60°的等腰三角形是等边三角形线段垂直平分线性质定理:线段垂直平分线上的点到线段两端的距离相等逆定理:到线段两端距离相等的点在线段的垂直平分线上线段的垂直平分线可看作到线段两端点距离相等的所有点的集合外心:三角形三边垂直平分线的交点,到三角形每个顶点的距离相等角平分线性质定理:角平分线上的点到角两边的距离相等逆定理:角的内部到角两边距离相等的点在角的平分线上角的平分线是到角的两边距离相等的所有点的集合内心:三角形三内角平分线交点,到三角形三边的距离相等勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

华东师大版数学八年级上册12.2《整式的乘法》主要知识点解读

华东师大版数学八年级上册12.2《整式的乘法》主要知识点解读

《整式的乘法》主要知识点解读1.单项式乘以单项式:法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式中出现的字母,连同它的指数作为积的一个因式。

解读:(1)单项式的乘法可分为三步:①把它们的系数相乘,包括符号的计算;②同底数幂相乘;③单独字母的处理。

三部分的乘积作为计算的结果。

(2)积的系数等于各系数的积,这部分是有理数的乘法运算,应先确定符号再计算绝对值;相同字母相乘,是同底数幂的乘法,按法则进行计算;注意不要把只在一个单项式中含有的字母去掉。

(3)单项式与单项式相乘其结果仍是单项式。

2.单项式乘以多项式:法则:单项式乘以多项式,就是用单项式去乘多项式的每一项再把所得的积相加。

即()(,,,)m a b c am bm cm m a b c ++=++都是单项式。

解读:(1)单项式与多项式相乘,实质上是将单项式看成一个整体对多项式运用乘法分配律。

(2)单项式乘以多项式,结果是一个多项式,其项数与多项式的项数相同,计算时要注意符号问题,多项式中的每一项都包含它前面的符号,同时还要注意单项式的符号。

3.多项式乘以多项式:法则:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。

解读:(1)运用多项式乘法法则,必须做到不重不漏,为此相乘时,要按一定的顺序进行,例如)m+⋅+,可先用第一个多项式中的每一项去乘第n+)(c(ba二个多项式,得)abn++(c⋅,再用单项式乘多项式的法则展开(实b⋅与)a(c+m+际上是转化成单项式乘多项式)。

(2)多项式与多项式相乘,仍得多项式,在合并之前,积的项数应该是两个多项式项数之和。

(3)整式的乘法运算的结果一定注意要合并同类项。

华东师大初中数学八年级上册整式的乘法(基础)知识讲解[精品]

华东师大初中数学八年级上册整式的乘法(基础)知识讲解[精品]

