完整word版12集合之间的关系含答案推荐文档
(文末附答案)(Word版含答案)高中数学集合与常用逻辑用语知识点总结全面整理
(每日一练)(文末附答案)(Word版含答案)高中数学集合与常用逻辑用语知识点总结全面整理单选题1、集合A={−1,0,1,2,3},B={0,2,4},则图中阴影部分所表示的集合为()A.{0,2}B.{−1,1,3,4}C.{−1,0,2,4}D.{−1,0,1,2,3,4}答案:B分析:求∁(A∪B)(A∩B)得解.解:图中阴影部分所表示的集合为∁(A∪B)(A∩B)={−1,1,3,4}.故选:B2、已知集合A={x|1x>1},则∁R A=()A.{x|x<1}B.{x|x≤0或x≥1}C.{x|x<0}∪{x|x>1}D.{x|1≤x}答案:B分析:先解不等式,求出集合A,再求出集合A的补集由1x >1,得1−xx>0,x(1−x)>0,解得0<x<1,所以A={x|0<x<1},所以∁R A={x|x≤0或x≥1}故选:B3、设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}答案:B分析:根据交集、补集的定义可求A∩(∁U B).由题设可得∁U B={1,5,6},故A∩(∁U B)={1,6},故选:B.4、设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案:D分析:利用并集的定义可得正确的选项.A∪B={1,2,4,6},故选:D.5、若集合A={1,m2},集合B={2,4},若A∪B={1,2,4},则实数m的取值集合为()A.{−√2,√2}B.{2,√2}C.{−2,2}D.{−2,2,−√2,√2}答案:D分析:由题中条件可得m2=2或m2=4,解方程即可.因为A={1,m2},B={2,4},A∪B={1,2,4},所以m2=2或m2=4,解得m=±√2或m=±2,所以实数m的取值集合为{−2,2,−√2,√2}.故选:D.6、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.7、设集合M={x|0<x<4},N={x|13≤x≤5},则M∩N=()A.{x|0<x≤13}B.{x|13≤x<4}C.{x|4≤x<5}D.{x|0<x≤5}答案:B分析:根据交集定义运算即可因为M={x|0<x<4},N={x|13≤x≤5},所以M∩N={x|13≤x<4},故选:B.小提示:本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.8、集合A={0,1,2}的非空真子集的个数为()A.5B.6C.7D.8答案:B分析:根据真子集的定义即可求解.由题意可知,集合A的非空真子集为{0},{1},{2},{0,1},{0,2},{1,2},共6个.故选:B.9、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可.解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.10、设集合A={−1,0,1,2},B={1,2},C={x|x=ab,a∈A,b∈B},则集合C中元素的个数为()A.5B.6C.7D.8答案:B分析:分别在集合A,B中取a,b,由此可求得x所有可能的取值,进而得到结果.当a=−1,b=1时,ab=−1;当a=−1,b=2时,ab=−2;当a=0,b=1或2时,ab=0;当a=1,b=1时,ab=1;当a=1,b=2或a=2,b=1时,ab=2;当a=2,b=2时,ab=4;∴C={−2,−1,0,1,2,4},故C中元素的个数为6个.故选:B.多选题11、对任意A,B⊆R,记A⊕B={x|x∈A∪B,x∉A∩B},并称A⊕B为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则A⊕B={1,4},下列命题中,为真命题的是()A.若A,B⊆R且A⊕B=B,则A=∅B.若A,B⊆R且A⊕B=∅,则A=BC.若A,B⊆R且A⊕B⊆A,则A⊆BD.存在A,B⊆R,使得A⊕B=∁R A⊕∁R BE.存在A,B⊆R,使得A⊕B≠B⊕A答案:ABD解析:根据新定义判断.根据定义A⊕B=[(∁R A)∩B]∪[A∩(∁R B)],A.