1.4 有关0的计算
1.4与绝对值有关的十种常见题型与解法(新教材,重难点分层培优提升)(解析版)
1.4与绝对值有关的十种常见题型与解法(新教材,重难点分层培优提升)类型一、绝对值的有关概念1.(23-24·吉林延边·阶段练习)在下列数中,绝对值最大的数是()A.0B.1-C.2-D.1【答案】C【分析】本题考查的是绝对值与有理数的大小比较,熟练掌握上述知识点是解题的关键.先计算出各选项的绝对值,再进行大小比较即可.=-=-==,【详解】解:∵|0|0,|1|1,|2|2,|1|1而210>>,∴->-=>,|2||1||1|0故选:C.-,那么a=.2.(23-24七年级上·甘肃定西·阶段练习)如果a的相反数是0.74【答案】0.74【分析】本题主要考查了绝对值和相反数的知识,根据“只有符号不相同的两个数互为相反数;互为相反数3.(23-24七年级上·全国·课后作业)化简下列各数:(1)34--;(2)()0.5-+-⎡⎤⎣⎦;(3)6217⎡⎤⎛⎫-++ ⎪⎢⎥⎝⎭⎣⎦;(4)()2-+.4.(2024·辽宁抚顺·三模)下列各数在数轴上表示的点距离原点最远的是()A .2-B .1-C .3D .05.(23-24七年级上·四川宜宾·期中)若有理数m 在数轴上的位置如图所示,则化简3m m ++结果是.6.(23-24七年级上·四川成都·阶段练习)已知|2||1|6a a ++-=,则=a ;7.(23-24七年级下·河南南阳·期末)已知3535x x -=-,则x 的取值范围是.8.(24-25七年级上·全国·随堂练习)如果0a b c ++=且c b a >>.则下列说法中可能成立的是()A .a 、b 为正数,c 为负数B .a 、c 为正数,b 为负数C .b 、c 为正数,a 为负数D .a 、b 、c 为正数9.(23-24·黑龙江哈尔滨·期中)已知a 为有理数,则24a -+的最小值为.10.(24-25七年级上·全国·随堂练习)比较大小:76-65--.11.(24-25七年级上·全国·假期作业)比较下列各对数的大小:①1-与0.01-;②2--与0;③0.3-与13-;12.(23-24七年级上·湖南怀化·期末)已知下列各数,按要求完成各题:4.5+,142--,0, 2.5-,6,5-,()3+-.(1)负数集合:{......};(2)用“<”把它们连接起来是;(3)画出数轴,并把已知各数表示在数轴上.大于负数,两个负数比较大小绝对值越大其值越小进行求解即可;13.(23-24七年级上·海南省直辖县级单位·期末)如果21(2)0a b ++-=,则a b +的值为()A .1B .3C .1-D .3-14.(23-24·黑龙江哈尔滨·开学考试)已知|3||5|0x y -++=,求||x y +的值.15.(21-22七年级上·陕西·期中)已知(a +2)2+|b ﹣3|=0,c 是最大的负整数,求a 3+a 2bc ﹣12a 的值.二、填空题16.(23-24七年级上·四川南充·阶段练习)若12x <<,求代数式2121x x xx x x---+=.17.(23-24·上海杨浦·期末)12345x x x x x -+-+-+-+-的最小值为.18.(2024七年级下·北京·专题练习)已知112x -<<,化简|||2|3x x ---=.三、解答题19.(24-25七年级上·全国·随堂练习)在数轴上,a ,b ,c 对应的数如图所示,b c =.(1)确定符号:a ______0,b ______0,c _____0,b c +_____0,a c -______0;(2)化简:a c b +-;(3)化简:a a c --.20.(23-24·北京海淀·期中)有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a b +______0,c a -______0,2b +______0.(2)化简:22a b c a b ++--+.【答案】(1)>,<,>(2)322a c --21.(23-24七年级下·河南周口·阶段练习)求解含绝对值的一元一次方程的方法我们没有学习过,但我们可以采用分类讨论的思想先把绝对值去除,使得方程成为一元一次方程,这样我们就能轻松求解了.比如,求解方程:32x -=.解:当30x -≥时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =,所以原方程的解是5x =或1x =.请你依据上面的方法,求解方程:3270x --=,得到的解为.22.(23-24七年级下·甘肃天水·期中)阅读下列材料:我们知道x 表示的是在数轴上数x 对应的点与原点的距离,即0x x =-,也就是说,x 对表示在数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示在数轴上数1x ,2x 对应点之间的距离.例1:解方程6x =.解:∵06x x =-=,∴在数轴上与原点距离为6的点对应的数为6±,即该方程的解为6x =±.例2:解不等式12x ->.解:如图,首先在数轴上找出12x -=的解,即到1的距离为2的点对应的数为1-,3,则12x ->的解集为到1的距离大于2的点对应的所有数,所以原不等式的解集为1x <-或3x >.参考阅读材料,解答下列问题:(1)方程53x -=的解为______;(2)解不等式2219x ++<;(3)若123x x -++=,则x 的取值范围是_______;故答案为:8x =或2x =.(2)2219x ++<(3)123x x -++=,表示到1的点与到2-的点距离和为3,故答案为:21x -£<.23.(24-25七年级上·全国·假期作业)数学实验室:点A 、B 在数轴上分别表示有理数a ,b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离||AB a b =-.利用数形结合思想回答下列问题:(1)数轴上表示x 和3-的两点之间的距离表示为.(2)若34x +=,则x =.(3)32x x --+最大值为,最小值为.24.(23-24七年级上·四川南充·阶段练习)我们知道,a 可以理解为0a -,它表示:数轴上表示数a 的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A ,B ,分别用数a ,b 表示,那么A ,B 两点之间的距离为AB a b =-,反过来,式子a b -的几何意义是:数轴上表示数a 的点和表示数b 的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数1-的点和表示数3-的点之间的距离是_________.(2)数轴上点A 用数a 表示,则①若35a -=,那么a 的值是_________.②36a a -++有最小值,最小值是_________;③求123202*********a a a a a a ++++++++++++ 的最小值.25.(23-24·黑龙江哈尔滨·期中)出租车司机李师傅某日上午一直在某市区一条东西方向的公路上营运,共连续运载八批乘客,若按规定向东为正,李师傅营运八批乘客里程数记录如下(单位:千米):8+,6-,3+,4-,8+,4-,5+,3-.(1)将最后一批乘客送到目的地后,李师傅位于第一批乘客出发地多少千米?(2)若出租车的收费标准为:起步价10元(不超过5千米),超过5千米,超过部分每千米2元,不超过5千米则收取起步价,求李师傅在这期间一共收入多少元?26.(23-24·黑龙江哈尔滨·阶段练习)刚刚闭幕的第33届“哈洽会”,于2024年5月16日至21日在哈尔滨市举办,中外宾客齐聚冰城.为确保全市道路交通安全有序,哈尔滨市公安交通管理局在开幕式当日对会展中心周边区域,以及部分道路进行交通管制和诱导分流.萧萧作为哈市青年当日也贡献了自己的一份力量.如图是某一条东西方向直线上的公交线路的部分路段,西起A 站,东至L 站,途中共设12个上下车站点,“哈洽会”开幕式当日,萧萧参加该线路上的志愿者服务活动,从C站出发,最后在某站结束服务活动,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):5,3,4,5,8,2,1,3,4,1+-+-+-+--+.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米,求这次萧萧志愿服务期间乘坐公交车行进的总路程约是多少千米?(3)已知油箱中要保持不低于10%的油量才能保证汽车安全行驶,若萧萧开始志愿服务活动时该汽车油量占油箱总量的1170,每行驶1千米耗油0.2升,活动结束时油量恰好能保证汽车安全行驶,则该汽车油箱能存储油多少升?一、单选题1.(22-23七年级上·云南保山·期末)有理数a ,b ,c 在数轴上的位置如图所示,在下列结论中:①0a b ->;②0ab <;③a b a b +=--;④()0b a c ->,正确的个数有()A .4个B .3个C .2个D .1个2.(23-24七年级上·浙江台州·期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A .0ab >B .4b a ->C .2a b a b +=D .()()230a b +-<3.(23-24七年级上·山东德州·期末)有理数a 、b 、c 在数轴上的位置如图所示,则b a b c a c --+--的化简结果为()A .2c-B .2a C .2b D .22b c+4.(18-19七年级上·北京海淀·期末)如图,数轴上点A ,M ,B 分别表示数a a bb +,,,若AM BM >,则下列运算结果一定是正数的是()A .a b +B .a b -C .abD .a b -5.(23-24七年级上·江西抚州·期末)适合|5||3|8a a ++-=的整数a 的值有()A .5个B .7个C .8个D .9个二、填空题6.(23-24七年级上·浙江绍兴·阶段练习)已知a 、b 为整数,202320a b +--=,且b a <,则a 的最小值为.7.(23-24七年级上·湖北省直辖县级单位·阶段练习)若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;8.(23-24七年级上·河南南阳·阶段练习)已知x a b ,,为互不相等的三个有理数,且a b >,若式子||||x a x b -+-的最小值为2,则2023a b +-的值为.三、解答题9.(23-24七年级上·江苏南京·阶段练习)出租车司机小王某天下午营运全是东西走向的玄武大道进行的,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)15+,3-,13+,11-,10+,12-,4+,15-,16+,19-(1)将最后一名乘客送到目的地时,小王距下午出车地点的距离是多少千米?(2)若汽车耗油量为a 升/千米,这天下午汽车共耗油多少升?(3)出租车油箱内原有5升油,请问:当0.05a =时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要加油,说明理由.10.(23-24七年级下·四川资阳·期末)(1)【阅读理解】“a ”的几何意义是:数a 在数轴上对应的点到原点的距离,所以“2a ≥”可理解为:数a 在数轴上对应的点到原点的距离不小于2,则:“2a <”可理解为:;我们定义:形如“x m ≤,≥x m ,x m <,x m >”(m 为非负数)的不等式叫做绝对值不等式,能使一个绝对值不等式成立的所有未知数的值称为绝对值不等式的解集.(2)【理解应用】根据绝对值的几何意义可以解一些绝对值不等式.例如:315x x -≤+我们将x 作为一个整体,整理得:315x x -≤+3x ≤再根据绝对值的几何意义:表示数x 在数轴上的对应点到原点的距离不大于3,可得:解集为33x -≤≤仿照上述方法,解下列绝对值不等式:①254x x -<-②1312313x x -+<-.11.(23-24六年级下·黑龙江绥化·期中)数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|3-=;数轴上表示数3和1-的两点距离为|3(1)|4--=;由此可知|63|+的意义可理解为数轴上表示数6和3-这两点的距离;|4|x +的意义可理解为数轴上表示数x 和4-这两点的距离;(1)如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A 的距离与P 到B 的距离之和最小?(2)如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A B C ,,三点的距离之和最小?(3)如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A B C D ,,,四点的距离之和最小?(4)①|3||4|x x ++-的最小值是_________,此时x 的范围是_________;②|6||3||2|x x x ++++-的最小值是_________,此时x 的值为_________;③|7||4||2||5|x x x x ++++-+-的最小值是_________,此时x 的范围是_________.(3)①根据(1)的结论即可得出答案;②根据(2)的结论即可得出答案;③根据(3)的结论即可得出答案.【详解】(1)解:当点P 在点A 左边时,2PA PB PA PA AB PA AB +=++=+,当点P 在A 、B 之间时,PA PB AB +=,当点P 点点B 的右边时,2PA PB AB PB PB AB PB +=++=+,∴当点P 在A 、B 之间时,才能使P 到A 的距离与P 到B 的距离之和最小;(2)解:当点P 在点A 左边时,2PA PB PC PA PA AC PB PA PB AC ++=+++=++,当点P 在A 、B 之间时,PA PB PC PB AC ++=+,当点P 在B 点时,PA PB PC AC ++=,当点P 在B C 、之间时,PA PB PC PB AC ++=+,当点P 在点C 的右边时,2PA PB PC PC PB AC ++=++,∴当点P 在B 点时,才能使P 到A B C ,,三点的距离之和最小(3)解:当点P 在点A 左边时,42PA PB PC PD PA AB CB AD +++=+++,当点P 在A 、B 之间时,2PA PB PC PD PB CB AD +++=++,当点P 在B C 、之间时,PA PB PC PD BC AD +++=+,当点P 在C D 、之间时,2PA PB PC PD BC AD PC +++=++,当点P 在点D 的右边时,24PA PB PC PD BC AD DC PD +++=+++,∴当点P 在B C 、之间时,才能使P 到A B C D ,,,四点的距离之和最小;(4)解:①由(1)可得:当34x -≤≤时,有最小值,最小值为()437--=,∴|3||4|x x ++-的最小值7,此时x 的范围是34x -≤≤;②由(2)可得:这是在求点x 到6-,3-,2三点的最小距离,∴当3x =-时,有最小值,最小值为|6||3||2||36||33||32|8x x x ++++-=-++-++--=;③由(3)可得:这是在求点x 到7-,4-,2,5四点的最小距离,∴当42x -≤≤时,由最小值,最小值为|7||4||2||5|742518x x x x x x x x ++++-+-=++++-+-=.12.(23-24七年级上·安徽安庆·期中)有数a b c 、、在数轴上的大致位置如图所示:(1)a c +__________0,b c -__________0,a b -__________0(用“>”、“<”、“=”);(2)化简||||||a c b c a b ++---.13.(23-24七年级上·江西上饶·期中)如图所示,数轴上从左到右的三个点A ,B ,C 所对应的数分别为a ,b ,c .其中点A 、点B 两点间的距离AB 的长是2021,点B 、点C 两点间的距离BC 的长是1000.(1)若以点C 为原点,直接写出点A ,B 所对应的数;(2)若原点O 在A ,B 两点之间,求a b b c ++-的值;(3)若O 是原点,且18OB =,求a b c +-的值.【答案】(1)点A 所对应的数a 为3021-,点B 所对应的数b 为1000-(2)3021(3)a b c +-的值为3003-或3039-【分析】本题考查了数轴与绝对值的意义,理解绝对值的意义是解答本题的关键.(1)根据题意先求解AC 的长,结合数轴的定义可求解点A ,B 所对应的数;(2)根据数轴上点的特征可得a<0,0b >,0c >,0b c -<,结合绝对值的性质化简可求解;,14.(22-23七年级上·北京·期中)已知a ,b 在数轴上的位置如图所示:(1)用“>”、“<”或“=”填空:____0a ,____0a b +,____0b a -;(2)化简:||||2||a b a a b +--+;(3)若21a b =-=,,x 为数轴上任意一点所对应的数,则代数式||||x a x b -+-的最小值是______;此时x 的取值范围是______.。
1.4有理数的乘除法及混合运算(整理)
化简:
72 (1) ; 9
30 (2) (3) 45
0 75
;
计算:(1) 2 1 (1 1 )
3 6 (2) (56) (1.4) 2 (3) (81) (36) (2 ) 3 (4) ( 1 ) 0 ( 3 ) (1 2 ) 2 5 3
归纳总结
1、同号得正,异号得负,并把绝对值相 乘;任何数同0相乘,都得0.
