高2021届高2018级江苏省南京市金陵中学高三上学期8月学情调研测试数学试题解析版
江苏省南京市2018届高三上学期期初学情调研考试-数学
南京市2018届高三年级学情调研数学柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上. 1.若集合P ={-1,0,1,2},Q ={0,2,3},则P ∩Q = ▲ . 2.若(a +b i)(3-4i)=25 (a ,b ∈R ,i 为虚数单位),则a +b 的值为 ▲ .3.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业 倾向,用分层抽样的方法从该校这四个专业中抽取40名学生进行调查,则应从丙专业抽 取的学生人数为 ▲ .4.如图所示的算法流程图,若输出y 的值为12,则输入x 的值为 ▲ .5.记函数f (x )=4-3x -x 2 的定义域为D .若在区间 [-5,5]上随机取一个数x ,则x ∈D 的概率为 ▲ . 6.在平面直角坐标系xOy 中,双曲线x 216-y 29=1的焦点到其渐近线的距离为 ▲ .7.已知实数x ,y 满足条件⎩⎪⎨⎪⎧2≤x ≤4,y ≥3,x +y ≤8,则z =3x -2y 的最大值为 ▲ .8.将一个正方形绕着它的一边所在的直线旋转一周,所得 圆柱的体积为27πcm 3,则该圆柱的侧面积为 ▲ cm 2. 9.若函数f (x )=A sin(ωx +ϕ)(A >0,ω>0,|ϕ|<π)的部分图 象如图所示,则f (-)的值为 ▲ .10.记等差数列{a n }前n 项和为S n .若a m =10,S 2m -1=110, 则m 的值为 ▲ .11.已知函数f (x )是定义在R 上的奇函数,且在(-∞,0]上为单调增函数.若f (-1)=-2,则满足f (2x -3)≤2的x 的取值范围是 ▲ .Y(第4题)结束输入xx ≥0y ←2x输出yN开始y ←log 2(-x )xOy(第9题)4π212.在△ABC 中,AB =3,AC =2,∠BAC =120︒,→BM =λ→BC .若→AM ·→BC =-173,则实数λ的值为 ▲ .13.在平面直角坐标系xOy 中,若圆(x -2)2+(y -2)2=1上存在点M ,使得点M 关于x 轴的对称点N 在直线kx +y +3=0上,则实数k 的最小值为 ▲ .14.已知函数f (x )=⎩⎨⎧2x 2,x ≤0,-3|x -1|+3,x >0.若存在唯一的整数x ,使得f (x )-ax >0成立,则实数a 的取值范围为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点,求证: (1)平面AB 1E ⊥平面B 1BCC 1; (2)A 1C //平面AB 1E .16.(本小题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos B =45.(1)若c =2a ,求sin Bsin C 的值;(2)若C -B =π4,求sin A 的值.17.(本小题满分14分)A 1B 1C 1ABCE(第15题)某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x 人,他们加工完甲型装置所需时间为t 1小时,其余工人加工完乙型装置所需时间为t 2小时.设f (x )=t 1+t 2. (1)求f (x )的解析式,并写出其定义域; (2)当x 等于多少时,f (x )取得最小值?18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点(1,32).过椭圆C 的左顶点A 作直线交椭圆C 于另一点P ,交直线l :x =m (m >a )于点M .已知点B (1,0),直线PB 交l 于点N . (1)求椭圆C 的方程;(2)若MB 是线段PN 的垂直平分线,求实数m 的值.(第18题)19.(本小题满分16分)已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(1)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;(2)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;(3)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),记h(a)=M(a)-m(a),求h(a)的最小值.20.(本小题满分16分)已知数列{a n}的各项均为正数,记数列{a n}的前n项和为S n,数列{a n2}的前n项和为T n,且3T n=S n2+2S n,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式;(3)若k,t∈N*,且S1,S k-S1,S t-S k成等比数列,求k和t的值.南京市2018届高三年级学情调研卷数学附加题 2017.09注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校写在答题卡上.试题的答案写在答.题卡..上对应题目的答案空格内.考试结束后,交回答题卡.21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷.卡指定区域内......作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,CD 是圆O 的切线,切点为D ,CA 是过圆心O 的割线且交圆O 于点B , DA =DC .求证: CA =3CB .B .选修4—2:矩阵与变换设二阶矩阵A =⎣⎡⎦⎤1234.(1)求A -1;(2)若曲线C 在矩阵A 对应的变换作用下得到曲线C ':6x 2-y 2=1,求曲线C 的方程.C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-1+t ,y =t(t 为参数),圆C的参数方程(第21A 题)为⎩⎨⎧x =a +cos ,y =2a +sin(θ为参数).若直线l 与圆C 相切,求实数a 的值.D .选修4—5:不等式选讲 解不等式:|x -2|+|x +1|≥5.【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB ⊥AD ,AD ∥BC ,AP =AB =AD=1.(1)若直线PB 与CD 所成角的大小为π3,求BC 的长;(2)求二面角B -PD -A 的余弦值.23.(本小题满分10分)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球. (1)若两个球颜色不同,求不同取法的种数;(2)在(1)的条件下,记两球编号的差的绝对值为随机变量X ,求随机变量X 的概率分布与数学期望.CDPBA(第22题)南京市2018届高三年级学情调研数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分.)1.{0,2} 2.7 3.16 4.- 2 5.126.3 7. 6 8.189.-1 10.611.(-∞,2] 12.13 13.-4314.[0,2]∪[3,8]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内) 15.(本小题满分14分)证明:(1)在直三棱柱ABC -A 1B 1C 1中,CC 1平面ABC . 因为AE 平面ABC ,所以CC 1AE . ……………2分因为AB =AC ,E 为BC 的中点,所以AE BC . 因为BC 平面B 1BCC 1,CC 1平面B 1BCC 1,且BC ∩CC 1=C ,所以AE 平面B 1BCC 1. ………………5分 因为AE 平面AB 1E ,所以平面AB 1E 平面B 1BCC 1. ……………………………7分 (2)连接A 1B ,设A 1B ∩AB 1=F ,连接EF .A 1B 1C 1 ABCE(第15题) F在直三棱柱ABC -A 1B 1C 1中,四边形AA 1B 1B 为平行四边形,所以F 为A 1B 的中点. ……………………………9分 又因为E 是BC 的中点,所以EF ∥A 1C . ……………………………11分 因为EF 平面AB 1E ,A 1C 平面AB 1E ,所以A 1C ∥平面AB 1E . ……………………………14分16.(本小题满分14分) 解:(1)解法1在△ABC 中,因为cos B =45,所以a 2+c 2-b 22ac =45. ………………………2分因为c =2a ,所以(c2)2+c 2-b 22c ×c 2=45,即b 2c 2=920,所以b c =3510. ……………………………4分又由正弦定理得sin B sin C =bc ,所以sin B sin C =3510. ……………………………6分 解法2因为cos B =45,B ∈(0,),所以sin B =1-cos 2B =35.………………………2分因为c =2a ,由正弦定理得sin C =2sin A , 所以sin C =2sin(B +C )=65cos C +85sin C ,即-sin C =2cos C . ………………………4分 又因为sin 2C +cos 2C =1,sin C >0,解得sin C =255,所以sin B sin C =3510. ………………………6分 (2)因为cos B =45,所以cos2B =2cos 2B -1=725. …………………………8分又0<B <π,所以sin B =1-cos 2B =35,所以sin2B =2sin B cos B =2×35×45=2425. …………………………10分因为C -B =π4,即C =B +π4,所以A =π-(B +C )=3π4-2B ,所以sin A =sin(3π4-2B )=sin 3π4cos2B -cos 3π4sin2B ………………………………12分=22×725-(-22)×2425=31250. …………………………………14分17.(本小题满分14分)解:(1)因为t 1=9000x, ………………………2分t 2=30003(100-x )=1000100-x , ………………………4分所以f (x )=t 1+t 2=9000x +1000100-x , ………………………5分定义域为{x |1≤x ≤99,x ∈N *}. ………………………6分 (2)f (x )=1000(9x +1100-x )=10[x +(100-x )]( 9x +1100-x)=10[10+9(100-x )x + x100-x ]. ………………………10分因为1≤x ≤99,x ∈N *,所以9(100-x )x >0,x100-x>0, 所以9(100-x )x + x100-x≥29(100-x )x x100-x=6, …………………12分 当且仅当9(100-x )x =x100-x ,即当x =75时取等号. …………………13分答:当x =75时,f (x )取得最小值. ………………………14分18.(本小题满分16分) 解:(1)因为椭圆C 的离心率为32,所以a 2=4b 2. ………………………2分 又因为椭圆C 过点(1,32),所以1a 2+34b 2=1, ………………………3分解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1. ………………………5分(2)解法1设P (x 0,y 0),-2<x 0<2, x 0≠1,则x 024+y 02=1.因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0),所以2-x 0=m . ………………………7分 由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y =y 0x 0+2(x +2),令x =m ,得y =y 0(m +2) x 0+2,即M (m ,y 0(m +2)x 0+2).因为PB ⊥MB ,所以k PB ·k MB =-1,所以k PB ·k MB =y 0x 0-1·y 0(m +2)x 0+2 m -1=-1, ………………………10分即y 02(m +2)(x 0-1)( x 0+2)( m -1)=-1. 因为x 024+y 02=1.所以( x 0-2)(m +2)4(x 0-1) ( m -1)=1. ………………………12分因为x 0=2-m ,所以化简得3m 2-10m +4=0,解得m =5±133. ………………………15分因为m >2,所以m =5+133. ………………………16分解法2①当AP 的斜率不存在或为0时,不满足条件. ………………………6分 ②设AP 斜率为k ,则AP :y =k (x +2),联立⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x +2),消去y 得(4k 2+1)x 2+16k 2x +16k 2-4=0.因为x A =-2,所以x P =-8k 2+24k 2+1,所以y P =4k 4k 2+1,所以P (-8k 2+24k 2+1,4k4k 2+1). ………………………8分因为PN 的中点为B ,所以m =2--8k 2+24k 2+1=16k 24k 2+1.(*) ……………………10分因为AP 交直线l 于点M ,所以M (m ,k (m +2)),因为直线PB 与x 轴不垂直,所以-8k 2+24k 2+1≠1,即k 2≠112,所以k PB =4k4k 2+1-8k 2+24k 2+1-1=-4k 12k 2-1,k MB =k (m +2)m -1. 因为PB ⊥MB ,所以k PB ·k MB =-1,所以-4k 12k 2-1·k (m +2)m -1=-1.(**) ………………………12分将(*)代入(**),化简得48k 4-32k 2+1=0,解得k 2=4±1312,所以m =16k 24k 2+1=5±133. ………………………15分又因为m >2,所以m =5+133. ………………………16分19.(本小题满分16分)解:(1)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a ,所以曲线y =f (x )在x =0处的切线斜率k =f ′(0)=6a ,所以6a =3,所以a =12. ………………………2分(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2ln xx 2. ………………………4分令g (x )=2ln xx 2,x >0,则g '(x )=2(1-2ln x )x 3.令g '(x )=0,解得x =e .当x ∈(0,e)时,g '(x )>0,所以g (x )在(0,e)上单调递增;当x ∈(e ,+∞)时,g '(x )<0,所以g (x )在(e ,+∞)上单调递减. 所以g (x )max =g (e)=1e , ………………………6分所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e ]. ………………………8分(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4.令f ′(x )=0,则x =1或a . ………………………10分 f (1)=3a -1,f (2)=4.①当1<a ≤53时,当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)≤f (2),所以M (a )=f (2)=4,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=4-(-a 3+3a 2)=a 3-3a 2+4. 因为h ' (a )=3a 2-6a =3a (a -2)<0, 所以h (a )在(1,53]上单调递减,所以当a ∈(1,53]时,h (a )最小值为h (53)=827.………………………12分②当53<a <2时,当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)>f (2),所以M (a )=f (1)=3a -1,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1. 因为h ' (a )=3a 2-6a +3=3(a -1)2≥0. 所以h (a )在(53,2)上单调递增,所以当a ∈(53,2)时,h (a )>h (53)=827. ………………………14分③当a ≥2时,当x ∈(1,2)时,f '(x )<0,所以f (x )在(1,2)上单调递减, 所以M (a )=f (1)=3a -1,m (a )=f (2)=4, 所以h (a )=M (a )-m (a )=3a -1-4=3a -5, 所以h (a )在[2,+∞)上的最小值为h (2)=1.综上,h (a )的最小值为827. ………………………16分20.(本小题满分16分)解:(1)由3T 1=S 12+2S 1,得3a 12=a 12+2a 1,即a 12-a 1=0.因为a 1>0,所以a 1=1. ………………………2分 (2)因为3T n =S n 2+2S n , ①所以3T n +1=S n +12+2S n +1,②②-①,得3a n +12=S n +12-S n 2+2a n +1. 因为a n +1>0,所以3a n +1=S n +1+S n +2, ③ ………………………5分 所以3a n +2=S n +2+S n +1+2,④④-③,得3a n +2-3a n +1=a n +2+a n +1,即a n +2=2a n +1,所以当n ≥2时,a n +1a n =2. ………………………8分又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2), 即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2,所以对n ∈N *,都有a n +1a n=2成立,所以数列{a n }的通项公式为a n =2n -1,n ∈N *. ………………………10分(3)由(2)可知S n =2n -1.因为S 1,S k -S 1,S t -S k 成等比数列,所以(S k -S 1)2=S 1(S t -S k ),即(2k -2)2=2t -2k , ………………………12分所以2t =(2k )2-32k +4,即2t -2=(2k -1)2-32k -2+1(*). 由于S k -S 1≠0,所以k ≠1,即k ≥2.当k =2时,2t =8,得t =3. ………………………14分当k ≥3时,由(*),得(2k -1)2-32k -2+1为奇数,所以t -2=0,即t =2,代入(*)得22k -2-32k -2=0,即2k =3,此时k 无正整数解. 综上,k =2,t =3. ………………………16分南京市2018届高三年级学情调研数学附加题参考答案及评分标准21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲 证明:连接OD ,因为DA =DC ,所以∠DAO =∠C .………………………2分在圆O 中,AO =DO ,所以∠DAO =∠ADO ,所以∠DOC =2∠DAO =2∠C .………………………5分因为CD 为圆O 的切线,所以∠ODC =90°,从而DOC +C =90°,即2C +C =90°,故∠C =30°, ………………………7分 所以OC =2OD =2OB ,所以CB =OB ,所以CA =3CB . ………………………10分B .选修4—2:矩阵与变换解:(1)根据逆矩阵公式,可得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-2132-12. ………………………4分 (2)设曲线C 上任意一点P (x ,y )在矩阵A 对应的变换作用下得到点P(x,y),则⎣⎢⎡⎦⎥⎤x y =⎣⎡⎦⎤1234 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,所以⎩⎨⎧x =x +2y ,y =3x +4y .……………………8分因为(x ,y )在曲线C 上,所以6x 2-y 2=1,代入6(x +2y )2-(3x +4y )2=1,化简得8y 2-3x 2=1,DB CO (第21A 题)所以曲线C 的方程为8y 2-3x 2=1. ………………………10分C .选修4—4:坐标系与参数方程解:由直线l 的参数方程为⎩⎨⎧x =-1+t ,y =t,得直线l 的普通方程为x -y +1=0.………………………2分由圆C 的参数方程为⎩⎨⎧x =a +cos ,y =2a +sin ,得圆C 的普通方程为(x -a )2+(y -2a )2=1.………………………4分因为直线l 与圆C 相切,所以∣a -2a +1∣2=1, ………………………8分解得a =1±2.所以实数a 的值为1±2. ………………………10分 D .选修4—5:不等式选讲解:(1)当x <-1时,不等式可化为-x +2-x -1≥5,解得x ≤-2;……………………2分(2)当-1≤x ≤2时,不等式可化为-x +2+x +1≥5,此时不等式无解;……………4分 (3)当x >2时,不等式可化为x -2+x +1≥5,解得x ≥3; ……………………6分 所以原不等式的解集为(-∞,-2]∪[3,+∞). …………………………10分 【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)以{→AB ,→AD ,→AP }为单位正交基底,建立如图所示的空间直角坐标系A -xyz . 因为AP =AB =AD =1,所以A (0,0,0),B (1,0,0),D (0,1,0),P (0,0,1). 设C (1,y ,0),则→PB =(1,0,-1),→CD =(-1,1-y ,0).…………………………2分因为直线PB 与CD 所成角大小为π3,所以|cos <→PB ,→CD >|=|→PB →CD ∣→PB ∣∣→CD ∣|=12, 即12×1+(1-y )2=12,解得y =2或y =0(舍),DPBA(第22题) x y z所以C (1,2,0),所以BC 的长为2. ………………………5分 (2)设平面PBD 的一个法向量为n 1=(x ,y ,z ).因为→PB =(1,0,-1),→PD =(0,1,-1), 则⎩⎪⎨⎪⎧→PB n 1=0,→PD n 1=0,即⎩⎨⎧x -z =0,y -z =0.令x =1,则y =1,z =1,所以n 1=(1,1,1). ………………………7分 因为平面P AD 的一个法向量为n 2=(1,0,0),所以cos <n 1,n 2>=n 1n 2∣n 1∣|n 2∣=33,所以,由图可知二面角B -PD -A 的余弦值为33. ………………………10分 23.(本小题满分10分)解:(1)两个球颜色不同的情况共有C 24⋅42=96(种). ………………………3分(2)随机变量X 所有可能的值为0,1,2,3.P (X =0)=4C 2496=14, ………………………5分 P (X =1)=3C 14⋅C 1396=38, P (X =2)=2C 14⋅C 1396=14, P (X =3)=C 14⋅C 1396=18.所以随机变量X 的概率分布列为:………………………8分所以E (X )=014+138+214+318=54. ………………………10分X 0 1 2 3 P1438 1418。
江苏省金陵中学2021届高三数学上学期期中
金陵中学2021—2021学年度高三数学第一学期期中考试试题考前须知:考生答题前请认真阅读考前须知及各题答案要求。
1.本试卷包含填空题〔第1题—第4题〕、解答题〔第15题—第20题〕两局部。
本试卷总分值160分,考试时间为120分钟。
2.答题前,请务必将自己的姓名、考试证号用书写黑色字的0.5毫米签字笔填写在试卷及答题卡上。
3.作答时必须用斗5写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位 置作答一律无效。
4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚。
一、填空题:本大题共14小题,每题5分,共70分.不需要写出解答过程,把答案直接填在答题卡相应位置上.1.设集合M={x|0≤x -≤1},函数()1f x x =-的定义域为N ,那么M∩N= 。
2.复数z 满足〔1+2i 〕z=4+3i ,那么z= .3.函数y=x 2—2x (x∈[0,3]的值域是4.5cos 3a =。
且a∈〔一2π,0〕, 那么sin(a π-)= 。
5.在△ABC 中,3A=45°,B=75°,那么BC 等于 。
6.直线12y x b =+是曲线y=lnx(x>0)的 一条切线,那么实数b 的值是 。
7.一个算法的流程图如下图?假设输入的n 是100,那么输出值S 是 。
8.集合A=(x ,y 〕|x 一2y 一l=0},B={(x ,y)|ax-by+1=0},其中a ,b ∈{1,2,3,4,5,6},那么A ∩B=φ的概率为 .9.函数()sin()f x A x ωϕ=+(其中A>0,0ω>,||2πϕ<)的图象如下图,那么,f(0)= 。
10.3()f x x ax =-在区间[1,+∞〕上是单调增函数,那么实数a 的最大值是 。
11.不等式1||40x a x+-+>对于一切非零实数x 均成立,那么实数a 的取值范围是 。
12.向量1(1,1),(0,)5m n ==,设向量(cos ,sin )([0,]),()OA m OA n αααπ=∈⊥-且,那么tan α= 。
江苏省南京市金陵中学2023-2024学 年高三下学期期初学情调研测试数学试卷(含解析)