整式的乘法(基础)【学习目标】1. 会进行单项式的乘法,单项式与多项式的乘法,多项式的乘法计算.2. 掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算.【要点梳理】【高清课堂 397531 整式的乘法 知识要点】要点一、单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.要点二、单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 即()m a b c ma mb mc ++=++.要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.要点三、多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++. 【典型例题】类型一、单项式与单项式相乘【高清课堂397531 整式的乘法 例1】1、计算:(1)221323ab a b abc ⎛⎫⋅-⋅ ⎪⎝⎭; (2)121(2)(3)2n n x y xy x z +⎛⎫-⋅-⋅- ⎪⎝⎭; (3)232216()()3m n x y mn y x -⋅-⋅⋅-.【思路点拨】前两个题只要按单项式乘法法则运算即可,第(3)题应把x y -与y x -分别看作一个整体,那么此题也属于单项式乘法,可以按单项式乘法法则计算.【答案与解析】解: (1)221323ab a b abc ⎛⎫⋅-⋅ ⎪⎝⎭ 22132()()3a a a b b b c ⎡⎤⎛⎫=⨯-⨯⋅⋅⋅⋅ ⎪⎢⎥⎝⎭⎣⎦442a b c =-.(2)121(2)(3)2n n x y xy x z +⎛⎫-⋅-⋅- ⎪⎝⎭ 121(2)(3)()()2n n x x x y y z +⎡⎤⎛⎫=-⨯-⨯-⋅⋅⋅ ⎪⎢⎥⎝⎭⎣⎦ 413n n x y z ++=-.(3)232216()()3m n x y mn y x -⋅-⋅⋅- 232216()()3m n x y mn x y =-⋅-⋅⋅- 22321(6)()()[()()]3m m n n x y x y ⎡⎤=-⨯⋅⋅-⋅-⎢⎥⎣⎦ 3352()m n x y =--.【总结升华】凡是在单项式里出现过的字母,在其结果里也应全都有,不能漏掉. 举一反三:【变式】(2014•甘肃模拟)计算:2m 2•(﹣2mn )•(﹣m 2n 3).【答案】解:2m 2•(﹣2mn )•(﹣m 2n 3)=[2×(﹣2)×(﹣)](m 2×mn×m 2n 3)=2m 5n 4.类型二、单项式与多项式相乘2、 计算:(1)21242233ab ab ab b ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭; (2)22213(6)32xy y x xy ⎛⎫-+-- ⎪⎝⎭; (3)2222340.623a ab b a b ⎛⎫⎛⎫+--⎪⎪⎝⎭⎝⎭; 【答案与解析】解:(1)21242233ab ab ab b ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭ 212114(2)23223ab ab ab ab ab b ⎛⎫⎛⎫⎛⎫=-⋅+--+-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 232221233a b a b ab =-+-. (2)22213(6)32xy y x xy ⎛⎫-+-- ⎪⎝⎭ 2222213(6)(6)()(6)32xy xy y xy x xy ⎛⎫=--+-+-- ⎪⎝⎭23432296x y xy x y =-+.(3)2222340.623a ab b a b ⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭2222334253a ab b a b ⎛⎫⎛⎫=+-- ⎪⎪⎝⎭⎝⎭ 222222223443423353a a b ab a b b a b ⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+⋅-+-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 42332444235a b a b a b =--+. 【总结升华】计算时,符号的确定是关键,可把单项式前和多项式前的“+”或“-”号看作性质符号,把单项式乘以多项式的结果用“+”号连结,最后写成省略加号的代数和.举一反三:【变式1】224312(6)2m n m n m n ⎛⎫-+- ⎪⎝⎭. 【答案】 解:原式2224232211222m n m n m n +⨯⎛⎫=-+-⋅ ⎪⎝⎭ 26262262171221244m n m n m n m n m n =-+=-.【变式2】若n 为自然数,试说明整式()()2121n n n n +--的值一定是3的倍数.【答案】解:()()2121n n n n +--=222223n n n n n +-+= 因为3n 能被3整除,所以整式()()2121n n n n +--的值一定是3的倍数. 类型三、多项式与多项式相乘3、计算:(1)(32)(45)a b a b +-;(2)2(1)(1)(1)x x x -++;(3)()(2)(2)()a b a b a b a b +--+-;(4)25(21)(23)(5)x x x x x ++-+-.【答案与解析】解:(1)(32)(45)a b a b +-221215810a ab ab b =-+-2212710a ab b =--.(2)2(1)(1)(1)x x x -++22(1)(1)x x x x =+--+41x =-.(3)()(2)(2)()a b a b a b a b +--+-2222(2)(2)a ab b a ab b =---+-222222a ab b a ab b =----+2ab =-.(4)25(21)(23)(5)x x x x x ++-+- 322(5105)(2715)x x x x x =++---32251052715x x x x x =++-++32581215x x x =+++.【总结升华】多项式乘以多项式时须把一个多项式中的每一项乘以另一个多项式的每一项,刚开始时要严格按法则写出全部过程,以熟悉解题步骤,计算时要注意的是:(1)每一项的符号不能弄错;(2)不能漏乘任何一项.4、(2016春•长春校级期末)若(x +a )(x +2)=x 2﹣5x +b ,则a +b 的值是多少?【思路点拨】根据多项式与多项式相乘的法则把等式的左边展开,根据题意列出算式,求出a 、b 的值,计算即可.【答案与解析】解:(x +a )(x +2)=x 2+(a +2)x +2a ,则a +2=﹣5,2a=b ,解得,a=﹣7,b=﹣14,则a +b=﹣21.【总结升华】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加. 举一反三:【变式】求出使(32)(34)9(2)(3)x x x x +->-+成立的非负整数解.【答案】不等式两边分别相乘后,再移项、合并、求解.解:22912689(6)x x x x x -+->+-, 229689954x x x x -->+-,229699854x x x x --->-,1546x ->-,4615x <. ∴ x 取非负整数为0,1,2,3.。

华东师大初中数学八年级上册《整式的乘除》全章复习与巩固--知识讲解(基础)

华东师大初中数学八年级上册《整式的乘除》全章复习与巩固--知识讲解(基础)