注意、两个符号不能出现在一起,必须用 括号隔开 。比如:7+-1-2=?
有理数乘法法则的 推广及其应用
多个有理数相乘遵循以下法则: (1)几个不等于0的有理数相乘,积的符号 由负因数的个数决定:当负因数的个数是奇 数时,积是负数;当负因数的个数是偶数时, 积是正数。 (2)几个有理数相乘,如果其中有因数为0, 那么积等于0.
1 1 1 (1) ( ) 6 3 2
练习、观察下面两位的解法正确吗?若不正确,你 能发现下面解法问题出在哪里吗?
1 (2) 3 6 ( ) 6
1 (2) 3 6 ( ) 6 3 (1) 3
这个解法 是错误的
1 ( 2) 3 6 ( ) 6 1 1 3 ( ) 6 6 1 1 3 6 6 这个解法 1 是正确的 12
5 4
有理数的加减乘除混合运算
练习、观察下面两位同学的解法正确吗?若不正确, 你能发现下面解法问题出在哪里吗?
1 1 1 1 1 1 解: (1) ( ) 解: (1) ( ) 6 3 2 6 3 2 1 1 1 1 1 1 6 3 6 2 ( ) 6 6 1 1 3 2 6 6 1 ( 6) 1 1 这个解法 6 这个解法 2 3 是正确的 1 是错误的 1 6
人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计
人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计一. 教材分析人教版数学七年级上册1.4《有理数的除法》(第1课时)是学生在学习了有理数加减乘运算的基础上,进一步深化对有理数运算的理解和掌握。
本节内容主要介绍了有理数的除法运算,包括同号有理数的除法、异号有理数的除法以及除以0的情况。
通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减乘运算。
但是,对于除法运算,学生可能还存在一些困惑和误解。
因此,在教学过程中,教师需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握有理数的除法运算。
三. 教学目标1.知识与技能目标:学生能够理解有理数除法的基本概念,掌握同号有理数、异号有理数以及除以0的除法运算方法,并能够正确进行计算。
2.过程与方法目标:通过小组合作、讨论交流等方法,培养学生解决问题的能力和团队合作精神。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心,使学生能够积极主动地参与数学学习。
四. 教学重难点1.教学重点:学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
2.教学难点:学生能够理解和掌握同号有理数、异号有理数以及除以0的除法运算方法。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握有理数除法的基本概念和运算方法。
2.实例讲解法:教师通过具体的例子,解释和说明有理数除法的运算规则,让学生能够直观地理解和掌握。
3.小组合作法:学生分组进行讨论和交流,共同解决问题,培养团队合作精神和解决问题的能力。
六. 教学准备1.教学PPT:教师准备相关的教学PPT,包括有理数除法的运算规则、例题等,以便进行直观的教学展示。
2.练习题:教师准备一些练习题,用于学生在课堂上进行操练和巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数加减乘运算,激发学生的学习兴趣,为新课的学习做好铺垫。
新苏教版数学三年级下册试题1.4乘数末尾有0的乘法同步练习(含答案)
苏教版数学三年级下册试题1.4乘数末尾有0的乘法同步练习(含答案)班级:姓名:等级:一、选择题1.69×51的积与下面算式()的积最接近。
A.60×50 B.70×60 C.70×502.48×50的积的末尾有( )个0。
A.1 B.2 C.33.两个数的积,是第一个乘数的25倍,是第二个乘数的30倍,这两个数的乘积是()。
A.600 B.750 C.5004.下列算式计算正确的是()。
A.49×78=2822 B.80×45=360 C.68×11=748 D.25×23=573二、填空题5.在横线里填上“>”、“”或者“=”.44×50_____45×416×9_____9×1676×90_____79×632×30_____23×306.96的59倍是______。
25×40积的末尾一共有_____个0。
7.62×49的积最高位是_____位;与41相邻的两个数的积是______。
8.□5×41,当□里填_______时,这个算式的积是三位数;要使积是四位数,□里最小填_______。
三、计算题9.口算25×8= 54÷9= 70×60= 20×80=92÷4= 50×40= 200÷4= 54÷9=24×10= 80×14= 4×17= 33×30=10.用竖式计算,有★的题要写出验算过程。
(1)★82×28=(2)75×80=(3)48×50=(4)36×49=四、连线题11.我会连。
五、解答题12.粮库用3辆小卡车运面粉,每车装30袋,每袋25千克,这个粮库共运面粉多少千克?13.(1)一共有多少千克苹果?(2)这些苹果一共可以卖多少元?14.某电影院成人票卖40元,儿童票卖30元。
1.4数值计算中的若干原则
则只要做8次乘法即可.
例1.4.3
计算n次多项式 pn ( x) an x n an1x n1
i 若直接计算 a x 再逐项相加,则需做 【解 】 i n(n 1) n (n 1) 2 1 2
例1.4.1
求一元二次方程
x 2 (106 1) x 106 0
的根. 利用因式分解可知方程的两个根为x1 106 , x2 1.
若用六位十进制计算机进行编程计算,求根公式为
x1, 2
b b2 4ac , 2a
其中 b 106 1 0.1 107 0.0000001 107. 由于该计算机只能 保留小数点后6位,所以0.0000001 107 在计算中将会当作 0.000000 107 处理(即不起作用),于是 b 0.1 107 106
计算积分I n x ne x1 dx,并估计误差.
0
1
【解】 由分部积分法有
In x e
n x 1 1 0
n x e
0
1
n 1 x 1
dx 1 n x n1e x 1 dx
0
1
于是得到计算I n的递推公式 I n 1 n I n1 , 1 x 1 1 I e d x 1 e . 0 0
类似地,有 b 2 4ac b 2 , b 2 4ac b
_ _
故求得的两根为 x1 10 , x 2 0.
6
出现以上结果的原因是计算机在计算时大数“吃掉”小数所 致. 为避免上述现象的发生,可将计算公式做适当处理,如取
b sign(b) b 2 4ac x1 , 2a c c , 在计算另一根x2时利用关系式 x1 x2 得 x2 ax1 a 这时可求得 x1 106 , x2 1.