若A⊕B=B,则∁R A∩B=B,A∩∁R B=∅,∁R A∩B=B⇒B⊆∁R A,A∩∁R B=∅⇒A⊆B,∴A=∅,A正确;B.若A⊕B=∅,则∁R A∩B=∅,A∩∁R B=∅,A∩B=A=B,B正确;C. 若A⊕B⊆A,则∁R A∩B=∅,A∩∁R B⊆A,则B⊆A,C错;D.A=B时,A⊕B=∅,(∁R A)⊕(∁R B)=∅=A⊕B,D正确;E.由定义,A⊕B=[(∁R A)∩B]∪[A∩(∁R B)]=B⊕A,E错.故选:ABD.小提示:本题考查新定义,解题关键是新定义的理解,把新定义转化为集合的交并补运算.12、(多选)下列命题的否定中,是全称量词命题且为真命题的是()<0B.所有的正方形都是矩形A.∃x∈R,x2−x+14C.∃x∈R,x2+2x+2=0D.至少有一个实数x,使x3+1=0答案:AC分析:AC.原命题的否定是全称量词命题,原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;D. 原命题的否定不是真命题,所以该选项不符合题意.A.原命题的否定为:∀x∈R,x2−x+14≥0,是全称量词命题;因为x2−x+14=(x−12)2≥0,所以原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;C. 原命题为存在量词命题,所以其否定为全称量词命题,对于方程x2+2x+2=0,Δ=22−8=−4<0,所以x2+2x+2>0,所以原命题为假命题,即其否定为真命题,所以该选项符合题意;.D. 原命题的否定为:对于任意实数x,都有x3+1≠0,如x=−1时,x3+1=0,所以原命题的否定不是真命题,所以该选项不符合题意.故选:AC13、下列条件中,为“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有()A.0≤m<4B.0<m<2C.1<m<4D.−1<m<6答案:BC分析:对m讨论:m=0;m>0,Δ<0;m<0,结合二次函数的图象,解不等式可得m的取值范围,再由充要条件的定义判断即可.因为关于x的不等式mx2−mx+1>0对∀x∈R恒成立,当m=0时,原不等式即为1>0恒成立;当m>0时,不等式mx2−mx+1>0对∀x∈R恒成立,可得Δ<0,即m2−4m<0,解得:0<m<4.当m<0时,y=mx2−mx+1的图象开口向下,原不等式不恒成立,综上:m的取值范围为:[0,4).所以“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有0<m<2或1<m<4.故选:BC.14、对于集合M,N,我们把属于集合M但不属于集合N的元素组成的集合叫作集合M与N的“差集”,记作M−N,即M−N={x|x∈M,且x∉N};把集合M与N中所有不属于M∩N的元素组成的集合叫作集合M与N的“对称差集”,记作MΔN,即MΔN={x|x∈M∪N,且x∉M∩N}.下列四个选项中,正确的有()A.若M−N=M,则M∩N=∅B.若M−N=∅,则M=NC.MΔN=(M∪N)−(M∩N)D.MΔN=(M−N)∪(N−M)答案:ACD分析:根据集合的新定义得到A正确,当M⊆N时,M−N=∅,B错误,根据定义知C正确,画出集合图形知D正确,得到答案.若M−N=M,则M∩N=∅,A正确;当M⊆N时,M−N=∅,B错误;MΔN={x|x∈M∪N,且x∉M∩N}=(M∪N)−(M∩N),C正确;MΔN和(M−N)∪(N−M)均表示集合中阴影部分,D正确.故选:ACD.15、设A={a1,a2,a3},B={x|x⊆A},则()A.A=B B.A∈B C.∅∈B D.A⊆B答案:BC分析:根据题意先用列举法表示出集合B,然后直接判断即可.依题意集合B的元素为集合A的子集,所以B={∅,{a1},{a2},{a3},{a1,a2},{a1,a3},{a2,a3},{a1,a2,a3}}所以A∈B,∅∈B,所以AD错误,BC正确.故选:BC16、(多选)下列命题中为真命题的是().A.“x>4”是“x<5”的既不充分又不必要条件B.“三角形为正三角形”是“三角形为等腰三角形”的必要而不充分条件C.“关于x的方程ax2+bx+c=0(a≠0)有实数根”的充要条件是“Δ=b2−4ac≥0”D.若集合A⊆B,则“x∈A”是“x∈B”的充分而不必要条件答案:AC分析:从“x>4”与“x<5”互相不能推出,得到A正确;正三角形一定是等腰三角形,等腰三角形不一定是正三角形,故B错误;由一元二次方程根的判别式可知,C正确;D选项可举出反例.