《整式的乘除》全章复习与巩固—知识讲解(基础)【学习目标】1. 理解正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减. 5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.()2222a b a ab b +=++;2222)(b ab a b a +-=- 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、计算下列各题:(1)2334(310)(10)⨯⨯- (2)2332[3()][2()]m n m n +-+(3)26243(2)(3)xy x y -+- (4)63223(2)(3)[(2)]a a a ---+- 【思路点拨】按顺序进行计算,先算积的乘方,再算幂的乘方,最后算同底数的幂相乘.【答案与解析】解:(1)2334(310)(10)⨯⨯-323343(10)(10)=⨯⨯18192710 2.710=⨯=⨯. (2)2332[3()][2()]m n m n +-+36263()(2)()m n m n =⋅+⋅-⋅+ 661227()4()108()m n m n m n =+⋅+=+.(3)26243(2)(3)xy x y -+- 6661233612(1)2(1)3x y x y =-⋅⋅+-⋅612612612642737x y x y x y =-=.(4)63223(2)(3)[(2)]a a a ---+-6662232366(1)2(1)3()(1)(2)a a a =-⋅--⋅⋅+-⋅6666649649a a a a =--=-.【总结升华】在进行幂的运算时,应注意符号问题,尤其要注意系数为-1时“-”号、括号里的“-”号及其与括号外的“-”号的区别.举一反三: 【变式】当41=a ,b =4时,求代数式32233)21()(ab b a -+-的值. 【答案】 解:333223363636611771()()45628884a b ab a b a b a b ⎛⎫-+-=-==⨯⨯= ⎪⎝⎭. 类型二、整式的乘除法运算2、(2016春•保山期末)计算:(2a ﹣b )2﹣(8a 3b ﹣4a 2b 2)÷2ab .【思路点拨】先计算完全平方式和多项式除以单项式,再去括号、合并同类项即可得.【答案与解析】解:原式=4a 2﹣4ab +b 2﹣(4a 2﹣2ab )=4a 2﹣4ab +b 2﹣4a 2+2ab=b 2﹣2ab .【总结升华】本题主要考查完全平方式和整式的除法,熟记完全平方公式和多项式除以单项式的法则是关键.3、已知312326834m n ax y x y x y ÷=,求(2)n m n a +-的值.【思路点拨】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到m n a 、、的值即可代入求值.【答案与解析】解:由已知312326834m n ax y x y x y ÷=,得31268329284312m n n ax y x y x y x y +=⋅=,即12a =,39m =,2812n +=,解得12a =,3m =,2n =.所以22(2)(23212)(4)16n m n a +-=⨯+-=-=.【总结升华】也可以直接做除法,然后比较系数和相同字母的指数得到m n a 、、的值. 举一反三:【变式】(1)已知1227327m m -÷=,求m 的值.(2)已知1020a =,1105b =,求293a b ÷的值. (3)已知23m =,24n =,求322m n -的值. 【答案】解:(1)由题意,知312(3)327m m -÷=.∴ 3(1)2333m m --=.∴ 3323m m --=,解得6m =.(2)由已知1020a =,得22(10)20a =,即210400a =.由已知1105b =,得211025b =. ∴ 221101040025a b ÷=÷,即2241010a b -=.∴ 224a b -= ∴ 22222493333381a b a b a b -÷=÷===. (3)由已知23m =,得3227m =.由已知24n =,得2216n =. ∴ 32322722216m n m n -=÷=. 类型三、乘法公式4、对任意整数n ,整式(31)(31)(3)(3)n n n n +---+是否是10的倍数?为什么?【答案与解析】解:∵(31)(31)(3)(3)n n n n +---+22222(3)1(3)919n n n n =---=--+22101010(1)n n =-=-,210(1)n -是10的倍数,∴ 原式是10的倍数.【总结升华】要判断整式(31)(31)(3)(3)n n n n +---+是否是10的倍数,应用平方差公式化简后,看是否有因数10.举一反三:【变式】解下列方程(组):22(2)(4)()()32x y x y x y x y ⎧+-+=+-⎨-=-⎩【答案】解: 原方程组化简得2332x y x y -=⎧⎨-=-⎩,解得135x y =⎧⎨=⎩.5、已知3a b +=,4ab =-,求: (1)22a b +;(2)33a b +【思路点拨】在公式()2222a b a ab b +=++中能找到22,,a b ab a b ++的关系. 【答案与解析】解:(1) 222222a b a ab b ab +=++- ()22a b ab =+-∵3a b +=,4ab =-,∴()22232417a b +=-⨯-=(2)333223a b a a b a b b +=+-+ ()()()2a a b b a b a b =+-+-()()22a b a ab b =+-+()()2[3]a b a b ab =++-∵3a b +=,4ab =-,∴()332333463a b ⎡⎤+=-⨯-=⎣⎦. 【总结升华】在无法直接利用公式的情况下,我们采取“配凑法”进行,通过配凑向公式过渡,架起了已知与未知之间桥梁,顺利到达“彼岸”.在解题时,善于观察,捕捉习题特点,联想公式特征,便易于点燃思维的火花,找到最佳思路.类型四、因式分解6、 分解因式:(1)2(1)(1)a b a -+- (2)22(33)(35)1x x x x +++++.【思路点拨】若将括号完全展开,所含的项太多,很难找到恰当的因式分解的方法,通过观察发现:将相同的部分23x x +作为一个整体,展开后再进行分解就容易了.【答案与解析】解:(1)222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-.(2)22(33)(35)1x x x x +++++22[(3)3][(3)5]1x x x x =+++++ 222(3)8(3)16x x x x =++++22(34)x x =++.【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号.举一反三:【变式】(2015春•禅城区校级期末)分解因式:(1)(a 2+b 2)2﹣4a 2b 2(2)(x 2﹣2xy+y 2)+(﹣2x+2y )+1.【答案】解:(1)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1 =(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.。