有效数字的规则
§1.4有效数字及其运算规则一、有效数字的一般概念1.有效数字任何一个物理量,其测量结果必然存在误差。
因此,表示一个物理量测量结果的数字取值是有限的。
我们把测量结果中可靠的几位数字,加上可疑的一位数字,统称为测量结果的有效数字。
例如,2.78的有效数字是三位,2.7是可靠数字,尾位“8”是可疑数字。
这一位数字虽然是可疑的,但它在一定程度上反映了客观实际,因此它也是有效的。
2.确定测量结果有效数字的基本方法(1)仪器的正确测读仪器正确测读的原则是:读出有效数字中可靠数部分是由被测量的大小与所用仪器的最小分度来决定。
可疑数字由介于两个最小分度之间的数值进行估读,估读取数一位(这一位是有误差的)。
例如,用分度值为1mm的米尺测量一物体的长度,物体的一端正好与米尺零刻度线对齐,另一端如图1-1。
此时物体长度的测量值应记为L=83.87cm。
其中,83.8是可靠数,尾数“7”是可疑数,有效数字为四位。
(2)对于标明误差的仪器,应根据仪器的误差来确定测量值中可疑数所以用该电压表测量时,其电压值只需读到小数点后第一位。
如某测量值为12.3V,若读出:12.32V,则尾数“2”无意义,因为它前面一位“3”本身就是可疑数字。
(3)测量结果的有效数字由误差确定。
不论是直接测量还是间接测量,其结果的误差一般只取一位。
测量结果有效数字的最后一位与误差所在的一位对齐。
如L=(83.87±0.02)cm是正确的,而L=(83.868±0.02)cm和L=(83.9±0.02)cm 都是错误的。
3.关于“0”的问题有效数字的位数与十进制的单位变换无关。
末位“0”和数字中间的“0”均属于有效数字。
如23. 20cm;10.2V等,其中出现的“0”都是有效数字。
小数点前面出现的“0”和它之后紧接着的“0”都不是有效数字。
如0.25cm或0.045kg中的“0”都不是有效数字,这两个数值都只有两位有效数字。
新人教版七上1.4《有理数的乘除法》教案
1.4 有理数的乘除法(7课时)1.4.1有理数的乘法(4课时)课程目标:一、知识与技能目标1、在理解有理数乘法意义的基础上,掌握有有理数乘法法则,并初步了解有理数乘法法则的合理性.2、能够熟练地进行有理数的乘法运算.3、会用计算器进行有理数的乘法运算.4、掌握有理数乘法的运算律,能应用运算律使运算简便,能熟练地进行加、减、乘混合运算.二、过程与方法目标结合在一条直线上运动的实例,归纳有理数乘法法则;接下来归纳出多个有理数相乘积的符号与各因数的符号的关系;最后得出乘法交换律、结合律和乘法对加法的分配律在有理数范围内也使用.用计算器对有理数进行乘法运算的使用.三、情感态度与价值观目标1、鼓励学生积极参与课堂各个教学环节,探究有理数乘法法则,并从中获得成就感,获得学习数学的经验.2、培养学生有创意的想法,鼓励学生独立思考、实践,再与他人交流的学习方法,并从中产生对数学的兴趣和战胜困难的勇气.教学重点:乘法法则中积的符号与各因数的符号关系的推导.教学难点:几个有理数相乘,积的符号的确定和能灵活运用运算律简便运算.设计思路:通过三节课新课的教学,第1课时完成对乘法法则的推导和应用,第2课时则重点在灵活运用乘法的运算律简化运算,第3课时则是分配律的运用(去括号、合并)课时安排:4课时教学准备:投影片、三角板、小黑板、计算器教学过程:第19课时1.4.1有理数的乘法(第1课时)一、创设情境,导入新课师:前面学习了有理数的加减法,接下来就应该学习有理数的乘除法,请看下面问题:1、2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2+2+2.2、(-2)+(-2)+(-2)写成乘法算式是什么?答案:(-2)×3师:2×3是小学学过的乘法.(-2)×3如何计算呢?这就是我们这节课要研究的有理数的乘法.板书:1.4.1有理数的乘法.二、师生互动,课堂探究(一)提出问题,引发讨论师:在数轴上,若向右运动2尺记作2尺,向左运动2尺记作什么?生:记作-2尺.师:(1)2×3,其中2看作向右运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即2×3=6 (2)(-2)×3,其中-2看作向左运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向在运动6尺)即(-2)×3=-6(3)2×(-3)其中2看作向右运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向左运动6尺)即2×(-3)=-6 (4)(-2)×(-3),其中-2看作向左运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即(-2)×(-3)=6师:从上面(1)—(4)通过思考、讨论、探究两个有理数相乘的结果的规律,填空:正数乘正数积为____数,负数乘正数积为___数,正数乘负数积为___数,负数乘负数积为______数,乘积的绝对值等于各乘数绝对值的_____.(二)导入知识,解释疑难1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 例:(-5)×(-3)………同号两数相乘 (-7)×4………________(-5)×(-3)=+( )……得正 (-7)×4=-( )……_____ 5×3=15………把绝对值相乘 7×4=28………__________ ∴(-5)×(-3)=15. ∴(-7)×4=-28 2、例题分析:例1:计算:(1)(-3)×9 (2)(-21)×(-2)有理数中仍然有:乘积是1的两个数互为倒数.如(-21)×(-2)=1.注意:0没有倒数.例2:用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为-6℃,攀登3km 后,气温有什么变化?解:(-6)×3=-18 答:气温下降18℃.从乘法法则看出,有理数的乘法,关键是确定积的符号,多个有理数相乘,可以把它们按顺序依次相乘.那么,几个不是0的数相乘.如何确定其符号呢?下列各式的积是正的还是负的?(1)2×3×4×(-5) (2)2×3×(-4)×(-5) (3)2×(-3)×(-4)×(-5) (3)(-2)×(-3)×(-4)×(-5) 根据上式计算,探究下列问题,并填空:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?几个不是0的有理数相乘,负因数的个数是______时,积是正数;负因数的个数是____时,积是负数.例3:计算:(1)(-3)×65×(-59)×(-41) (2)(-5)×6×(-54)×41 (3)(-5)×8×(-541)×(-1.25) (4)(-125)×158×211×(-31)你能看出下列各式的结果吗?如果能,请说明理由.(1)7.8×(-8.1)×0×(-19.6) (2)2002×(-2003)×(-2004)×0几个数相乘,如果其中有因数为0,积等于_____. (三)、归纳总结,知识回顾1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.(四)作业:P40 1,2 (五)板书设计1.4.1有理数的乘法(第1课时)1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数中仍然有:乘积是1的两个数互为倒数.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.第20课时1.4.1 有理数的乘法(第2课时)一、创设情境,导入新课1、有理数的乘法法则是什么?根据乘法法则计算: (1)5×(-6) (-6)× 5(2)[3×(-4)]×(-5) 3×[(-4)×(-5)] 2、小学学过哪些运算律(五种)小学学过的加法交换律、结合律,前面我们在有理数的加法中已知道在有理数的范围内也适用,那么小学学过的乘法交换律、乘法结合律、分配律在有理数的范围内是否仍然适用呢?这就是我们这节课探究的问题.板书:有理数乘法的运算律和用计算器进行乘法运算. 二、师生互动,课堂探究 (一)提出问题,引发讨论 (1)5×(-6)=(-6)× 5(2)[3×(-4)]×(-5)=3×[(-4)×(-5)] 根据上式探究有理数乘法的运算律(二)导入知识,解释疑难 1、乘法交换律:ab =ba 乘法结合律:(ab )c =a (bc )2、分配律在有理数范围内是否仍然适用: 计算 5×[3+(-7)] 5×3+5×(-7) 而5×[3+(-7)] =5×3+5×(-7) 分配律:a (b+c )=ab+ac3、例题分析:例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1思考:比较上面两种解法,它们在运算顺序上有什么区别?解法2运用了什么运算律?哪种解法运算量小?例2:计算:19189×(-15)解:19189×(-15)=(10-191)×(-15)=10×(-15)-191×(-15)=-150+1915=-1941494、用计算器进行有理数乘法运算 计算:(-51)×(-14)按键顺序,显示:-51)×-14=714也可以只用计算器算乘积的绝对值,然后再加符号. 例3:写出算式:-5-6×2.5+(-9)的按键顺序. (三)、归纳总结,知识回顾1、本节课主要学习了有理数乘法的交换律、乘法结合律、分配律,在计算过程中,灵活运用运算律可使运算简便.2、用计算器进行有理数的加、减、乘运算,可以为学生掌握有理数的运算服务.(四)作业: 习题1.4 7(3)(4)(五)板书设计1.4.1 有理数的乘法(第2课时)有理数乘法的运算律: 1、乘法交换律:ab =ba乘法结合律:(ab )c =a (bc ) 2、分配律:a (b+c )=ab+ac例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1 用计算器进行乘法运算:第21课时1.4.1 有理数的乘法(练习课)教学目的:加强学生对已学乘法运算及运算律的掌握. 教学准备:小黑板、练习资料 教学过程: 练习题: 1、计算:(1)(-3)×(-5) (2)-21×(-31) (3)52×(-0.2)分析:有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 2、计算:(1)(-5)×8×(-7)×(-0.25) (2)(-125)×158×21×(-32)(3)(-1)×21×(-20012000)×0×(-1)分析:先根据负因数的个数确定积的符号,然后把绝对值相乘作为积的绝对值;(3)中有一个因数是0,所以积为0.3、简便运算:(1)(-3)×(-57)×(-31)×74(2)(-41+31-125)×(-24) (3)4×(-3)+3×(-3)-2×(-3)+7×(-3) (4)(-1.2)×0.75×(-1.25)分析:运用乘法运算律使计算简便.(1)运用乘法交换律和结合律;(2)应用乘法的分配律;(3)逆用乘法的分配律.(4)先将小数化为分数,再约分相乘,可使计算简便.第22课时1.4.1 有理数的乘法(第4课时)一、创设情境,导入新课师:上节课的练习中有这样一道题:4×(-3)+3×(-3)-2×(-3)+7×(-3),我们如何进行简便计算的呢?生:将乘法分配律反过来利用.4×(-3)+3×(-3)-2×(-3)+7×(-3) =(4+3-2+7)×(-3) =12×(-3) =-36二、师生互动,课堂探究 (一)提出问题,引发讨论 类似地,(-23)×25-6×25+18×25+25,如何进行简便运算呢? (二)导入知识,解释疑难1、我们用字母χ表示任意一个有理数,2与χ的乘积记为2χ,3与χ的乘积记为3χ,则式子2χ+3χ是2χ与3χ的和,2χ与3χ叫做这个式子的项,2与3分别是这两项的系数.含有相同字母因数的这两项可以合并,将分配律反过来利用,可得2χ+3χ=(2+3)χ=5χ得出归纳:P41a χ+b χ=(a+b )χ2、课本例6计算:(1)-2y+0.5y ; (2)-3x+x-21x 分析:式子中含有相同字母因数,合并它们的方法是合并系数,再乘字母因数.练一练:P42 练习 计算: 3、考虑去括号的问题:先考虑一个正数与一个括号相乘,如5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得5(x -2y =3)=5x+5·(-2y )+5×3=5x-10y+15 再考虑一个负数与一个括号相乘,如-5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得-5(x -2y =3)=-5x+(-5)·(-2y )+(-5)×3=-5x+10y-15可发现:P43 去括号的规律. 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)3x-(2x-4)+(2x-1) =3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +3练一练:P43 练习 计算: (三)、归纳总结,知识回顾本节课主要学习利用乘法分配律进行去括号,合并含相同字母因数的项. (四)作业:P48 9 (五)板书设计1.4.1 有理数的乘法(第4课时)1、合并含有相同字母因数的项:ax+bx =(a+b )x例6计算:(1)-2y+0.5y ; (2)-3x+x-21x2、利用乘法分配律去括号: 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)原式=3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +31.4.2 有理数的除法(3课时)课程目标:一、知识与技能目标1、在理解有理数除法意义的基础上,掌握有理数除法法则,并初步了解有理数法则的合理性及倒数的意义.2、能够熟练地进行有理数的乘、除混合运算.3、会用计算器进行有理数的除法运算.4、会解有关除法运算的应用题. 二、过程与方法目标教材通过除法意义计算一个实例,得出法则可以利用乘法来进行的结论,得出除法与乘法类似的法则,最后通过几个例题的教学说明有理数除法的另一种形式,也指出有理数除法与分数互换的关系.三、情感态度与价值观目标1、通过有理数除法法则的导出及运用,让学生体会转化思想.2、通过学习有理数除法法则,感知数学具有普遍联系性,相互转化性.3、通过用计算器进行有理数除法运算,让学生体会类比的数学思想. 教学重点:学习有理数除法法则中学生对商的符号的确定. 教学难点:乘除混合运算中的运算顺序和运算技巧的应用. 设计思路:第1课时通过实例引入导出有理数除法法则,接着实际例题综合应用;第2课时主要在于加减、乘除的混合运算.课时安排:3课时教学准备:投影片、计算器 教学过程:第23课时1.4.2 有理数的除法(第1课时)一、创设情境,导入新课师:在小学,我们学过除法,如8÷4=8×41=2.那么8÷(-4)又会等于多少呢?这就是我们要研究的问题.板书:1.4.2 有理数的除法二、师生互动,课堂探究 (一)提出问题,引发讨论怎样计算8÷(-4)呢?要求一个数,使它与-4相乘得8. ∵(-2)×(-4)=8 ∴8÷(-4)=-2 ①又∵8×(-41)=-2 ②∴8÷(-4)=8×(-41) ③③式表明,一个数除以-4可以转化为乘-41来进行,即一个数除以-4,等于乘-4的倒数-41.(二)导入知识,解释疑难在尝试:(-8)÷(-4)=? (-8)×(-41)=?1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)提出问题:(1)两数相除,商的符号如何确定?商的绝对值呢? (2)0不能做除数,0作被除数时商是多少? 从有理数除法法则得出另一种说法:2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.说明:两数相除,在能整除的情况下,可用法则2,在确定符号后往往采用直接除;在不能整除的情况下,特别是当除数是分数时,可用法则1,把除法转化为乘法比较方便.3、例题分析:例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312 (2)1245--解:(1)312- =(-12)÷3=-4 (2)1245--=(-45)÷(-12)=415例3:计算:(1)(-75125)÷(-5) (2)-2.5÷85×(-41)解:(1)利用乘法分配律 原式=75125×51=125×51+75×51=25+71=7125 (2)原式=25×58×41=1例4:计算(1)(-29)÷3×31 (2)(-43)×(-211)÷(-412)(3)-6÷(-0.25)×1411 (4)(-3)÷[(-52)÷(-41)]解:(1)原式=-29×31×31=-929(2)原式=-43×23×49=-21(三)、归纳总结,知识回顾 1、除法的两种法则的恰当应用.2、乘除混合运算往往先将除法化为乘法,在确定积的符号,最后求出结果. (四)作业:P48 7 (4)(5)(6) (五)板书设计1.4.2 有理数的除法(第1课时)1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312- (2)1245--第24课时1.4.2 有理数的除法(第2课时)一、创设情境,导入新课师:前面学习了有理数的加减、乘除运算,通常情况下,是将减法转化为加法,将除法转化为乘法,然后进行计算.那么混合运算的顺序是怎样的呢?板书:有理数的加减乘除混合运算二、师生互动,课堂探究 (一)提出问题,引发讨论先乘除后加减,如果有括号,先算括号里面的.(运算顺序) (二)导入知识,解释疑难 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米) 答:(略)例3:P45 例10例4:用计算器计算(-0.056)÷(-1.4) (三)、归纳总结,知识回顾 1、有理数加减乘除混合运算. 2、有关有理数运算的应用题. 3、使用计算器的方法. (四)作业:(1)-1+5÷(-41)×(-4) (2)-8+4÷(-2)(3)(-7)×(-5)-90÷(-15) (五)板书设计1.4.2 有理数的除法(第2课时)有理数的加减乘除混合运算:先乘除后加减,如果有括号,先算括号里面的.(运算顺序) 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米)答:(略)第25课时1.4.2 有理数的除法(练习课)教学目的:巩固有理数除法法则及加减乘除混合运算的方法.教学准备:小黑板,练习资料教学过程:教材内容剖析讲解点1:有理数除法的意义及法则.有理数除法法则:1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b 1(b ≠0) 2、两数相除,同号得正,异号得负,并把绝对值相除.0除以如何一个不等于0的数,都得0.练习1、计算:(1)(-40)÷8 (2)(+871)÷(-87) (3)(-0.25)÷83 (4)(-125)÷(-25)÷(-6) (5)(-49)÷(312)÷37÷(-3) 分析:一般在不能整除的情况下用第一个法则,如(2)(3)(4)(5);在能整除的情况下用第二个法则.注意小数可化为分数也可不化为分数,但带分数一定要化成假分数,在进行计算.讲解点2:有理数的乘除混合运算.注意:①符号的确定;②运算顺序自左向右依次计算.练习2、计算:(1)(-65)÷(-32)×(-23) (2)(-53)×(-213)÷(-411)÷3(3)(-11936)÷9 分析:按照运算顺序,自左向右.乘除混合运算时,注意乘法不动,将除法转化为乘法.讲解点3:有括号的先算括号内的,无括号先乘除后加减.练习3:计算:(1)3÷2×(-21) (2)1.6+5.9-25.8+12.8-7.4 (3)23×(-5)-(-3)÷1283 (4)511×(31-21)×113÷45 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6 解:(1)3÷2×(-21)=-(3×21×21)=-43 (2)1.6+5.9-25.8+12.8-7.4=(1.6+5.9-7.4)+(-25.8+12.8)=0.1-13=-12.9(3)23×(-5)-(-3)÷1283=-115+3×3128=-115+128=13 (4)511×(31-21)×113÷45=511×(-61)×113×54=-252 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6=(97×18-65×18+183×18)+6×(-1.45+3.95)=(14-15+3)+6×2.5=2+15=17。
1.4条件概率及有关公式
23
贝叶斯公式在实际中有很多应用,它 可以帮助人们确定某结果(事件 B)发生 的最可能原因.