高三年级期初学情调研测试数学一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设向量,,则“”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件2.若函数由下表给出,则函数的解析式可能是()012352.3 1.10.7 1.1 2.3 5.949.1A. B.C. D.3.已知集合,则中元素的个数为()A.1B.2C.3D.44.“中国剩余定理”又称“孙子定理”,1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲,1874年,英国数学家马西森指出此法符合1901年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”,“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到520这520个数中,能被3除余1且被4除余1的数从小到大的顺序排成一列,构成数列,则此数列的项数为()4.43 B.44 C.45 D.465.已知双曲线的光学性质:从双曲线的一个焦点出发的光线,经双曲线反射后,反射光线的反向延长线经过另一个焦点,如图所示,一镜面的轴截面是双曲线的一部分,是它的一条对称轴,是它的左焦点,光线从焦点发出,经过镜面上点,反射光线为,若,,则该双曲线的离心率为()A.2B.C.D.6.某单位春节共有四天假期,但每天都需要留一名员工值班,现从甲、乙、丙、丁、戊、己六人选出四人值班,每名员工最多值班一天,已知甲在第一天不值班,乙在第四天不值班,则值班安排共有()A.192种 B.252种 C.268种 D.360种7.已知函数,若,则实数的取值范围是()A. B. C. D.8.已知空间中13个不同的点构成的集合,满足时,均为正四面体,则集合中最多可以有()个点在同一平面内.A.9B.10C.11D.12二、多项选择题:本大题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9.下图为某商家1月至10月某商品的月销售量,则下列说法正确的是()A.这10个月的月销售量的极差为15B.这10个月的月销售量的第65位百分位数为33C.这10个月的月销售量的中位数为30D.前5个月的月销售量的方差大于后5个月的月销售量的方差10.设函数,若有且仅有三个零点,则下列说法中正确的是()A.有且仅有两个零点B.有一个或两个零点C.在区间上单调递减D.的取值范围是11.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球的半径为,,,为球面上三点,劣弧的弧长记为,设表示以为圆心,且过,的圆,同理,圆,的劣弧,的弧长分别记为,,曲面(阴影部分)叫做曲面三角形,若,则称其为曲面等边三角形,线段,,与曲面围成的封闭几何体叫做球面三棱锥,记为球面.设,,,则下列结论正确的有()A.若平面是面积为的等边三角形,则B.若,则C.若,则球面的体积D.若平面为直角三角形,且,则三、填空题:本大题共3小题,每小题5分,共15分.12.设,是一个随机试验中的两个事件,若,,,则________.13.数学月考出了这样一道题:设,为椭圆上的两个动点,若直线上存在点,使得为直角,求实数的取值范围.小峰同学没有思路,于是求助数学老师,老师拍拍他的肩膀告诉他:从前,有个叫蒙日的数学家,发现椭圆的两条互相垂直的切线的交点所构成的轨迹是一个定圆.小峰顿悟,于是写出了答案:________.14.已知函数,若,且,恒有,则正实数的取值范围为________.四、解答题:本大题共5小题,共77分.15.(本小题满分13分)如图,一个质点在随即外力的作用下,从原点出发,随机移动次,每次等可能地向左或向右移动一个单位长度.次移动结束后,质点到达的位置的数字记为.(1)若,求质点又回到原点的概率;(2)若,求的分布列和的值.16.(本小题满分15分)如图,在中,,为外一点,,记,.(1)求的值;(2)若的面积为,的面积为,求的最大值.17.(本小题满分15分)如图,在四棱锥中,底面是直角梯形,,,,.(1)证明:平面;(2)已知,,,平面平面,若平面与平面的夹角的余弦值为,求.18.(本小题满分17分)已知椭圆:的上顶点为,离心率为.抛物线:截轴所得的线段长为的长半轴长.(1)求椭圆的方程;(2)过原点的直线与相较于,两点,直线,分别与交于,两点.①证明:直线与直线的斜率之积为定值;②记和的面积分别是,,求的最小值.19.(本小题满分17分)设函数的导函数为,若对任意恒成立,则称函数在区间上的“一阶有界函数”.(1)判断函数和是否为上的“一阶有界函数”,并说明理由;(2)若函数为上的“一阶有界函数”,且在上单调递增,设,为函数图像上相异的两点,直线的斜率为,试判断“”是否正确,并说明理由;(3)若函数为区间上的“一阶有界函数”,求的取值范围.参考答案1.【答案】B【解析】,则,,“”是“”的充分不必要条件,故选B.2.【答案】A【解析】由表格得出,,,为偶函数;,,,增长幅度变动较大,可知为指数型增长,故选A.3.【答案】C【解析】,,为奇数时,,,,,,,,…,故选C. 4.【答案】B【解析】由题意知,,,,故选B.5.【答案】C【解析】由双曲线光学性质得,反向延长线交于点,且点为右焦点,则,,,,故为等腰直角三角形,,,,,故选C.6.【答案】B【解析】若甲乙不值班,值班安排有种;若甲乙只有一人不值班,值班安排有种;若甲乙都值班,值班安排有种;共有252种,故选B.7.【答案】C【解析】若,,恒成立;若,,,即,,解得;综上,故选C.8.【答案】C【解析】已知,,,为正四面体,设最多可以有个点在平面内,其中在平面内,必然不在平面内,可在平面内,若在平面内,则必然不在平面内,可在平面内,故最多有11个点在平面内,故选C.9.【答案】AB【解析】由图知,月销售量最大值为40,最小值15,极差为15,故A正确;月销售量由小到大排:25,26,27,28,28,30,33,36,37,40,第65位百分位数为第7位33,故B正确;中位数为,故C错误;前5个月的月销售量比后5个月的月销售量波动更小,因此前5个月的月销售量的方差小于后5个月的月销售量的方差,故D错误;故选AB.10.【答案】ABD【解析】,,若有且仅有三个零点,则,则图像向上平移一个单位,有且仅有两个零点,故A正确;图像向下平移一个单位,有一个或两个零点,故B正确;,,故D正确;,,因为,则,,故C错误;故选ABD.11.【答案】BC【解析】对于A,若平面是面积为的等边三角形,则,则,则,故错误;对于B,若,则,,故正确;对于C,若,则,,点到平面的距离为,三棱锥的体积为,则球面的体积,故正确;对于D,若平面为直角三角形,且,则,由余弦定理得:取,,,,,故错误;故选BC.12.【答案】【解析】,,,,;故答案为.13.【答案】【解析】由题知,因为椭圆的两条互相垂直的切线的交点所构成的轨迹是一个定圆,所以,直线围成的矩形外接圆即为该定圆:.若直线上存在点使为直角,即,为椭圆切线时,该直线与该圆有交点,,解得,故答案为.14.【答案】【解析】若,且,恒有,令,则,,令,即在上单调递减,,,令,恒成立,在上单调递增,故,,令,,,,,,,即,故.15.【答案】(1);(2)见解析【解析】(1)由题知,2次移动后质点又回到原点,即其中有1次向左移动,有1次向右移动,故质点又回到原点的概率为;(2)由题知,可取,,,0,2,4,6,由对称性知,,,,即的分布列为0246.6.【答案】(1);(2)【解析】(1)在中,,在中,,因此;(2),,,当时,取到最大值. 17.【答案】(1)见解析;(2)【解析】(1)如图,连接交于点,连接;∵面是直角梯形∴,∵∴∵∴平面平面∴平面;(2)已知,,,在中,,∴∵平面平面平面平面∴平面如图,过点作面的垂线,垂线在平面内,以点为坐标原点,,,直线分别为,,轴建立空间直角坐标系,设,,∵,,∴,设平面法向量为,,取,;设平面法向量为,,取,,则平面与平面的夹角的余弦值为解得,,因为,故.18.【答案】(1);(2)①见解析;②【解析】(1)抛物线:截轴所得的线段长为的长半轴长,令,,,椭圆离心率为,,,故椭圆的方程;(2)①由题知,直线的斜率必然存在,设方程,,,与联立方程:,,,,故直线与直线的斜率之积为定值;②由①得,显然直线,斜率存在且不为0,设:,联立:,,联立:,,,同理:,,;则,故当且仅当时等号成立,即最小值为.19.【答案】(1)见解析;(2)见解析;(3)【解析】(1),在上恒成立,故是上的“一阶有界函数”;,,,,故不是上的“一阶有界函数”;(2)若函数为上的“一阶有界函数”,则,在上单调递增,,,令,,在上单调递减,设,,其中,故;在上单调递增,,,故;(3)函数,若为区间上的“一阶有界函数”,则,其中,,,,,,则.令,,其中,,在区间上单调递增,故在区间上单调递增,,,所以存在,使,,,,,在区间单调递增,在区间单调递减,即,对称轴为,在区间上单调递减,恒成立,,故.。
2021届江苏省南京市金陵中学高三上学期学情调研测试(一)数学试题含答案
金陵中学2021届高三年级学情调研测试(一)数学试卷命题人:审核:一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填写在答题卡相应位置上.1. 已知集合A ={x |x 2-3x -4>0},B ={x |ln x >0},则(∁R A )∩B = ( )A .B .(0,4]C .(1,4]D .(4,+∞)2. 设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3. 下列命题中正确的是 ( )A .若a >b ,则ac >bcB .若a >b ,c >d ,则a -c >b -dC .若ab >0,a >b ,则1a <1bD .若a >b ,c >d ,则a c >bd4. 已知正项等比数列{a n }的前n 项和为S n ,若a 4=18,S 3-a 1=34,则S 5= ( )A .3132B .3116C .318D .3145. (x -1)(2x +1)10的展开式中x 10的系数为 ( )A .-512B .1024C .4096D .51206. 某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布N (105,σ2)(σ>0),试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( ) A .150B .200C .300D .4007. 如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=6,则此抛物线方程为 ( ) A .y 2=9x B .y 2=6x C .y 2=3x D .y 2=3x8. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为P ,直线l :4x -3y =0与椭圆C 相交于A ,B 两点.若|AF |+|BF |=6,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是 ( ) A .(0,59]B .(0,32]C .(0,53]D .(13,32]二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得3分,有选错的得0分.9. 若函数f (x )=sin(2x -π3)与g (x )=cos(x +π4)都在区间(a ,b )(0<a <b <π)上单调递减,则b -a 的可能取值为 ( ) A .π6B .π3C .π2D .5π1210. 下列说法中正确的是 ( )A .设随机变量X 服从二项分布B ⎝⎛⎭⎫6,12,则P (X =3)=516B .已知随机变量X 服从正态分布N (2,σ2)且P (X <4)=0.9,则P (0<X <2)=0.4C .E (2X +3)=2E (X )+3;D (2X +3)=2D (X )+3D .已知随机变量ξ满足P (ξ=0)=x ,P (ξ=1)=1-x ,若0<x <12,则E (ξ)随着x 的增大而减小,D (ξ)随着x 的增大而增大11. 下列四个命题中,是真命题的是 ( )A .∀x ∈R ,且x ≠0,x +1x ≥2 B .若x >0,y >0,则x 2+y 22≥2xy x +yC .函数f (x )=x +2-x 2值域为[-2,2]D .已知函数f (x )=⎪⎪⎪⎪x +9x +a -a 在区间[1,9]上的最大值是10,则实数a 的取值范围为[-8,+∞)12. 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是 ( ) A .a 6=8B .S 7=33C .a 1+a 3+a 5+…+a 2019=a 2022D .a 21+a 22+…+a 22019a 2019=a 2020三、填空题:本题共4小题,每小题5分,共20分.13. 已知向量→a =(2,-6),→b =(3,m ),若|→a +→b |=|→a -→b |,则m =▲________.14. 三月份抗疫期间,我校团委安排高一学生2人、高二学生2人、高三学生1人参加A 、B 、C 三个社区志愿点的活动,要求每个活动点至少1人,最多2人参与,同一个年级的学生不去同一个志愿点,高三学生不去A 志愿点,则不同的安排方法有▲________种(用数字作答).15. 在直三棱柱ABC -A 1B 1C 1内有一个与各个面均相切的球.若AB ⊥BC ,AB =6,BC =8,则AA 1的长度为▲________.16. 已知函数f (x )=⎩⎪⎨⎪⎧k (1-2x),x <0,x 2-2k ,x ≥0,若函数g (x )=f (-x )+f (x )有且仅有四个不同的零点,则实数k的取值范围是▲________.四、解答题:本题共6小题,第17题10分,其余每小题12分,共70分.17. 现给出两个条件:①2c -3b =2a cos B ,②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,________. (1)求A ;(2)若a =3-1,求△ABC 周长的最大值.18. 已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S n 2=a n (S n -12).(1)求S n 的表达式;(2)设b n =S n2n +1,求数列{b n }的前n 项和T n .19. 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.20. 成都市现在已是拥有1 400多万人口的城市,机动车保有量已达450多万辆,成年人中约40%拥有机动车驾驶证.为了解本市成年人的交通安全意识情况,某中学的同学利用国庆假期进行了一次全市成年人安全知识抽样调查.先根据是否拥有驾驶证,用分层抽样的方法抽取了200名成年人,然后对这200人进行问卷调查.这200人所得的分数都分布在[30,100]范围内,规定分数在80以上(含80)的为“具有很强安全意识”,所得分数的频率分布直方图如图所示.拥有驾驶证 没有驾驶证 总计具有很强安全意识 不具有很强安全意识58 总计200驾驶证有关?(2)将上述调查所得的频率视为概率,现从全市成年人中随机抽取4人,记“具有很强安全意识”的人数为X ,求X 的分布列及数学期望.附表及公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .21. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),点(1,32)在椭圆C上,点A (-3c ,0)满足以AF 2为直径的圆过椭圆的上顶点B . (1)求椭圆C 的方程;(2)已知直线过右焦点F 2且与椭圆C 交于M ,N 两点,在x 轴上是否存在点P (t ,0)使得PM →·PN →为定值?如果存在,求出点P 的坐标;如果不存在,说明理由.22. 已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ). (1)求函数f (x )的极小值;(2)若g (x )=xf '(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.金陵中学高三年级学情调研测试(一)数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填写在答题卡相应位置上.1. 已知集合A ={x |x 2-3x -4>0},B ={x |ln x >0},则(∁R A )∩B =( )A .B .(0,4]C .(1,4]D .(4,+∞)答案:C2. 设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案:C3. 下列命题中正确的是( )A .若a >b ,则ac >bcB .若a >b ,c >d ,则a -c >b -dC .若ab >0,a >b ,则1a <1bD .若a >b ,c >d ,则a c >bd答案:C4. 已知正项等比数列{a n }的前n 项和为S n ,若a 4=18,S 3-a 1=34,则S 5=( )A .3132B .3116C .318D .314答案:B5. (x -1)(2x +1)10的展开式中x 10的系数为( )A .-512B .1024C .4096D .5120答案:C6. 某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布N (105,σ2)(σ>0),试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( ) A .150B .200C .300D .400答案:C7. 如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=6,则此抛物线方程为( ) A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x答案:B8. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为P ,直线l :4x -3y =0与椭圆C 相交于A ,B 两点.若|AF |+|BF |=6,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( ) A .(0,59]B .(0,32]C .(0,53]D .(13,32]答案:C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得3分,有选错的得0分.9. 若函数f (x )=sin(2x -π3)与g (x )=cos(x +π4)都在区间(a ,b )(0<a <b <π)上单调递减,则b -a 的可能取值为( ) A .π6B .π3C .π2D .5π12答案:AB10. 下列说法中正确的是( )A .设随机变量X 服从二项分布B ⎝⎛⎭⎫6,12,则P (X =3)=516B .已知随机变量X 服从正态分布N (2,σ2)且P (X <4)=0.9,则P (0<X <2)=0.4C .E (2X +3)=2E (X )+3;D (2X +3)=2D (X )+3D .已知随机变量ξ满足P (ξ=0)=x ,P (ξ=1)=1-x ,若0<x <12,则E (ξ)随着x 的增大而减小,D (ξ)随着x 的增大而增大 答案:ABD11. 下列四个命题中,是真命题的是( )A .∀x ∈R ,且x ≠0,x +1x ≥2 B .若x >0,y >0,则x 2+y 22≥2xy x +yC .函数f (x )=x +2-x 2值域为[-2,2]D .已知函数f (x )=⎪⎪⎪⎪x +9x +a -a 在区间[1,9]上的最大值是10,则实数a 的取值范围为[-8,+∞) 答案:BCD12. 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 6=8B .S 7=33C .a 1+a 3+a 5+…+a 2019=a 2022D .a 21+a 22+…+a 22019a 2019=a 2020 答案:ABD三、填空题:本题共4小题,每小题5分,共20分.13. 已知向量→a =(2,-6),→b =(3,m ),若|→a +→b |=|→a -→b |,则m =▲________. 答案:114. 三月份抗疫期间,我校团委安排高一学生2人、高二学生2人、高三学生1人参加A 、B 、C 三个社区志愿点的活动,要求每个活动点至少1人,最多2人参与,同一个年级的学生不去同一个志愿点,高三学生不去A 志愿点,则不同的安排方法有▲________种(用数字作答). 答案:4015. 在直三棱柱ABC -A 1B 1C 1内有一个与各个面均相切的球.若AB ⊥BC ,AB =6,BC =8,则AA 1的长度为▲________. 答案:416. 已知函数f (x )=⎩⎪⎨⎪⎧k (1-2x),x <0,x 2-2k ,x ≥0,若函数g (x )=f (-x )+f (x )有且仅有四个不同的零点,则实数k的取值范围是▲________. 答案:(27,+∞)四、解答题:本题共6小题,第17题10分,其余每小题12分,共70分.17. 现给出两个条件:①2c -3b =2a cos B ,②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,________. (1)求A ;(2)若a =3-1,求△ABC 周长的最大值.解析:若选择条件①2c -3b =2a cos B .(1)由余弦定理可得2c -3b =2a cos B =2a ·a 2+c 2-b 22ac ,整理得c 2+b 2-a 2=3bc ,………2分可得cos A =b 2+c 2-a 22bc =3bc 2bc =32.…………………………………………………3分 因为A ∈(0,π),所以A =π6. …………………………………………………………5分 (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得(3-1)2=b 2+c 2-2bc ·32,………6分 即4-23=b 2+c 2-3bc =(b +c )2-(2+3)bc ,亦即(2+3)bc =(b +c )2-(4-23), 因为bc ≤(b +c )24,当且仅当b =c 时取等号, 所以(b +c )2-(4-23)≤(2+3)×(b +c )24,解得b +c ≤22,…………………………………………………………8分 当且仅当b =c =2时取等号. 所以a +b +c ≤22+3-1,即△ABC 周长的最大值为22+3-1.…………………………………………………10分 若选择条件②(2b -3c )cos A =3a cos C . (1)由条件得2b cos A =3a cos C +3c cos A ,由正弦定理得2sin B cos A =3(sin A cos C +sin C cos A )=3sin(A +C )=3sin B .………2分 因为sin B ≠0,所以cos A =32,…………………………………………………3分 因为A ∈(0,π),所以A =π6. (2)同上18. 已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S n 2=a n (S n -12).(1)求S n 的表达式;(2)设b n =S n2n +1,求数列{b n }的前n 项和T n . 解析:(1)因为S n 2=a n (S n -12),当n ≥2时,S n 2=(S n -S n -1)(S n -12),即2S n -1S n =S n -1-S n .①…………2分 由题意得S n -1·S n ≠0,所以1S n -1S n -1=2, 即数列{1S n }是首项为1S 1=1a 1=1,公差为2的等差数列.…………5分所以1S n =1+2(n -1)=2n -1,得S n =12n -1. …………………………………………7分(2)易得b n =S n 2n +1=1(2n -1)(2n +1)……………………………8分 =12(12n -1-12n +1),……………………………10分所以T n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12(1-12n +1)=n2n +1. …………………………………12分19. 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.(1)证明:取BP 的中点T ,连接AT ,TN .由N 为PC 的中点,知TN ∥BC ,TN =12BC =2.又AD ∥BC ,AM =23AD =2,所以TN _∥AM ,因此四边形AMNT 为平行四边形,于是MN ∥AT . …………………………………3分因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB . …………………………………5分(2)取BC 的中点E ,连接AE .由AB =AC ,得AE ⊥BC ,因为AD ∥BC ,所以AE ⊥AD ,AE =AB 2-BE 2=AB 2-⎝⎛⎭⎫BC 22=5.以A 为原点,AE ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系A -xyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎫52,1,2,PM →=(0,2,-4),PN →=⎝⎛⎭⎫52,1,-2,AN →=⎝⎛⎭⎫52,1,2.…………………………………7分设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).……………………………………………………………………9分于是|cos <n ,AN →>|=|n ·AN →||n |·|AN →|=8525.…………………………………11分设AN 与平面PMN 所成角为θ,则sin θ=8525,即直线AN 与平面PMN 所成角的正弦值为8525. …………………………………12分20. 成都市现在已是拥有1 400多万人口的城市,机动车保有量已达450多万辆,成年人中约40%拥有机动车驾驶证.为了解本市成年人的交通安全意识情况,某中学的同学利用国庆假期进行了一次全市成年人安全知识抽样调查.先根据是否拥有驾驶证,用分层抽样的方法抽取了200名成年人,然后对这200人进行问卷调查.这200人所得的分数都分布在[30,100]范围内,规定分数在80以上(含80)的为“具有很强安全意识”,所得分数的频率分布直方图如图所示.拥有驾驶证 没有驾驶证 总计具有很强安全意识 不具有很强安全意识58 总计200(1)补全上面的驾驶证有关?(2)将上述调查所得的频率视为概率,现从全市成年人中随机抽取4人,记“具有很强安全意识”的人数为X ,求X 的分布列及数学期望.附表及公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)200人中拥有驾驶证的占40%,有80人,没有驾驶证的有120人;具有很强安全意识的占20%,有40人,不具有很强安全意识的有160人.补全的2×2列联表如表所示:计算得K 2=200×(22×102-18×58)240×80×160×120=7516=4.6875>3.841, 所以有超过95%的把握认为“具有很强安全意识”与拥有驾驶证有关. …………………………………5分(2)由频率分布直方图中数据可知,抽到的每个成年人“具有很强安全意识”的概率为15,所以X =0,1,2,3,4,且X ~B ⎝⎛⎭⎫4,15.于是P (X =k )=C k 4·⎝⎛⎭⎫15k ·⎝⎛⎭⎫454-k(k =0,1,2,3,4),X 的分布列为0分 所以E (X )=4×15=45.答:X 的数学期望为45. …………………………………12分 21. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),点(1,32)在椭圆C上,点A (-3c ,0)满足以AF 2为直径的圆过椭圆的上顶点B . (1)求椭圆C 的方程;(2)已知直线过右焦点F 2且与椭圆C 交于M ,N 两点,在x 轴上是否存在点P (t ,0)使得PM →·PN →为定值?如果存在,求出点P 的坐标;如果不存在,说明理由. 解析:(1)因为点(1,32)在椭圆C 上,所以1a 2+94b 2=1.又点A (-3c ,0)满足以AF 2为直径的圆过椭圆的上顶点B ,所以AB ⊥BF 2,即AB →·BF 2→=(3c ,b )·(c ,-b )=0,即b 2=3c 2.又a 2=b 2+c 2,解得a 2=4,b 2=3.所以椭圆的方程为x 24+y 23=1. …………………………………4分 (2)易得右焦点F 2(1,0),假设存在点P (t ,0)满足要求.①当直线MN 的斜率不为0时,设直线MM 的方程为x =my +1,设M (x 1,y 1),N (x 2,y 2).联立⎩⎨⎧x =my +1,3x 2+4y 2=1,整理可得(4+3m 2)y 2+6my -9=0,则y 1+y 2=-6m 4+3m 2,y 1·y 2=-94+3m 2,所以x 1+x 2=m (y 1+y 2)+2=84+3m 2,x 1x 2=m 2y 1y 2+m (y 1+y 2)+1=-9m 24+3m 2+-6m 24+3m 2+1=4-12m 24+3m 2.…………………………………6分因为PM →·PN →=(x 1-t ,y 1)·(x 2-t ,y 2)=x 1x 2-t (x 1+x 2)+t 2+y 1y 2=4-12m 24+3m 2-8t 4+3m 2+t 2-94+3m 2 =t 2(4+3m 2)-12m 2-8t -54+3m 2=3m 2(t 2-4)+4t 2-8t -54+3m 2.…………………………………9分 要使PM →·PN →为定值,则t 2-41=4t 2-8t -54,解得t =118,此时PM →·PN →=-13564为定值. …………………………………11分②当直线MM 的斜率为0时,则M (-2,0),N (2,0),P (118,0),此时PM →·PN →=(-2-118,0)·(2-118,0)=-13564. …………………………………12分综上,所以存在P (118,0),使PM →·PN →为定值.22. 已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ). (1)求函数f (x )的极小值;(2)若g (x )=xf'(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.解析:(1)求导得f'(x )=3ax 2-6x =3x (ax -2),令f'(x )=0,得x 1=0或x 2=2a .…………………………………1分因为a >0,所以x 1<x 2,列表如下:所以f (x )的极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2.…………………………………3分(2)g (x )=xf'(x )=3ax 3-6x 2.因为存在x ∈[1,2]使h (x )=f (x ),所以f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解,即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.………………………5分设y =1x 3+3x =3x 2+1x 3,x ∈[1,2].因为y'=-3x 2-3x 4<0对x ∈[1,2]恒成立,所以y =1x 3+3x 在[1,2]上递减,故当x =1时,y max=4.所以2a ≤4,即a ≤2,故a 的取值范围为(-∞,2].…………………………………7分(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎝⎛⎭⎫2a =1-4a 2.①当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,所以h (x )=max{f (x ),g (x )}≥f (x )>0,因此h (x )在(0,+∞)上无零点.…………………………………8分②当1-4a 2=0,即a =2时,f (x )min =f (1)=0,又g (1)=0,所以h (x )=max{f (x ),g (x )}在(0,+∞)上有且仅有一个零点.…………………………………9分③当1-4a 2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x ,0<x <1. 因为φ'(x )=3ax 2-6x -1x <6x (x -1)-1x <0,所以φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎝⎛⎭⎫1e =a e 3+2e 2-3e 2>0,所以存在唯一的x 0∈⎝⎛⎭⎫1e ,1,使得φ(x 0)=0. (i )当0<x ≤x 0时,因为φ(x )=f (x )-g (x )≥φ(x 0)=0,所以h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln1=0,f (0)=1>0,所以h (x )在(0,x 0)上有一个零点. (ii )当x 0<x <1时,因为φ(x )=f (x )-g (x )<φ(x 0)=0,所以h (x )=g (x )且h (x )为增函数.因为g(1)=0,又h(x)=max{f(x),g(x)}≥g(x)=ln x>0在x>1上恒成立,所以h(x)在(x0,+∞)上有且仅有一个零点.从而h(x)=max{f(x),g(x)}在(0,+∞)上有两个零点.综上,当0<a<2时,h(x)有两个零点;当a=2时,h(x)有一个零点;当a>2时,h(x)无零点.…………………………………12分。
2021届江苏省南京市金陵中学高三上学期8月学情调研测试数学试题(解析版)