故选:AC17、设集合M={x|a<x<3+a},N={x|x<2或x>4},则下列结论中正确的是()A.若a<−1,则M⊆N B.若a>4,则M⊆NC.若M∪N=R,则1<a<2D.若M∩N≠∅,则1<a<2答案:ABC解析:根据集合包含的定义即可判断AB;根据交集并集结果求出参数范围可判断CD.对于A,若a<−1,则3+a<2,则M⊆N,故A正确;对于B,若a>4,则显然任意x∈M,则x>4,则x∈N,故M⊆N,故B正确;对于C,若M∪N=R,则{a<23+a>4,解得1<a<2,故C正确;对于D,若M∩N=∅,则{a≥23+a≤4,不等式无解,则若M∩N≠∅,a∈R,故D错误.故选:ABC.18、下列四个命题中正确的是()A.∅={0}B.由实数x,-x,|x|,√x2,−√x33所组成的集合最多含2个元素C.集合{x|x2−2x+1=0}中只有一个元素D.集合{x∈N|5x∈N}是有限集答案:BCD分析:根据集合的定义和性质逐项判断可得答案.对于A,空集不含任何元素,集合{0}有一个元素0,所以∅={0}不正确;对于B,由于√x2=|x|,−√x33=−x,且在x,-x,|x|中,当x>0时,|x|=x,当x<0时,|x|=−x,当x=0时,|x|=x=−x=0,三者中至少有两个相等,所以由集合中元素的互异性可知,该集合中最多含2个元素,故B正确;对于C,{x|x2−2x+1=0}={1},故该集合中只有一个元素,故C正确;∈N}={1,5}是有限集,故D正确.对于D,集合{x∈N|5x故选:BCD.19、(多选题)已知集合A={x|x2−2x=0},则有()A.∅⊆A B.−2∈A C.{0,2}⊆A D.A⊆{y|y<3}答案:ACD分析:先化简集合A={0,2},再对每一个选项分析判断得解.由题得集合A={0,2},由于空集是任何集合的子集,故A正确:因为A={0,2},所以CD正确,B错误.故选ACD.小提示:本题主要考查集合的化简,考查集合的元素与集合的关系,意在考查学生对这些知识的理解掌握水平.20、已知集合M={2,4},集合M⊆N{1,2,3,4,5},则集合N可以是()A.{2,4}B.{2,3,4}C.{1,2,3,4}D.{1,2,3,4,5}答案:ABC分析:根据集合的包含关系,逐一检验四个选项的正误即可得正确选项.因为集合M={2,4},对于A:N={2,4}满足M⊆N{1,2,3,4,5},所以选项A符合题意;对于B:N={2,3,4}满足M⊆N{1,2,3,4,5},所以选项B符合题意;对于C:N={1,2,3,4}满足M⊆N{1,2,3,4,5},所以选项C符合题意;对于D:N={1,2,3,4,5}不是{1,2,3,4,5}的真子集,故选项D不符合题意,故选:ABC.填空题21、已知集合A={−1,3,0},B={3,m2},若B⊆A,则实数m的值为__________.答案:0分析:解方程m2=0即得解.解:因为B⊆A,所以m2=−1(舍去)或m2=0,所以m=0.所以答案是:0∈Z},用列举法表示集合A,则A=__________.22、已知集合A={x∈Z∣32−x答案:{−1,1,3,5}分析:根据集合的描述法即可求解.∵A={x∈Z∣3∈Z},2−x∴A={−1,1,3,5}所以答案是:{−1,1,3,5}23、已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是______. 答案:(−∞,2]分析:根据充分性和必要性,求得参数a的取值范围,即可求得结果.因为p:x>a是q:2<x<3的必要不充分条件,故集合(2,3)为集合(a,+∞)的真子集,故只需a≤2.所以答案是:(−∞,2].。
高中数学必修一1.2 集合间的基本关系-单选专项练习(4)(人教A版,含答案及解析)