八年级数学 乘法公式 因式分解 华东师大版

八年级数学 乘法公式  因式分解 华东师大版

初二数学乘法公式 因式分解华东师大版【本讲教育信息】一. 教学内容:乘法公式 因式分解教学目标:1. 会由整式的乘法推导乘法公式,了解两个乘法公式的几何背景。

2. 体会公式在运算中的应用,熟练地利用公式进行简单的计算。

3. 了解因式分解的意义,感受因式分解与整式乘法之间的互逆变形。

4. 会用提公因式法,公式法进行因式分解。

知识内容: 一. 乘法公式重点:理解掌握平方差公式,两数和的完全平方公式的结构特征,正确地应用公式。

1. 平方差公式:()()a b a b a b +-=-22它的结构特征是:①左边是两个二项式相乘,这两个二项式中有一个完全相同,另一个互为相反数。

②右边是乘式中两个项的平方差。

③公式中的a ,b 可以是任意一个整式(数、字母、单项式或多项式) 2. 两数和的完全平方公式:()a b a ab b +=++2222它的结构特征是:①左边是两个相同的二项式相乘。

②右边是二次三项式,首尾两项分别是二项式两项的平方,中间一项是二项式中两项积的2倍。

③式中的a ,b 可以是数,单项式或多项式。

3. 两数差的完全平方公式:()a b a ab b -=-+2222二. 因式分解重点:理解因式分解的含义,会用提公因式法和公式法进行因式分解。

1. 因式分解把一个多项式化为几个整式的乘积形式,就是因式分解。

因式分解与整式乘法互为逆运算。

2. 提公因式法多项式ma +mb +mc 中的每一项都含有一个相同的因式m ,我们称之为公因式。

把公因式提出来,多项式ma +mb +mc 就可以分解为两个因式m 和(a +b +c )的乘积了,像这样因式分解的方法,叫提公因式法。

am bm cm m a b c ++=++()3. 公式法利用乘法公式对多项式进行因式分解的方法,叫公式法。

a b a b a b 22-=+-()() a ab b a b 2222++=+() a ab b a b 2222-+=-()4. 分组分解法要把多项式am +an +bm +bn 分解因式,没有公因式可提,也不能直接运用公式,如果先把前两项分成一组,并提出公因式a ,把它的后两项分成另一组,提出公因式b ,从而得到a m n b m n ()()+++,这时又有公因式()m n +,于是提出()m n +,从而得到()()m n a b ++,这种方法叫分组分解法。

华师大版八年级上册1乘法公式课件

华师大版八年级上册1乘法公式课件

感悟新知
特别解读 公式的特征:
知1-讲
1. 等号左边是两个二项式相乘,这两个二项式中有一项
完全相同,另一项互为相反数;
2. 等号右边是乘式中两项的平方差,即相同项的平方减
去相反项的平方;
3. 理解字母a、b的意义,平方差公式中的a、b既可代表
一个单项式,也可代表一个多项式.
感悟新知
2. 平方差公式的几种常见变化及应用
解题秘方:确定公式中的“a”和“b”,利用完 全平方公式进行计算.
感悟新知
解:(x+7y)2 =x2+2·x·7y+(7y)2 =x2+14xy+49y2. (-4a+5b)2 =(5b-4a)2 =(5b)2-2·5b·4a+(4a)2 =25b2-40ab+16a2.
括号不能漏掉.
知2-练
不能漏掉“2ab”项,且符号 与完全平方中的符号一致.
知2-讲
感悟新知
知2-讲
ab= [12 (a+b)2-(a2+b2)]= [14(a+b)2-(a-b)2]; (a+b+c)2=a2+b2+c2+2ab+2ac+2bc; a2+b2+c2+ab+ac+bc= [1(a+b)2+(b+c)2+(a+c)2 ]
2
感悟新知
知2-讲
特别解读 1. 弄清公式的特征:公式的左边是一个二项式的平方,
感悟新知
例2 计算: 10.3×9.7;2 022×2 024-2 0232.
知1-练
解题秘方:找出平方差公式的模型,利用平方差公式 进行计算.