2021届江苏省南京市金陵中学高三上学期8月学情调研测试数学试题一、单选题1.已知集合{}2340A x x x =-->,{}ln 0B x x =>,则()RA B =( )A .∅B .(]0,4C .(]1,4 D .()4,+∞【答案】C【解析】先解出集合A 、B ,再求解出集合A 的补集,根据集合交集的运算即可求解. 【详解】由题意得{1A x x =<-或}4x > ,{}1B x x =>,所以{}14RA x x =-≤≤,()(]1,4RA B =.故选:C 【点睛】本题主要考查了集合补集、交集的运算,属于简单题,计算中可以借助数轴法求解集合的补集和集合间的交集.2.设,R a b ∈,i 是虚数单位,则“0ab =”是“复数iba +为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【解析】0ab =即,a b 中至少有一个是零;复数ba a bi i+=-为纯虚数,故0,0a b =≠为小范围,故为必要不充分条件.3.下列命题中正确的是( ) A .若a b >,则ac bc > B .若a b >,c d >,则a c b d ->-C .若0ab >,a b >,则11a b< D .若a b >,c d >,则a b c d> 【答案】C【解析】分析:根据不等式性质逐一排除即可.详解:A. 若a b >,则ac bc >,当c 取负值时就不成立,故错误;B. 若a b >,c d >,则a c b d ->-,例如a=3,b=1,c=2,d=-2显然此时a c b d -<-,故错误;D ,若a b >,c d >,则a b c d >,例如a=3,c=-1,b=-1,d=-2,此时a bc d<,故错误,所以综合得选C.点睛:考查不等式的简单性质,此类题型举例子排除法比较适合,属于基础题. 4.已知正项等比数列{a n }的前n 项和为S n ,若43113,84a S a =-=,则S 5=( ) A .3132B .3116C .318D .314【答案】B【解析】利用正项等比数列{a n }的前n 项和公式,通项公式列出方程组,求出a 1=1,q =12,由此能求出S 5的值. 【详解】解:正项等比数列{a n }的前n 项和为S n ,43113,84a S a =-=, ∴()31311181314a q a q a q ⎧=⎪⎪⎨-⎪-=⎪-⎩,解得a 1=1,q =12, ∴S 5=()5111a q q --=1132112--=3116.故选:B . 【点评】本题考查等比数列的前n 项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,属于基础题.5.()101(21)x x -+的展开式中10x 的系数为( )A .512-B .1024C .4096D .5120【答案】C【解析】先将二项式变形为1010(21)(21)x x x +-+,分别写出两个二项式展开式的通项,并分别令x 的指数为10,求出两个参数的值,代入展开式之后将两个系数相减可得出答案. 【详解】()1010101(21)(21)(21)x x x x x -+=+-+,二项展开式10(21)x x +的通项为1010111010(2)2rrrr r xC x C x ---⋅=⋅⋅,二项展开式10(21)x +的通项为1010101010(2)2k kk k k C x C x ---⋅=⋅⋅,则111011010r r k -=⎧=⎨-=⎩,解得,0k =,所以,展开式中10x 的系数为19010101022512010244096C C ⋅-⋅=-=.故选C . 【点睛】本题考查了利用二项式定理求指定项的系数,考查二项式定理的应用,同时也考查了计算能力,属于中等题.6.某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布2(105,)(0)N σσ>,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( ) A .150 B .200C .300D .400【答案】C【解析】求出()39010510P X ≤≤=,即可求出此次数学考试成绩在90分到105分之间的人数. 【详解】∵()()1901205P X P X ≤=≥=,()2390120155P X ≤≤=-=, 所以()39010510P X ≤≤=, 所以此次数学考试成绩在90分到105分之间的人数约为3100030010⨯=. 故选C . 【点睛】本小题主要考查正态分布曲线的特点及曲线所表示的意义等基础知识,考查运算求解能力,考查数形结合思想.属于基础题.7.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =【答案】B【解析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.8.已知椭圆C :22221x y a b+=(0a b >>)的右焦点为F ,短轴的一个端点为P ,直线l :430x y -=与椭圆C 相交于A ,B 两点.若6AF BF +=,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( ) A .50,9⎛⎤⎥⎝⎦B .3⎛ ⎝⎦C .5⎛ ⎝⎦D .133⎛⎤ ⎥ ⎝⎦【答案】C【解析】设椭圆的左焦点为F ',根据双曲线的定义,求得3a =,再由点P 到直线l 的距离不小于65,求得2b ≥,得到213b a≤<,进而求得离心率的范围,得到答案. 【详解】设椭圆的左焦点为F ',根据椭圆的对称性可得AF BF '=,BF AF '=, 所以62AF AF BF AF a '+=+==,解得3a =,因为点P 到直线l 的距离不小于65,所以()226543≥+-,解得2b ≥, 又由b a <,所以23b ≤<,故213ba≤<, 所以离心率22510,c b e a a ⎛⎤==-∈ ⎥ ⎝⎦. 故选:C.【点睛】本题考查了椭圆的定义,以及椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围).二、多选题9.若函数()sin 23πf x x ⎛⎫=-⎪⎝⎭与()cos 4g x x π⎛⎫=+ ⎪⎝⎭都在区间(),a b (0a b π<<<)上单调递减,则b a -的可能取值为( ) A .6πB .3π C .2π D .512π 【答案】AB【解析】先求()f x 在()0,π上的单调递减区间,再求()g x 在()0,π上的单调递减区间,再求交集即可得()f x 和()g x 两个函数的递减区间,可得b a -的最大值,进而可得b a -的可能取值.【详解】当()0,x π∈时,52,333x πππ⎛⎫-∈- ⎪⎝⎭,所以当32,322x πππ⎛⎫-∈ ⎪⎝⎭时,即511,1212x ππ⎛⎫∈ ⎪⎝⎭()f x 单调递减,即函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭在511,1212ππ⎛⎫⎪⎝⎭上单调递减,当()0,x π∈时,,44x πππ⎛⎫+∈ ⎪⎝⎭,即30,4x π⎛⎫∈ ⎪⎝⎭时,()g x 单调递减, 因为30,451153,,1212124πππππ⎛⎫= ⎪⎝⎛⎭⎫⎛⎫⋂⎪⎪⎝⎭⎝⎭, 所以,53124a b ππ≤<≤ 所以354123b a πππ-≤-=,所以b a -可能为6π或3π, 故选:AB 【点睛】本题主要考查了三角函数的单调性,属于中档题. 10.下列说法中正确的是( ) A .设随机变量X 服从二项分布16,2B ⎛⎫ ⎪⎝⎭,则()5316P X == B .已知随机变量X 服从正态分布()22,N σ且()40.9P X <=,则()020.4P X <<= C .()()2323E X E X +=+;()()2323D X D X +=+ D .已知随机变量ξ满足()0P x ξ==,()11P x ξ==-,若102x <<,则()E ξ随着x 的增大而减小,()D ξ随着x 的增大而增大 【答案】ABD【解析】对于选项,,A B D 都可以通过计算证明它们是正确的;对于选项,C 根据方差的性质,即可判断选项C . 【详解】对于选项,A 设随机变量16,2XB ⎛⎫ ⎪⎝⎭,则()3336115312216P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以选项A 正确; 对于选项,B 因为随机变量()22,N ξσ,所以正态曲线的对称轴是2x =,因为()40.9P X <=,所以(0)0.1P X <=, 所以(02)0.4P X <<=,所以选项B 正确; 对于选项,C ()()2323E X E X +=+,()()234D X D X +=,故选项C 不正确;对于选项,D 由题意可知,()1E x ξ=-,()()21D x x x x ξ=-=-+,由一次函数和二次函数的性质知, 当102x <<时,()E ξ随着x 的增大而减小, ()D ξ随着x 的增大而增大,故选项D 正确.故选:ABD . 【点睛】本题主要考查二项分布和正态分布的应用,考查期望和方差的计算及其性质,意在考查学生对这些知识的理解掌握水平.11.下列四个命题中,是真命题的是( ) A .x ∀∈R ,且0x ≠,12x x+≥B .若0x >,0y >,则2xyx y≥+C .函数()f x x =值域为⎡⎤⎣⎦D .已知函数()9f x x a a x=++-在区间[]1,9上的最大值是10,则实数a 的取值范围为[)8,-+∞ 【答案】BCD【解析】结合基本不等式的条件及基本不等式可以判断A ,B ,结合三角换元及三角函数的性质可判断C ,结合含绝对值函数的图像变换可检验D ,即可判断. 【详解】对于A ,x ∀∈R ,且0x ≠,12x x+≥对0x <时不成立; 对于B ,若0x >,0y >,则()()22222248x yx y xy xy x y ++≥⋅=,化为2xyx y≥+,当且仅当0x y =>时取等号,故B 正确; 对于C,令x θ=,[]0,θπ∈,则()2sin 4f x x πθθθ⎛⎫=+=+=+ ⎪⎝⎭,由[]0,θπ∈,得5,444πππθ⎡⎤+∈⎢⎥⎣⎦,()2sin 24f x πθ⎛⎫⎡⎤=+∈ ⎪⎣⎦⎝⎭;对于D ,当[]1,9x ∈,[]96,10x x +∈,令[]96,10x t x+=∈,转化为y t a a =+-在[]6,10t ∈有最大值是10.①10a -≥,当6t =时,max 62610y a a a =+-=--=,得8a =-(舍去). ②6a -≤时,当10t =时,max 1010y a a =+-=恒成立.③610a <-<,{}max max 26,10y a =--,此时只需2610a --≤,得86a -≤<-. 综上,8a ≥-,故D 正确. 故选:BCD 【点睛】本题以判断命题真假为载体,主要考查了函数,不等式的综合应用,属于中档题. 12.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 【答案】ABCD【解析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =- 2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.三、填空题13.已知向量()2,6a =-,()3,b m =,若a b a b +=-,则m =______. 【答案】1【解析】根据向量加法和减法的坐标运算,先分别求得a b +与a b -,再结合向量的模长公式即可求得m 的值. 【详解】向量()2,6a =-,()3,b m =则()5,6a b m +=-+,()1,6a b m -=---则25a b +=+=()1a b -=-=因为a b a b +=-=化简可得12611237m m -+=+ 解得1m = 故答案为: 1 【点睛】本题考查了向量坐标加法和减法的运算,向量模长的求法,属于基础题.14.某学校高一学生2人,高二学生2人,高三学生1人,参加A 、B 、C 三个志愿点的活动.每个活动点至少1人,最多2人参与,要求同年级学生不去同一活动点,高三学生不去A 活动点,则不同的安排方法有_____种.(用数字作答) 【答案】40【解析】以高三学生是否单独去志援点分为两类,每一类中先安排高三学生,再安排高一、高二学生,由乘法原理算出两类安排方法,相加即可. 【详解】若高三学生单独去志愿点,则有1222228C A A =种,若高三学生与其它年级学生合去志愿点,按先分组再分到志愿点的思路,有11214222C A C C =32种,则共有83240+=种安排方法. 故答案为:40. 【点睛】本题考查分类计数原理的运用,以高三学生是否单独去志愿点确定分类的方法,再逐级安排,考查乘法原理,属于中档题.15.在直三棱柱111ABC A B C -内有一个与各个面均相切的球.若AB BC ⊥,6AB =,8BC =,则1AA 的长度为______.【答案】4【解析】求出△ABC 内切圆的半径,根据球是三棱柱的内切球,求出其半径,从而求出AA 1的长度即可. 【详解】由AB BC ⊥,6AB =,8BC =,得10AC =. 设底面Rt ABC △的内切圆的半径为r ,则()1168681022r ⨯⨯=⨯++⋅,得2r .因为球与三个侧面相切,所以内切球的半径也为2.又该球也与直三棱柱的上、下底面相切,所以124AA r ==. 故答案为:4 【点睛】本题考查了三棱柱的内切球,考查三角形内切圆以及直三棱柱问题,是一道常规题.16.已知函数22(1),0()2,0k x f x x x k x ⎧-<⎪=⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且仅有四个不同的零点,则实数k 的取值范围是_______. 【答案】()27,+∞【解析】根据题意可求得222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩,再分0,0,0k k k =<>三种情况求函数的单调性,进而根据零点存在性定理求出函数的最小值求解不等式即可. 【详解】由题, ()22212,0()22,0221,0k x k x x g x k k x x k k x x ⎧⎛⎫++-> ⎪⎪⎝⎭⎪⎪=--=⎨⎪⎛⎫⎪--+-< ⎪⎪⎝⎭⎩,即222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩,当k =0时,原函数有且只有一个零点,不符题意,故k ≠0, 观察解析式,可知函数()g x 有且仅有四个不同的零点, 可转化为22(),0kg x x k x x=+->有且仅有两个不同的零点, 当k <0,函数()g x 在(0,+∞)单调递增,最多一个零点,不符题意,舍;当k >0,322()(),0x k g x x x-'=>, 令()0g x '=有13x k =,故要使()g x 在(0,+∞)有且仅有两个不同的零点, 则1233min 132()()0k g x g k k k k==+-<,因为0k >,故213333k k k <⇒<,解得k >27,综上所述,实数k 的取值范围是(27,+∞).故答案为:(27,+∞) 【点睛】本题主要考查了根据分段函数的零点个数求解参数范围问题,需要根据函数的性质求出单调性以及最值,进而根据零点存在性定理列式求解.属于中档题.四、解答题17.现给出两个条件:①22cos c a B =,②()2cos cos b A C =,从中选出一个条件补充在下面的问题中,并以此为依据求解问题. 在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,______.(1)求A ;(2)若31a ,求ABC 周长的最大值.【答案】(1)6π;(2)1. 【解析】若选条件①,(1)由余弦定理对2c =2a cos B ,化简可得c 2+b 2﹣a2=,再利用余弦定理可求出A ;(2)由余弦定理可得1)2=b 2+c 2﹣2bc用基本不等式可得b c +≤△ABC周长的最大值;若选条件②,(1)由(2b)cos A =cos C ,结合正弦定理化简可得2sin B cos A=B,从而可求出A ;(2)由余弦定理可得1)2=b 2+c 2﹣2bc 用基本不等式可得b c +≤△ABC 周长的最大值; 【详解】若选择条件①22cos c a B =.(1)由余弦定理可得22222cos 22a c b c a B a ac +-==⋅,整理得222c b a +-=,可得222cos 222b c A bc bc a +===-. 因为()0,A π∈,所以6A π=.(2)由余弦定理2222cos a b c bc A =+-,得)222122b c bc =+-⋅,即()(22242b c b c bc -=+=+-+,亦即(()(224bc b c =+--,因为()24b c bc +≤,当且仅当b c =时取等号,所以()((()22424b c b c ++--≤⨯,解得b c +≤当且仅当b c ==.所以1a b c ++≤,即ABC 周长的最大值为1若选择条件②()2cos cos b A C =.(1)由条件得2cos cos cos b A C A =+, 由正弦定理得)()2sin cos sin cos sin cos B A A C C A A C B =+=+=.因为sin 0B ≠,所以cos A = 因为()0,A π∈,所以6A π=.(2)由余弦定理2222cos a b c bc A =+-,得)22212b c bc =+-,即()(22242b c b c bc -=+=+-+,亦即(()(224bc b c =+--,因为()24b c bc +≤,当且仅当b c =时取等号,所以()((()22424b c b c ++--≤⨯,解得b c +≤当且仅当b c ==.所以1a b c ++≤,即ABC周长的最大值为1 【点睛】此题考查正弦定理和余弦定理的应用,考查基本不等式的应用,考查计算能力,属于基础题18.已知数列{}n a 中,11a =,当2n ≥时,其前n 项和n S 满足212n n n S a S ⎛⎫=-⎪⎝⎭(1)求n S 的表达式; (2)设21nn S b n =+,求数列{}n b 的前n 项和n T . 【答案】(1)121n S n =-;(2)111221n T n ⎛⎫=- ⎪+⎝⎭.【解析】(1)运用()12n n n a S S n -=-≥,代入化简整理,再由等差数列的定义和通项公式即可得到所求;(2)求得21nn S b n =+=1(21)(21)n n -+=11122121n n ⎛⎫- ⎪-+⎝⎭,运用数列的求和方法:裂项相消求和,即可得到所求和. 【详解】解:(1)∵212n n n S a S ⎛⎫=-⎪⎝⎭,()12n n n a S S n -=-≥, ()2112n n n n S S S S -⎛⎫=-- ⎪⎝⎭,112n n n nS S S S --=-①,由题意10n n S S -≠,将①式两边同除以1n n S S -得,()11122n n n S S --=≥∴数列1nS⎧⎫⎨⎬⎩⎭是首项为11111S a==,公差为2的等差数列.可得()112121nn nS=+-=-,得121nSn=-;(2)21nnSbn=+=1(21)(21)n n-+=11122121n n⎛⎫-⎪-+⎝⎭,111111111++=123352121221nTn n n⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=----⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦【点睛】本题考查数列中()12n n na S S n-=-≥的运用,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.19.如图,四棱锥P−ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求直线AN与平面PMN所成角的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)8525.【解析】【详解】(Ⅰ)由已知得.取的中点T,连接,由为中点知,. 又,故=TN AM∥,四边形AMNT为平行四边形,于是MN AT∥.因为平面,平面,所以平面.(Ⅱ)取的中点,连结.由得,从而,且.以A为坐标原点,AE的方向为轴正方向,建立如图所示的空间直角坐标系.由题意知,,,,,(0,2,4)PM=-,5(,1,2)PN=-,5(,1,2)AN=.设(,,)x y z=n为平面PMN的一个法向量,则0,{0,n PMn PN⋅=⋅=即240,{520,y zx y z-=+-=可取(0,2,1)n=.于是85cos,n ANn ANn AN⋅〈〉==.【考点】空间线面间的平行关系,空间向量法求线面角.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.20.成都市现在已是拥有1400多万人口的城市,机动车保有量已达450多万辆,成年人中约40%拥有机动车驾驶证.为了解本市成年人的交通安全意识情况,某中学的同学利用国庆假期进行了一次全市成年人安全知识抽样调查.先根据是否拥有驾驶证,用分层抽样的方法抽取了200名成年人,然后对这200人进行问卷调查.这200人所得的分数都分布在[]30,100范围内,规定分数在80以上(含80)的为“具有很强安全意识”,所得分数的频率分布直方图如图所示.拥有驾驶证 没有驾驶证 总计具有很强安全意识 不具有很强安全意识58 总计200(1)补全上面的22⨯列联表,并判断能否有超过95%的把握认为“具有很强安全意识”与拥有驾驶证有关?(2)将上述调查所得的频率视为概率,现从全市成年人中随机抽取4人,记“具有很强安全意识”的人数为X ,求X 的分布列及数学期望.附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.P (20K k ≥) 0.150.10 0.05 0.025 0.010 0.005 0.0010k2.072 2.7063.841 5.024 6.635 7.879 10.828【答案】(1)表格见解析,有超过95%的把握;(2)分布列见解析,数学期望为45. 【解析】(1)拥有驾驶证的有80人,具有很强安全意识的有40人,由此可得列联表,再计算得2K 后与3.841比较大小即可得出结论; (2)由题意可知X 可以取0,1,2,3,4,且14,5X B ⎛⎫⎪⎝⎭,由此可求出分布列及数学期望.【详解】解:(1)200人中拥有驾驶证的占40%,有80人,没有驾驶证的有120人, 具有很强安全意识的占20%,有40人,不具有很强安全意识的有160人, 补全的22⨯列联表如表所示:计算得()2220022102185875 4.6875 3.841408016012016K ⨯⨯-⨯===>⨯⨯⨯,∴有超过95%的把握认为“具有很强安全意识”与拥有驾驶证有关;(2)由频率分布直方图中数据可知,抽到的每个成年人“具有很强安全意识”的概率为15, ∴X 可能取0,1,2,3,4,且14,5XB ⎛⎫ ⎪⎝⎭, 于是()4241455kkP X k C -⎛⎫⎛⎫==⋅⋅ ⎪⎪⎝⎭⎝⎭(0k =,1,2,3,4),X 的分布列为∴()14455E X =⨯=. 【点睛】本题主要考查独立性检验与二项分布的应用,属于基础题.21.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()1,0F c -,()2,0F c ,点31,2⎛⎫⎪⎝⎭在椭圆C 上,点()3,0A c -满足以2AF 为直径的圆过椭圆的上顶点B . (1)求椭圆C 的方程;(2)已知直线l 过右焦点2F 与椭圆C 交于,M N 两点,在x 轴上是否存在点(),0P t 使得PM PN ⋅为定值?如果存在,求出点P 的坐标;如果不存在,说明理由.【答案】(1)22143x y +=;(2)存在,11,08P ⎛⎫ ⎪⎝⎭ 【解析】(1)由点在椭圆上代入可得a ,b 的关系,再由点(3,0)A c -满足以2AF 为直径的圆过椭圆的上顶点B .可得20AB BF =可得b ,c 的关系,再由a ,b ,c 的关系求出椭圆的方程;(2)由(1)可得右焦点2F 的坐标,分坐标MN 的斜率为0和不为0两种情况讨论,假设存在P 满足条件,设直线MN 的方程,与椭圆联立求出两根之和及两根之积,进而求出数量积PM PN 的表达式,要使数量积为定值,则分子分母对应项的系数成比例,可得t 的值,且可求出定值. 【详解】解:(1)由题意可得上顶点(0,)B b ,2AB BF ⊥,所以:221914a b +=,20AB BF =,即(3c ,)(b c ,)0b -=即223b c =,222a b c =+, 解得:24a =,23b =,所以椭圆的方程为:22143x y +=;(2)由(1)可得右焦点2F 的坐标(1,0),假设存在(,0)P t)i 当直线MN 的斜率不为0时,设直线MN 的方程为:1x my =+,设1(M x ,1)y ,2(N x ,2)y ,联立直线与椭圆的方程22134120x my x y =+⎧⎨+-=⎩,整理可得:22(43)690m y my ++-=,122643my y m -∴+=+,122943y y m -=+, 121228()243x x m y y m ∴+=++=+,222212121222296412()11434343m m m x x m y y m y y m m m ---=+++=++=+++,因为()()1122,,PM PN x t y x t y =--2222222221212122222241289(43)12853(4)(48()4343434343m t t m m t m t t x x t x x t y y t m m m m m -+----+-=-+++=-+-==+++++,要使PM PN 为定值,则22448514t t t ---=,解得:118t =,这时13564PM PN =为定值,)ii 当直线MN 的斜率为0时,则(2,0)M -,(2,0)N ,P 为11(8,0),则11(28PM PN =--,110)(28-,2111350)()4864=-=,综上所述:所以存在11(8P ,0),使PM PN 为定值.【点睛】考查求椭圆的标准方程及直线与椭圆的综合,属于中档题. 22.已知()3231f x ax x =-+(0a >),定义()()(){}()()()()()(),,max ,,.f x f x g x h x f x g x g x f x g x ⎧≥⎪==⎨<⎪⎩(1)求函数()f x 的极小值;(2)若()()g x xf x '=,且存在[]1,2x ∈使()()h x f x =,求实数a 的取值范围; (3)若()ln g x x =,试讨论函数()h x (0x >)的零点个数. 【答案】(1)241a-;(2)(],2-∞;(3)答案见解析. 【解析】(1)求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为不等式3132a x x≤+在x ∈[1,2]上有解,根据函数的单调性求出a 的范围即可;(3)通过讨论a 的范围结合函数的单调性判断函数的零点个数即可. 【详解】(1)求导得()()23632'=-=-f x ax x x ax ,令()0f x '=,得10x =或22x a=. 因为0a >,所以12x x <,列表如下:所以()f x 的极小值为2222812411f a a aa ⎛⎫=-+=- ⎪⎝⎭. (2)()()3236g x xf x ax x '==-. 因为存在[]1,2x ∈使()()h x f x =,所以()()f x g x ≥在[]1,2x ∈上有解,即32323136ax x ax x -+≥-在[]1,2x ∈上有解,即不等式3132a x x≤+在[]1,2x ∈上有解 设2331331x y x x x+=+=,[]1,2x ∈. 因为24330x y x--'=<对[]1,2x ∈恒成立,所以313y x x =+在[]1,2上递减,故当1x =时,max 4y =.所以24a ≤,即2a ≤,故a 的取值范围为(],2-∞.(3)由(1)知,()f x 在()0,∞+上的最小值为2241f a a ⎛⎫=- ⎪⎝⎭. ①当2410a->,即2a >时,()0f x >在()0,∞+上恒成立,所以()()(){}()max ,0h x f x g x f x =≥>,因此()h x 在()0,∞+上无零点. ②当2410a-=,即2a =时,()()min 10f x f ==,又()10g =,所以()()(){}max ,h x f x g x =在()0,∞+上有且仅有一个零点. ③当2410a-<,即02a <<时,设()()()3231ln x f x g x ax x x ϕ=-=-+-,01x <<.因为()()21136610x ax x x x x xϕ'=--<--<,所以()x ϕ在()0,1上单调递减. 又()120a ϕ=-<,2321230a e e ee ϕ-⎛⎫=+> ⎪⎝⎭,所以存在唯一的01,1x e ⎛⎫∈ ⎪⎝⎭,使得()00x ϕ=.(i )当00x x <≤时,因为()()()()00x f x g x x ϕϕ=-≥=,所以()()h x f x =且()h x 为减函数.又()()()0000ln ln10h x f x g x x ===<=,()010f =>,所以()h x 在()00,x 上有一个零点.(ii )当01x x <<时,因为()()()()00x f x g x x ϕϕ=-<=,所以()()h x g x =且()h x 为增函数.因为()10g =,又()()(){}()max ,ln 0h x f x g x g x x =≥=>在1x >上恒成立,所以()h x 在()0,x +∞上有且仅有一个零点.从而()()(){}max ,h x f x g x =在()0,∞+上有两个零点.综上,当02a <<时,()h x 有两个零点;当2a =时,()h x 有一个零点;当2a >时,()h x 无零点.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.。
江苏省南京市金陵中学2021-2022学年高三上学期学情检测热身数学试卷(解析版)
攒尖.也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.辽宁省实验中学校园内的 明心亭,为一个八角攒尖,它的主要部分的轮廓可近似看作一个正八棱锥,设正八棱锥 的侧面等腰三角形的顶角为 2θ,它的侧棱与底面内切圆半径的长度之比为( )
A.
B.
C.
Байду номын сангаасD.