24
例 8 某一地区患有癌症的人占0.005,患者 对一种试验反应是阳性的概率为0.95,正常 人对这种试验反应是阳性的概率为0.04,现 抽查了一个人,试验反应是阳性,问此人是 癌症患者的概率有多大? 求解如下: 设 C={抽查的人患有癌症}, A={试验结果是阳性}, 则 C 表示“抽查的人不患癌症”.
设B1,B2,…,Bn互不相容, A Bi ,
i 1
n
P(B )P( A | B )
i 1 i i
n
( k 1,2,..., n)
P ( ABk ) 分析: P ( Bk | A) P ( A) P ( Bk ) P ( A | Bk ) 乘 法 公 式 n P ( Bi ) P ( A | Bi ) 全 概 率 公 式
5
分析: : n个样本点 B: m个样本点 AB: k个样本点 在B已发生的条件下,试验结果为m 中的一个, 这时A发生当且仅当AB中的 某一样本点发生,故 P ( AB ) k k / n P ( A | B) m m/n P( B) 相当于“缩小了样本空间”
6
条件概率的 性质: (1)非负性: 0≤P(A|B)≤1 (2) 规范性: P(|B)=1 (3)可列可加性:若Ak (k=1, 2, …)两两互 斥,则
(3)
11
推广到一般情形中: 若n个事件A1, A2, …, An满足条件: P(A1A2…Ak)>0 (k=1, 2, …, n1), 则: P(A1A2…An)=P(A1)P(A2|A1)P(A3|A1A2) … P(An|A1A2…An1)
1.4有理数的加减例题与讲解
1.4 有理数的加减1.有理数的加法(1)有理数的加法法则①同号两数相加,取与加数相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时和为零;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与零相加,仍得这个数.(2)两个有理数相加的步骤第一步:有理数的加法法则分三种情况,进行有理数加法时,要先区别是哪种情况;第二步:确定和的符号;第三步:求每个加数的绝对值;第四步:根据具体的法则计算两个数的绝对值的和或差;第五步:写出最后的计算结果.析规律有理数的加法运算规律(1)有理数的加法法则是进行有理数运算的依据,进行加法运算时要先确定用哪条法则.(2)小学学过的加法中,和一定大于每一个加数,在数的范围扩大到有理数以后,这个结论就不成立了,只有两个正数的和必定大于每一个加数,而两个负数的和要小于每一个加数,一个非零数与零相加,得到的和等于非零加数.(3)如果两个数的和为0,那么这两个数互为相反数.即:如果a+b=0,那么a=-b.例如:(-3)+a=0,则a=3.(4)进行有理数的加法运算要遵循“一定二求三和差”的步骤,即第一步先确定和的符号,第二步再求加数的绝对值,第三步要分析确定是绝对值相加还是相减.【例1】计算:(1)(+8)+(+5);(2)(+2.5)+(-2.5);(3)(-17)+(+9);(4)(-4)+0.分析:根据有理数的加法法则,两数相加,只要确定它适合有理数加法法则的哪一种情况,再根据法则确定和的符号,然后根据法则求出和的绝对值.解:(1)(+8)+(+5)(同号两数相加)=+(8+5)(取与加数相同的符号,并把绝对值相加)=13.(2)(+2.5)+(-2.5)(异号两数相加,绝对值相等)=0(和为0).(3)(-17)+(+9)(异号两数相加,绝对值不等)=-(17-9)(取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)=-8.(4)(-4)+0(一个数与零相加)=-4(仍得这个数).2.有理数的减法(1)有理数的减法法则减去一个数,等于加上这个数的相反数.用字母表示为a-b=a+(-b).(2)有理数减法运算的基本步骤①将减法转化为加法;②按有理数的加法法则运算.(3)法则理解①有理数的减法,不像小学里的那样直接减,而是把它转化为加法,借助于加法进行计算.其关键是正确地将减法转化为加法,再按有理数的加法法则计算.②学习有理数减法运算,关键在于处理好法则中两个“变”字,即注意两个符号的变化:一是运算符号——减号变为加号,二是性质符号——减数变成它的相反数.③其含义可以从以下两方面理解:(a)(b) ④并不是所有的减法运算都要转化为加法运算. 一般来说,当减数或被减数为负数,或两数“不够减”时才运用法则转化为加法运算. 解技巧 有理数的减法运算技巧 (1)可用口诀记忆法则:“减正变加负,减负变加正.” (2)带分数减法运算,可把带分数拆成整数和分数和的形式后再进行计算.(3)特别注意减法没有交换律.【例2】 计算:(1)3-(-5);(2)(-3)-(-7);(3)⎝⎛⎭⎫-213-516; (4)5.2-(+3.6).分析:有理数减法运算,按照减法法则,将减法转化为加法,然后按有理数加法进行计算.在做减法转换为加法时,一定要注意符号的变换.解:(1)3-(-5)=3+(+5)=8;(2)(-3)-(-7)=(-3)+(+7)=4;(3)⎝⎛⎭⎫-213-516=⎝⎛⎭⎫-213+⎝⎛⎭⎫-516=-712; (4)5.2-(+3.6)=5.2+(-3.6)=1.6.3.有理数加法的运算律(1)加法交换律:两数相加,交换加数的位置,和不变.用字母表示为:a +b =b +a .(2)加法结合律:三数相加,先把前两个数相加或先把后两个数相加,和不变.用字母表示为:(a +b )+c =a +(b +c ).【例3】 计算:(1)(-8)+⎝⎛⎭⎫-212+2+⎝⎛⎭⎫-12+12; (2)⎝⎛⎭⎫-13+⎝⎛⎭⎫+12+⎝⎛⎭⎫-23+⎝⎛⎭⎫+45+⎝⎛⎭⎫-12. 分析:进行三个以上的有理数加法运算时,常常运用加法的交换律和结合律,把同号的数相结合,把互为相反数的两个数相结合,把同号的数中的同分母的分数相结合,以达到计算简便、迅速的目的.解:(1)原式=(2+12)+⎣⎡⎦⎤(-8)+⎝⎛⎭⎫-212+⎝⎛⎭⎫-12=14+(-11)=3; (2)原式=⎣⎡⎦⎤⎝⎛⎭⎫-13+⎝⎛⎭⎫-23+⎣⎡⎦⎤⎝⎛⎭⎫+12+⎝⎛⎭⎫-12+45=-1+0+45=-15. 4.有理数的加、减混合运算(1)加减法统一成加法①有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5).②在和式里,通常把各个加数的括号省略不写,写成省略加号的和的形式.如:(-12)+(-8)+(-6)+(+5)=-12-8-6+5.③和式的读法:一是按这个式子表示的意义,读作“负12,负8,负6,正5的和”,即把各个数中间的符号作为后面的这个数的性质符号来读;二是按运算意义读作“负12减8减6加5”,即把各个数中间的符号作为运算符号来读.(2)有理数加、减混合运算的方法和步骤由于减法可以转化为加法,所以在进行有理数的加减混合运算时,首先要将混合运算的式子写成省略括号的和式的形式,然后按加法法则和运算律进行简便运算. 第一步:用减法法则将减法转化为加法; 第二步:运用加法法则、加法交换律、加法结合律进行简便运算. (3)进行有理数的加减混合运算的注意事项 ①交换加数的位置时,一定要连同加数前的符号一起移动; ②如果需要添括号,一定要连同加数前的符号一起括进括号内,并将原来已省略的括号写出来; ③省略加号和括号的“和”与小学里的“和”是有区别的,小学里的“和”是一个具体的数,并且和一定不小于任何一个加数,而这里的“和”则是表示的是有理数的加法运算,也表示相加的结果.有理数的“和”可以大于任何一个加数,也可以小于任何一个加数,和可能是正数、负数或零. 【例4-1】 把下列各式写成省略加号的和的形式:(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.解:(1)(-26)-(-7)+(-10)-(-3)=-26+(+7)+(-10)+(+3)=-26+7-10+3. (2)(-30)-(-8)+(-12)-(-5)=(-30)+(+8)+(-12)+(+5)=-30+8-12+5.【例4-2】 计算:(1)0-327-6+1167-537; (2)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45; (3)(-5)-(-21)+(-12)+8-(-4)-18;(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5.分析:(1)本题是省略括号和加号后的和的形式,在五个加数中,考虑到-327,1167,-537三个加数分母都是7,便于运算,所以把这三个加数放在一起;(2)把加减混合运算统一成加法运算后结果为⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45,考虑到⎝⎛⎭⎫-12,⎝⎛⎭⎫-23,⎝⎛⎭⎫+16便于通分,把它们结合起来,可使计算较为简便;(3)统一成加法后,可采用同号结合法,即把正数与正数、负数与负数分别相加;(4)统一成加法后,可采用凑整结合法,即把相加得整数的加数先结合.解:(1)0-327-6+1167-537=(0-6)+⎝⎛⎭⎫-327+1167-537 =-6+⎝⎛⎭⎫+317=-267. (2)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =(-1)+⎝⎛⎭⎫-45=-145. (3)(-5)-(-21)+(-12)+8-(-4)-18=-5+21-12+8+4-18=(21+8+4)+(-5-12-18)=33-35=-2.(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5=10.4-7.5+12.7+3.6-1.7-2.5=(10.4+3.6)+(12.7-1.7)+(-7.5-2.5)=14+11-10=15.5.含有字母的有理数加法的运算我们可以用字母表示有理数加法的运算法则:①同号两数相加:若a >0,b >0,则a +b =+(|a |+|b |);若a <0,b <0,则a +b =-(|a |+|b |).