1.2 集合间的基本关系1.已知集合,,则的子集个数为 A .B .C .D .2.如果集合|,3n A x x n Z ⎧⎫==∈⎨⎬⎩⎭,1|,3B x x n n Z ⎧⎫==±∈⎨⎬⎩⎭,2|,3C x x n n Z ⎧⎫==±∈⎨⎬⎩⎭,那么下列结论中正确的是( )A .BC ≠B .ABC .C B A =⊆D .A C ⊆ 3.已知集合{}1,2,3A ⊆,且A 中至少有一个奇数,则这样的集合个数为( ). A .4个 B .5个 C .6个 D .7个 4.已知A B ⊆,A C ⊆,{2,0,1,8}B =,{1,9,3,8}C =,则集合A 可以为A .{1,8}B .{2,3}C .{0}D .{9}5.已知集合{}220A x Z x x =∈-++>,则集合A 的真子集个数为( )A .3B .4C .7D .86.下列集合的说法中正确的是( )A .绝对值很小的数的全体形成一个集合B .方程2(1)0x x -=的解集是{1,0,1}C .集合{}1,,,a b c 和集合{},,,1c b a 相等D .空集是任何集合的真子集7.若{}|1P x x =<,{}|0Q x x =>,全集为R ,则 A .P Q ⊆ B .Q P ⊆ C .R Q C P ⊆ D .R C P Q ⊆8.设集合A =1,2,4},B =x|x 2﹣4x+m =0}.若A∩B=1},则集合B 的子集个数为( ) A .1B .2C .3D .49.集合M=16x x m m ⎧⎫=+∈⎨⎬⎩⎭Z ,,N=}1-23n x x n -⎧=∈⎨⎩Z ,,P=126p x x p ⎧⎫=+∈⎨⎬⎩⎭Z ,,则M ,N ,P 之间的关系是( ) A .M=N ⫋P B .M ⫋N=P C .M ⫋N ⫋P D .N ⫋P=M 10.满足的集合的个数为A .6B .7C .8D .911.已知集合{}0,1,2,4,6A =,{}*233nB n =∈<N ,则集合A B 的子集个数为( )A .8B .7C .6D .412.已知集合N =1,3,5},则集合N 的真子集个数为( )A .5B .6C .7D .813.已知集合{}3A x N x =∈<,则( ) A .0A ∉B .1A -∈C .{}0A ⊆D .{}1A -⊆14.已知集合{}{}1,,1,1A xax a R B ==∈=-∣,若A B ⊆,则所有a 的取值构成的集合为( ) A .{}1- B .{}1,1- C .{}0,1 D .{}1,0,1-15.已知S 1,S 2,S 3为非空集合,且S 1,S 2,S 3⊆Z ,对于1,2,3的任意一个排列i ,j ,k ,若x∈S i ,y∈S j ,则x -y∈S k ,则下列说法正确的是( ) A .三个集合互不相等 B .三个集合中至少有两个相等 C .三个集合全都相等D .以上说法均不对16.已知集合S =0,1,2,3,4,5},A 是S 的一个子集,当x∈A 时,若有1x A -∉,且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的非空子集的个数为( ) A .16 B .17C .18D .2017.下列表示方法正确的是( )A .3∈[0,3)B .0 ⊆[0,3)C .1∈[0,3)D .{2}∈[0,3)18.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,19.已知集合{}220A x x x =+-=,若{}B x x a =≤,且A B ,则a 的取值范围是( )A .1a >B .1a ≥C .2a ≥-D .2a ≤- 20.下列有关集合的写法正确的是( )A .{0}{0,1,2}∈B .{0}∅=C .0∈∅D .{}∅∈∅参考答案1.A详解:试题分析:,所以集合的子集个数为,故选A.考点:集合2.C3.C4.A5.A6.C7.D8.D9.B10.A详解:试题分析:由题意得,满足的集合有:{}{}{}{}{}{}a b c a b d a b e a b c d a b c e a b d e,共有6个,故选A. ,,,,,,,,,,,,,,,,,,,,考点:集合真子集的运算.11.A12.C详解:集合N=1,3,5},则集合N的子集个数328=.除去集合N本身,还有8-1=7个.故选C.13.C14.D15.B16.D17.C19.B 20.D【参考解析】1.2.解析:用列举法分别列出集合,,A B C 即可判断. 详解: 因为集合54211245|,,,,1,,,0,,,1,,,333333333n A x x n Z ⎧⎫⎧⎫==∈=-----⎨⎬⎨⎬⎩⎭⎩⎭, 154211245|,,,,,,,,,,333333333B x x n n Z ⎧⎫⎧⎫==±∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 254211245|,,,,,,,,,,333333333C x x n n Z ⎧⎫⎧⎫==±∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 所以C B A =⊆. 