7.已知定义在 R 上的奇函数 f(x)满足 f(x)=f(2﹣x),当 x∈[﹣1,1]时,f(x)=3x,
辽宁省实验中学校园内的明心亭为一个八角攒尖它的主要部分的轮廓可近似看作一个正八棱锥设正八棱锥的侧面等腰三角形的顶角为2它的侧棱与底面内切圆半径的长度之比为为正八棱锥sabcdefgh底面内切圆的圆心连接oaob取ab的中点m连接smom则om是底面内切圆半径r如图所示
2021-2022 学年江苏省南京市金陵中学高三(上)学情检测热身
若函数 g(x)=f(x)﹣k(x﹣2)的所有零点为 xi(i=1,2,3,…,n),当
时,
=( )
A.6
B.8
C.10
D.12
8.已知实数 m,n 满足(m+5)2+n2=1,则对于任意实数 a,(a2﹣m)2+(a﹣n)2 的最小
值为( )
A.4
B.16
C.17
D.25
二、多项选择题(本大题共 4 小题,每题 5 分,共 20 分.每题全选对的得 5 分,部分选对的
21.已知点 B(﹣2,0),C(2,0),△ABC 的周长等于 4+4 ,点 M 满足 =2 . (1)求点 M 的轨迹 E 的方程; (2)是否存在过原点的直线 l 与曲线 E 交于 P,Q 两点,与圆 F:(x﹣ )2+y2= 交 于 R,S 两点(其中点 R 在线段 PQ 上),且|PR|=|QS|,若存在,求出直线 l 的方程;若 不存在,请说明理由.
数学卷评分标准
南京市2018届高三年级学情调研数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分.)1.{0,2} 2.7 3.16 4.- 2 5.126.3 7. 6 8.18π 9.-1 10.6 11.(-∞,2] 12.13 13.-4314.[0,2]∪[3,8]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内) 15.(本小题满分14分)证明:(1)在直三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC . 因为AE ⊂平面ABC ,所以CC 1⊥AE . ……………2分因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 因为BC ⊂平面B 1BCC 1,CC 1⊂平面B 1BCC 1,且BC ∩CC 1=C ,所以AE ⊥平面B 1BCC 1. ………………5分 因为AE ⊂平面AB 1E ,所以平面AB 1E ⊥平面B 1BCC 1. ……………………………7分 (2)连接A 1B ,设A 1B ∩AB 1=F ,连接EF .在直三棱柱ABC -A 1B 1C 1中,四边形AA 1B 1B 为平行四边形,所以F 为A 1B 的中点. ……………………………9分 又因为E 是BC 的中点,所以EF ∥A 1C . ……………………………11分 因为EF ⊂平面AB 1E ,A 1C ⊄平面AB 1E ,所以A 1C ∥平面AB 1E . ……………………………14分 16.(本小题满分14分) 解:(1)解法1在△ABC 中,因为cos B =45,所以a 2+c 2-b 22ac =45. ………………………2分A 1B 1C 1 A BCE(第15题) F因为c =2a ,所以(c2)2+c 2-b 22c ×c 2=45,即b 2c 2=920,所以b c =3510. ……………………………4分又由正弦定理得sin B sin C =bc,所以sin B sin C =3510. ……………………………6分解法2因为cos B =45,B ∈(0, ),所以sin B =1-cos 2B =35.………………………2分因为c =2a ,由正弦定理得sin C =2sin A , 所以sin C =2sin(B +C )=65cos C +85sin C ,即-sin C =2cos C . ………………………4分 又因为sin 2C +cos 2C =1,sin C >0,解得sin C =255,所以sin B sin C =3510. ………………………6分(2)因为cos B =45,所以cos2B =2cos 2B -1=725. …………………………8分又0<B <π,所以sin B =1-cos 2B =35,所以sin2B =2sin B cos B =2×35×45=2425. …………………………10分因为C -B =π4,即C =B +π4,所以A =π-(B +C )=3π4-2B ,所以sin A =sin(3π4-2B )=sin 3π4cos2B -cos 3π4sin2B ………………………………12分=22×725-(-22)×2425=31250. …………………………………14分17.(本小题满分14分)解:(1)因为t 1=9000x, ………………………2分t 2=30003(100-x )=1000100-x, ………………………4分所以f (x )=t 1+t 2=9000x +1000100-x, ………………………5分定义域为{x |1≤x ≤99,x ∈N *}. ………………………6分 (2)f (x )=1000(9x +1100-x )=10[x +(100-x )]( 9x +1100-x)=10[10+9(100-x )x + x100-x ]. ………………………10分因为1≤x ≤99,x ∈N *,所以9(100-x )x >0,x100-x>0, 所以9(100-x )x + x100-x≥29(100-x )x x100-x=6, …………………12分 当且仅当9(100-x )x =x100-x ,即当x =75时取等号. …………………13分答:当x =75时,f (x )取得最小值. ………………………14分18.(本小题满分16分) 解:(1)因为椭圆C 的离心率为32,所以a 2=4b 2. ………………………2分 又因为椭圆C 过点(1,32),所以1a 2+34b 2=1, ………………………3分解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1. ………………………5分(2)解法1设P (x 0,y 0),-2<x 0<2, x 0≠1,则x 024+y 02=1.因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0), 所以2-x 0=m . ………………………7分 由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y =y 0x 0+2(x +2),令x =m ,得y =y 0(m +2) x 0+2,即M (m ,y 0(m +2)x 0+2).因为PB ⊥MB ,所以k PB ·k MB =-1,所以k PB ·k MB =y0x 0-1·y 0(m +2)x 0+2 m -1=-1, ………………………10分即y 02(m +2)(x 0-1)( x 0+2)( m -1)=-1. 因为x 024+y 02=1.所以( x 0-2)(m +2)4(x 0-1) ( m -1)=1. ………………………12分因为x 0=2-m ,所以化简得3m 2-10m +4=0,解得m =5±133. ………………………15分因为m >2,所以m =5+133. ………………………16分解法2①当AP 的斜率不存在或为0时,不满足条件. ………………………6分 ②设AP 斜率为k ,则AP :y =k (x +2),联立⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x +2),消去y 得(4k 2+1)x 2+16k 2x +16k 2-4=0.因为x A =-2,所以x P =-8k 2+24k 2+1,所以y P =4k 4k 2+1,所以P (-8k 2+24k 2+1,4k4k 2+1). ………………………8分因为PN 的中点为B ,所以m =2--8k 2+24k 2+1=16k 24k 2+1.(*) ……………………10分因为AP 交直线l 于点M ,所以M (m ,k (m +2)),因为直线PB 与x 轴不垂直,所以-8k 2+24k 2+1≠1,即k 2≠112,所以k PB =4k4k 2+1-8k 2+24k 2+1-1=-4k 12k 2-1,k MB =k (m +2)m -1. 因为PB ⊥MB ,所以k PB ·k MB =-1,所以-4k 12k 2-1·k (m +2)m -1=-1.(**) ………………………12分将(*)代入(**),化简得48k 4-32k 2+1=0,解得k 2=4±1312,所以m =16k 24k 2+1=5±133. ………………………15分又因为m >2,所以m =5+133. ………………………16分19.(本小题满分16分)解:(1)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a ,所以曲线y =f (x )在x =0处的切线斜率k =f ′(0)=6a ,所以6a =3,所以a =12. ………………………2分(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2ln xx 2. ………………………4分令g (x )=2ln xx 2,x >0,则g '(x )=2(1-2ln x )x 3.令g '(x )=0,解得x =e .当x ∈(0,e)时,g '(x )>0,所以g (x )在(0,e)上单调递增;当x ∈(e ,+∞)时,g '(x )<0,所以g (x )在(e ,+∞)上单调递减. 所以g (x )max =g (e)=1e , ………………………6分所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e ]. ………………………8分(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4.令f ′(x )=0,则x =1或a . ………………………10分 f (1)=3a -1,f (2)=4.①当1<a ≤53时,当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)≤f (2),所以M (a )=f (2)=4,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=4-(-a 3+3a 2)=a 3-3a 2+4. 因为h ' (a )=3a 2-6a =3a (a -2)<0, 所以h (a )在(1,53]上单调递减,所以当a ∈(1,53]时,h (a )最小值为h (53)=827.………………………12分②当53<a <2时,当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)>f (2),所以M (a )=f (1)=3a -1,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1. 因为h ' (a )=3a 2-6a +3=3(a -1)2≥0. 所以h (a )在(53,2)上单调递增,所以当a ∈(53,2)时,h (a )>h (53)=827. ………………………14分③当a ≥2时,当x ∈(1,2)时,f '(x )<0,所以f (x )在(1,2)上单调递减, 所以M (a )=f (1)=3a -1,m (a )=f (2)=4, 所以h (a )=M (a )-m (a )=3a -1-4=3a -5, 所以h (a )在[2,+∞)上的最小值为h (2)=1.综上,h (a )的最小值为827. ………………………16分20.(本小题满分16分)解:(1)由3T 1=S 12+2S 1,得3a 12=a 12+2a 1,即a 12-a 1=0.因为a 1>0,所以a 1=1. ………………………2分 (2)因为3T n =S n 2+2S n , ①所以3T n +1=S n +12+2S n +1,②②-①,得3a n +12=S n +12-S n 2+2a n +1. 因为a n +1>0,所以3a n +1=S n +1+S n +2, ③ ………………………5分 所以3a n +2=S n +2+S n +1+2,④④-③,得3a n +2-3a n +1=a n +2+a n +1,即a n +2=2a n +1,所以当n ≥2时,a n +1a n =2. ………………………8分又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2), 即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2,所以对n ∈N *,都有a n +1a n=2成立,所以数列{a n }的通项公式为a n =2n -1,n ∈N *. ………………………10分(3)由(2)可知S n =2n -1.因为S 1,S k -S 1,S t -S k 成等比数列,所以(S k -S 1)2=S 1(S t -S k ),即(2k -2)2=2t -2k , ………………………12分所以2t =(2k )2-3⋅2k +4,即2t -2=(2k -1)2-3⋅2k -2+1(*). 由于S k -S 1≠0,所以k ≠1,即k ≥2.当k =2时,2t =8,得t =3. ………………………14分当k ≥3时,由(*),得(2k -1)2-3⋅2k -2+1为奇数,所以t -2=0,即t =2,代入(*)得22k -2-3⋅2k -2=0,即2k =3,此时k 无正整数解. 综上,k =2,t =3. ………………………16分南京市2018届高三年级学情调研数学附加题参考答案及评分标准21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲 证明:连接OD ,因为DA =DC ,所以∠DAO =∠C .………………………2分在圆O 中,AO =DO ,所以∠DAO =∠ADO ,所以∠DOC =2∠DAO =2∠C .………………………5分因为CD 为圆O 的切线,所以∠ODC =90°,从而∠DOC +∠C =90°,即2∠C +∠C =90°,故∠C =30°, ………………………7分 所以OC =2OD =2OB ,所以CB =OB ,所以CA =3CB . ………………………10分B .选修4—2:矩阵与变换解:(1)根据逆矩阵公式,可得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-2132-12. ………………………4分 (2)设曲线C 上任意一点P (x ,y )在矩阵A 对应的变换作用下得到点P '(x ',y '),则⎣⎢⎡⎦⎥⎤x 'y '=⎣⎡⎦⎤1234 ⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤x +2y 3x +4y,所以⎩⎨⎧x '=x +2y ,y '=3x +4y .……………………8分 因为(x ',y ')在曲线C '上,所以6x '2-y '2=1,代入6(x +2y )2-(3x +4y )2=1, 化简得8y 2-3x 2=1,所以曲线C 的方程为8y 2-3x 2=1. ………………………10分C .选修4—4:坐标系与参数方程解:由直线l 的参数方程为⎩⎨⎧x =-1+t ,y =t,得直线l 的普通方程为x -y +1=0.………………………2分由圆C 的参数方程为⎩⎨⎧x =a +cos θ,y =2a +sin θ,得圆C 的普通方程为(x -a )2+(y -2a )2=1.………………………4分(第21A 题)因为直线l 与圆C 相切,所以∣a -2a +1∣2=1, ………………………8分解得a =1±2.所以实数a 的值为1±2. ………………………10分 D .选修4—5:不等式选讲解:(1)当x <-1时,不等式可化为-x +2-x -1≥5,解得x ≤-2;……………………2分(2)当-1≤x ≤2时,不等式可化为-x +2+x +1≥5,此时不等式无解;……………4分 (3)当x >2时,不等式可化为x -2+x +1≥5,解得x ≥3; ……………………6分 所以原不等式的解集为(-∞,-2]∪[3,+∞). …………………………10分 【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)以{→AB ,→AD ,→AP }为单位正交基底,建立如图所示的空间直角坐标系A -xyz . 因为AP =AB =AD =1,所以A (0,0,0),B (1,0,0),D (0,1,0),P (0,0,1). 设C (1,y ,0),则→PB =(1,0,-1),→CD =(-1,1-y ,0).…………………………2分因为直线PB 与CD 所成角大小为π3,所以|cos <→PB ,→CD >|=|→PB ⋅→CD ∣→PB ∣⋅∣→CD ∣|=12, 即12×1+(1-y )2=12,解得y =2或y =0(舍),所以C (1,2,0),所以BC 的长为2. ………………………5分 (2)设平面PBD 的一个法向量为n 1=(x ,y ,z ).因为→PB =(1,0,-1),→PD =(0,1,-1), 则⎩⎪⎨⎪⎧→PB ⋅n 1=0,→PD ⋅n 1=0,即⎩⎨⎧x -z =0,y -z =0.令x =1,则y =1,z =1,所以n 1=(1,1,1). ………………………7分 因为平面P AD 的一个法向量为n 2=(1,0,0),所以cos <n 1,n 2>=n 1⋅n 2∣n 1∣⋅|n 2∣=33,所以,由图可知二面角B -PD -A 的余弦值为33. ………………………10分 23.(本小题满分10分)解:(1)两个球颜色不同的情况共有C 24⋅42=96(种). ………………………3分(2)随机变量X 所有可能的值为0,1,2,3.P (X =0)=4⋅ C 2496=14, ………………………5分P (X =1)=3⋅C 14⋅C 1396=38,P (X =2)=2⋅C 14⋅C 1396=14,P (X =3)=C 14⋅C 1396=18.所以随机变量X 的概率分布列为:………………………8分所以E (X )=0⨯14+1⨯38+2⨯14+3⨯18=54. ………………………10分。
2021学年高三上学期8月联考数学(答案)
3 cos A 3 3 3 3 + =11 2021 学年高三上学期 8 月执信、广雅、六中三校联考试卷答案说明数学一、选择题(本大题 12 小题,每小题 5 分,共 60 分. 其中第 1 题~第 10 题为单项选择题,在给出 的四个选项中,只有一项符合要求;第 11 题和第 12 题为多项选择题,在给出的四个选项中,有多 项符合要求,全部选对得 5 分,选对但不全的得 3 分,有选错的得 0 分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABCDCBCCBAACDBD二、填空题(本大题 4 小题,每小题 5 分,共 20 分)13. 2 14. -115. -9016. (-1- 1 , -1) [1- 1 , +∞)ee三、解答题(本大题 6 小题,共 70 分)17.解:(Ⅰ)由tan B + tan C =得 sin B sin C…………1 分 cos B cos C cos B cos C cos B cos C∴ sin B cos C + cos B s in C = 3 cos A ,∴sin(B + C ) = 3 c os A …………2 分∵ A + B + C = π ∴ sin A = 3 c os A …………3 分又cos A 显然不等于 0,∴ tan A = …………4 分∵A ∈(0,π ) ∴ A = π 3…………5 分(Ⅱ)由(Ⅰ)知 A = π,又a = 4 , b + c = 5 ,根据余弦定理得3a 2 =b 2 +c 2 - 2bc cos A = (b + c )2- 3bc∴16 = 25 - 3bc ,∴ bc = 3 …………8 分∴ S = bc sin A = ⨯ 3⨯= . …………10 分 2 2 2 418.解:(Ⅰ)由题意,数列{a n }满足a 1 + 3a 2 +⋯+ (2n -1)a n = 2n + 2S n ,当 n ≥ 2 时, a 1 + 3a 2 +⋯+ (2n - 3)a n -1 = 2(n -1) + 2S n -1 …………1 分两式相减,可得(2n -1)a n = 2 + 2(S n - S n -1) ,即(2n -1)a n = 2 + 2a n …………3 分整理得a n= 2(n ≥ 2) 2n - 3…………4 分 103 cos Azx= - 2 (1 2 ) 又由当n = 1时, a 1 = 2 + 2S 1 ,可得a 1 = 2 + 2a 1 ,即a 1 = -2 (适合上式)…………5 分 所以数列{a }的通项公式为a =2, n ∈ N + . …………6 分 n(Ⅱ)由b n =2n +1 a nn= (2n - 3) ⋅ 2n2n - 3…………7 分2 3 n -1 n则T n = -1⋅ 2 +1⋅ 2 + 3⋅ 2 + + (2n - 5) ⋅ 2 + (2n - 3) ⋅ 2 ,所以2T n = -1⋅ 22 +1⋅ 23 + 3⋅ 24++ (2n - 5) ⋅ 2n + (2n - 3) ⋅ 2n +1 …………8 分两式相减,可得-T n = -2 + 2(22+ 23++ 2n ) - (2n - 3) ⋅ 2n +1 …………9 分所以T n 2 - n -12 + 2⨯- (2n - 3) ⋅ 2 1- 2= (2n - 5) ⋅ 2n +1+10 . …………12 分n +1= -10 + (5 - 2n ) ⋅ 2n +1 …………11 分19.证明:(Ⅰ)在梯形 ABCD 中, AB //CD , AD = CD = CB = 2 , ∠ABC = 60︒ ,∴四边形 ABCD 是等腰梯形, ∠ADC =120︒ ,∴ ∠DCA = ∠DAC = 30︒ , ∠DCB =120︒, ∴ ∠ACB = ∠DCB - ∠DCA = 90︒ ,∴ AC ⊥ BC (也可以利用余弦定理求出 AC , BC 再证明)…………2 分又∵矩形 ACFE 中, CF = AE = 2 ,又有 BF = 2 2 , CB = 2 ,∴ CB ⊥ CF 又∵ AC CF = C ,∴ BC ⊥ 平面 ACFE . …………5 分…………4 分(Ⅱ)以点C 为坐标原点,以CA 所在直线为 x 轴,以CB 所在直线为 y 轴,以CF 所在直线为 z 轴, 建立空间直角坐标系.y可得C (0, 0, 0) , B (0, 2, 0) , F (0, 0, 2) , D (3, -1, 0),E (2 3, 0, 2).∴ EF = (-2 3, 0, 0) , BF = (0, -2, 2) , BD = ( 3, -3, 0) …………7 分⎧n ⋅ EF = 0 ⎧⎪n ⋅ EF = -2 3x = 0 设平面 BEF 的法向量为n = (x , y , z ) ,所以⎨n ⋅ BF = 0 ,∴ ⎨n ⋅ BF = -2 y + 2z = 0 ,⎩⎪⎩令 y = 1,则 x = 0 , z = 1,∴ n = (0,1,1) …………9 分∴| cos < …………11 分∴直线 BD 与平面 BEF 所成角的正弦值是.…………12 分 420.解:(Ⅰ)由题意可知 120 件样本零件中长度大于 1.60 分米的共有 18 件, 18则这批零件的长度大于 1.60 分米的频率为120= 0.15…………1 分记Y 为零件的长度,则 P (1.2 ≤ Y ≤ 1.3) = P (1.7 < Y ≤ 1.8) =3120= 0.025 , P (1.3 < Y ≤ 1.4) = P (1.6 < Y ≤ 1.7) =15120 = 0.125 , P (1.4 < Y ≤ 1.5) = P (1.5 < Y ≤ 1.6) = 1⨯ (1- 2⨯ 0.025 - 2⨯ 0.125) = 0.35 ,2故 m = 0.025 = 0.25 , n = 0.125 = 1.25 , t = 0.35= 3.5 . …………4 分 0.1 0.1 0.1 (Ⅱ)由(Ⅰ)可知从这批零件中随机选取 1 件,长度在(1.4,1.6]的概率 P = 2⨯0.35 = 0.7 .则随机变量 X 服从二项分布, X ~ B (3, 0.7)…………5 分则 P ( X = 0) = C 0 ⨯(1- 0.7)3 = 0.027 , P ( X = 1) = C 1 ⨯(1- 0.7)2⨯ 0.7 = 0.189 ,33P ( X = 2) = C 2 ⨯(1- 0.7)⨯ 0.72 = 0.441, P (X = 3) = C 3 ⨯ 0.73 = 0.343 ,33故随机变量 X 的分布列为X0 1 2 3 P0.0270.1890.4410.343…………7 分EX = 0⨯0.027 +1⨯0.189 + 2⨯0.441+ 3⨯0.343 = 2.1(或 EX = 3⨯0.7 = 2.1). …………8 分 (或由随机变量 X 服从二项分布,X ~ B (3, 7) ,得P ( X = k ) = C k⋅ ( 7)k⋅ ( 3)3-k(k = 0,1, 2,3) ,EX = 3⨯ 7= 21 ) 10310 1010 10BD , n >|=| BD ⋅ n | BD | ⋅ | n ||= 64 631+c2+3m 3 6km(Ⅲ)由题意可知μ= 1.5 ,σ= 0.1,则P (μ-σ<Y ≤μ+σ)=P (1.4 <Y ≤ 1.6)= 0.7 ,P (μ- 2σ<Y ≤μ+ 2σ)=P (1.3 <Y ≤1.7)= 0.125 + 0.35 + 0.35 + 0.125 = 0.95…………10 分因为 0.7 -0.6826 = 0.0174 ≤ 0.05 ,0.95 -0.9544 = 0.0044 ≤ 0.05所以这批零件的长度满足近似于正态分布N (1.5, 0.01)的概率分布.…………11 分故认为这批零件是合格的,将顺利被该公司签收. …………12 分21.