2021年秋华师大版八年级上册 12.3乘法公式(复习)课件ppt

2021年秋华师大版八年级上册  12.3乘法公式(复习)课件ppt

课件在线
9
试一试
1、已知x+y=3,x2+y2=5,则xy的 值等于多少?
2、已知x-y=4,xy=21,则x2+y2的 值等于多少?
作业: 补充练习
课件在线
11
结构特征: 左边是 二项式(即两数和 (差) )的平方; 右边是 两数的平方和加上(减去)这两数
乘积的两倍.
练一练
计算:
(1)(x+2)(x-2) (2)(-m-n)(-m+n) (3)(x+y)2 (4)(-m-n)(m+n)
课件在线
5
改一改
指出下列各式中的错误,并加以改正: (1) (2a−1)2=2a2−2a+1; (3) (3a+2)(3b-2)=9ab-4 (2) (2a+1)2=4a2 +1; (4) (0.5+a)(-a+0.5)=a2 -0.25
学校公开课 教育教学样板
讲课人:教育者


城南中学 蒲元军
回顾
(a+b)(a−b)=a2 − b2;
公式的结构特征: 左边是 两个二项式的乘积, 即两数和与这两数差的积.
右边是 这两数的平方差.
回顾
两数和的平方: (a+b)2= a2+ 2 ab + b2 两数差的平方: (a-b)2= a2 - 2 ab + b2
课件在线
7
想一想
.若x2 y2 12,x y 6,则x=
,
y
.
解:( x y) 12
x y 6
x y 2
x 4, y 2
课件在线
8
想一想
已知x+y=3,xy=-12,求下列各式 的值。