故选:C. 点睛:本题主要考查了集合之间的关系.属于较易题.3.解析:由题得{1},{3},{1,2},{1,3},{2,3},{1,2,3}A =,即得解. 详解:由题得{1},{3},{1,2},{1,3},{2,3},{1,2,3}A =. 所以满足条件的集合有6个. 故选:C 点睛:本题主要考查集合的关系,意在考查学生对这些知识的理解掌握水平.4.解析:由A B ⊆,A C ⊆,则A B C ⊆,又{}1,8B C ⋂=,从而可得答案. 详解:由A B ⊆,A C ⊆,则A B C ⊆. 又{}1,8B C ⋂=,所以{}1,8A ⊆所以选项B 、C 、D 不满足,选项A 满足.点睛:本题考查集合的子集的运用和交集的运算,属于基础题.5.解析:求出集合A ,确定集合A 的元素个数,利用真子集个数公式可得出集合A 的真子集个数. 详解:{}{}{}220120,1A x Z x x x Z x =∈-++>=∈-<<=,所以,集合A 的真子集个数为2213-=. 故选:A. 点睛:本题考查集合真子集个数的计算,同时也考查了一元二次不等式的求解,解答的关键就是确定集合元素的个数,考查计算能力,属于基础题.6.解析:逐项分析选项A,B 不符合集合的三要素,选项C 满足集合三要素,选项D 不符合真子集的定义,即可得出结论. 详解:选项A:不满足集合的确定性,错误; 选项B:不满足集合的互异性,错误;选项C:集合无序性,只需集合元素相同,则集合相等,正确; 选项D: 空集不是本身的真子集,错误. 故选: C 点睛:本题考查对集合概念的理解,以及空集的性质,属于基础题.7.解析:根据集合的基本关系和补集运算,即可求出结果. 详解:因为{}|1P x x =<,所以{}=|1R C P x x ≥,又{}|0Q x x =>, 所以R C P Q ⊆, 故选:D. 点睛:本题主要考查集合之间的基本关系,熟练掌握集合间的基本关系是解题的关键.8.解析:由题意知1是方程x 2﹣4x+m =0的实数根,求出m 的值和集合B ,即知集合B 的子集个数. 详解:集合A =1,2,4},B =x|x 2﹣4x+m =0},若A∩B=1},则1是方程x 2﹣4x+m =0的实数根, ∴m=4﹣1=3,∴集合B =x|x 2﹣4x+3=0}=x|x =1或x =3}=1,3}, ∴集合B 的子集有22=4(个). 故选D . 点睛:本题考查了集合的定义与运算问题,是基础题.9.解析:通分化简,再利用集合之间的包含关系即可求解. 详解: M=616m x x m Z ⎧⎫+=∈⎨⎬⎩⎭,, N=3-23(-1)166n n x x n Z ⎧+⎫==∈⎨⎬⎭⎩,, P=316p x x p Z ⎧⎫+=∈⎨⎬⎩⎭,. 由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数, 所以M ⫋N=P . 故选:B 点睛:本题考查了集合的包含关系,考查了基本知识掌握情况,属于基础题. 10.11.解析:首先确定集合B ,求出A B 后可得其子集个数. 详解:由题意{1,2,3,4,5}B =,{1,2,4}A B ⋂=,其子集个数为328=. 故选:A . 点睛:本题考查集合的运算,考查子集的个数,确定集合中的元素是解题关键. 12.13.解析:根据集合的概念判断. 详解:集合A 是由小于3的自然数组成,0A ∈,1A -∉,只有C 正确,故选:C.14.解析:根据子集的概念求得参数a的值可得.详解:a=时,A=∅满足题意,a≠时,1ax=得1xa=,所以11a=或11a=-,1a=或1a=-,所求集合为{1,0,1}-.故选:D.15.解析:根据条件,若x∈Si ,y∈Sj,则y﹣x∈Sk,从而(y-x)-y=-x∈Si,这便说明Si中有非负元素,从而三个集合中都有非负元素.可以看出若0∈Si ,任意x∈Sj,都有x-0=x∈Sk ,从而说明Sj⊆S k,而同理可得到S k⊆S j,从而便可得出S j=S k,这便得出3个集合中至少有两个相等.