②异号两数相加:若a >0,b <0,且|a |=|b |,则a +b =0;若a >0,b <0,且|a |>|b |,则a +b =+(|a |-|b |);若a >0,b <0,且|a |<|b |,则a +b =-(|b |-|a |).③一个数与0相加:a +0=a .【例5-1】 根据加法法则填空:(1)如果a >0,b >0,那么a +b __________0;(2)如果a <0,b <0,那么a +b __________0;(3)如果a >0,b <0,|a |>|b |,那么a +b ________0;(4)如果a <0,b >0,|a |>|b |,那么a +b ________0.答案:(1)> (2)< (3)> (4)<【例5-2】 已知有理数a ,b ,c 在数轴上的对应点如图所示,且|a |>|b |>|c |,则(1)|a +(-b )|=__________;(2)|a +b |=__________;(3)|a +c |=__________;(4)|b +(-c )|=__________;(5)|b +c |=__________.答案:(1)|a |+|b | (2)|a |-|b | (3)|a |+|c | (4)|b |+|c | (5)|b |-|c |6.有理数加减混合运算的注意事项(1)运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉.(2)应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便.(3)若分数、小数混在一块运算时,可以把它们统一成分数或小数再运算.(4)如果有大括号和小括号应当先进行小括号里的运算,再进行大括号里的运算.反之,进行有理数的加减混合运算,有时候需要添加括号,此时一定要连同加数的符号一起括进括号内,并将原来已省略的加号写进来.辨误区 拆分负的带分数负的带分数拆分为整数与分数的和时,易将负整数与负分数的和错拆为负整数与正分数的和.【例6】 计算:(1)(-837)+(-7.5)+(-2147)+(+312); (2)⎪⎪⎪⎪5111-3417+4417-111.分析:把分母不同的分数的加减混合运算统一成加法之后,应用运算律使同分母分数相加可以简化运算.解:(1)(-837)+(-7.5)+(-2147)+(+312) =-837-7.5-2147+312=-837-2147-7.5+312=(-837-2147)-(7.5-312) =-30-4=-34.(2)⎪⎪⎪⎪5111-3417+4417-111=5111-3417+4417-111=5111-111-3417+4417=(5111-111)-(3417-4417) =5+1=6.7.有理数加减法的运用学习有理数的加减法后,可以和前面学过的数轴、相反数、绝对值综合出题,把有理数的知识融合得更紧密,理解得更深刻.(1)有理数的加法与绝对值在有些计算中,含有绝对值符号,这就要用绝对值的概念,先去掉绝对值符号,再按有理数混合运算法则进行计算.几个非负数的和等于0,则每个加数必等于0.(2)有理数的加法与有理数的大小比较学习加法后,在比较大小的数中,出现了和的形式或差的形式(差可以化成和).特别是以字母表示的数.这就需要用加法法则来判断数的正负,或判断数对应的点在数轴上的位置关系,从而确定两个数的大小关系.(3)有理数加法在实际问题中的应用在实际问题中,要应用有理数的加法法则求解问题,注意运算技巧的使用.【例7-1】 若|x -3|与|y +3|互为相反数,求x +y 的值.解:根据题意得|x -3|+|y +3|=0.则x -3=0,y +3=0,所以x =3,y =-3.所以x +y =3+(-3)=0.【例7-2】 一小吃店一周中每天的盈亏情况如下(盈利为正):128.3元,-25.6元,-15元,-7元,36.5元,98元,27元,这一周总的盈亏情况如何?分析:正数表示盈利,负数表示亏损,这些数的代数和就是总的盈亏情况,如果代数和为正,则总的情况是盈利,否则是亏损.解:128.3+(-25.6)+(-15)+(-7)+36.5+98+27=(128.3+36.5+98+27)+(-25.6-15-7)=289.8-47.6=242.2.答:一周总的盈亏情况是盈利242.2元.【例7-3】 一农业银行某天上午9:00~12:00办理了7笔储蓄业务;取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出10.25万元,取出2万元.这天上午该银行的现金增减情况怎样?分析:可以设存入为正,取出为负,用正、负数分别表示这7笔业务,求它们的和即可判断现金的增减情况.若结果为正数,则表明现金增加了;若结果为负数,则表明现金减少了.解:(-9.5)+(+5)+(-8)+(+12)+(+25)+(-10.25)+(-2)=[(-9.5)+(-8)+(-10.25)+(-2)]+[5+(+12)+(+25)]=-29.75+42=12.25(万元).答:这天上午该银行的现金增加了12.25万元.8.有理数减法的应用(1)有理数减法的应用比较常见的题型有:计算高度,计算温差,计算销售利润,计算距离,计算时差等.有理数减法的应用题虽然比较简单,但却能让大家主动地从数学角度运用所学知识和方法寻求解决问题的策略,充分体现课程标准所要求的“数学应用意识”.因此,我们要有意识地加强数学知识与现实生活联系密切的问题的训练,提高自己的能力.(2)利用有理数减法求数轴上两点间的距离求数轴上两点间的距离是有理数减法最典型的应用之一,数轴上任意两点之间的距离,都可以用数轴上表示这两点的有理数的差的绝对值来表示.【例8-1】如图所示的数轴上,表示-2和5的两点之间的距离是______,数轴上表示2和-5的两点之间的距离是______,数轴上表示-1和-3的两点之间的距离是______.解析:数轴上表示-2和5两点之间的距离是|-2-5|或|5-(-2)|;数轴上表示2和-5两点之间的距离是|2-(-5)|或|-5-2|;数轴上表示-1和-3的两点之间的距离是|-1-(-3)|或|-3-(-1)|.答案:77 2【例8-2】以地面为基准,A处高为+2.5米,B处高为-17.8米,C处高为-32.4米,问:(1)A处比B处高多少米?(2)B处与C处哪个地方高?高多少米?解:(1)+2.5-(-17.8)=2.5+17.8=20.3(米),所以A处比B处高20.3米.(2)-17.8-(-32.4)=-17.8+32.4=14.6(米),所以B处比C处高,高了14.6米.。
2022年人教版四年级数学下册1.4《有关0的计算》优课件
(4)0 ×100=0 ( )
(5)0 ÷99=0 ( )
0除以任何数都得0. 因为0×15=0 所以0÷15=0. 不为0的相同的数相除,商一定是1.
快速口算
0+0= 0-0= 0×0= 5-0=
0÷8= 1÷1= 0+1= 0×1=
1-0= 8÷8=
0÷1= 0×8= 0÷9= 7+0= 1000×0= 4÷4=
340 的相邻的 4 个数找出来,再用彩色笔圈出来。看
看你能找到几组。
10 80 100 150
140 110 50 40
70 20 160 90
120 130 30 60
下边方格里的数排列是有规律的。请把相加和是 340 的相邻的 4 个数找出来,再用彩色笔圈出来。看 看你能找到几组。
10 80 100 150
谢谢观赏
You made my day!
我们,还在路上……
四则运算
——有关0的运算
“0和1的故事”
在数字队伍中有一个0,她呀,轻浮高傲。 本来她和1亲密相处,她有一天却晃着圆圆的 脑袋对1夸耀:“哈哈,我0可真了不得,你1 正是因为有了我,身价才十倍提高。”在1的 劝说下无效,还趾高气扬地离开了1。哼,我 去把我的无数个0的伙伴找来,和你比一比! “结果找了许多是0的朋友,凑在一起,还是 0,一无所有。当0懊恼的走着,突然眼睛一 亮,前面走着她的伙伴三个0,她们跟在1的 后面,组成了1000这个闪光的数字,得到数 字伙伴的拥护,才知道自己一个人是多么的 渺小……
学完这节课,你学会了那些知识? 还有什么疑问?
作业:
1、完成学案 “四则运算(五)”剩余部 分
2、完成课堂作业第五课时
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年3月31日星期四2022/3/312022/3/312022/3/31 •书籍是屹立在时间的汪洋大海中的灯塔。2022年3月2022/3/312022/3/312022/3/313/31/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/3/312022/3/31March 31, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
1.4行列式的性质与计算【华农线性代数】
a11
a22 a23 a32 a33
a12
a21 a23 a31 a33
a13
a21 a23 a31 a33
在 n 阶行列式中,把元素 a ij 所在的第 i 和第 j
pn n,
pn1 n 1, pn 3 n 3, p2 2, p1 1,
所以不为零的项只有 a11a22 ann .
a11 a12 a1n 0 a22 a2 n 0 0 ann
1
12n
a11a22 ann
a11a22 ann .
逆序数为偶数的排列称为偶排列.
45213 7 32415 4,
计算排列逆序数的方法
分别计算出排列中每个元素前面比它大的数码 个数之和,即算出排列中每个元素的逆序数,
这每个元素的逆序数之总和即为所求排列的逆
序数.
例:计算排列n n 1 n 2321 的逆序数
a11 x1 a12 x2 a1n xn b1 , a21 x1 a22 x2 a2 n xn b2 , a x a x a x b . n2 2 nn n n n1 1
()
它的解是否也有类似的结论呢?