华东师大初中数学八年级上册乘法公式(基础)知识讲解

华东师大初中数学八年级上册乘法公式(基础)知识讲解

乘法公式(基础)【学习目标】1. 掌握平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义;2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;3. 能灵活地运用运算律与乘法公式简化运算.【要点梳理】【高清课堂396590 乘法公式知识要点】要点一、平方差公式平方差公式:22()()ab a b a b两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,b a,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如()()a b b a 利用加法交换律可以转化为公式的标准型(2)系数变化:如(35)(35)x y x y (3)指数变化:如3232()()mn mn (4)符号变化:如()()a b a b (5)增项变化:如()()m n p m n p (6)增因式变化:如2244()()()()ab ab ab ab 要点二、完全平方公式完全平方公式:2222a baab b2222)(babab a两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:2222a b a b ab22a b ab224a ba bab要点三、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确. 要点四、补充公式2()()()x p x q x p q x pq ;2233()()a b a ab b a b ;33223()33a b aa babb ;2222()222ab c abcab ac bc .【典型例题】类型一、平方差公式的应用1、下列两个多项式相乘,哪些可用平方差公式,哪些不能?能用平方差公式计算的,写出计算结果. (1)2332a b b a ; (2) 2323a b a b ; (3) 2323a ba b ; (4)2323a b a b ; (5)2323a b a b ; (6)2323a ba b .【思路点拨】两个多项式因式中,如果一项相同,另一项互为相反数就可以用平方差公式.【答案与解析】解:(2)、(3)、(4)、(5)可以用平方差公式计算,(1)、(6)不能用平方差公式计算.(2) 2323a b a b =23b -22a =2294b a .(3) 2323a ba b =22a-23b=2249ab .(4) 2323a b a b =22a -23b =2249ab .(5)2323a b a b=23b -22a =2294b a .【总结升华】利用平方差公式进行乘法运算,一定要注意找准相同项和相反项(系数为相反数的同类项).举一反三:【变式】计算:(1)332222x x yy ;(2)(2)(2)x x ;(3)(32)(23)xy y x .【答案】解:(1)原式2222392244xx y y .(2)原式222(2)4xx .(3)原式22(32)(23)(32)(32)94x y y x xy xy xy .2、计算: (1)59.9×60.1; (2)102×98.【答案与解析】解:(1)59.9×60.1=(60-0.1)×(60+0.1)=22600.1=3600-0.01=3599.99(2)102×98=(100+2)(100-2)=221002=10000-4=9996.【总结升华】用构造平方差公式计算的方法是快速计算有些有理数乘法的好方法,构造时可利用两数的平均数,通过两式(两数)的平均值,可以把原式写成两数和差之积的形式.这样可顺利地利用平方差公式来计算.举一反三:【变式】(2015春?莱芜校级期中)怎样简便就怎样计算:(1)1232﹣124×122 (2)(2a+b )(4a 2+b 2)(2a ﹣b )【答案】解:(1)1232﹣124×122 =1232﹣(123+1)(123﹣1)=1232﹣(1232﹣1)=1232﹣1232+1 =1;(2)(2a+b )(4a 2+b 2)(2a ﹣b )=(2a+b )(2a ﹣b )(4a 2+b 2)=(4a 2﹣b 2)(4a 2+b 2)=(4a 2)2﹣(b 2)2=16a 4﹣b 4.类型二、完全平方公式的应用3、计算: (1)23a b ; (2)232a ; (3)22x y; (4)223x y.【思路点拨】此题都可以用完全平方公式计算,区别在于是选“和”还是“差”的完全平方公式.【答案与解析】解:(1) 22222332396a b aa b baab b .(2) 222223223222334129a a aa aa .(3) 22222222244x yxx y y xxy y.(4)2222222323222334129x y x yxx y y xxy y .【总结升华】(1)在运用完全平方公式时要注意运用以下规律:当所给的二项式符号相同时,结果中三项的符号都为正,当所给的二项式符号相反时,结果中两平方项为正,乘积项的符号为负.(2)注意22a ba b 之间的转化.4、(2015春?吉安校级期中)图a 是由4个长为m ,宽为n 的长方形拼成的,图b 是由这四个长方形拼成的正方形,中间的空隙,恰好是一个小正方形.(1)用m 、n 表示图b 中小正方形的边长为.(2)用两种不同方法表示出图b 中阴影部分的面积;(3)观察图b ,利用(2)中的结论,写出下列三个代数式之间的等量关系,代数式(m+n )2,(m ﹣n )2,mn ;(4)根据(3)中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a﹣b)2的值.【答案与解析】解:(1)图b中小正方形的边长为m﹣n.故答案为m﹣n;(2)方法①:(m﹣n)(m﹣n)=(m﹣n)2;方法②:(m+n)2﹣4mn;(3)因为图中阴影部分的面积不变,所以(m﹣n)2=(m+n)2﹣4mn;(4)由(3)得:(a﹣b)2=(a+b)2﹣4ab,∵a+b=7,ab=5,∴(a﹣b)2=72﹣4×5=49﹣20=29.【总结升华】本题考查了完全平方公式的应用,列代数式,可以根据题中的已知数量利用代数式表示其他相关的量.5、(2016春?常州期末)已知x+y=3,(x+3)(y+3)=20.(1)求xy的值;(2)求x2+y2+4xy的值.【思路点拨】(1)先根据多项式乘以多项式法则展开,再把x+y=3代入,即可求出答案;(2)先根据完全平方公式变形,再代入求出即可.【答案与解析】解:(1)∵x+y=3,(x+3)(y+3)=xy+3(x+y)+9=20,∴xy+3×3+9=20,∴xy=2;(2)∵x+y=3,xy=2,∴x2+y2+4xy=(x+y)2+2xy=32+2×2=13.【总结升华】本题考查了多项式乘以多项式的应用,能熟记多项式乘以多项式法则和乘法公式是解此题的关键.举一反三:【变式】已知2a b和ab的值.a b,求22()7()4a b,2【答案】解:由2a ab b;①27a b,得22()7由2()4ab ,得2224aab b.②①+②得222()11a b ,∴22112a b.①-②得43ab ,∴34ab.。

华师大版-数学-八年级上册-乘法公式 课标解读

华师大版-数学-八年级上册-乘法公式 课标解读

初中-数学-打印版
乘法公式课标解读
一、课标要求
人教版八上14.2乘法公式的内容包括平方差公式、完全平方公式及添括号等内容,《义务教育数学课程标准(2011年版)》对这部分内容提的教学要求是:能推导乘法公式:(a+b)( a-
b) = a2- b2;(a±b)2 = a 2±2ab + b 2,了解公式的几何背景,并能利用公式进行简单计算.
二、课标解读
1.能推导平方差公式、完全平方公式,让学生知道从多项式乘法到乘法公式是从一般到特殊的过程,学生在探索公式的过程中,经历观察、比较、抽象概括的学习过程.
2.在已有数学学习经验的基础上,会通过几何图形的面积验证公式,感知数形结合的思想,了解公式的几何背景.
3.理解乘法公式的基本结构与特征,会用符号表示公式,能用文字语言准确表述公式内容,并能运用公式进行相关计算,在运用过程中进一步体会公式中字母表示的意义,强化对公式的理解.
4.添括号是与去括号相反的一个过程,有些整式的乘法需要先经过变形,然后再用公式,这时就体现了添括号的作用,同时,以后学习因式分解、分式运算及解方程等内容时添括号都有很重要的作用.
5.乘法公式是初中数学很重要的一部分内容,教学过程中应高度重视.能正确理解公式,能灵活运用公式是掌握乘法公式的具体体现,教师应重点关注,同时,在探究乘法公式的过程中所体现的转化思想、数形结合思想及从特殊到一般的数学方法等数学思想方法也应让学生着重体会.
初中-数学-打印版。