解:(Ⅰ)由题可知,A(0,1), F (c, 0),则直线AF的方程为x +y =1,即x+cy-c=0c因为直线 AF 与圆 M : x2 +y2 - 6x - 2y + 7 = 0 相切,该圆的圆心为 M (3,1), r ==32 2x22则,∴c = 2 ,∴a= 3 ,故椭圆的标准方程为+y3= 1. …………3 分(Ⅱ)解法一:依题得直线l 的斜率必存在,设l : y =kx +m ,设点P(x1, y1 ),Q(x2 , y2 ) ,⎧y =kx +m⎪联立⎨x2+y2 = 1 ,消去 y 并整理得(3k 2 +1)x2 +6kmx +3m2 -3 = 0…………5 分⎪⎩ 3∆=36k2m2 - 4⋅ (3k2 +1) ⋅ (3m2 - 3) > 0 ,即m2 < 3k 2 +1…………6 分且 x +x =-6km, x x =1 2 3k 2 +1 1 23m2 - 33k 2 +1…………7 分∴AP ⋅AQ = (x y ) ⋅ (x , y ) =x x +y y = (k 2 +1)x x +k(m -1)(x +x ) + (m -1)21, 1 2 2 1 2 1 2 1 2 1 2= (k 2 2 -1) ⋅+k(m -1) ⋅(- ) +(m -1)2=4m2 - 2m - 2 …………9 分AP ⊥AQ 3k 2 +1 3k 2 +14m2 - 2m - 23k 2 +1m =-1∵,∴AP ⋅AQ = 0 ,即3k 2 +1 =0 ,∴m =1或…………10 分2当m = 1时,直线l : y =kx +1,恒过点(0,1) ,不满足题意,舍去;当 m =-1时,直线l : y =kx -1,恒过点(0, -1) 2 2 2故直线l 恒过定点(0, -1) . …………12 分23( ) 6k 2x 2 解法二:因为不过点 A 的动直线l 与椭圆C 相交于 P ,Q 两点,且 AP ⊥ AQ ,即直线 AP 与坐标轴不垂直也不平行,由 A (0,1) ,可设直线 AP 的方程为 y = kx +1,则直线 AQ 的方程为 y = - 1x +1 k…………4 分⎧ x 2⎪ 联立⎨ 3 y = 1 ,消去 y 并整理得 1+ 3k 2 x 2 + 6kx = 0 ,解得 x = 0 或- 6k , 1+ 3k 2 ⎪⎩y = kx +1因此点 P 的坐标为(-6k 1+ 3k 22 , - +1) ,即 P (- 1+ 3k 26k 1+ 3k 21- 3k 2 , 1+ 3k 2)…………7 分- 16kk 2 - 3将上式中的k 换成k,得点Q (3 + k 2, 3 + k2 ) k 2 -3 - 1- 3k 2…………8 分 3 + k 2 1+ 3k 2 =k 2-1k 2 -16kk 2 - 3所以直线l 的斜率为6k 3 + k 2+ 6k 1+ 3k 2,即直线l 的方程为 y =4k(x - 4k3 + k 2 ) + , 3 + k 2化简并整理得 y = k 2 -1 1x - …………11 分4k 2故直线l 恒过定点(0, - 1) . …………12 分222.解:(Ⅰ)函数 f (x ) 的定义域为: (0, +∞ ), f '(x ) = a + = a + 2x2 x x①当a ≥ 0 时, f '(x ) > 0 ,所以 f (x ) 在(0, +∞ )上单调递增 …………2 分②当 a < 0 时,令 f '(x ) = 0 ,解得 x…………1 分当0 <x , a + 2x 2 < 0 ,所以 f '(x ) < 0, 所以 f (x ) 在(0,上单调递减;当 x 时, a + 2x 2 > 0 ,所以f '(x ) > 0 ,所以 f (x ) 在+∞) 上单调递增…………3 分综上,当a ≥ 0 时,函数 f (x ) 在(0, +∞ )上单调递增;当 a < 0 时,函数 f (x ) 在上单调递减,在+∞) 上单调递增. …………4 分 +(Ⅱ)当a = 1时, f (x ) = ln x + x 2 ,要证明 f (x ) ≤ x2+ x -1,即证ln x ≤ x -1,即证ln x - x +1≤ 0 …………5 分 设g(x ) = ln x - x +1,则g'(x ) =1 - x ,令 g '(x ) = 0 得, x = 1.x当 x ∈(0,1)时, g '(x ) > 0 ,当 x ∈(1, +∞)时, g '(x ) < 0 .所以 x = 1为极大值点,且 g (x ) 在 x = 1处取得最大值.所以 g (x ) ≤ g (1) = 0 ,即ln x - x +1≤ 0 ,故 f (x ) ≤ x 2+ x -1. …………7 分(Ⅲ)证明:由(Ⅱ)知ln x ≤ x -1(当且仅当 x = 1时等号成立),即lnx≤ 1 - 1x x…………8 分ln 22 ln 32 lnn 2 1 1 1 1 1 1则有 + +⋯+ < 1- +1- +⋯+1- = n -1- ( + +⋯+ ) ……9 分 2232 n 2 22 32 n 2 22 32 n 2< n -1-[1+1+⋯+1] …………10 分2⨯ 3 3⨯ 4n (n +1)= n -1- (1 - 1 + 1 - 1 +⋯+ 1 - 1 ) = n -1- (1 - 1 ) = (n -1)(2n +1)…………11 分2 3 3 4n n +1 2 n +12 (n +1)ln 22 ln 32 + ⋯+ lnn 2< (n -1)(2n + 1)故22+32n 22 (n + 1). …………12 分。
A01 2021届江苏省南京市高三年级学情调研数学试题
南京市2021届高三年级学情调研数 学 2016.09注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡. 参考公式:柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高. 锥体的体积公式:V =13Sh ,其中S 为锥体的底面积,h 为锥体的高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上.1.已知集合A ={0,1,2},B ={x |x 2-x ≤0},则A ∩B = ▲ .2.设复数z 满足(z +i)i =-3+4i (i 为虚数单位),则z 的模为 ▲ . 3.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有 ▲ 辆.4.若函数f (x )=sin(ωx +π6) (ω>0)的最小正周期为π,则f (π3)5.右图是一个算法的流程图,则输出k 的值是 ▲ .6.设向量a =(1,-4),b =(-1,x ),c =a +3b .若a ∥c 7.某单位要在4名员工(含甲、乙两人)中随机选2至少有一人被选中的概率是 ▲ . 8.在平面直角坐标系xOy 中,双曲线C :x 2a 2 - y 24=1(a >0y =2x +1平行,则实数a 的值是 ▲ .9.在平面直角坐标系xOy 中,若直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=16相交于A ,B 两点,且△ABC 为直角三角形,则实数a 的值是 ▲ .10.已知圆柱M 的底面半径为2,高为6;圆锥N 的底面直径和母线长相等.若圆柱M 和(第5题)(第3题)0.0.0.0.圆锥N 的体积相同,则圆锥N 的高为 ▲ .11.各项均为正数的等比数列{a n },其前n 项和为S n .若a 2-a 5=-78,S 3=13,则数列{a n }的通项公式a n = ▲ .12.已知函数f (x )=⎩⎪⎨⎪⎧12x -x 3,x ≤0,-2x ,x >0.当x ∈(-∞,m ] 时,f (x )的取值范围为 [-16,+∞),则实数m 的取值范围是 ▲ .13.在△ABC 中,已知AB =3,BC =2,D 在AB 上,AD →=13AB →.若DB →·DC →=3,则AC 的长是 ▲ .14.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )+g (x )=(12)x .若存在x 0∈[12,1],使得等式af (x 0)+g (2x 0)=0成立,则实数a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α和钝角β的终边分别与单位圆交于点A ,B .若点A 的横坐标...是31010,点B 的纵坐标...是255. (1)求cos(α-β)的值; (2)求α+β的值.16.(本小题满分14分)(第15题)如图,在直三棱柱ABC-A1B1C1中,点M,N分别为线段A1B,AC1的中点.(1)求证:MN∥平面BB1C1C;(2)若D在边BC上,AD⊥DC1,求证:MN⊥AD.17.(本小题满分14分)如图,某城市有一块半径为40 m的半圆形绿化区域(以O为圆心,AB为直径),现计划对其进行改建.在AB的延长线上取点D,OD=80 m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2.设∠AOC=x rad.(1)写出S关于x的函数关系式S(x),并指出x的取值范围;(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.18.(本小题满分16分)(第17题)AB CDM NA1B1 C1(第16题)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,设PF 1→=λF 1Q →.(1)若点P 的坐标为 (1,32),且△PQF 2的周长为8,求椭圆C 的方程;(2)若PF 2垂直于x 轴,且椭圆C 的离心率e ∈[12,22],求实数λ的取值范围.19.(本小题满分16分)(第18题)已知数列{a n}是公差为正数的等差数列,其前n项和为S n,且a2·a3=15,S4=16.(1)求数列{a n}的通项公式;(2)数列{b n}满足b1=a1,b n+1-b n=1a n·a n+1.①求数列{ b n}的通项公式;②是否存在正整数m,n(m≠n),使得b2,b m,b n成等差数列?若存在,求出m,n的值;若不存在,请说明理由.20.(本小题满分16分)已知函数f (x )=ax 2-bx +ln x ,a ,b ∈R .(1)当a =b =1时,求曲线y =f (x )在x =1处的切线方程; (2)当b =2a +1时,讨论函数f (x )的单调性;(3)当a =1,b >3时,记函数f (x )的导函数f ′(x )的两个零点是x 1和x 2 (x 1<x 2).求证:f (x 1)-f (x 2)>34-ln2.南京市2017届高三年级学情调研数学附加题2016.0921.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图, AB 为 圆O 的一条弦,C 为圆O 外一点. CA ,CB 分别交圆O 于D ,E 两点. 若AB =AC ,EF ⊥AC 于点F ,求证:F 为线段DC 的中点.B .选修4—2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤ 2 -2 1 -3,B =⎣⎢⎡⎦⎥⎤1 0 0 -1 ,设M =AB .(1)求矩阵M ; (2)求矩阵M 的特征值.C .选修4—4:坐标系与参数方程已知曲线C 的极坐标方程为 ρ=2cos θ,直线l 的极坐标方程为 ρ sin(θ+π6)=m .若直线l 与曲线C 有且只有一个公共点,求实数m 的值.(第21题A )D.选修4—5:不等式选讲解不等式|x-1|+2|x|≤4x.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在底面为正方形的四棱锥P-ABCD中,侧棱PD⊥底面ABCD,PD=DC,点E 是线段PC的中点.(1)求异面直线AP与BE所成角的大小;(2)若点F在线段PB上,使得二面角F-DE-B的正弦值为33,求PFPB的值.23.(本小题满分10分)甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜.投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投.(1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数X的分布列与期望.AC DFPE(第22题)南京市2017届高三年级学情调研数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分.)1.{0,1} 2.2 5 3.80 4.12 5.5 6.47.56 8.1 9.-1 10.6 11.3n -1 12.[-2,8] 13. 10 14.[22,522]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)解: 因为锐角α的终边与单位圆交于A ,且点A 的横坐标是31010,所以,由任意角的三角函数的定义可知,cos α=31010,从而sin α=1-cos 2α=1010. ……………… 2分 因为钝角β的终边与单位圆交于点B ,且点B 的纵坐标是255,所以sin β=255,从而cos β=-1-sin 2β=-55. …………… 4分(1)cos(α-β)=cos αcos β+sin αsin β=31010×(-55)+1010×255=-210. ……………… 8分 (2)sin(α+β)=sin αcos β+cos αsin β=1010×(-55)+31010×255=22. ……… 11分因为α为锐角,β为钝角,故α+β∈(π2,3π2),所以α+β=3π4. …………… 14分16.(本小题满分14分) 证明:(1)如图,连结A 1C .在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 为平行四边形. 又因为N 为线段AC 1的中点, 所以A 1C 与AC 1相交于点N ,即A 1C 经过点N ,且N 为线段A 1C 的中点. ……………… 2分 因为M 为线段A 1B 的中点,所以MN ∥BC . ……………… 4分 又MN ⊄平面BB 1C 1C ,BC ⊂平面BB 1C 1C ,所以MN ∥平面BB 1C 1C . …………………… 6分 (2)在直三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC .又AD ⊂平面ABC ,所以CC 1⊥AD . ………… 8分 因为AD ⊥DC 1,DC 1⊂平面BB 1C 1C ,CC 1⊂平面BB 1C 1C ,CC 1∩DC 1=C 1, 所以AD ⊥平面BB 1C 1C . ……………… 10分 又BC ⊂平面BB 1C 1C ,所以AD ⊥BC . …………… 12分 又由(1)知,MN ∥BC ,所以MN ⊥AD . …………… 14分 17.(本小题满分14分)解:(1)因为扇形 AOC 的半径为 40 m ,∠AOC =x rad ,所以 扇形AOC 的面积S 扇形AOC =x ·OA 22=800x ,0<x <π. …………… 2分在△COD 中,OD =80,OC =40,∠COD =π-x ,所以△COD 的面积S △COD =12·OC ·OD ·sin ∠COD =1600sin(π-x )=1600sin x .…………… 4分从而 S =S △COD +S 扇形AOC =1600sin x +800x ,0<x <π. …………… 6分 (2)由(1)知, S (x )=1600sin x +800x ,0<x <π.S ′(x )=1600cos x +800=1600(cos x +12). ………… 8分A BCDMNA 1B 1C 1(第16题)由 S ′(x )=0,解得x =2π3.从而当0<x <2π3时,S ′(x )>0;当2π3<x <π时, S ′(x )<0 .因此 S (x )在区间(0,2π3)上单调递增;在区间(2π3,π)上单调递减. …………… 11分所以 当x =2π3,S (x )取得最大值.答:当∠AOC 为2π3时,改建后的绿化区域面积S 最大. …………… 14分18.(本小题满分16分)解:(1)因为F 1,F 2为椭圆C 的两焦点,且P ,Q 为椭圆上的点,所以PF 1+PF 2=QF 1+QF 2=2a ,从而△PQF 2的周长为4a .由题意,得4a =8,解得a =2. …………… 2分 因为点P 的坐标为 (1,32),所以1a 2+94b 2=1,解得b 2=3.所以椭圆C 的方程为x 24+y 23=1. …………… 5分(2)方法一:因为PF 2⊥x 轴,且P 在x 轴上方,故设P (c ,y 0),y 0>0.设Q (x 1,y 1).因为P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a ,即P (c ,b 2a ). ………… 7分因为F 1(-c ,0),所以PF 1→=(-2c ,-b 2a ),F 1Q →=(x 1+c ,y 1).由PF 1→=λF 1Q →,得-2c =λ(x 1+c ),-b 2a=λy 1,解得x 1=-λ+2λc ,y 1=-b 2λa ,所以Q (-λ+2λc ,-b 2λa ). …………… 11分因为点Q 在椭圆上,所以(λ+2λ)2e 2+b 2λ2a 2=1,即(λ+2)2e 2+(1-e 2)=λ2,(λ2+4λ+3)e 2=λ2-1, 因为λ+1≠0,所以(λ+3)e 2=λ-1,从而λ=3e 2+11-e 2=41-e 2-3. ………… 14分 因为e ∈[12,22],所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围为[73,5]. ……………… 16分方法二:因为PF 2⊥x 轴,且P 在x 轴上方,故设P (c ,y 0),y 0>0.因为P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a ,即P (c ,b 2a ). ………… 7分因为F 1(-c ,0),故直线PF 1的方程为y =b 22ac (x +c ).由⎩⎨⎧y =b 22ac(x +c ),x 2a 2+y 2b 2=1,得(4c 2+b 2)x 2+2b 2cx +c 2(b 2-4a 2)=0.因为直线PF 1与椭圆有一个交点为P (c ,b 2a).设Q (x 1,y 1),则x 1+c =-2b 2c 4c 2+b 2,即-c -x 1=2b 2c4c 2+b 2. ………… 11分因为PF 1→=λF 1Q →,所以λ=2c -c -x 1=4c 2+b 2b 2=3c 2+a 2a 2-c 2==3e 2+11-e 2=41-e 2-3. ………… 14分因为e ∈[12,22],所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围为[73,5]. …………………… 16分19.(本小题满分16分)解:(1)设数列{a n }的公差为d ,则d >0.由a 2·a 3=15,S 4=16,得⎩⎨⎧(a 1+d )(a 1+2d )=15,4a 1+6d =16,解得⎩⎨⎧a 1=1,d =2, 或 ⎩⎨⎧a 1=7,d =-2.(舍去)所以a n =2n -1. …………………… 4分 (2)①因为b 1=a 1,b n +1-b n =1a n ·a n +1,所以b 1=a 1=1,b n +1-b n =1a n ·a n +1=1 (2n -1)·(2n +1)=12(12n -1-12n +1), …………… 6分即 b 2-b 1=12(1-13),b 3-b 2=12(13-15),……b n -b n -1=12(12n -3-12n -1),(n ≥2)累加得:b n -b 1=12(1-12n -1)=n -12n -1, ……………… 9分所以b n =b 1+n -12n -1=1+n -12n -1=3n -22n -1.b 1=1也符合上式.故b n =3n -22n -1,n ∈N*. …………… 11分②假设存在正整数m 、n (m ≠n ),使得b 2,b m ,b n 成等差数列, 则b 2+b n =2b m .又b 2=43,b n =3n -22n -1=32-14n -2,b m =32-14m -2,所以43+(32-14n -2)=2(32-14m -2),即1 2m -1=16+14n -2,化简得:2m =7n -2n +1=7-9n +1. …………………… 14分当n +1=3,即n =2时,m =2,(舍去); 当n +1=9,即n =8时,m =3,符合题意.所以存在正整数m =3,n =8,使得b 2,b m ,b n 成等差数列. …………… 16分 20.(本小题满分16分)解:(1)因为a =b =1,所以f (x )=x 2-x +ln x ,从而f ′(x )=2x -1+1x.因为f (1)=0,f ′(1)=2,故曲线y =f (x )在x =1处的切线方程为y -0=2(x -1), 即2x -y -2=0. ……………… 3分 (2)因为b =2a +1,所以f (x )=ax 2-(2a +1)x +ln x ,从而f ′(x )=2ax -(2a +1)+1x =2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x ,x >0. …… 5分当a ≤0时,x ∈(0,1)时,f ′(x )>0,x ∈(1,+∞)时,f ′(x )<0,所以,f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.…………… 7分 当0<a <12时,由f ′(x )>0得0<x <1或x >12a ,由f ′(x )<0得1<x <12a, 所以f (x )在区间(0,1)和区间(12a ,+∞)上单调递增,在区间(1,12a )上单调递减.当a =12时,因为f ′(x )≥0(当且仅当x =1时取等号), 所以f (x )在区间(0,+∞)上单调递增. 当a >12时,由f ′(x )>0得0<x <12a 或x >1,由f ′(x )<0得12a<x <1,所以f (x )在区间(0,12a )和区间(1,+∞)上单调递增,在区间(12a,1)上单调递减.…… 10分(3)方法一:因为a =1,所以f (x )=x 2-bx +ln x ,从而f ′(x )=2x 2-bx +1x(x >0).由题意知,x 1,x 2是方程2x 2-bx +1=0的两个根,故x 1x 2=12.记g (x ) =2x 2-bx +1,因为b >3,所以g (12)=3-b2<0,g (1)=3-b <0,所以x 1∈(0,12),x 2∈(1,+∞),且bx i =2x 2i +1 (i =1,2). …… 12分 f (x 1)-f (x 2)=(x 21-x 22)-(bx 1-bx 2)+ln x 1x 2=-(x 21-x 22)+ln x 1x 2. 因为x 1x 2=12,所以f (x 1)-f (x 2)=x 22-14x 22-ln(2x 22),x 2∈(1,+∞). ……… 14分 令t =2x 22∈(2,+∞),φ(t )=f (x 1)-f (x 2)=t 2-12t -ln t . 因为φ′(t )=(t -1)22t 2≥0,所以φ(t )在区间(2,+∞)单调递增,所以φ(t )>φ(2)=34-ln2,即f (x 1)-f (x 2)>34-ln2. ………… 16分方法二:因为a =1,所以f (x )=x 2-bx +ln x ,从而f ′(x )=2x 2-bx +1x(x >0).由题意知,x 1,x 2是方程2x 2-bx +1=0的两个根.记g (x ) =2x 2-bx +1,因为b >3,所以g (12)=3-b2<0,g (1)=3-b <0,所以x 1∈(0,12),x 2∈(1,+∞),且f (x )在[x 1,x 2]上为减函数. (12)分所以f (x 1)-f (x 2)>f (12)-f (1)=(14-b 2+ln 12)-(1-b )=-34+b2-ln2.因为b >3,故f (x 1)-f (x 2)>-34+b 2-ln2>34-ln2. (16)南京市2017届高三年级学情调研 数学附加参考答案及评分标准21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲证明:因为点A 、D 、E 、B 在圆O 上,即四边形ADEB 是圆内接四边形,所以∠B =∠EDC . ……………………… 3分 因为AB =AC ,所以∠B =∠C . ………… 5分 所以∠C =∠EDC ,从而ED =EC . ………… 7分 又因为EF ⊥DC 于点F ,所以F 为线段DC 中点. ……………… 10分 B .选修4—2:矩阵与变换解:(1)M =AB =⎣⎢⎡⎦⎥⎤ 2 -2 1 -3 ⎣⎢⎡⎦⎥⎤ 1 0 0 -1 = ⎣⎢⎡⎦⎥⎤ 2 2 1 3 . ……………… 5分 (2)矩阵M 的特征多项式为f (λ)= ⎪⎪⎪⎪⎪⎪λ-2 -2 -1 λ-3 =(λ-2)(λ-3)-2令f (λ)=0,解得λ1=1,λ2=4,所以矩阵M 的特征值为1或4. …………… 10分 C .选修4—4:坐标系与参数方程 解:曲线C 的极坐标方程为 ρ=2cos θ,化为直角坐标方程为x 2+y 2=2x .即(x -1)2+y 2=1,表示以(1,0)为圆心,1为半径的圆. ……………… 3分 直线l 的极坐标方程是 ρ sin(θ+π6)=m ,即12ρcos θ+32ρsin θ=m ,化为直角坐标方程为x + 3y -2m =0. …… 6分 因为直线l 与曲线C 有且只有一个公共点, 所以|1-2m |2=1,解得m =-12或m =32.所以,所求实数m 的值为-12 或 32. ………………… 10分D .选修4—5:不等式选讲 解:原不等式等价于⎩⎨⎧x ≤0,1-x -2x ≤4x 或⎩⎨⎧0<x ≤1,1-x +2x ≤4x 或⎩⎨⎧x >1,x -1+2x ≤4x .……………… 6分 解⎩⎨⎧x ≤0,1-x -2x ≤4x ,得x ∈∅; 解⎩⎨⎧0<x ≤1,1-x +2x ≤4x ,得 13≤x ≤1;解⎩⎨⎧x >1,x -1+2x ≤4x .得x >1. 所以原不等式的解集为 [13,+∞). ……………………… 10分【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)在四棱锥P -ABCD 中,底面ABCD 为正方形,侧棱PD ⊥底面ABCD ,所以DA 、DC 、DP 两两垂直,故以{DA →,DC →,DP →}为正交基底,建立空间直角坐标系D -xyz .因为PD =DC ,所以DA =DC =DP ,不妨设DA =DC =DP =2,则D (0,0,0),A (2,0,0),C (0,2,0),P (0,0,2)因为E 是PC 的中点,所以E (0,1,1). 所以AP →=(-2,0,2),BE →=(-2,-1,1), 所以cos<AP →,BE →>=AP →·BE →|AP →|·|BE →|=32,从而<AP →,BE →>=π6.因此异面直线AP 与BE 所成角的大小为π6. …………… 4分(2)由(1)可知,DE →=(0,1,1),DB →=(2,2,0),PB →=(2,2,-2).设PF →=λPB →,则PF →=(2λ,2λ,-2λ),从而DF →=DP →+PF →=(2λ,2λ,2-2λ). 设m =(x 1,y 1,z 1)为平面DEF 的一个法向量, 则⎩⎪⎨⎪⎧m ·DF →=0, m ·DE →=0,即⎩⎨⎧λx 1+λy 1+(1-λ)z 1=0,y 1+z 1=0,(第22题)取z 1=λ,则y 1=-λ,x 1=2λ-1.所以m =(2λ-1,-λ,λ)为平面DEF 的一个法向量. ………… 6分 设n =(x 2,y 2,z 2)为平面DEB 的一个法向量, 则⎩⎪⎨⎪⎧n ·DB →=0,n ·DE →=0,即⎩⎨⎧2x 2+2y 2=0,y 2+z 2=0,取x 2=1,则y 2=-1,z 2=1.所以n =(1,-1,1)为平面BDE 的一个法向量. …………… 8分 因为二面角F -DE -B 的正弦值为33,所以二面角F -DE -B 的余弦的绝对值为63, 即 |cos<m ,n >|=63, 所以|m ·n || m |·| n |=63, |4λ-1|3·(2λ-1)2+2λ2=63, 化简得,4λ2=1,因为点F 在线段PB 上,所以0≤λ≤1,所以λ=12,即PF PB =12. ………………………… 10分23.(本小题满分10分)解:(1)设甲第i 次投中获胜的事件为A i (i =1,2,3),则A 1,A 2,A 3彼此互斥.甲获胜的事件为A 1+A 2+A 3. P (A 1)=25;P (A 2)=35×13×25=225;P (A 3)=(35)2×(13)2×25=2125.所以P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3)=25+225+2125=62125.答:甲获胜的概率为62125. ……………………… 4分(2)X 所有可能取的值为1,2,3.则 P (X =1)=25+35×23=45;P (X =2)=225+35×13×35×23=425;P (X =3)=(35)2×(13)2×1=125.即X 的概率分布列为…………… 8分所以X 的数学期望E (X )=1×45+2×425+3×125=3125. ………… 10分。