D1 x1 , D
在一个 n 阶排列 j1 j2 jn 中,若两个数的 位置与大小顺序相反,称这一对数构成一个 的逆序数,记为 j1 j2 jn 。 逆序;排列 j1 j2 jn 中逆序数总数称为它
例如, 32415 =4, 45213 =7
排列的奇偶性 P19
七年级数学上册 1.4 有理数的乘除法教学设计 新人教版(2021学年)
七年级数学上册 1.4 有理数的乘除法教学设计(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册1.4 有理数的乘除法教学设计(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册1.4有理数的乘除法教学设计(新版)新人教版的全部内容。
1.4 有理数的乘除法第1课时有理数的乘法(一)错误!1.经历探索有理数乘法法则的过程,掌握有理数的乘法法则.2.能够运用有理数乘法法则计算两个数的乘法.3.能说出有理数乘法的符号法则,能用例子说明法则的合理性.错误!两个有理数相乘的符号法则.错误!从不同角度概括算式的规律.错误!(设计者:)错误!错误!错误!错误!错误!错误!一、创设情景明确目标1.计算(1)2+2+2+2=(2)(-2)+(-2)+(-2)+(-2)+(-2)=2.你能将上面两个算式写成乘法算式吗?二、自主学习指向目标自学教材第28至30页,完成下列问题:1.有理数的乘法法则:两数相乘,同号__得正__,异号__得负__,并把__绝对值相乘__.任何数与0相乘都得0.2.互为倒数:乘积是__1__的两个数互为倒数.3.有理数乘法运算时,应注意,先__确定符号__,再__确定积的绝对值__.4.几个有理数相乘,如果其中一个因数为0,则积为__0__.三、合作探究达成目标错误!有理数的乘法法则活动一:阅读教材第28至29页,思考:1.说一说三个“思考”中各有什么规律?2.从符号和绝对值两个角度观察教材中的算式,可以得出什么结论?3.有理数乘法法则分几种情况进行归纳的?例1 计算:(1)(-3)×9;(2)8×(-1);(3)(-\f(1,2))×(-2); (4)(-5)×(-7).【展示点评】要得到一个数的相反数,只要将它乘以-1即可.题(3)中两个因数互为倒数.【小组讨论】计算两个有理数相乘的一般步骤有哪些?法则是怎样的?【反思小结】两个有理数相乘先确定积的符号,再把绝对值相乘.其法则是:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0。
初中数学沪科版七年级上册第1章 有理数1.4 有理数的加减-章节测试习题(43)
章节测试题1.【答题】计算:(-2)+(-3)=______.【答案】-5【分析】本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.根据有理数的加法法则求出即可.【解答】(-2)+(-3)=-5,故答案为-5.2.【答题】计算:2+(-1)=______.【答案】1【分析】本题考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.根据有理数加法法则:绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值计算即可.【解答】2+(-1)=2-1=1.故答案为1.3.【答题】某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是______℃.【答案】3【分析】本题考查了有理数中正负数的运算.【解答】-5℃+8℃=3℃.4.【答题】数轴上A、B两点所表示的有理数的和是______.【答案】-1【分析】本题考查数轴的有关知识.借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.【解答】由数轴得,点A表示的数是-3,点B表示的数是2,∴A,B两点所表示的有理数的和是-3+2=-1.5.【题文】有一批食品罐头,标准质量为每听454g.现抽取10听样品进行检测,结果如下表:这10听罐头的总质量是多少?【答案】4550g.【分析】本题考查有理数的加法运算.【解答】解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4550(g).解法二:把超过标准质量的克数用正数表不,不足的用负数表示,列出10听罐头与标准质量的差值表:这10听罐头与标准质量差值的和为(-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+5+5=10(g).因此,这10听罐头的总质量为454×10+10=4540+10=4550(g).6.【题文】计算下列各题:(1)(-3)+40+(-32)+(-8);(2)13+(-56)+47+(-34);(3)43+(-77)+27+(-43).【答案】(1)-3;(2)-30;(3)-50.【分析】本题考查有理数的加法运算.【解答】(1)(-3)+40+(-32)+(-8)=40-(3+32+8)=40-43=-3.(2)13+(-56)+47+(-34)=(13+47)-(56+34)=60-90=-30.(3)43+(-77)+27+(-43)=(43-43)-(77-27)=0-50=-50.7.【题文】某潜水员先潜入水下61m,然后又上升32m,这时潜水员处在什么位置?【答案】水下29m的位置.【分析】本题考查有理数的加法运算.【解答】水下61m记为-61m,上升32m后即为-61m+32m=-29m,∴潜水员处在水下29m的位置.8.【答题】比1小2的数是()A. 3B. 1C. -1D. -2【答案】C【分析】本题考查了有理数的减法.根据有理数的减法运算法则进行计算即可得解.【解答】1-2=-1.选C.9.【答题】与-3的差为0的数是()A. 3B. -3C.D.【答案】B【分析】本题考查了有理数的减法运算,正确列出式子是关键.与-3的差为0的数就是-3+0,据此即可求解.【解答】-3+0=-3.选B.10.【答题】计算-,正确的结果为()A. B. C. D.【答案】D【分析】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.根据有理数的减法运算法则进行计算即可得解.【解答】-.选D.11.【答题】计算-10-8所得的结果是()A. -2B. 2C. 18D. -18【答案】D【分析】本题考查了有理数的减法,熟记运算法则是解题的关键.根据有理数的减法运算法则进行计算即可得解.【解答】-10-8=-18.选D.12.【答题】某地某天的最高气温是8℃,最低气温是-2℃,则该地这一天的温差是()A. -10℃B. -6℃C. 6℃D. 10℃【答案】D【分析】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】8-(-2)=8+2=10(℃).选D.13.【答题】计算:2-3=()A. -1B. 1C. 5D. 9【答案】A【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】2-3=2+(-3)=-(3-2)=-1.选A.14.【答题】计算-1-2等于()A. 1B. 3C. -1D. -3【答案】D【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】-1-2=-3.选D.15.【答题】某市某日的气温是-2℃~6℃,则该日的温差是()A. 8℃B. 6℃C. 4℃D. -2℃【答案】A【分析】本题考查有理数的运算.有理数运算的实际应用题是中考的常见题,其解答关键是依据题意正确地列出算式.认真阅读列出正确的算式,温差就是用最高温度减最低温度,列式计算.【解答】该日的温差=6-(-2)=6+2=8(℃).选A.16.【答题】计算1-2的结果是()A. -3B. 3C. -1D. 1【答案】C【分析】根据有理数减法法则:减去一个数,等于加上这个数的相反数计算即可.【解答】1-2=-1.选C.17.【答题】计算:-2-5的结果是()A. -7B. -3C. 3D. 7【答案】A【分析】本题考查了有理数的加法运算,熟记运算法则是解题的关键.根据有理数的加法运算法则进行计算即可求解.【解答】-2-5=-(2+5)=-7.选A.18.【答题】计算:2-(-3)的结果是()A. 5B. 1C. -1D. -5【答案】A【分析】本题考查了有理数的减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键.【解答】2-(-3)=2+3=5.选A.19.【答题】计算-2-3的结果是()A. 5B. -5C. -1D. 1【答案】B【分析】根据有理数的减法运算法则进行计算即可.【解答】-2-3=-5.选B.20.【答题】-1-2的结果是()A. -1B. -3C. 1D. 3【答案】B【分析】根据有理数减法法则:减去一个数等于加上它的相反数,计算即可.【解答】-1-2=-1+(-2)=-(1+2)=-3,选B.。
1.4 行列式的性质与计算
1 1 2 3 1
r3 r2
0 0
2 0
1 1
5 1
3 2
0 0 1 0 2
0 0 2 2 2
1 1 2 3 1
r4 r3 0 2 1 5 0 0 1 1
3
2 2
0 0 0 1 0 0 0 2 2 2
40.
5 2 2 2
练习
设
A
=
2
2
5 2
2 5
2 2
,
求
det
A
.
Hale Waihona Puke 2225
解:
1111
0300
11
111 3 3 3 297.
0030
0003
1、行列式的5个性质及其推论
(行列式中行与列具有同等的地位, 凡是对行成立 的性质对列也同样成立).
2、计算行列式常用方法: (1)利用对角线法则(二、三阶行列式); (2)利用性质把行列式化为上三角形行列式,从 而算得行列式的值.
4 3 1 5
A
2
1 1
3
.
1 1 0 2
3
3
5
1
解
4 3 1 5
2 1 1 3
A 1 1
0
2 c1 c3
3 3 5 1
1 3 4 5 1 1 2 3 0 1 1 2 5 3 3 1
1 3 4 5 0 1 1 2 2 0 2 3 4 0 18 23 24
1 3 4 5 0 1 1 2 00 1 8 0 0 0 20
a23
a24
1.4 有理数的加法(计3课时-副本
和的符号
和与加数关系
可正、 可负、 可为零
结论:
在有理数运算中,算术中的某些结论不一定再成立.
探究:
用“﹥”或“﹤”符号填空
(1)如果a>0,b>0,那么a+b____0; ﹥ (2) 如果a<0,b<0,那么a+b____0; ﹤ (3) 如果a>0,b<0,|a|>|b|,那么a+b____0; ﹥ (4) 如果a<0,b>0,|a|<|b|,那么a+b____0; ﹤
(-1) - (-3) =(-1)+(+3)
4 3 2 1
0 (-5) - (-3) =(-5)+(+3) -1 -2 把4换成其他数字,用上 -3 面的方法试试看. -4
4 - (-3)= 4+(+3) 0 - (-3)= 0+(+3) (-1) - (-3)=(-1)+(+3) (-5) - (-3)=(-5)+(+3)
4 3 2 1
0 -1 -2 -3 -4
0 这些数减(– 3)的结果与它们 -1 有理数减法法则: ____(+3)的结果是相同的. -2 减去一个数,等于加上这 观察上面五对算式,对有 个数的相反数. -3 理数的减法运算你能得出什么 -4 a–b=a+(-b) 结论?
4 - (-3)= 4+(+3) 0 - (-3)= 0+(+3) (-1) - (-3)=(-1)+(+3) (-5) - (-3)=(-5)+(+3)
5 4、 ( 1 ) 0.625 8
人教版七年级上册数学教学案:1.4 有理数的乘除法
1.4.1 有理数的乘法(1)第一课时三维目标一、知识与技能经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法.二、过程与方法经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力.三、情感态度与价值观培养学生积极探索精神,感受数学与实际生活的联系.教学重、难点与关键1.重点:应用法则正确地进行有理数乘法运算.2.难点:两负数相乘,•积的符号为正与两负数相加和的符号为负号容易混淆. 3.关键:积的符号的确定.教具准备投影仪.四、教学过程一、引入新课在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?五、新授课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O.l(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中“2cm”记作“+2cm”,“3分后”记作“+3分”.(1)3分后..6cm处.(如课本图1.4-2)..蜗牛应在L上点O右边这可以表示为(+2)×(+3)=+6 ①(2)3分后..6cm处.(如课本图1.4-3)..蜗牛应在L上点O左边这可以表示为(-2)×(+3)=-6 ②(3)3分前..6cm处.(如课本图1.4-4)..蜗牛应在L上点O左边[讲问题(3)时可采用提问式:已知现在蜗牛在点O处,•而蜗牛是一直向右爬行的,那么3分前蜗牛应在什么位置?]这可以表示为(+2)×(-3)=-6 ③(4)蜗牛是向左爬行的,现在在O点,所以3分前..6cm处(•..蜗牛应在L上点O右边如课本图1.4-5).这可以表示为(-2)×(-3)=+6 ④观察①~④,根据你对有理数乘法的思考,完成课本第39页填空.归纳:两个有理数相乘,积仍然由符号和绝对值两部分组成,①、④式都是同号两数相乘,积为正,②、③式是异号两数相乘,积为负,①~④式中的积的绝对值都是这两个因数绝对值的积.也就是两数相乘,同号得正,异号得负,并把绝对值相乘.此外,我们知道2×0=0,那么(-2)×0=?显然(-2)×0=0.这就是说:任何数同0相乘,都得0.综上所述,得有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0.