华师大版八年级数学上册《乘法公式》课件

华师大版八年级数学上册《乘法公式》课件

创新应用
ቤተ መጻሕፍቲ ባይዱ
如图1,在边长为a的正方形中挖掉一个边长为b的正方形(a>b),把 余下的部分剪成一个矩形(如图2).通过计算两个图形(阴影部 分)的面积,验证了一个等式,这个等式是( )
A. a2-b2 = (a+b) (a-b) B. (a+b)2=a2+2ab+b2
a
a
C. (a-b)2=a2-2ab+b2 D. (a+2b)(a-b)=a2+ab-2b2
• 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月下午6时18分22.4.1218:18April 12, 2022 • 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022年4月12日星期二6时18分43秒18:18:4312 April 2022 • 书籍是屹立在时间的汪洋大海中的灯塔。
练习
1. 下面各式的计算对不对?如果不对,应当 怎样改正?
(1)(x+2)(x-2) = x2-2 ;
(2) (-3a-2) (3a-2) = 9a2 -4 .
2.运用平方差公式计算.
(1) (a+3b) (a-3b);
(2) (3+2a) (-3 + 2a) ;
(3) 51×49;
(4) (3x+4)(3x-4) – (2x+3) (3x-2).
=4a2-9b2
= 1-4c2.
=a2-32 =a2-9.
(4)(-2x-y)(2x-y) =(-y-2x)(-y+2x) = (-y)2-(2x)2
=y2-4x2.
例2 计算: 1998×2002
解: 1998×2002=(2000-2)(2000+2) = 20002-22=4 000 000 – 4 = 3 999 996.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式(基础)
【学习目标】
1. 掌握平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义;
2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;
3. 能灵活地运用运算律与乘法公式简化运算.
【要点梳理】
【高清课堂396590 乘法公式 知识要点】
要点一、平方差公式
平方差公式:22
()()a b a b a b +-=-
两个数的和与这两个数的差的积,等于这两个数的平方差.
要点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.
抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:
(1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型
(2)系数变化:如(35)(35)x y x y +-
(3)指数变化:如3232()()m n m n +-
(4)符号变化:如()()a b a b ---
(5)增项变化:如()()m n p m n p ++-+
(6)增因式变化:如2244()()()()a b a b a b a b -+++
要点二、完全平方公式
完全平方公式:()2222a b a ab b +=++ 2222)(b ab a b a +-=-
两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.
要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:
()2222a b a b ab +=+-()2
2a b ab =-+ ()()22
4a b a b ab +=-+
要点三、添括号法则
添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.
要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确.
要点四、补充公式
2()()()x p x q x p q x pq ++=+++;2
233()()a b a ab b a b ±+=±; 33223()33a b a a b ab b ±=±+±;2222()222a b c a b c ab ac bc ++=+++++.
【典型例题】
类型一、平方差公式的应用
1、下列两个多项式相乘,哪些可用平方差公式,哪些不能?能用平方差公式计算的,写出计算结果.
(1)()()2332a b b a --; (2) ()()2323a b a b -++;
(3) ()()2323a b a b ---+; (4) ()()2323a b a b +-;
(5) ()()2323a b a b ---; (6) ()()2323a b a b +--.
【思路点拨】两个多项式因式中,如果一项相同,另一项互为相反数就可以用平方差公式.
【答案与解析】
解:(2)、(3)、(4)、(5)可以用平方差公式计算,(1)、(6)不能用平方差公式计算.
(2) ()()2323a b a b -++=()23b -()2
2a =2294b a -. (3) ()()2323a b a b ---+=()22a - -()2
3b =2249a b -. (4) ()()2323a b a b +-=()22a -()2