推荐-南京市金陵中学2018届高三数学综合练习附答案 精品
南京市金陵中学2018届高三数学综合练习本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“若a 、b 都是奇数,则a +b 是偶数”的否命题是 ( ) A .若a +b 不是偶数,则a 、b 都不是奇数 B .若a +b 是偶数,则a 、b 都是奇数 C .若a +b 不是偶数,则a 、b 不都是奇数 D .若a 、b 不都是奇数,则a +b 不是偶数 2.已知向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件是 ( ) A .存在一个实数λ,使得a =λb B .1122x y x y = C .x 1x 2-y 1y 2=0 D .x 1y 2-x 2y 1=0 3.曲线 2cos 2sin x y θθ=⎧⎨=⎩ (θ为参数,—π≤θ≤—3π)的长度为 ( )A.34π B.32π C.35π D.3π4、若2()f x x ax b =++,且1(1)2,2(1)4f f ≤-≤≤≤,则点(a ,b )在a O b 平面上的区域是一个 ( )A. 三角形B.矩形C. 菱形D. 直角梯形5、函数3221x e y -⋅=π的部分图象大致是( )(A ) (B ) (C ) (D )6、已知ω>0,若函数()2cos2sin4xxx f ωω∙=在⎥⎦⎤⎢⎣⎡-3,4ππ上单调递增,则ω的取值范围是 ( )A.]32,0(B.]23,0( C.]2,0( D.),2[+∞图7- 57.如图,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 分别为DE 、FC 、EF 的中点,将△ABC 沿DE 、EF 、DF 折成三棱锥以后,BG 与IH 所成的角的弧度数为 ( )A .6πB .3πC .32arccosD .33arccos8.若0,0a b >>且a b ≠,在a ,b 之间插入n 个正数12,,,n x x x ,使之成为等比数列()*2,n n N ≥∈,记M =2a bN +=,则M 与N 的大小关系是 ( ) A.M>N B.M=N C.M<N D.不能确定 9. 一种专门占据内存的计算机病毒开始时占据内存2KB ,工作时3分钟自身复制一次,(即复制后所占内存是原来的2倍),那么,开机后( )分钟,该病毒占据64MB (. A. 45B. 48C. 51D. 4210.若直线 )0,(022>=+-b a by ax 过圆014222=+-++y x y x 的圆心,则ab 的最大值是 ( ) A.41 B. 21C. 1D. 2 第Ⅱ卷(非选择题,共90分)二、填空题:本大题4个小题,每小题4分,共16分.11.若32(1)1nnx x ax bx +=+++++ ,且a :b =3:1,那么(1)nx -的展开式中系数最大的项是 . 12.若函数1()()x f x a x R -=∈的反函数()1fx -的图像经过点(4,2),则()12f -的值为 .13.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):人入选,则入选的应是 .15.给出下列四个命题:图7-7① 已知函数()f x =()()43f f >;② 函数223sin sin y x x=+的最小值是 ③ 函数()()log 20,1xa y aa a =+>≠在R 上是增函数;④ 函数2sin 26y x π⎛⎫=-⎪⎝⎭的图象的一个对称点是,012π⎛⎫⎪⎝⎭; 其中正确命题的序号是 (把你认为正确的都写上).16. 在数列{}n a 中,如果存在非零常数T ,使得n T n a a +=对于任意的非零自然数n 均成立,那么就称数列{}n a 为周期数列,其中T 叫做数列{}n a 的周期。
2021届江苏省金陵中学高考数学考前模拟试卷(含答案解析)
2021届江苏省金陵中学高考数学考前模拟试卷一、单选题(本大题共8小题,共40.0分) 1.若复数,其中是虚数单位,则复数的模为( )A.B.C.D. 22.函数y =ln(x+1)√−x 2−3x+4的定义域为A ,不等式x 2−x−6x−1>0的解集为B ,则A ∩B =( )A. {−2<x <1}B. {−2<x <1或x >3}C. {−1<x <1}D. {x|−2<x <1或1<x <3}3.如图,AB 是圆O 的直径,P 是圆弧上的点,M ,N 是直径AB 上关于O 对称的两点,且,则A. 13B. 7C. 5D. 34.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有( )A. 6种B. 9种C. 18种D. 24种5.cos80°cos35°+cosl0°cos55°=( )A. √22B. −√22C. 12D. −126.已知f(x)=lnx −e −x ,a =2e ,b =ln2,c =log 2e ,(其中e 为自然对数的底数),则f(a),f(b),f(c)的大小顺序为( )A. f(a)<f(b)<f(c)B. f(a)<f(c)<f(b)C. f(b)<f(c)<f(a)D. f(c)<f(b)<f(a)7.随机变量ξ服从二项分布ξ~B(n,p),且Eξ=3,Dξ=2,则p 等于( )A. 23B. 13C. 1D. 08. 已知球O 表面上有三个点A 、B 、C 满足AB =BC =CA =3,球心O 到平面ABC 的距离等于球O 半径的一半,则球O 的表面积为( )A. 4πB. 8πC. 12πD. 16π二、多选题(本大题共4小题,共20.0分) 9.已知函数f(x)=Asin(ωx +φ)+B(A >0,ω>0,0<φ<π)的部分自变量、函数值如表所示,下列结论正确的是( ) Xπ3 7π12 ωx +φ 0 π2π3π22πf(x)25A. 函数解析式为f(x)=3sin(2x +5π6)+2 B. 函数f(x)图象的一条对称轴为x =−2π3 C. (−5π12,0)是函数f(x)图象的一个对称中心D. 函数f(x)的图象左平移π12个单位,再向下移2个单位所得的函数为奇函数10. 已知函数f(x)={−x 2−2x,x ≤mx −4,x >m,如果函数f(x)恰有两个零点,那么实数m 的取值范围可以是( )A. m <−2B. −2≤m <0C. 0≤m <4D. m ≥411. 在四面体P −ABC 中,以下说法错误的是( )A. 若四面体P −ABC 各棱长都相等,则PB ⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ =0 B. 若四面体P −ABC 各棱长都为2,M ,N 分别为PA ,BC 的中点,则|MN ⃗⃗⃗⃗⃗⃗⃗ |=1 C. 若AD ⃗⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ ,则BC ⃗⃗⃗⃗⃗ =2BD ⃗⃗⃗⃗⃗⃗ D. 若Q 为△ABC 的重心,则PQ ⃗⃗⃗⃗⃗ =13PA ⃗⃗⃗⃗⃗ +13PB ⃗⃗⃗⃗⃗ +13PC ⃗⃗⃗⃗⃗12.设F1,F2分别为双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,P为双曲线右支上任一点,若|PF1|2|PF2|的最小值为8a,则该双曲线离心率e的取值可以是()A. 1B. √2C. 3D. 4三、单空题(本大题共4小题,共20.0分)13.若等腰直角三角形的直角边长为2,则以斜边所在的直线为轴旋转一周所成的几何体体积是______ .14.16.已知命题P:∀b∈(−∞,2),f(x)=x2+bx+c在(−∞,−1)上为减函数;命题Q:∃x0∈Z,使得.则在命题¬P∨¬Q,¬P∧¬Q,P∨¬Q,P∧¬Q中任取一个命题,则取得真命题的概率是.15. 若圆x2+(y−2)2=1与椭圆x2m +y2n=1的三个交点构成等边三角形,则该椭圆的离心率的值为______.16. 表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,记第i行第j列的数为a ij.则表中的数52共出现______ 次.234567…35791113…4710131619…5913172125…61116212631…71319253137……………………四、解答题(本大题共6小题,共70.0分)17.已知数列{a n}的前n项和为S n,且a1=2,a2=8,a3=24,{a n+1−2a n}为等比数列.(1)求证:{a n2n}是等差数列(2)求1S n的取值范围.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若a=√10,cosB=2√55,D为AC的中点,求BD的长.19.如图,在斜三棱柱ABC−A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的角,AA1=2.底面ABC是边长为2的正三角形,其重心为G点,E是线段BC1上一点,且BE=13BC1.(1)求证:GE//侧面AA1B1B;(2)求平面B1GE与底面ABC所成锐二面角的正切值;(3)在直线AG上是否存在点T,使得B1T⊥AG?若存在,指出点T的位置;若不存在,说明理由.20.某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为34,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为ξ0123P 132a b932(1)求该生至少有1门课程取得优秀成绩的概率;(2)求p,q的值;(3)求数学期望E(ξ).21. 已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴的距离的差都是1.(1)求曲线C的方程;(2)若以F为圆心的圆与直线4x+3y+1=0相切,过点F任作直线l交曲线C于A,B两点,由点A,B分别向圆F引一条切线,切点分别为P,Q,记α=∠PAF,β=∠QBF,求证:sinα+sinβ是定值.22. 已知函数f(x)=2x−e x.(1)求函数f(x)的图象在点(0,f(0))处的切线方程;(2)若存在两个不相等的数x1,x2,满足f(x1)=f(x2),求证:x1+x2<2ln2.【答案与解析】1.答案:A解析:试题分析:,,故选A .考点:1复数的运算;2、复数的模.2.答案:C解析:解:解{x +1>0−x 2−3x +4>0得,−1<x <1;∴A ={x|−1<x <1}; 解x 2−x−6x−1>0得,−2<x <1,或x >3;∴B ={x|−2<x <1,或x >3}; ∴A ∩B ={x|−1<x <1}. 故选:C .可以求出集合A ,B ,然后进行交集的运算即可.考查描述法的定义,函数定义域的概念及求法,分式不等式的解法,以及交集的运算.3.答案:C解析:试题分析:根据题意,由于AB 是圆O 的直径,P 是圆弧上的点,M ,N 是直径AB 上关于O 对称的两点,且,则半径为3,OM =2,,故可知答案为C .考点:向量的数量积点评:主要是考查了向量的数量积的基本运算,属于基础题。
江苏省南京市2021届高三年级学情调研数学试卷(解析版)
5
A
D
B
C
高三数学试题第 4页
21.(本小题满分 12 分) 在平面直角坐标系 xOy 中,已知椭圆 C:x2+ y2= 1. 4 (1)设椭圆 C 的左、右焦点分别为 F1,F2,T 是椭圆 C 上的一个动点,求T→F1·→ TF2的
取值范围; (2)设 A(0,-1),与坐标轴不.垂.直.的直线 l 交椭圆 C 于 B,D 两点.若△ABD 是以 A
升高r,则R= ▲ . 3r
r 3
r
14.被誉为“数学之神”之称的阿基米德(前 287-前 212),是古希腊伟大的物理学家、数学
家、天文学家,他最早利用逼近的思想证明了如下结论:抛物线的弦与抛物线所围成的
封闭图形的面积,等于抛物线的弦与经过弦的端点的两条切线所围成的三角形面积的三
分之二.这个结论就是著名的阿基米德定理,其中的三角形被称为阿基米德三角形.在
2.已知(3-4i)z=1+i,其中 i 为虚数单位,则在复平面内 z 对应的点位于
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.已知向量 a,b 满足|a|=1,|b|=2,且|a+b|= 3,则 a 与 b 的夹角为
A.π 6
B.π 3
C.5π 6
D.2π 3
4.在平面直角坐标系 xOy 中,若点 P(4 3,0)到双曲线 C:ax22-y92=1 的一条渐近线的距离
2.答卷前,考生务必将自己的学校、姓名、考生号填涂在答题卡上指定的位置. 3.作答选择题时,选出每小题的答案后,用 2B 铅笔在答题卡上将对应题目选项的答案信
息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上. 4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内,
2021届江苏省南京市2018级高三上学期开学调研考试数学试卷参考答案
解:(1)选①,
因为S1+S3=2S2+2,
所以S3-S2=S2-S1+2,即a3=a2+2,
又数列{an}是公比为2的等比数列,
所以4a1=2a1+2,解得a1=1,
因此an=1×2n-1=2n-1.…………………………………… 4分
此时任意m,n∈N*,aman=2m-1·2n-1=2m+n-2,
13.214. 15.4;22016.(-∞,-1]
四、解答题:本大题共6小题,共70分.
17.(本小题满分10分)
解:因为m=(2cosx,-1),n=( sinx,2cos2x),
所以f(x)=m·n+1=2 sinxcosx-2cos2x+1
= sin2x-cos2x=2sin(2x- ).………………………4分
χ2= = ≈11.836>6.635,
因为当H0成立时,χ2≥6.635的概率约为0.01,
所以有99%以上的把握认为课外阅读达标与性别有关.……………………4分
(2)记事件A为:从该校男生中随机抽取1人,课外阅读达标;
事件B为:从该校女生中随机抽取1人,课外阅读达标.
由题意知:P(A)= = ,P(B)= = .………………………6分
设平面AED的法向量为m=(x1,y1,z1),
由 得
令z1=1-λ,所以平面AED的一个法向量为m=(-λ,0,1-λ).
…………………………9分
因此|cosθ|=|cos<m,n>|=| |=| |= ,
化简得3λ -8λ+4=0,解得λ= 或2.
因为E在棱PC上,所以λ∈[0,1],所以λ= .
2021届江苏省南京市2018级高三上学期开学调研考试
2021届江苏省南京市2018级高三上学期学情调研考试数学试卷及解析
2021届江苏省南京市2018级高三上学期学情调研考试数学试卷★祝考试顺利★(含答案)注意事项:1.本试卷共6页,包括单项选择题(第1题~第8题)、多项选择题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)四部分.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的学校、姓名、考生号填涂在答题卡上指定的位置.3.作答选择题时,选出每小题的答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内,在其他位置作答一律无效.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.已知集合A ={x |x 2-x -2<0},B ={x |1<x <3 },则A ∩B =A .{x |-1<x <3}B .{x |-1<x <1}C .{x |1<x <2}D .{x |2<x <3}2.已知(3-4i)z =1+i,其中i 为虚数单位,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.已知向量a ,b 满足|a |=1,|b |=2,且|a +b |= 3,则a 与b 的夹角为A .π6B .π3C .5π6D .2π34.在平面直角坐标系xOy 中,若点P (43,0)到双曲线C :x 2a 2-y 29=1的一条渐近线的距离为6,则双曲线C 的离心率为A .2B .4C . 2D . 35.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2b cos C ≤2a -c ,则角B 的取值范围是A.(0,π3] B.(0,2π3] C.[π3,π) D.[2π3,π)6.设a=log4 9,b=2-1.2,c=(827)-13,则A.a>b>c B.b>a>c C.a>c>b D.c>a>b7.在平面直角坐标系xOy中,已知圆A:(x-1)2+y2=1,点B(3,0),过动点P引圆A的切线,切点为T.若PT=2PB,则动点P的轨迹方程为A.x2+y2-14x+18=0 B.x2+y2+14x+18=0C.x2+y2-10x+18=0 D.x2+y2+10x+18=08.已知奇函数f (x)的定义域为R,且f (1+x)=f (1-x).若当x∈(0,1]时,f(x)=log2(2x+3),则f (932)的值是A.-3 B.-2 C.2 D.3二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得5分,部分选对得3分,不选或有错选的得0分.9.5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G经济产出做出预测.由上图提供的信息可知。
2021-2022学年江苏省南京市鼓楼区金陵中学高三(上)期初调研数学试卷(附答案详解)
2021-2022学年江苏省南京市鼓楼区金陵中学高三(上)期初调研数学试卷一、单选题(本大题共8小题,共40.0分)1. 已知集合A ={x|x 2−x −2≤0},B ={x|2−x >0},则A ∩B =( )A. [−1,2)B. (−1,2)C. (−1,2]D. (−∞,−1)2. 已知z =2+i ,则z(z −−i)=( )A. 6+2iB. 4−2iC. 6−2iD. 4+2i3. 已知某圆锥的轴截面是边长为4的正三角形,则它的体积为( )A. 2√33π B. 4√33π C. 8√33π D. 2√3π4. 已知α∈(−π2,π2),且3cos2α−8sinα=5,则cosα=( )A. 13B. 2√23C. 23D. 2√295. 2020年1月,教育部出台《关于在部分高校开展基础学科招生改革试点工作的意见》(简称“强基计划”),明确从2020年起强基计划取代原有的高校自主招生方式.如果甲、乙、丙三人通过强基计划的概率分别为45,34,34,那么三人中恰有两人通过的概率为( )A. 2180B. 2780C. 3380D. 27406. 已知O 为椭圆C 的中心,F 为C 的一个焦点,点M 在C 外,MO ⃗⃗⃗⃗⃗⃗⃗ =3OF ⃗⃗⃗⃗⃗ ,经过M 的直线l 与C 的一个交点为N ,△MNF 是有一个内角为120°的等腰三角形,则C 的离心率为( )A. √34B. √33C. √3−1D. √3+147. 设函数f(x)的定义域为R ,f(x)为奇函数,f(x +1)为偶函数,当x ∈[1,2]时,f(x)=ax 2+b.若f(3)=3,则f(172)=( )A. 94B. −74C. 32D. −1548. 若函数f(x)=1−ax 2(a >0)与g(x)=1−lnx 的图象存在公切线,则实数a 的最小值为( )A. 12eB. 1e 2C. 2eD. 1二、多选题(本大题共4小题,共20.0分)9. 为了解目前全市高一学生身体素质状况,对某校高一学生进行了体能抽测,得到学生的体育成绩X ~N(70,100),其中60分及以上为及格,90分及以上为优秀,则下列说法正确的是( )附:若X ~N(μ,σ2),则P(μ−σ≤X <μ+σ)=0.6826,P(μ−2σ≤X <μ+2σ)=0.9544.A. 该校学生体育成绩的方差为10B. 该校学生体育成绩的期望为70C. 该校学生体育成绩的及格率不到85%D. 该校学生体育成绩的优秀率超过4%10. 已知向量a ⃗ =(1,3),b ⃗ =(2,−4),则下列结论正确的是( )A. (a ⃗ +b ⃗ )⊥a ⃗B. |2a ⃗ +b ⃗ |=√10C. 向量a ⃗ ,b ⃗ 的夹角为3π4D. b ⃗ 在a⃗ 方向上的投影是√10 11. 已知点P(2,4),若过点Q(4,0)的直线l 交圆C :(x −6)2+y 2=9于A ,B 两点,R 是圆C 上动点,则( )A. |AB|的最小值为2√5B. P 到l 的距离的最大值为2√5C. PQ ⃗⃗⃗⃗⃗ ⋅PR⃗⃗⃗⃗⃗ 的最小值为12−2√5 D. |PR|的最大值为4√2+312. 如图,在正方体ABCD −A 1B 1C 1D 1中,AA 1=3,点M ,N 分别在棱AB 和BB 1上运动(不含顶点),若D 1M ⊥MN ,下列命题正确的是( )A. MN ⊥A 1MB. MN ⊥平面D 1MCC. 线段BN 长度的最大值为34D. 三棱锥C 1−A 1D 1M 体积不变三、单空题(本大题共4小题,共20.0分)13. 已知函数f(x)=log 2(x +1),若f(m 2+2)<f(3m),则实数m 的取值范围是______. 14. 在平面直角坐标系xOy 中,若圆(x −2)2+(y −2)2=1上存在点M ,使得点M 关于x 轴的对称点N 在直线kx +y +3=0上,则实数k 的最大值为______. 15. 在△ABC 中,B =60°,AB =1,M 是BC 的中点,AM =√3,则AC =______,cos∠MAC =______.16.已知函数f(x)={3x 2,x≤0−4|x−1|+4,x>0.若存在唯一的整数x,使得x(f(x)−a)>0成立,则实数a的取值范围为______.四、解答题(本大题共6小题,共72.0分)17.设函数f(x)=sinx+cosx(x∈R).(1)求函数y=[f(x+π4)]2的最小正周期;(2)求函数y=f(x)f(x−π4)在区间[0,π4]上的最大值.18.已知数列{a n}的前n项和为S n,且a1=2,且S n=a n+1−2.(1)求数列{a n}的通项公式;(2)求数列{(2n+1)⋅a n}的前n项和T n.19.2021年2月1日教育部办公厅《关于加强中小学生手机管理工作的通知》中明确“中小学生原则上不得将个人手机带入校园”,为此某学校开展了一项“你能否有效管控手机”调查,并从调查表中随机抽取200名学生(其中男、女生各占一半)的样本数据,其2×2列联表如下:性别能管控不能管控总计男30女总计90200(1)完成上述2×2列联表,并判断是否有99.9%的把握认为能否管控手机与性别有关?(2)若学生确因需要带手机进入校园需向学校有关部门报告,该校为做好这部分学生的手机管理工作,学校团委从能管控的学生中按样本中的比例抽取了6名学生组成一个团队.(ⅰ)从该团队中选取2名同学作个人经验介绍,求选取的2人中恰有一名女生的概率.(ⅱ)从这6人中随机抽取4人,设抽到的女生的人数为X,求X的分布列与数学期望.,其中n=a+b+c+d.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)P(K2≥k0)0.0500.0100.001k0 3.841 6.63510.82820.如图,在四棱锥A−BCDE中,△BCE为等边三角形,平面ACD⊥平面CDE,AC⊥CD,二面角D−AC−E的大小为60°.(1)求证:CD//平面ABE;(2)若AC=BC=2,点G为线段AB上的点,若直线CB与平面CEG所成角的正弦值为√21,求线段AG的长度.721.已知F1是椭圆C:x2a2+y23=1(a>√3)的左焦点,经过点P(0,−2)作两条互相垂直的直线l1和l2,直线l1与C交于点A,B.当直线l1经过点F1时,直线l2与C有且只有一个公共点.(1)求C的标准方程;(2)若直线l2与椭圆C有两个公共点,求线段AB的取值范围.22.已知函数f(x)=xe x+12ax2+ax,g(x)=12ax2−alnx(a∈R).