进行有理数的乘法运算,关键是积的符号的确定,计算时分为两步进行:•第一步是确定积的符号,在确定积的符号时要准确运用法则;第二步是求绝对值的积.如:(-5)×(-3),……(同号两数相乘)(-5)×(-3)=+(),……得正5×3=15,……把绝对值相乘所以(-5)×(-3)=15又如:(-7)×4……________(-7)×4=-(),……_________7×4=28,……__________所以(-7)×4=-28例1:计算:(1)(-3)×9;(2)(-12)×(-2);(3)0×(-5317)×(+25.3);(4)123×(-115).例1可以由学生自己完成,计算时,按判定类型、确定积的符号,•求积的绝对值.(3)题直接得0.(4)题化带分数为假分数,以便约分.小学里,两数乘积为1,这两个数叫互为倒数.在有理数中仍然有:乘积是1的两数互为倒数.例如:-12与-2是互为倒数,-35与-53是互为倒数.注意倒数与相反数的区别:两数互为倒数,积为1,它们一定同号;•两数互为相反数,和为零,它们是异号(0除外),另外0没有倒数,而0的相反数为0.数a(a≠0)的倒数是什么?1除以一个数(0除外)得这个数的倒数,所以a(a≠0)的倒数为1a.例2:用正负数表示气温的变化量,上升为正,下降为负,•登山队攀登一座山峰,每登高1km气温的变化量为-6℃,攀登3km后,气温有什么变化?解:本题是关于有理数的乘法问题,根据题意,(-6)×3=-18由于规定下降为负,所以气温下降18℃.六、巩固练习课本第30页练习.1.第2题:降5元记为-5元,那么-5×60=-300(元)与按原价销售的60件商品相比,销售额减少了300元.2.第3题:1和-1的倒数分别是它们的本身;13,-13的倒数分别为3,-3;5,-5•的倒数分别为15,-15;23,-23的倒数分别是32,-32;此外,1与-1,13与-13,5与-5,2 3与-23是互为相反数.七、课堂小结1.强调运用法则进行有理数乘法的步骤.2.比较有理数乘法的符号法则与有理数加法的符号法则的区别,•以达到进一步巩固有理数乘法法则的目的.八、作业布置1.课本第38页习题1.4第1、2、3题.九、板书设计:1.4.1 有理数的乘法(1)第一课时1、两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0.2、随堂练习。
1.4 有理数的乘除法讲义 学生版
第1章有理数1.4 有理数的乘除法学习要求1、会根据有理数的乘法法则进行乘法运算,并运用相关运算律进行简算.2、理解除法与乘法的逆运算关系,会进行有理数除法运算;巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算.知识点一:有理数的乘法法则例1.计算﹣1×2的结果是()A.1 B.2 C.﹣3 D.﹣2变式1.(﹣15)×7.变式2.(﹣3)×|﹣2|知识点二:倒数例2.的倒数是()A.﹣3 B.C.3 D.变式1.﹣2017的倒数是()A.2017 B.﹣2017 C.D.﹣变式2.已知□×(﹣)=﹣1,则□等于()A.B.2016 C.2017 D.2018变式3.填表:原数﹣2.5相反数 3 ﹣7 倒数绝对值变式4.写出下列各数的倒数:(1)﹣15;(2);(3)﹣0.25;(4)0.13;(5)4;(6)﹣5.知识点三:多个有理数的乘法例3.算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.变式1.(2014秋•宝坻区校级期末)1.6×(﹣1)×(﹣2.5)×(﹣)变式2.计算.(1);(2)(﹣0.1)×1000×(﹣0.01);(3)2.3×4.1×0×(﹣7);(4).知识点四:有理数的乘法运算律例4.计算(1)(﹣2)×4×(﹣3)(2)(+﹣)×12.变式1.用简便方法计算:①;②;③;④﹣989×(﹣9)+989×(﹣19)﹣(﹣989)×10.变式2.计算:(1)(2).变式3.(1);(2);(3);(4)(﹣8)×(﹣12)×(﹣0.125)×(﹣)×(﹣0.1).变式4.计算下列各式:(1)(﹣4)×1.25×(﹣8);(2)×(﹣2.4)×;(3)(﹣14)×(﹣100)×(﹣6)×(0.01);(4)9×15;(5)﹣100×﹣0.125×35.5+14.5×(﹣12.5%);(6)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…(19﹣20).知识点五:有理数的除法例5.计算(﹣16)÷8的结果等于()A.B.﹣2 C.3 D.﹣1变式1.(2014秋•山西校级月考)(1)两数的积是1,已知一数是﹣2,求另一数;(2)两数的商是﹣3,已知被除数4,求除数.变式2.计算:(1)(﹣36)÷9(2)(﹣)×(﹣3)÷(﹣1)÷3.变式3.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).知识点六:有理数乘除混合运算例6.计算(1)(﹣)×(﹣)×0×(2)(3)(﹣﹣)×(﹣24)(4).知识点七:有理数四则混合运算例7.计算(1)(﹣3)×(﹣9)﹣8×(﹣5)(2)﹣63÷7+45÷(﹣9)(3)(﹣)×1÷(﹣1)(4)(1﹣+)×(﹣48).变式1.计算(1);(2).(3);(4).变式2.怎样算简便就怎样算(1)2÷+3×(2)÷25%﹣÷0.75.变式3.计算:(1)(﹣)÷(﹣﹣);(2)(﹣28+14)÷7.变式4.计算(1)5.02﹣1.37﹣2.63(2)72×(﹣+﹣)(3)×[÷(﹣)](4)[﹣(﹣)÷]÷.变式5.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)﹣22+|5﹣8|+24÷(﹣3)×.变式6.计算下列各题①(﹣7)+5﹣(﹣3)+(﹣4);②4×(﹣3)﹣|﹣|×(﹣2)+6;③(﹣+)×(﹣42);④﹣1+5÷(﹣)×4.拓展点一:概念、法则的理解问题例8.若a+b<0,ab<0,则()A.a>0,b>0B.a<0,b<0C.a,b两数一正一负,且正数的绝对值大于负数的绝对值D.a,b两数一正一负,且负数的绝对值大于正数的绝对值变式1.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能变式2.下列说法中错误的是()A.一个数同0相乘,仍得0B.一个数同1相乘,仍是原数C.一个数同﹣1相乘得原数的相反数D.互为相反数的积是1变式3.如果两个数的和是正数,这两个数的积是负数,那么这两个数()A.都是正数B.都是负数C.异号的两个数,并且正数的绝对值较大D.异号的两个数,并且负数的绝对值较大变式4.若a、b为两个有理数,且ab<0,a+b<0,则()A.a、b都是正数B.a、b都是负数C.a、b异号,且正数的绝对值大D.a、b异号,且负数的绝对值大变式5.不计算,只判断下列结果的符号:(1)(﹣6)+(﹣4)(2)(+9)+(﹣4)(3)(﹣7)﹣(﹣4)(4)(﹣6)×(+3)×2×(﹣1)拓展点二:学科内知识的综合例9.写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.变式1.如图,已知点A在数轴上,从点A出发,沿数轴向右移动3个单位长度到达点C,点B所表示的有理数是5的相反数,按要求完成下列各小题.(1)请在数轴上标出点B和点C;(2)求点B所表示的有理数与点C所表示的有理数的乘积;(3)若将该数轴进行折叠,使得点A和点B重合,则点C和数所表示的点重合.变式2.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.拓展点三:乘除运算中的一些技巧例10.﹣99×36.变式1.用简便方法计算:(1)﹣13×﹣0.34×+×(﹣13)﹣×0.34(2)(﹣﹣+﹣)×(﹣60)变式2.简便计算(1)(﹣48)×0.125+48×(2)()×(﹣36)变式3.用简便算法计算下列各题.(1)(2).拓展点四:有理数乘除法在实际生活中的应用问题例11.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘以2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.变式1.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?变式2.某自行车厂一周计划每日生产400辆自行车,由于人数和操作原因,每日实际生产量分别为405辆、393辆、397辆、410辆、391辆、385辆、405辆.(1)用正负数表示每日实际生产量与计划量的增减情况;(2)该车厂本周实际共生产多少辆自行车?平均每日实际生产多少辆自行车?变式3.已知海拔每升高1 000m,气温下降6℃,某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是﹣1℃.求热气球的高度.变式4.一辆货车从超市出发,向东走3千米到达小李家,继续向东走1.5千米到达小张家,然后又回头向西走9.5千米到达小陈家,最后回到超市.(1)以超市为原点,向东为正,以1个单位长表示1千米,在数轴上表示出上述位置.(2)小陈家距小李家多远?(3)若货车每千米耗油0.5升,这趟路货车共耗油多少升?变式5.东东有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?变式6.李老师利用假期带领7名学生到市区社会实践,汽车票每张原价为30元,现在有两种优惠方案:第一种方案是所有成员全部打8折;第二种方案是学生打9折,教师免票.请问李老师他们应该采用哪种方案乘车比较合算?变式7.某粮食加工厂从生产的粮食中抽出20袋检查质量,以每袋50千克为标准,将超过的千克数记为正数,不足的千克数记为负数,结果记录如下:与标准质量的偏差:单位(千克)﹣0.7 ﹣0.5 ﹣0.2 0 +0.4 +0.5 +0.7袋数 1 3 4 5 3 3 1问:这20袋大米共超重或不足多少千克?总质量为多少千克?变式8.某日下午,出租车司机小王在南北走向的南海大道上运营.如果规定向南为正,向北为负,出租车的行车情况记录如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣17.将最后一名乘客送到目的地时,小王距出车地点的距离是多少千米?如果每百公里耗油10升,那么小王下午耗油多少升?拓展点五:作商比较两个有理数的大小例12.比较大小:43-______;87-)32(+-______);43(-+拓展点六:新型题例13.设[x]表示不大于的所有整数中最大的整数,例如:[1.7]=1,[﹣1.7]=﹣2,根据此规定,完成下列运算:(1)[2.3]﹣[6.3](2)[4]﹣[﹣2.5](3)[﹣3.8]×[6.1](4)[0]×[﹣4.5].变式1.对于正整数a 、b ,规定一种新运算﹡,a ﹡b 等于由a 开始的连续b 个正整数的积,例如:2﹡3=2×3×4=24,5﹡2=5×6=30,那么7﹡(1﹡2)的值等于多少?变式2.若定义一种新的运算“*”,规定有理数a*b=4ab ,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.变式3.若“!”表示一种新运算,并且1!=1,2!=2×1,3!=3×2×1,那么100!÷99!的商是多少?变式4.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.易错点一:“加”“乘”运算结果符号确定方法不同,二者莫混例14.计算:(1)﹣5﹣1(2)(﹣20)÷5(3)6﹣[﹣(﹣2)](4)2﹣|﹣0.4|(5)﹣(+20)+(+45)﹣(+80)﹣(﹣35)(6)(﹣24)÷2×(﹣3)÷(﹣6)易错点二:运算顺序应注意例15.计算:(1)(﹣85)×(﹣25)×(﹣4);(2)﹣;(3);(4).易错点三:乘法分配律不适用于除法运算例16.(﹣)÷(﹣+﹣)变式1.计算:(﹣)÷(﹣+﹣).变式2.计算:﹣÷(+﹣).变式3.计算:(﹣45)÷[(﹣)÷(﹣)].变式4.计算:12÷(﹣3﹣+).。
1.4有理数的乘法、1.5乘方-吴群