3b =2249a b -. (5) ()()2323a b a b ---=()23b --()2
2a =2294b a -. 【总结升华】利用平方差公式进行乘法运算,一定要注意找准相同项和相反项(系数为相反数的同类项).
举一反三:
【变式】计算:(1)332222x x y y ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭
; (2)(2)(2)x x -+--; (3)(32)(23)x y y x ---.
【答案】
解:(1)原式22
22392244x x y y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭
. (2)原式222(2)4x x =--=-.
(3)原式22(32)(23)(32)(32)94x y y x x y x y x y =-+-=+-=-.
2、计算:
(1)59.9×60.1; (2)102×98.
【答案与解析】
解:(1)59.9×60.1=(60-0.1)×(60+0.1)=22
600.1-=3600-0.01=3599.99
(2)102×98=(100+2)(100-2)=221002-=10000-4=9996.
【总结升华】用构造平方差公式计算的方法是快速计算有些有理数乘法的好方法,构造时可利用两数的平均数,通过两式(两数)的平均值,可以把原式写成两数和差之积的形式.这样可顺利地利用平方差公式来计算.
举一反三:
【变式】(2015春•莱芜校级期中)怎样简便就怎样计算:
(1)1232﹣124×122
(2)(2a+b )(4a 2+b 2)(2a ﹣b )
【答案】
解:(1)1232﹣124×122
=1232﹣(123+1)(123﹣1)
=1232﹣(1232﹣1)
=1232﹣1232+1
=1;
(2)(2a+b )(4a 2+b 2)(2a ﹣b )
=(2a+b )(2a ﹣b )(4a 2+b 2)
=(4a 2﹣b 2)(4a 2+b 2)
=(4a 2)2﹣(b 2)2
=16a 4﹣b 4. 类型二、完全平方公式的应用
3、计算:
(1)()23a b +; (2)()232a -+; (3)()22x y -; (4)()2
23x y --.
【思路点拨】此题都可以用完全平方公式计算,区别在于是选“和”还是“差”的完全平方公式.
【答案与解析】
解:(1) ()()22222332396a b a a b b a ab b +=+⨯⋅+=++.
(2) ()()()222
223223222334129a a a a a a -+=-=-⨯⨯+=-+. (3) ()()22
222222244x y x x y y x xy y -=-⋅⋅+=-+ . (4) ()()()()2222
222323222334129x y x y x x y y x xy y --=+=+⨯⨯+=++. 【总结升华】(1)在运用完全平方公式时要注意运用以下规律:当所给的二项式符号相同时,结果中三项的符号都为正,当所给的二项式符号相反时,结果中两平方项为正,乘积项的符号为负.(2)注意()()22
a b a b --=+之间的转化.
4、(2015春•吉安校级期中)图a 是由4个长为m ,宽为n 的长方形拼成的,图b 是由这四个长方形拼成的正方形,中间的空隙,恰好是一个小正方形.
(1)用m 、n 表示图b 中小正方形的边长为 .
(2)用两种不同方法表示出图b 中阴影部分的面积;
(3)观察图b ,利用(2)中的结论,写出下列三个代数式之间的等量关系,代数式(m+n )
2,(m ﹣n )2,mn ;
(4)根据(3)中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a ﹣b )2的值.
【答案与解析】
解:(1)图b 中小正方形的边长为m ﹣n .故答案为m ﹣n ;
(2)方法①:(m ﹣n )(m ﹣n )=(m ﹣n )2;
方法②:(m+n )2﹣4mn ;
(3)因为图中阴影部分的面积不变,所以(m ﹣n )2=(m+n )2﹣4mn ;
(4)由(3)得:(a ﹣b )2=(a+b )2﹣4ab ,
∵a+b=7,ab=5,
∴(a ﹣b )2=72﹣4×5
=49﹣20
=29.
【总结升华】本题考查了完全平方公式的应用,列代数式,可以根据题中的已知数量利用代数式表示其他相关的量.
5、(2016春•常州期末)已知x+y=3,(x+3)(y+3)=20.
(1)求xy 的值;
(2)求x 2+y 2+4xy 的值.
【思路点拨】
(1)先根据多项式乘以多项式法则展开,再把x +y=3代入,即可求出答案;
(2)先根据完全平方公式变形,再代入求出即可.
【答案与解析】
解:(1)∵x +y=3,(x +3)(y +3)=xy +3(x +y )+9=20,
∴xy +3×3+9=20,
∴xy=2;
(2)∵x +y=3,xy=2,
∴x 2+y 2+4xy=(x +y )2+2xy=32
+2×2=13.
【总结升华】本题考查了多项式乘以多项式的应用,能熟记多项式乘以多项式法则和乘法公式是解此题的关键.
举一反三:
【变式】已知2()7a b +=,2()4a b -=,求22a b +和ab 的值. 【答案】
解:由2
()7a b +=,得2227a ab b ++=; ①
由2()4a b -=,得2224a ab b -+=. ② ①+②得222()11a b +=,∴ 22112
a b +=. ①-②得43ab =,∴ 34ab =
.。

相关文档
最新文档