(1)讨论f(x)在区间(0,+∞)上的单调性;(2)若关于x的不等式f(x)>g(x)在区间(0,+∞)上恒成立,求a的取值范围.答案和解析1.【答案】A【解析】解:∵集合A={x|x2−x−2≤0}={x|−1≤x≤2},B={x|2−x>0}={x|x<2},∴A∩B={x|−1≤x<2}=[−1,2).故选:A.求出集合A,B,由此能求出A∩B.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力等数学核心素养,是基础题.2.【答案】C【解析】解:∵z=2+i,∴z(z−−i)=(2+i)(2−2i)=4−4i+2i+2=6−2i,故选:C.直接利用复数代数形式的四则运算即可求解.本题考查复数代数形式的四则运算,属于基础题.3.【答案】C【解析】解:∵圆锥的轴截面是正三角形ABC,边长等于4,如图:∴圆锥的高AO=√32×4=2√3,圆锥的底面半径r=12×4=2,因此,该圆锥的体积V=13πr2⋅AO=13π×22×2√3=8√3π3.故选:C.根据圆角轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的体积公式,则不难得到本题的答案.本题给出圆锥轴截面的形状,求圆锥的体积,着重考查了等边三角形的性质和圆锥的轴截面等知识,属于基础题.4.【答案】B【解析】解:α∈(−π2,π2),且3cos2α−8sinα=5,即3(1−2sin 2α)−8sinα=5,求得sinα=−1(舍去),或sinα=−13, ∴cosα=√1−sin 2α=2√23, 故选:B .由题意利用二倍角的余弦公式求得sinα的值,再利用同角三角函数的基本关系,求得cosα的值.本题主要考查二倍角的余弦公式,同角三角函数的基本关系,属于基础题.5.【答案】C【解析】解:甲、乙、丙三人通过强基计划的概率分别为45,34,34, 则三人中恰有两人通过的概率为:P =45×34×(1−34)+45×(1−34)×34+(1−45)×34×34=3380. 故选:C .利用相互独立事件概率乘法公式和互斥事件概率加法公式能求出三人中恰有两人通过的概率.本题考查概率的运算,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力等数学核心素养,是基础题.6.【答案】B【解析】解:不妨设F(c,0),MO ⃗⃗⃗⃗⃗⃗⃗ =3OF ⃗⃗⃗⃗⃗ ,则M(−3c,0), 易知△MNF 中只能∠MNF =120°,△MNF 是有一个内角为120°的等腰三角形,则N(−c,±2√33c), 将N 代入椭圆方程得到c 2a 2+43c 2b 2=1,即e 2+4e 23(1−e 2)=1,解得e 2=13或e 2=3(舍去), 故e =√33,故选:B .不妨设F(c,0),计算M 的坐标,根据等腰三角形得到N 点坐标,代入椭圆方程化简即可求出离心率.本题主要考查了椭圆的离心率,考查了学生的计算能力和转化能力,是中档题.7.【答案】B【解析】解:因为f(x)为奇函数,所以f(−x)=−f(x), 因为f(x +1)为偶函数,所以f(−x +1)=f(x +1),所以f(x +2)=f[(x +1)+1]=f[−(x +1)+1]=f(−x)=−f(x), 所以f(x +4)=−f(x +2)=f(x), 所以f(x)是周期为4的周期函数, 因为f(0)=0,所以f(2)=f(0)=0, 所以f(2)=4a +b =0①,又f(3)=f(−1)=−f(1)=−a −b =3②, 所以①②联立可解得a =1,b =−4, 所以当x ∈[1,2]时,f(x)=x 2−4, 所以f(172)=f(12)=f(32)=94−4=−74. 故选:B .由奇函数与偶函数的定义,求出函数f(x)的周期,由f(2)=f(0)=4a +b =0,f(3)=f(−1)=−f(1)=−a −b =3联立可求得a ,b ,从而可得当x ∈[1,2]时,f(x)的解析式,然后由周期性进行求解即可.本题考查了函数性质的综合应用,主要考查了函数奇偶性与周期性的应用,考查了逻辑推理能力与化简运算能力,属于中档题.8.【答案】A【解析】解法一、设公切线与f(x),g(x)图象分别切于点A(x 1,y 1),B(x 2,y 2), f(x)=1−ax 2(a >0)的导数为f′(x)=−2ax ,g(x)=1−lnx 的导数为g′(x)=−1x ,则f(x)图象在A 处的切线方程为:y −(1−ax 12)=−2ax 1(x −x 1),即y =−2ax 1x +ax 12+1;同理可得g(x)图象在B 处的切线方程为:y −(1−lnx 2)=−1x 2(x −x 2),y =−1x2x +2−lnx 2.由上述两直线重合,可得{2ax 1=1x 2ax 12+1=2−lnx 2,消元x 1可得,14a =x 22(1−lnx 2), 令ℎ(x)=x 2(1−lnx)(x >0),则ℎ′(x)=(1−2lnx), 得ℎ(x)在(0,√e)单调递增,在(√e,+∞)单调递减, 即有14a ≤ℎmax (x)=ℎ(√e)=e2,得a ≥12e , 即a 的最小值为12e . 故选A .解法二、由图象易知:f(x),g(x)分别为上凸和下凸函数,要使f(x),g(x)存在公切线,只须f(x)≤g(x)在(0,+∞)上恒成立即可, 即a ≥lnx x 2恒成立,设ℎ(x)=lnx x 2,ℎ′(x)=1−2lnx x 3,当x >√e 时,ℎ′(x)<0,ℎ(x)递减;当0<x <√e 时,ℎ′(x)>0,ℎ(x)递增. 所以ℎ(x)的最大值为12e . 则a ≥(lnxx 2)max =12e . 即a 的最小值为12e . 故选:A .方法一、设出切点A(x 1,y 1),B(x 2,y 2),,求得导数和切线的斜率和方程,由两直线重合的条件,消元x 1可得,14a =x 22(1−lnx 2),构造函数,求得导数和单调性、最值,可得所求范围;方法二、根据f(x),g(x)的图象,要使f(x),g(x)存在公切线,只须f(x)≤g(x)在(0,+∞)上恒成立即可,即a ≥lnx x 2恒成立,运用构造函数,求得导数和单调性、最值,可得所求范围.本题考查导数的运用:求切线的方程和单调性、最值,考查方程思想和转化思想、运算能力和推理能力,属于中档题.9.【答案】BC【解析】解:由题意知,X ~N(70,100),所以期望值为μ=70,标准差为σ=10,方差为100,选项A 错误,选项B 正确; 因为P(X >70)=0.5,P(60≤X ≤80)=P(μ−σ<μ+σ)=0.6826, 所以P(60≤X ≤70)=12×0.6826=0.3413,所以P(X ≥60)=P(60≤X ≤70)+P(X >70)=0.3413+0.5=0.8413<85%,选项C 正确;因为优秀的概率为:P(X ≥90)=P(X ≥70)−P(70≤X ≤90)=0.5−12×0.9544=0.0228<0.4,选项D 错误. 故选:BC .由已知可得即可求出期望与标准差,方差,再根据公式即可求解本题考查了正态分布的性质与应用问题,与考查了分析与判断能力,是基础题.10.【答案】AC【解析】解:∵a ⃗ =(1,3),b ⃗ =(2,−4),∴a ⃗ +b ⃗ =(3,−1)、2a ⃗ +b ⃗ =(4,2), ∴(a ⃗ +b ⃗ )⋅a ⃗ =1×3+3×(−1)=0,∴∴(a ⃗ +b ⃗ )⊥a ⃗ . |2a ⃗ +b⃗ |=√42+22=2√5.∴A 对B 错. 设向量a ⃗ ,b ⃗ 的夹角为θ,则cosθ=a⃗ ⋅b ⃗ |a ⃗ ||b ⃗ |=√12+32×√22+(−4)2=−√22,∴θ=3π4,∴C 对;b ⃗ 在a ⃗ 方向上的投影为a ⃗ ⋅b ⃗|a ⃗ |=√12+32=−√10.∴D 错. 故选:AC .由a ⃗ =(1,3),b ⃗ =(2,−4),得a ⃗ +b ⃗ 、2a ⃗ +b ⃗ 坐标可判断AB ; 根据cosθ=a⃗ ⋅b ⃗ |a ⃗ ||b⃗ |可判断C ;根据投影公式计算可判断D . 本题考查平面向量数量积性质及运算、投影求法、垂直判定,考查数学运算能力,属于中档题.11.【答案】ABD【解析】解:如图,当直线l 与x 轴垂直时,|AB|有最小值,且最小值为2√5,故A 正确; 当直线l 与PQ 垂直时,P 到l 的距离有最大值,且最大值为|PQ|=2√5,故B 正确;设R(6+3cosθ,3sinθ),则PQ ⃗⃗⃗⃗⃗ ⋅PR ⃗⃗⃗⃗⃗ =(2,−4)⋅(4+3cosθ,3sinθ−4)=6cosθ−12sinθ+24,∴PQ ⃗⃗⃗⃗⃗ ⋅PR ⃗⃗⃗⃗⃗ =6√5cos(θ+φ)+24,则PQ ⃗⃗⃗⃗⃗ ⋅PR ⃗⃗⃗⃗⃗ 的最小值为24−6√5,故C 错误; 当P ,C ,R 三点共线时,|PR|最大,且最大值为|PC|+r =4√2+3,所以D 正确. 故选:ABD .由题意画出图形,分别求出|AB|的最小值及P 到l 的距离的最大值判断A 与B ;设R(6+3cosθ,3sinθ),写出数量积,利用三角函数求最值判断C ;求出P 到圆心的距离,加上半径判断D .本题考查直线与圆的位置关系的应用,考查数形结合思想及运算求解能力,是中档题.12.【答案】ACD【解析】解:对于A ,∵A 1D 1⊥平面ABCD ,∴A 1D 1⊥MN ,又MN ⊥D 1M ,D 1M ∩A 1D 1=D 1,∴MN ⊥平面A 1D 1M ,∴MN ⊥A 1M ,所以A 正确;对于B ,∵MN ⊥A 1M ,∴MN 不与A 1B 垂直,∴MN 不与D 1C 垂直,∴MN ⊥平面D 1MC 不成立,所以B 错误;对于C ,∵MN ⊥A 1M ,∴△A 1AM∽△MBN ,∴A 1A ⋅BN =AM ⋅MB ≤(AM+MB 2)2=94,∴BN ≤34,所以C 正确;对于D ,显然M 到平面A 1C 1D 1的距离为3,∵V C 1−A 1D 1M =V M−A 1C 1D 1=13⋅S △A 1C 1D 1⋅3=92,所以D 正确. 故选:ACD .对于A ,证明MN ⊥平面A 1D 1M 即可;对于B ,证明MN 不与D 1C 垂直;对于C ,利用△A 1AM∽△MBN 得到A 1A ⋅BN =AM ⋅MB 即可判断;对于D ,利用V C 1−A 1D 1M =V M−A 1C 1D 1即可判断.本题考查了空间中的垂直位置关系的判断和空间长度的最值问题,其中结合了等体积法进行考查,属于中档题.13.【答案】(1,2)【解析】解:由题意可得函数的定义域为(−1,+∞), 又因为函数f(x)=log 2(x +1)在(−1,+∞)单调递增, ∴有{m 2+2>−13m >−1m 2+2<3m ,解得,1<m <2,所以实数m 的取值范围为(1,2). 故答案为:(1,2).根据对数函数的定义域和单调性列出不等式组{m 2+2>−13m >−1m 2+2<3m ,解出不等式即可.本题主要考查了对数函数的图象和性质,涉及函数的单调性和一元二次不等式的解法,属于基础题.14.【答案】0【解析】解:M 在圆上,故设M(2+cosθ,2+sinθ), 可得N(2+cosθ,−2−sinθ),将N 的坐标代入kx +y +3=0,可得sinθ−kcosθ=2k +1,|2k +1|≤√k 2+1,化为得3k 2+4k ≤0,−43≤k ≤0, k 的最大值为0. 故答案为:0.首先设出点M 的坐标,然后结合题意得到关于k 的不等式,求解不等式即可确定k 的最大值.本题主要考查直线与圆的位置关系,圆的方程中的参数问题等知识,属于基础题.15.【答案】√13 2√3913【解析】解:在△ABM 中,由余弦定理得AM 2=AB 2+BM 2−2BM ⋅BA ⋅cosB , 所以3=1+BM 2−2BM ⋅cos60°,即BM 2−BM −2=0, 解得BM =2或−1(舍负), 所以BC =2BM =2CM =4,在△ABC 中,由余弦定理得AC 2=AB 2+BC 2−2AB ⋅BC ⋅cosB =1+16−2×1×4×12=13,所以AC=√13,在△AMC中,由余弦定理得cos∠MAC=AC2+AM2−MC22AM⋅AC =2√3913.故答案为:√13;2√3913.先在△ABM中,利用余弦定理求出BM的长,再△ABC中,由余弦定理求得AC的长,最后在△AMC中,由余弦定理,得解.本题考查解三角形,熟练掌握余弦定理是解题的关键,考查逻辑推理能力和运算能力,属于中档题.16.【答案】[0,3]∪[4,12]【解析】解:作出f(x)的函数图象如图所示:①当x>0时,f(x)≤f(1)=4,存在唯一的整数x,使得x[f(x)−a]>0成立,则a<f(x)只有1个整数解,又f(2)=0,故0≤a<4;②当x<0时,则f(x)≥f(0)=0,存在唯一的整数x,使得x[f(x)−a]>0成立,则a>f(x)只有1个整数解,又f(−1)=3,f(−2)=12,∴3<a≤12,当0≤a≤3或4≤a≤12时,x[f(x)−a]>0只有1个整数解.故答案为:[0,3]∪[4,12].作出f(x)的函数图象,对x的符号进行讨论,根据不等式只有唯一整数解得出a的范围.本题主要考查分段函数及其应用,由不等式求解参数取值范围的方法等知识,属于中等题.17.【答案】解:(1)由辅助角公式得f(x)=sinx+cosx=√2sin(x+π4),则y=[f(x+π4)]2=[√2sin(x+π2)]2=2cos2x−1+1=cos2x+1,所以该函数的最小正周期T=2π2=π;(2)由题意,y=f(x)f(x−π4)=√2sin(x+π4)⋅√2sinx=2sin(x+π4)sinx=2sinx⋅(√2 2sinx+√22cosx)=√2sin2x+√2sinxcosx,=√2⋅1−cos2x2+√22sin2x=√22sin2x−√22cos2x+√22=sin(2x−π4)+√22,由x∈[0,π4]可得2x−π4∈[−π4,π4],所以当2x−π4=π4即x=π4时,函数取最大值√2.【解析】(1)由辅助角公式可得f(x)的解析式,进而求出函数y的解析式,可得函数的周期;(2)求出函数y的解析式,由函数的单调性求出函数的最大值.本题考查函数的辅助角公式的应用及函数的单调性求最值,属于中档题.18.【答案】解:(1)依题意,当n≥2时,由S n=a n+1−2,可得S n+1=a n+2−2,两式相减,得a n+1=2a n(n≥2),又∵a2=a1+2=4=2a1≠0,∴a n+1a n=2,∴数列{a n}是以2为首项,2为公比的等比数列,∴a n=2⋅2n−1=2n,n∈N∗.(2)由(1),可得(2n+1)⋅a n=(2n+1)⋅2n,则T n=3×21+5×22+7×23+⋯+(2n+1)⋅2n,2T n=3×22+5×23+⋯+(2n−1)⋅2n+(2n+1)⋅2n+1,两式相减,得−T n=6+2×(22+23+⋯+2n)−(2n+1)⋅2n+1=6+2×22×(1−2n−1)1−2−(2n+1)⋅2n+1,∴T n=2+(2n−1)⋅2n+1.【解析】(1)根据题干并结合公式a n=S n−S n−1(n≥2)进行推导即可发现数列{a n}是以2为首项,2为公比的等比数列,从而可计算出数列{a n}的通项公式;(2)先根据第(1)题的结果计算出数列{(2n+1)⋅a n}的通项公式,然后运用错位相减法即可计算出前n项和T n.本题主要考查数列求通项公式,以及运用错位相减法求前n项和.考查了转化与化归思想,整体思想,以及逻辑推理能力和数学运算能力,属中档题.19.【答案】解:(1)完成2×2列联表如下:∴K2的观测值k=200(30×40−70×60)2100×100×90×110=20011≈18.18>10.828,∴有99.9%的把握认为能否管控手机与性别有关.(2)(i)从样本中的数据可知能管控手机的男、女生的比例为1:2,∴6人中有2名男生,4名女生,从这6人中选2人的所有情况为C62=15,恰有1名女生的情况为C21C41=8种,∴恰有一名女生的概率P=815.(ii)由题可知X的所有可能取值为2,3,4,P(X=2)=C22C42C64=615,P(X=3)=C21C43C64=815,P(X =4)=C 44C 64=115,∴X 的分布列为: X 2 3 4 P 615815115∴E(X)=2×615+3×815+4×115=83.【解析】(1)完成2×2列联表,求出K 2的观测值k =20011≈18.18>10.828,从而有99.9%的把握认为能否管控手机与性别有关.(2)(i)从样本中的数据可知能管控手机的男、女生的比例为1:2,从而6人中有2名男生,4名女生,从这6人中选2人,由古典概型、排列组合能求出恰有一名女生的概率. (ii)由题可知X 的所有可能取值为2,3,4,分别求出相应的概率,由此能求出X 的分布列和E(X).本题考查独立检验的应用,考查概率的求法,考查古典概型、排列组合等基础知识,考查统计与概率思想,导向对发展逻辑推理、数学运算、数学建模、数据分析等核心素养的关注,是中档题.20.【答案】(1)证明:在四棱锥A −BCDE 中,因为平面ACD ⊥平面CDE ,平面ACD ∩平面CDE =CD ,AC ⊥CD ,AC ⊂平面ACD , 所以AC ⊥平面CDE .又CE ,CD ⊂平面CDE ,所以AC ⊥CE ,AC ⊥CD .所以∠ECD 为二面角D −AC −E 的平面角,所以∠ECD =60°, 又∠BEC =60°,所以CD//BE . 又BE ⊂平面ABE ,CD ⊄平面ABE , 所以CD//平面ABE .(2)解:取BE 的中点F ,连结CF.则CF ⊥BE ,又BE//CD ,所以CF ⊥CD . 又AC ⊥平面CDE ,CF ⊂平面CDE ,所以AC ⊥CF ,所以AC ,CF ,CD 两两垂直. 以C 为坐标原点,CF ⃗⃗⃗⃗⃗ 的方向为x 轴正方向建立如图所示的空间直角坐标系C −xyz ,则A(0,0,2),B(√3,−1,0),C(0,0,0),E(√3,1,0), 则CE ⃗⃗⃗⃗⃗ =(√3,1,0),AB ⃗⃗⃗⃗⃗ =(√3,−1,−2),CB⃗⃗⃗⃗⃗ =(√3,−1,0),设AG ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,得G(√3λ,−λ,2−2λ),所以CG⃗⃗⃗⃗⃗ =(√3λ,−λ,2−2λ), 设平面CEG 的法向量为n ⃗ =(x,y,z),则{CG ⃗⃗⃗⃗⃗ ⋅n ⃗ =0CE ⃗⃗⃗⃗⃗ ⋅n ⃗ =0,即{√3λx −λy +(2−2λ)z =0√3x +y =0,不妨令x =√3,可得n ⃗ =(√3,−3,3λλ−1)为平面CEG 的一个法向量, 设直线CB 与平面CEG 所成的角为α,则sinα=|cos〈n ⃗ ,CB ⃗⃗⃗⃗⃗ 〉|=|n ⃗⃗ ⋅CB⃗⃗⃗⃗⃗ |n ⃗⃗ |⋅|CB⃗⃗⃗⃗⃗ ||=2√3+9+(3λλ−1)2=√217,解得λ=12, 所以AG 的长为√2.【解析】(1)证明AC ⊥CD ,推出AC ⊥平面CDE.说明∠ECD 为二面角D −AC −E 的平面角,推出CD//BE.然后证明CD//平面ABE .(2)取BE 的中点F ,连结CF.说明AC ,CF ,CD 两两垂直.以C 为坐标原点,CF⃗⃗⃗⃗⃗ 的方向为x 轴正方向建立如图所示的空间直角坐标系C −xyz ,求出平面CEG 的法向量,利用空间向量的数量积求解直线CB 与平面CEG 所成的角为,解得λ=12,然后求解AG 的长. 本题考查直线与平面平行的判断定理的应用,直线与平面所成角的求法,考查空间想象能力,转化思想以及计算能力,是中档题.21.【答案】解:(1)设F 1(−c,0),其中c =√a 2−3①当直线l 1经过点F 1时,直线l 1的斜率k PF 1=−2c,所以直线l 2的斜率为c2,方程为y =c2x −2,与椭圆C 的方程联立,消去y 得:3x 2+a 2(c2x −2)2=3a 2, 整理得:(a 2c 2+12)x 2−8a 2cx +4a 2=0.因为直线l 2与椭圆C 有且只有一个公共点,所以Δ=64a 4c 2−16a 2(a 2c 2+12)=0, 即ac =2,②由①②得:a 2=4,解得:a =2,c =1,所以b =√a 2−c 2=√3, 所以C 的标准方程为x 24+y 23=1.(2)由题意知:直线l 1的斜率存在且不为零,设其方程为y =kx −2(k ≠0), 与椭圆C 的方程联立,消去y 得:(3+4k 2)x 2−16kx +4=0, 则Δ=256k 2−16(3+4k 2)>0,解得:k 2>14.同理:当直线l 2与椭圆C 有两个交点时,k 2<4,所以14<k 2<4.设A(x1,y1),B(x2,y2),则x1+x2=16k3+4k2,x1x2=43+4k2,所以|AB|=√1+k2⋅|x1−x2|=√1+k2⋅4√3(4k2−1)3+4k2=2√3⋅√(4k2+4)(4k2−1)(3+4k2)2.设t=3+4k2,则t∈(4,19),所以(4k 2+4)(4k2−1)(3+4k2)2=(t+1)(t−4)t2=t2−3t−4t2=−4(1t+38)2+2516,因为f(t)=−4(1t +38)2+2516在(4,19)上单调递增,所以f(t)∈(0,300192),所以AB的取值范围是(0,6019).【解析】(1)设F1(−c,0),其中c=√a2−3①求解直线的斜率,结合椭圆方程,转化求解a,c,得到椭圆方程.(2)由题意知:直线l1的斜率存在且不为零,设其方程为y=kx−2(k≠0),与椭圆C的方程联立,消去y得:(3+4k2)x2−16kx+4=0,推出k的范围,设A(x1,y1),B(x2,y2),利用韦达定理弦长公式,转化求解即可.本题考查椭圆方程的求法,直线与椭圆的位置关系的应用,考查转化思想以及计算能力,是难题.22.【答案】解:(1)由f(x)=xe x+12ax2+ax,得f′(x)=(x+1)e x+a(x+1)=(x+1)(e x+a),因为x∈(0,+∞),所以当a≥−1时,e x+a≥e x−1>0,所以f′(x)>0,f(x)在区间(0,+∞)上单调递增,当a<−1时,x=ln(−a)>0,所以在(0,ln(−a))上,f′(x)<0,f(x)单调递减,在(ln(−a),+∞)上,f′(x)>0,f(x)单调递增.综上所述,a≥−1时,f(x)在区间(0,+∞)上单调递增,当a<−1时,f(x)在(0,ln(−a))上单调递减,f(x)在(ln(−a),+∞)上,f(x)单调递增.(2)由题意知f(x)>g(x)等价于xe x+alnx+ax>0,记ℎ(x)=xe x+alnx+ax,所以函数ℎ(x)的定义域为(0,+∞),且ℎ′(x)=(x+1)e x+ax +a=(x+1)(xe x+a)x,当a>0时,ℎ′(x)>0,ℎ(x)在(0,+∞)上单调递增,且当x趋近于0时,存在x1,使得ℎ(x1)<0,所以不满足题意,当a=0时,ℎ(x)=xe x>0恒成立,当a<0时,令φ(x)=xe x+a,则φ′(x)=(x+1)e x>0在区间(0,+∞)上恒成立,所以φ(x)单调递增,又φ(0)=a<0,当x趋近于+∞时,φ(x)趋近于+∞,所以关于x的方程xe x+a=0有唯一的根,该根记为x0,即由x0e x0+a=0,所以当x∈(0,x0)时,ℎ′(x)<0,ℎ(x)单调递减,当x∈(x0,+∞)时,ℎ′(x)>0,ℎ(x)单调递增,从而ℎ(x)的最小值为ℎ(x0),所以ℎ(x0)=x0e x0+alnx0+ax0=x0e x0+aln(x0e x0)=−a+aln(−a)=−a[1−ln(−a)],要使得ℎ(x)≥0恒成立,只需1−ln(−a)>0恒成立,即a>−e,综上所述,a的取值范围为(−e,0].【解析】(1)求导得f′(x)=(x+1)(e x+a),分两种情况:当a≥−1时,当a<−1时,f′(x)的正负,f(x)的单调区间.(2)由题意知f(x)>g(x)等价于xe x+alnx+ax>0,记ℎ(x)=xe x+alnx+ax,只需ℎ(x)min>0,进而可得a的取值范围.本题考查导数的综合应用,解题中需要注意分类讨论,转化思想的应用,属于中档题.。
江苏省南京市金陵2024-2025学年高三上学期期中调研数学试题(含答案)
2024/2025学年第一学期高三期中考试数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.已知集合,,则的真子集的个数为( )A .7B .8C .16D .152.在复平面内,复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.设,都是不等于1的正数,则“”是“”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.已知,则( )ABC .D .5.已知单位向量,的夹角为,则下列结论正确的有( )A .B.在方向上的投影向量为C .若,则D .若,则6.已知数列的前项和为,其中,且,则( )A .B .C .D .{}1,0,1,2,3A =-{}324B xx x =-<∣A B ()()3i 1i z =+-a b log 4log 41a b >>44ab<sin sin cos sin 63ππαααα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭tan 24πα⎛⎫+= ⎪⎝⎭2-2-ab θ()()a b a b+- ∥ab ()a b b⋅- a b +=23πθ=()()a b a a b a +⋅=-⋅ a b∥{}n a n n S 11a =1221n n S S n +-=+75S a =369463614636746365467.函数,其中,其最小正周期为,则下列说法错误的是( )A .B .函数图象关于点对称C .函数图象向右移个单位后,图象关于轴对称,则的最小值为D .若,则函数8.已知函数是定义在上的奇函数,当时,,则下列说法正确的是( )A .函数有两个零点B .当时,C .的解集是D .都有二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
2021年8月江苏省南京市普通高中2022届高三上学期8月零模考前复习卷数学试题及答案
由正弦定理可得 a : b : c = sin A : sin B : sin C = 15 : 3 15 : 15 = 2 : 3 : 4 . 8 16 4
(2)由(1)知 cos C = − cos( A + B) = − 1 , 4
所以
| AC + CB |2 =| AC |2 + | CB |2 +2AC CB = b2 + a2 − 2ab cos C = b2 + a2 + ab = 64 , 2
的得 2 分,有选错的得 0 分)
9.已知函数 f (x) = 2sin(x +),( 0,0 ) 图象的一条对称轴为 x = 2 , 3
f
4
=
3
,且
f
(x)
在
, 2 43
内单调递减,则以下说法正确的是(
)
A.