新人教版七年级上册数学教材配题第一章 有理数1.4.1有理数的乘法P28——思考观察下面的乘法算式,你能发现什么规律?339,326,313,300.⨯=⨯=⨯=⨯=思考观察下面的算式,你又能发现什么规律?339,236,133,030.⨯=⨯=⨯=⨯=P29——思考利用上面归纳的结论计算下面的算式,你发现有什么规律?(3)3____,(3)2____,(3)1____,(3)0____.-⨯=-⨯=-⨯=-⨯=P30——例 1 计算:(1)(3)9-⨯; (2)8(1)⨯-; (3)1()(2)2-⨯-.例 2 用正负数表示气温的变化量, 上升为正, 下降为负. 登山队攀登一座山峰 , 每登高 1 km 气温的变化量为 -6 ℃ ,攀登 3 km 后, 气温有什么变化?练习: 1.计算:(1)6(9)⨯-; (2)(4)6-⨯; (3)(6)(1)-⨯-;(4)(6)0-⨯; (5)29()34⨯-; (6)11()34-⨯.2.商店降价销售某种商品,, 每件降 5 元 , 售出 60件后, 与按原价销售同样数量的商品相比 , 销售额有什么变化?3.写出下列各数的倒数:1,1-,13,13-,5-,23,23-.P31——思考观察下列各式, 它们的积是正还是负的 ?234(5),23(4)(5),2(3)(4)(5),(2)(3)(4)(5).⨯⨯⨯-⨯⨯-⨯-⨯-⨯-⨯--⨯-⨯-⨯-几个不是0的数相乘 ,积的符号与负因数的个数之间有什么关系?例 3 计算:(1)591(3)()()654-⨯⨯-⨯-;(2)41(5)6()54-⨯⨯-⨯.思考你能看出下式的结果吗? 如果能,请说明理由. 7.8(8.1)0(19.6)⨯-⨯⨯-. P32——练习: 1.口算:(1)(2)34(1)-⨯⨯⨯-; (2)(5)(3)4(2)-⨯-⨯⨯-; (3)(2)(2)(2)(2)-⨯-⨯-⨯-; (4)(3)(3)(3)(3)-⨯-⨯-⨯-.2.计算:(1)(5)8(7)(0.25)-⨯⨯-⨯-; (2)5812()()121523-⨯⨯⨯-;(3)5832(1)()()0(1)41523-⨯-⨯⨯⨯-⨯⨯-.P33——例 4 用两种方法计算 111()12462+-⨯.练习: 计算:(1)(85)(25)(4)-⨯-⨯-; (2)91()301015-⨯; (3)71()15(1)87-⨯⨯-; (4)62617()()()()5353-⨯-+-⨯+.1.4.2有理数的除法P34——例5 计算:(1)(36)9-÷; (2)123()()255-÷-.P35——练习: 计算:(1)(18)6-÷; (2)(63)(7)-÷-; (3)1(9)÷-; (4)0(8)÷-; (5)( 6.5)0.13-÷; (6)62()()55-÷-.例 6 化简下列分数: (1)123-; (2)4512--.例 7 计算:(1)5(125)(5)7-÷-; (2)512.5()84-÷⨯-.P36——练习: 1.化简:(1)729- ; (2)3045--; (3)075-. 2.计算:(1)9(36)911-÷; (2)1(12)(4)(1)5-÷-÷-; (3)28()()(0.25)35-⨯-÷-.例8 计算:(1)84(2)-+÷-; (2)(7)(5)90(15)-⨯--÷-.练习: 计算:(1)6(12)(3)--÷-; (2)3(4)(28)7⨯-+-÷; (3) (48)8(25)(6)-÷--⨯-; (4)2342()()(0.25)34⨯-+-÷-.例9 某公司去年1~3 月平均每月亏损1.5 万元, 4~6月平均每月盈利2 万元, 7~10 月平均每月盈利 1.7 万元,11~12 月平均每月亏损 2.3 万元. 这个公司去年总的盈亏情况如何?P37——练习: 用计算器计算:(1)357(154)26(212)+-++-; (2) 5.13 4.62(8.47)( 2.3)-++---; (3)26(41)(35)(17)⨯-+-⨯-; (4)1.252(44)(356)(0.196)÷---÷-习题1.4 复习巩固 1.计算:(1)(8)(7)-⨯-; (2)12(5)⨯-; (3)2.9(0.4)⨯-; (4)30.50.2-⨯; (5)100(0.001)⨯-; (6) 4.8( 1.25)-⨯-.2.计算:(1)18()49⨯-; (2)53()()610-⨯-; (3)342515-⨯; (4)10(0.3)()7-⨯-.3.写出下列各数的倒数:(1)15-; (2)59- ; (3)0.25-; (4)0.17; (5)144 ; (6)255-.4. 计算:(1)9113-÷; (2)56(14)-÷-; (3)16(3)÷-; (4)(48)(16)-÷-; (5)4(1)5÷-; (6)30.258-÷.5.填空:1(5)____⨯-=; 1(5)____÷-=; 1(5)____+-=; 1(5)____--=; 1(5)____-⨯-=; 1(5)____-÷-=; 1(5)____-+-=; 1(5)____---=.6.化简下列分数: (1)217-; (2)336-; (3)548--; (4)60.3--.7.计算:(1)23(4)-⨯⨯-; (2)6(5)(7)-⨯-⨯-;(3)8() 1.25(8)25-⨯⨯-; (4)0.1(0.001)(1)÷-÷-; (5)311()(1)(2)424-⨯-÷-; (6)116(0.25)14-⨯-⨯;(7)(7)(56)0(13)-⨯-⨯÷-; (8)9(11)3(3)-⨯-÷÷-.综合运用 8.计算:(1)323(5)(3)128⨯---÷; (2)7(3)(0.5)(12)( 2.6)-⨯-⨯-+-⨯-; (3)37777377(1)()()(1)4812884812--÷-+-÷--; (4)21211332334----⨯----.9.用计算器计算(结果保留两位小数): (1)(36)128(74)-⨯÷-; (2) 6.23(0.25)940-÷-⨯;(3) 4.325(0.012) 2.31( 5.315)-⨯--÷-; (4)180.65(32)47.8(15.5)--⨯÷-.10.用正数或负数填空:(1)小商店平均每天可盈利250元, 一个月 (按30天计算) 的利润是 ________ 元; (2)小商店每天亏损 20元, 一周的利润是________元;(3)小商店一周的利润是1400元, 平均每天的利润是_______元; (4)小商店一周共亏损 840 元, 平均每天的利润是________元.11.一架直升机从高度 450m 的位置开始, 先以 20 m/s 的速度上升 60 s , 后以 12 m /s 的速度下降 120 s , 这时直升机所在高度是多少?拓广探索12.用“>” “<”或 “=”号填空:(1)如果 a<0 , b>0 , 那么___0a b, ab _____0; (2)如果 a>0 , b<0 , 那么___0a b, ab _____0; (3)如果 a<0 , b<0 , 那么___0a b, ab _____0; (4)如果 a=0 , b ≠0 , 那么___0a b, ab_____0;13.计算 21⨯,122⨯,2(1)⨯-,12()2⨯-. 联系这类具体的数的乘法, 你认为一个非 0 有理数一定小于它的 2 倍吗?为什么?14.利用分配律可以得到2636(23)6-⨯+⨯=-+⨯. 如果用 a 表示任意一个数,那么利用分配律可以得到23a a -+ 等于什么?15.计算 (4)2-÷,4(2)÷-, (4)(2)-÷-.联系这类具体的数的除法,你认为下列式子是否成立 (,a b 是有理数, 0b ≠)?从它们可以总结什么规律 ? (1)a a ab b b -==--; (2)a a b b-=-.1.5.1有理数的乘方P42——例 1 计算:(1)3(4)-; (2)4(2)-; (3)32()3-.思考:从例1,你发现负数的幂的正负有什么规律? 当指数是______数时,负数的幂是_______数; 当指数是______数时,负数的幂是_______数.例2 用计算器计算 5(8)-和6(3)-.练习:1.(1)8(7)-中,底数、指数各是什么?(2)8(10)-中10-叫做什么数? 8 叫做什么数 ? 8(10)-是正数还是负数? 2.计算:(1)10(1)-; (2)7(1)-; (3)38; (4)3(5)-;(5)30.1; (6)41()2-; (7)4(10)-; (8)5(10)-.3.用计算器计算:(1)6(11)-; (2)716; (3)38.4; (4)3( 5.6)-.P43——例 3 计算:(1)32(3)4(3)15⨯--⨯-+;(2)322(2)(3)[(4)2](3)(2)-+-⨯-+--÷-.例 4 观察下面 三行数:-2, 4, -8, 16, -32, 64,… 0, 6, -6, 18, -30, 66,… -1, 2, 4, 8, -16, 32,…P44——练习: 计算:(1)103(1)2(2)4-⨯+-÷; (2)341(5)3()2--⨯-;(3)111135()532114⨯-⨯÷; (4)422(10)[(4)(33)2]-+--+⨯.P45——例 5 用科学记数法表示下列各数:1 000 000, 57 000 000, -123 000 000 000.思考:上面的式子中,等号左边整数的位数与右边10 的指数由什么关系?用科学记数法表示一个n 位整数,其中10的指数是_______.练习:1.用科学记数法写出下列各数:10 00, 800 000, 56 000 000, -7400 000.2.下列用科学记数法写出的数, 原来分别是什么数?7110⨯,3410⨯,. 68.510⨯,57.0410⨯,43.9610-⨯.3.中国的陆地面积约为 9 600 000 2km ,领水面积约为370 000 2km ,用科学记数法表示上述两个数字.P46——例6 按括号内的要求,用四舍五入法对下列各数取近似数: (1)0.0158 (精确到0.001); (2)304.35 (精确到个位); (3)1.804 (精确到0.1); (4)1.804 (精确到0.01). 练习:用四舍五入法对下列各数取近似数: (1)0.003 56 (精确到万分位); (2)61.235 (精确到个位); (3)1.893 5 (精确到0.001); (4)0.057 1 (精确到0.1).P47——习题1.5 复习巩固 1.计算:(1)3(3)-; (2) 4(2)-;(3) 2(1.7)-; (4) 33()4-;(5) 3(2)--; (6) 22(2)(3)-⨯-.2.用计算器计算:(1)8(12)-; (2)4103; (3)37.12; (4)3(45.7)-. 3.计算: (1)1004(1)5(2)4-⨯+-÷;(2)341(3)3()3--⨯-;(3)71133()663145⨯-⨯÷; (4)322(10)[(4)(13)2]-+---⨯; (5)32422()93-÷⨯-;(6)34(2)5(0.28)4+-⨯--÷.4.用科学记数法表示下列各数: (1)235 000 000; (2)188 520 000; (3)701 000 000 000; (4)-38 000 000.5.下列用科学记数法表示的数,原来各是什么数?7310⨯,31.310⨯,68.0510⨯,52.00410⨯,41.9610-⨯.6.用四舍五入法对下列各数取近似数: (1)0.003 56 (精确到0.000 1); (2)566.123 5 (精确到个位); (3)3.896 3 (精确到0.01); (4)0.057 1 (精确到千分位).综合运用7.平方等于9的数是几?立方等于27的数是几?8.一个长方体的长、宽都是a , 高是b ,它的体积和表面积怎样计算? 当a=2cm , b=5cm 时,它的体积和表面积是多少?9.地球绕太阳公转的速约是51.110⨯km/h ,声音在空气中的传播速度约是340 km/h ,试比较两个速度的大小.10.一天有48.6410⨯s , 一年按365 天计算,一年有多少秒(用科学记数法表示)?拓广探索11.(1)计算20.1,21,210,2100. 观察这些结果,底数的小数点向左(右)移动一位时, 平方数小数点有什么移动规律?(2)计算30.1,31,310,3100. 观察这些结果,底数的小数点向左(右)移动一位时, 立方数小数点有什么移动规律?(3)计算40.1,41,410,4100. 观察这些结果,底数的小数点向左(右)移动一位时, 四次方数小数点有什么移动规律?12.计算2(2)-,22,3(2)-,32. 联系这类具体的数的乘方,你认为当 a<0 时下列各式是否成立?(1)20a >; (2)22()a a =-;(3)22a a =-; (4)33a a =-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( ( ( ) (
) ) ) )
0除以任何数都得0. 因为0×15=0 所以0÷15=0. 不为0的相同的数相除,商一定是1.
快速口算
0+0= 0÷8= 0-0= 1÷1= 0×0= 0+1= 0×8= 5-0= 0×1= 0÷9=
1-0=
8÷8=
0÷1=
7+0=
1000×0= 4÷4=
66-10-0
一个数加上0 还得原数。 被减数等于减 数,差是0.
一个数减去0 还得原数
0除以一个非0的 一个数和0相乘, 数,还得0. 仍得0.
0能不能作除数
运算时应该注意些什么?
0为什么不能做除数?
5÷0=
0÷0=
四则运算
①一个数加上0还得原数。 ②一个数减去0还得原数。 ③被减数等于减数,差是0。 ④一个数和0相乘得0。 ⑤ 0除以一个非0的数得0。 ⑥ 0不能做除数。
) 7
÷7
三、数学游戏 (找和是340的相邻的四个数)
10
140 70 120
80
100
50 160 30
150
40 90 60
110
20 130
3.(1)△-□=○ + = ○ × =◇ 综合算式:( △- □)×( (2)△×□=○ ÷ = ○ - =◇ 综合算式: △ × □- ÷
+
)
四则运算的运算顺序:
加法、减法、乘法和除法统称四则运算。 1.在没有括号的算式里,如果只有加、减法 或者只有乘、除法,都要从左往右按顺序 计算。 2.在没有括号的算式里,有乘、除法和加、 减法,要先算乘、除法。 3.算式里有括号,要先算括号里面的。
学完这节课,你学会了那些知识?
还有什么疑问?
口算卡
(1)100+0= 100
(3)0×78= 0
(2)0+568= 568
(4)154-0= 154
(5)0÷23= 0
(7)0÷76= 0 (9)99-0= 99
(6)128-128= 0
(8)235+0= 235
(10)49-49= 0
(11)0+319= 319 (12)29×0= 0
想一想,你知道哪些有关0的运算。
“0”的自述
大家好!我是“0”,任何一个数和我 相加都得( );任何数与我相乘都得 ( );任何数减去我都得( ); ( )等于( ቤተ መጻሕፍቲ ባይዱ时差会是我。我可以 做加数,也可以做( ),还可以做 ( )和( ),就是不能做 ( )。
判断
(1)0+7=0 (2)345-0=345 (3)278-278=278 (4)0 ×100=0 ( (5)0 ÷99=0
0×34÷16 125×0+165
25+123-(25+123)
56×2-56×2 46+120×(3-3)
34+25×0 0 ÷23+55 18 - 0×(45 ÷ 9) 205 × 26 ×0
思考
把一个数加上7,乘上7,减去 7,除以7,结果还是7。你知 道这个数是多少吗? (
+7 )( × 7 )( — 7 )(
四则运算
——有关0的运算
在数字队伍中有一个0,她呀,轻浮高傲。 本来她和1亲密相处,她有一天却晃着圆圆的 脑袋对1夸耀:“哈哈,我0可真了不得,你1 正是因为有了我,身价才十倍提高。”在1的 劝说下无效,还趾高气扬地离开了1。哼,我 去把我的无数个0的伙伴找来,和你比一比! “结果找了许多是0的朋友,凑在一起,还是 0,一无所有。当0懊恼的走着,突然眼睛一 亮,前面走着她的伙伴三个0,她们跟在1的 后面,组成了1000这个闪光的数字,得到数 字伙伴的拥护,才知道自己一个人是多么的 渺小……