−
7 12
,
0
是其中一个对称中心
B. = 14 5
C.
f
(x)
在
高三数学试卷第5页(共 6 页)
2021年8月江苏省南京市普通高中2022届高三上学期8月零模考前复习卷数学试题
21.(本题满分 12 分)
已知双曲线 E :
x2 a2
−
y2 b2
= 1(a
0,b
0) 过点 D(3,1) ,且该双曲线的虚轴端点与两顶点
A1, A2 的张角为120 . (1)求双曲线 E 的方程; (2)过点 B(0, 4) 的直线 l 与双曲线 E 左支相交于点 M , N ,直线 DM , DN 与 y 轴相交于
BC
三、填空题
13. 4
14. 3.2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021届江苏省南京市金陵中学高三第一学期8月学情调研测试数学试题一、单选题1.已知集合{}2340A x x x =-->,{}ln 0B x x =>,则()RA B =( )A .∅B .(]0,4C .(]1,4D .()4,+∞【参考答案】C【试题解析】先解出集合A 、B ,再求解出集合A 的补集,根据集合交集的运算即可求解.由题意得{1A x x =<-或}4x > ,{}1B x x =>,所以{}14RA x x =-≤≤,()(]1,4R AB =.故选:C本题主要考查了集合补集、交集的运算,属于简单题,计算中可以借助数轴法求解集合的补集和集合间的交集.2.设,R a b ∈,i 是虚数单位,则“0ab =”是“复数iba +为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【参考答案】B【试题解析】0ab =即,a b 中至少有一个是零;复数ba a bi i+=-为纯虚数,故0,0a b =≠为小范围,故为必要不充分条件.3.下列命题中正确的是( ) A .若a b >,则ac bc > B .若a b >,c d >,则a c b d ->- C .若0ab >,a b >,则11a b < D .若a b >,c d >,则a b c d> 【参考答案】C【试题解析】分析:根据不等式性质逐一排除即可.A. 若a b >,则ac bc >,当c 取负值时就不成立,故错误;B. 若a b >,c d >,则a cb d ->-,例如a=3,b=1,c=2,d=-2显然此时ac bd -<-,故错误;D,若a b >,c d >,则a b c d >,例如a=3,c=-1,b=-1,d=-2,此时a bc d<,故错误,所以综合得选C.点睛:考查不等式的简单性质,此类题型举例子排除法比较适合,属于基础题. 4.已知正项等比数列{a n }的前n 项和为S n ,若43113,84a S a =-=,则S 5=( ) A .3132B .3116C .318D .314【参考答案】B【试题解析】利用正项等比数列{a n }的前n 项和公式,通项公式列出方程组,求出a 1=1,q =12,由此能求出S 5的值.解:正项等比数列{a n }的前n 项和为S n ,43113,84a S a =-=, ∴()31311181314a q a q a q ⎧=⎪⎪⎨-⎪-=⎪-⎩,解得a 1=1,q =12, ∴S 5=()5111a q q --=1132112--=3116.故选:B . 【点评】本题考查等比数列的前n 项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,属于基础题.5.()101(21)x x -+的展开式中10x 的系数为( )A .512-B .1024C .4096D .5120【参考答案】C【试题解析】先将二项式变形为1010(21)(21)x x x +-+,分别写出两个二项式展开式的通项,并分别令x 的指数为10,求出两个参数的值,代入展开式之后将两个系数相减可得出答案.()1010101(21)(21)(21)x x x x x -+=+-+,二项展开式10(21)x x +的通项为1010111010(2)2r rr r r xC x C x ---⋅=⋅⋅,二项展开式10(21)x +的通项为1010101010(2)2kkk k k C x C x ---⋅=⋅⋅,则111011010r r k -=⎧=⎨-=⎩,解得,0k =, 所以,展开式中10x 的系数为19010101022512010244096C C ⋅-⋅=-=.故选C .本题考查了利用二项式定理求指定项的系数,考查二项式定理的应用,同时也考查了计算能力,属于中等题.6.某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布2(105,)(0)N σσ>,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( ) A .150 B .200C .300D .400【参考答案】C【试题解析】求出()39010510P X ≤≤=,即可求出此次数学考试成绩在90分到105分之间的人数.∵()()1901205P X P X ≤=≥=,()2390120155P X ≤≤=-=, 所以()39010510P X ≤≤=, 所以此次数学考试成绩在90分到105分之间的人数约为3100030010⨯=. 故选C .本小题主要考查正态分布曲线的特点及曲线所表示的意义等基础知识,考查运算求解能力,考查数形结合思想.属于基础题.7.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =【参考答案】B【试题解析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程.如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.8.已知椭圆C :22221x y a b+=(0a b >>)的右焦点为F ,短轴的一个端点为P ,直线l :430x y -=与椭圆C 相交于A ,B 两点.若6AF BF +=,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( )A .50,9⎛⎤ ⎥⎝⎦B .30,2⎛ ⎝⎦C .50,3⎛ ⎝⎦D .13,32⎛⎤⎥ ⎝⎦【参考答案】C【试题解析】设椭圆的左焦点为F ',根据双曲线的定义,求得3a =,再由点P 到直线l 的距离不小于65,求得2b ≥,得到213b a≤<,进而求得离心率的范围,得到答案.设椭圆的左焦点为F',根据椭圆的对称性可得AF BF '=,BF AF '=, 所以62AF AF BF AF a '+=+==,解得3a =,因为点P 到直线l 的距离不小于65,所以()226543≥+-,解得2b ≥, 又由b a <,所以23b ≤<,故213ba≤<, 所以离心率22510,c b e a a ⎛⎤==-∈ ⎥ ⎝⎦. 故选:C.本题考查了椭圆的定义,以及椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围).二、多选题9.若函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭与()cos 4g x x π⎛⎫=+ ⎪⎝⎭都在区间(),a b (0a b π<<<)上单调递减,则b a -的可能取值为( ) A .6π B .3π C .2π D .512π 【参考答案】AB【试题解析】先求()f x 在()0,π上的单调递减区间,再求()g x 在()0,π上的单调递减区间,再求交集即可得()f x 和()g x 两个函数的递减区间,可得b a -的最大值,进而可得b a -的可能取值.当()0,x π∈时,52,333x πππ⎛⎫-∈- ⎪⎝⎭,所以当32,322x πππ⎛⎫-∈ ⎪⎝⎭时,即511,1212x ππ⎛⎫∈ ⎪⎝⎭()f x 单调递减,即函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭在511,1212ππ⎛⎫⎪⎝⎭上单调递减,当()0,x π∈时,,44x πππ⎛⎫+∈ ⎪⎝⎭,即30,4x π⎛⎫∈ ⎪⎝⎭时,()g x 单调递减, 因为30,451153,,1212124πππππ⎛⎫= ⎪⎝⎛⎭⎫⎛⎫⋂⎪ ⎪⎝⎭⎝⎭, 所以,53124a b ππ≤<≤ 所以354123b a πππ-≤-=,所以b a -可能为6π或3π, 故选:AB本题主要考查了三角函数的单调性,属于中档题. 10.下列说法中正确的是( ) A .设随机变量X 服从二项分布16,2B ⎛⎫ ⎪⎝⎭,则()5316P X == B .已知随机变量X 服从正态分布()22,N σ且()40.9P X <=,则()020.4P X <<=C .()()2323E X E X +=+;()()2323D X D X +=+ D .已知随机变量ξ满足()0P x ξ==,()11P x ξ==-,若102x <<,则()E ξ随着x 的增大而减小,()D ξ随着x 的增大而增大 【参考答案】ABD【试题解析】对于选项,,A B D 都可以通过计算证明它们是正确的;对于选项,C 根据方差的性质,即可判断选项C .对于选项,A 设随机变量16,2XB ⎛⎫ ⎪⎝⎭, 则()3336115312216P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭,所以选项A 正确; 对于选项,B 因为随机变量()22,N ξσ,所以正态曲线的对称轴是2x =,因为()40.9P X <=,所以(0)0.1P X <=, 所以(02)0.4P X <<=,所以选项B 正确; 对于选项,C ()()2323E X E X +=+,()()234D X D X +=,故选项C 不正确;对于选项,D 由题意可知,()1E x ξ=-,()()21D x x x x ξ=-=-+,由一次函数和二次函数的性质知, 当102x <<时,()E ξ随着x 的增大而减小, ()D ξ随着x 的增大而增大,故选项D 正确.故选:ABD .本题主要考查二项分布和正态分布的应用,考查期望和方差的计算及其性质,意在考查学生对这些知识的理解掌握水平.11.下列四个命题中,是真命题的是( ) A .x ∀∈R ,且0x ≠,12x x+≥B .若0x >,0y >,2xyx y≥+C .函数()f x x =值域为⎡⎤⎣⎦D .已知函数()9f x x a a x=++-在区间[]1,9上的最大值是10,则实数a 的取值范围为[)8,-+∞ 【参考答案】BCD【试题解析】结合基本不等式的条件及基本不等式可以判断A ,B ,结合三角换元及三角函数的性质可判断C ,结合含绝对值函数的图像变换可检验D ,即可判断.对于A ,x ∀∈R ,且0x ≠,12x x+≥对0x <时不成立; 对于B ,若0x >,0y >,则()()22222248x yx y xy xy x y ++≥⋅=,化为2xyx y≥+,当且仅当0x y =>时取等号,故B 正确;对于C ,令x θ=,[]0,θπ∈,则()2sin 4f x x πθθθ⎛⎫=+=+=+ ⎪⎝⎭,由[]0,θπ∈,得5,444πππθ⎡⎤+∈⎢⎥⎣⎦,()2sin 24f x πθ⎛⎫⎡⎤=+∈ ⎪⎣⎦⎝⎭;对于D ,当[]1,9x ∈,[]96,10x x +∈,令[]96,10x t x+=∈,转化为y t a a =+-在[]6,10t ∈有最大值是10.①10a -≥,当6t =时,max 62610y a a a =+-=--=,得8a =-(舍去). ②6a -≤时,当10t =时,max 1010y a a =+-=恒成立.③610a <-<,{}max max 26,10y a =--,此时只需2610a --≤,得86a -≤<-. 综上,8a ≥-,故D 正确. 故选:BCD本题以判断命题真假为载体,主要考查了函数,不等式的综合应用,属于中档题. 12.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 【参考答案】ABCD【试题解析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案.对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =- 2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD.本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.三、填空题13.已知向量()2,6a =-,()3,b m =,若a b a b +=-,则m =______. 【参考答案】1【试题解析】根据向量加法和减法的坐标运算,先分别求得a b +与a b -,再结合向量的模长公式即可求得m 的值.向量()2,6a =-,()3,b m =则()5,6a b m +=-+,()1,6a b m -=---则25a b +=+=()()16a b m -=-+--=因为a b a b +=-=化简可得12611237m m -+=+ 解得1m = 故答案为: 1本题考查了向量坐标加法和减法的运算,向量模长的求法,属于基础题.14.某学校高一学生2人,高二学生2人,高三学生1人,参加A 、B 、C 三个志愿点的活动.每个活动点至少1人,最多2人参与,要求同年级学生不去同一活动点,高三学生不去A 活动点,则不同的安排方法有_____种.(用数字作答) 【参考答案】40【试题解析】以高三学生是否单独去志援点分为两类,每一类中先安排高三学生,再安排高一、高二学生,由乘法原理算出两类安排方法,相加即可.若高三学生单独去志愿点,则有1222228C A A =种,若高三学生与其它年级学生合去志愿点,按先分组再分到志愿点的思路,有11214222C A C C =32种,则共有83240+=种安排方法. 故答案为:40.本题考查分类计数原理的运用,以高三学生是否单独去志愿点确定分类的方法,再逐级安排,考查乘法原理,属于中档题.15.在直三棱柱111ABC A B C -内有一个与各个面均相切的球.若AB BC ⊥,6AB =,8BC =,则1AA 的长度为______.【参考答案】4【试题解析】求出△ABC 内切圆的半径,根据球是三棱柱的内切球,求出其半径,从而求出AA 1的长度即可.由AB BC ⊥,6AB =,8BC =,得10AC =.设底面Rt ABC △的内切圆的半径为r ,则()1168681022r ⨯⨯=⨯++⋅,得2r .因为球与三个侧面相切,所以内切球的半径也为2.又该球也与直三棱柱的上、下底面相切,所以124AA r ==. 故答案为:4本题考查了三棱柱的内切球,考查三角形内切圆以及直三棱柱问题,是一道常规题.16.已知函数22(1),0()2,0k x f x xx k x ⎧-<⎪=⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且仅有四个不同的零点,则实数k 的取值范围是_______. 【参考答案】()27,+∞【试题解析】根据题意可求得222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩,再分0,0,0k k k =<>三种情况求函数的单调性,进而根据零点存在性定理求出函数的最小值求解不等式即可.由题, ()22212,0()22,0221,0k x k x x g x k k x x k k x x ⎧⎛⎫++-> ⎪⎪⎝⎭⎪⎪=--=⎨⎪⎛⎫⎪--+-< ⎪⎪⎝⎭⎩,即222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩,当k =0时,原函数有且只有一个零点,不符题意,故k ≠0, 观察解析式,可知函数()g x 有且仅有四个不同的零点, 可转化为22(),0kg x x k x x=+->有且仅有两个不同的零点, 当k <0,函数()g x 在(0,+∞)单调递增,最多一个零点,不符题意,舍;当k >0,322()(),0x k g x x x-'=>, 令()0g x '=有13x k =,故要使()g x在(0,+∞)有且仅有两个不同的零点, 则1233min 132()()0k g x g k k k k==+-<,因为0k >,故213333k k k <⇒<,解得k >27,综上所述,实数k 的取值范围是(27,+∞). 故答案为:(27,+∞)本题主要考查了根据分段函数的零点个数求解参数范围问题,需要根据函数的性质求出单调性以及最值,进而根据零点存在性定理列式求解.属于中档题.四、解答题17.现给出两个条件:①22cosc a B=,②()2cos cos bA C =,从中选出一个条件补充在下面的问题中,并以此为依据求解问题. 在ABC 中,a ,b,c 分别为内角A ,B ,C 所对的边,______. (1)求A ;(2)若31a,求ABC 周长的最大值.【参考答案】(1)6π;(2)1. 【试题解析】若选条件①,(1)由余弦定理对2cb =2a cos B ,化简可得c 2+b 2﹣a2=,再利用余弦定理可求出A ;(2)由余弦定理可得1)2=b 2+c 2﹣2bc化简再利用基本不等式可得b c +≤可求出△ABC 周长的最大值;若选条件②,(1)由(2b )cos A =cos C ,结合正弦定理化简可得2sin B cos A =B ,从而可求出A ;(2)由余弦定理可得1)2=b 2+c 2﹣2bc 化简再利用基本不等式可得b c +≤可求出△ABC 周长的最大值;若选择条件①22cos c a B =.(1)由余弦定理可得22222cos 22a c b c a B a ac +-==⋅,整理得222c b a +-=,可得222cos 222b c A bc bc a +===-. 因为()0,A π∈,所以6A π=.(2)由余弦定理2222cos a b c bc A =+-,得)222122b c bc =+-⋅,即()(22242b c b c bc -=+=+-+,亦即(()(224bc b c =+--,因为()24b c bc +≤,当且仅当b c =时取等号,所以()((()22424b c b c ++--≤⨯,解得b c +≤当且仅当b c ==.所以1a b c ++≤,即ABC 周长的最大值为1若选择条件②()2cos cos b A C =.(1)由条件得2cos cos cos b A C A =+, 由正弦定理得)()2sin cos sin cos sin cos B A A C C A A C B =+=+=.因为sin 0B ≠,所以cos A =因为()0,A π∈,所以6A π=.(2)由余弦定理2222cos a b c bc A =+-,得)222122b c bc =+-⋅,即()(22242b c b c bc -=+=+-+,亦即(()(224bc b c =+--,因为()24b c bc +≤,当且仅当b c =时取等号,所以()((()22424b c b c ++--≤⨯,解得b c +≤当且仅当b c ==.所以1a b c ++≤,即ABC 周长的最大值为1此题考查正弦定理和余弦定理的应用,考查基本不等式的应用,考查计算能力,属于基础题18.已知数列{}n a 中,11a =,当2n ≥时,其前n 项和n S 满足212n n n S a S ⎛⎫=-⎪⎝⎭(1)求n S 的表达式; (2)设21nn S b n =+,求数列{}n b 的前n 项和n T . 【参考答案】(1)121n S n =-;(2)111221n T n ⎛⎫=- ⎪+⎝⎭.【试题解析】(1)运用()12n n n a S S n -=-≥,代入化简整理,再由等差数列的定义和通项公式即可得到所求; (2)求得21nn S b n =+=1(21)(21)n n -+=11122121n n ⎛⎫- ⎪-+⎝⎭,运用数列的求和方法:裂项相消求和,即可得到所求和.解:(1)∵212n n n S a S ⎛⎫=-⎪⎝⎭,()12n n n a S S n -=-≥, ()2112n n n n S S S S -⎛⎫=-- ⎪⎝⎭,112n n n nS S S S --=-①,由题意10n n S S -≠,将①式两边同除以1n n S S -得,()11122n n n S S --=≥ ∴数列1n S ⎧⎫⎨⎬⎩⎭是首项为11111S a ==,公差为2的等差数列. 可得()112121nn n S =+-=-, 得121n S n =-; (2)21nn S b n =+=1(21)(21)n n -+=11122121n n ⎛⎫- ⎪-+⎝⎭,111111111++=123352121221n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=---- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦本题考查数列中()12n n n a S S n -=-≥的运用,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.19.如图,四棱锥P−ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(Ⅰ)证明MN ∥平面PAB;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值. 【参考答案】(Ⅰ)详见解析;(Ⅱ)85. 【试题解析】 (Ⅰ)由已知得. 取的中点T ,连接,由为中点知,.又,故=TN AM ∥,四边形AMNT 为平行四边形,于是MN AT ∥.因为平面,平面,所以平面.(Ⅱ)取的中点,连结.由得,从而,且.以A为坐标原点,AE的方向为轴正方向,建立如图所示的空间直角坐标系.由题意知,,,,,(0,2,4) PM=-,5(,1,2) PN=-,5(,1,2)AN=.设(,,)x y z=n为平面PMN的一个法向量,则0,{0,n PMn PN⋅=⋅=即240,{520,y zx y z-=+-=可取(0,2,1)n=.于是85cos,n ANn ANn AN⋅〈〉==.【考点】空间线面间的平行关系,空间向量法求线面角.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.20.成都市现在已是拥有1400多万人口的城市,机动车保有量已达450多万辆,成年人中约40%拥有机动车驾驶证.为了解本市成年人的交通安全意识情况,某中学的同学利用国庆假期进行了一次全市成年人安全知识抽样调查.先根据是否拥有驾驶证,用分层抽样的方法抽取了200名成年人,然后对这200人进行问卷调查.这200人所得的分数都分布在[]30,100范围内,规定分数在80以上(含80)的为“具有很强安全意识”,所得分数的频率分布直方图如图所示.拥有驾驶证 没有驾驶证 总计具有很强安全意识 不具有很强安全意识58 总计200(1)补全上面的22⨯列联表,并判断能否有超过95%的把握认为“具有很强安全意识”与拥有驾驶证有关?(2)将上述调查所得的频率视为概率,现从全市成年人中随机抽取4人,记“具有很强安全意识”的人数为X ,求X 的分布列及数学期望.附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.P (20K k ≥) 0.150.10 0.05 0.025 0.010 0.005 0.0010k2.072 2.7063.841 5.024 6.635 7.879 10.828【参考答案】(1)表格见解析,有超过95%的把握;(2)分布列见解析,数学期望为45. 【试题解析】(1)拥有驾驶证的有80人,具有很强安全意识的有40人,由此可得列联表,再计算得2K 后与3.841比较大小即可得出结论;(2)由题意可知X 可以取0,1,2,3,4,且14,5X B ⎛⎫⎪⎝⎭,由此可求出分布列及数学期望.解:(1)200人中拥有驾驶证的占40%,有80人,没有驾驶证的有120人, 具有很强安全意识的占20%,有40人,不具有很强安全意识的有160人, 补全的22⨯列联表如表所示:计算得()2220022102185875 4.6875 3.841408016012016K ⨯⨯-⨯===>⨯⨯⨯,∴有超过95%的把握认为“具有很强安全意识”与拥有驾驶证有关;(2)由频率分布直方图中数据可知,抽到的每个成年人“具有很强安全意识”的概率为15, ∴X 可能取0,1,2,3,4,且14,5XB ⎛⎫ ⎪⎝⎭, 于是()4241455kkP X k C -⎛⎫⎛⎫==⋅⋅ ⎪ ⎪⎝⎭⎝⎭(0k =,1,2,3,4),X 的分布列为∴()14455E X =⨯=.本题主要考查独立性检验与二项分布的应用,属于基础题.21.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()1,0F c -,()2,0F c ,点31,2⎛⎫⎪⎝⎭在椭圆C 上,点()3,0A c -满足以2AF 为直径的圆过椭圆的上顶点B . (1)求椭圆C 的方程;(2)已知直线l 过右焦点2F 与椭圆C 交于,M N 两点,在x 轴上是否存在点(),0P t 使得PM PN ⋅为定值?如果存在,求出点P 的坐标;如果不存在,说明理由.【参考答案】(1)22143x y +=;(2)存在,11,08P ⎛⎫ ⎪⎝⎭ 【试题解析】(1)由点在椭圆上代入可得a ,b 的关系,再由点(3,0)A c -满足以2AF 为直径的圆过椭圆的上顶点B .可得20AB BF =可得b ,c 的关系,再由a ,b ,c 的关系求出椭圆的方程;(2)由(1)可得右焦点2F 的坐标,分坐标MN 的斜率为0和不为0两种情况讨论,假设存在P 满足条件,设直线MN 的方程,与椭圆联立求出两根之和及两根之积,进而求出数量积PM PN 的表达式,要使数量积为定值,则分子分母对应项的系数成比例,可得t 的值,且可求出定值.解:(1)由题意可得上顶点(0,)B b ,2AB BF ⊥,所以:221914a b +=,20AB BF =,即(3c ,)(b c ,)0b -=即223b c =,222a b c =+,解得:24a =,23b =,所以椭圆的方程为:22143x y +=;(2)由(1)可得右焦点2F 的坐标(1,0),假设存在(,0)P t)i 当直线MN 的斜率不为0时,设直线MN 的方程为:1x my =+,设1(M x ,1)y ,2(N x ,2)y ,联立直线与椭圆的方程22134120x my x y =+⎧⎨+-=⎩,整理可得:22(43)690m y my ++-=,122643my y m -∴+=+,122943y y m-=+, 121228()243x x m y y m ∴+=++=+,222212121222296412()11434343m m m x x m y y m y y m m m ---=+++=++=+++,因为()()1122,,PM PN x t y x t y =--2222222221212122222241289(43)12853(4)(48()4343434343m t t m m t m t t x x t x x t y y t m m m m m -+----+-=-+++=-+-==+++++,要使PM PN 为定值,则22448514t t t ---=,解得:118t =,这时13564PM PN =为定值,)ii 当直线MN 的斜率为0时,则(2,0)M -,(2,0)N ,P 为11(8,0),则11(28PM PN =--,110)(28-,2111350)()4864=-=,综上所述:所以存在11(8P ,0),使PM PN 为定值.考查求椭圆的标准方程及直线与椭圆的综合,属于中档题. 22.已知()3231f x ax x =-+(0a >),定义()()(){}()()()()()(),,max ,,.f x f x g x h x f x g x g x f x g x ⎧≥⎪==⎨<⎪⎩(1)求函数()f x 的极小值;(2)若()()g x xf x '=,且存在[]1,2x ∈使()()h x f x =,求实数a 的取值范围; (3)若()ln g x x =,试讨论函数()h x (0x >)的零点个数. 【参考答案】(1)241a-;(2)(],2-∞;(3)答案见解析. 【试题解析】(1)求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为不等式3132a x x≤+在x ∈[1,2]上有解,根据函数的单调性求出a 的范围即可;(3)通过讨论a 的范围结合函数的单调性判断函数的零点个数即可.(1)求导得()()23632'=-=-f x ax x x ax ,令()0f x '=,得10x =或22x a=. 因为0a >,所以12x x <,列表如下:所以()f x 的极小值为2222812411f a a aa ⎛⎫=-+=- ⎪⎝⎭. (2)()()3236g x xf x ax x '==-.因为存在[]1,2x ∈使()()h x f x =,所以()()f x g x ≥在[]1,2x ∈上有解,即32323136ax x ax x -+≥-在[]1,2x ∈上有解,即不等式3132a x x≤+在[]1,2x ∈上有解 设2331331x y x x x+=+=,[]1,2x ∈. 因为24330x y x--'=<对[]1,2x ∈恒成立,所以313y x x =+在[]1,2上递减,故当1x =时,max 4y =.所以24a ≤,即2a ≤,故a 的取值范围为(],2-∞.(3)由(1)知,()f x 在()0,∞+上的最小值为2241f a a ⎛⎫=- ⎪⎝⎭. ①当2410a ->,即2a >时,()0f x >在()0,∞+上恒成立,所以()()(){}()max ,0h x f x g x f x =≥>,因此()h x 在()0,∞+上无零点.②当2410a-=,即2a =时,()()min 10f x f ==,又()10g =,所以()()(){}max ,h x f x g x =在()0,∞+上有且仅有一个零点.③当2410a-<,即02a <<时,设()()()3231ln x f x g x ax x x ϕ=-=-+-,01x <<.因为()()21136610x ax x x x x xϕ'=--<--<,所以()x ϕ在()0,1上单调递减.又()120a ϕ=-<,2321230a e e ee ϕ-⎛⎫=+> ⎪⎝⎭,所以存在唯一的01,1x e ⎛⎫∈ ⎪⎝⎭,使得()00x ϕ=.(i )当00x x <≤时,因为()()()()00x f x g x x ϕϕ=-≥=,所以()()h x f x =且()h x 为减函数.又()()()0000ln ln10h x f x g x x ===<=,()010f =>,所以()h x 在()00,x 上有一个零点.(ii )当01x x <<时,因为()()()()00x f x g x x ϕϕ=-<=,所以()()h x g x =且()h x 为增函数.因为()10g =,又()()(){}()max ,ln 0h x f x g x g x x =≥=>在1x >上恒成立,所以()h x 在()0,x +∞上有且仅有一个零点.从而()()(){}max ,h x f x g x =在()0,∞+上有两个零点.综上,当02a <<时,()h x 有两个零点;当2a =时,()h x 有一个零点;当2a >时,()h x 无零点.本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.。