详解:解:若x∈Si ,y∈Sj,则y-x∈Sk,从而(y-x)-y=-x∈Si,所以Si中有非负元素,由i,j,k的任意性可知三个集合中都有非负元素,若三个集合都没有0,则取S1∪S2∪S3中最小的正整数a(由于三个集合中都有非负整数,所以这样的a存在),不妨设a∈S1,取S2∪S3中的最小正整数b,并不妨设b∈S2,这时b>a(否则b不可能大于a,只能等于a,所以b-a=0∈S3,矛盾),但是,这样就导致了0<b-a<b,且b-a∈S3,这时与b为S2∪S3中的最小正整数矛盾,∴三个集合中必有一个集合含有0.∵三个集合中有一个集合含有0,不妨设0∈S1,则对任意x∈S2,有x-0=x∈S3,∴S2包含于S3,对于任意y∈S3,有y-0=y∈S2,∴S3包含于S2,则S2=S3,综上所述,这三个集合中必有两个集合相等,故选:B.16.解析:由集合S=0,1,2,3,4,5},结合x∈A时,若有1x A-∉,且x+1∉A,则称x 为A的一个“孤立元素”,我们用列举法列出满足条件的所有集合,即可得出答案.详解:∵当x∈A时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,∴单元素集合都含“孤立元素”.S中无“孤立元素”的2个元素的子集为0,1},1,2},2,3},3,4},4,5},共5个,S中无“孤立元素”的3个元素的子集为0,1,2},1,2,3},2,3,4},3,4,5},共4个,S中无“孤立元素”的4个元素的子集为0,1,2,3},0,1,3,4},0,1,4,5},1,2,3,4},1,2,4,5},2,3,4,5},共6个,S中无“孤立元素”的5个元素的子集为0,1,2,3,4},1,2,3,4,5},0,1,2,4,5},0,1,3,4,5},共4个,S中无“孤立元素”的6个元素的子集为0,1,2,3,4,5},共1个,故S 中无“孤立元素”的非空子集有20个,故选D. 点睛:本题考查的知识点是元素与集合关系的判断,我们根据定义列出满足条件的所有不含”孤立元素”的集合,进而求出不含”孤立元素”的集合个数.17.解析:由元素与集合的关系、集合与集合的关系的表示符号判断即可. 详解:3[0,3)∉,故A 错误;0[0,3)∈,故B 错误;1[0,3)∈,故C 正确;{2}[0,3)⊆,故D 错误. 故选:C. 点睛:本题考查元素与集合、集合与集合关系的符号表示,属于基础题.18.解析:解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 详解:由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a=,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 点睛:本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.19.解析:先求得集合A ,结合A B 求得a 的取值范围. 详解:()()22210x x x x +-=+-=,解得2x =-或1x =,所以{}2,1A =-,由于{}B x x a =≤,A B ,所以1a ≥. 故选:B 点睛:本小题主要考查根据真子集求参数的取值范围,属于基础题.20.解析:试题分析:元素和集合是属于或不属于的关系,空集是没有元素的集合,所以D 选项正确.考点:元素和集合的关系.。
高教版中职数学(基础模块)上册1.2《集合之间的关系》word教案
记作 (或 ),读作“A真包含B”(或“B真包含于A”).
拓展
空集是任何非空集合的真子集.
对于集合A、B、C,如果A B,B C,则A C.
巩固知识典型例题
例2选用适当的符号“ ”或“ ”填空:
(1){1,3,5}_ _{1,2,3,4,5};
(2){2}_ _{x| |x|=2};(3){1}_.
运用知识强化练习
练习1.2.2
1.设集合 ,试写出 的所有子集,并指出其中的真子集.
2.设集合 ,集合 ,指出集合A与集合B之间的关系.
创设情景兴趣导入
问题设集合A={x|x2-1=0},B={-1,1},那么这两个集合会有什么关系呢?
解决由于方程x2-1=0的解是x1=-1,x2=1,所以说集合A中的元素就是1,-1,可以看出集合A与集合B中的元素完全相同,集合A与集合B相等.
(5)d不是集合 的元素,因此 ;
(6)集合 的元素都是集合 的元素,因此 .
运用知识强化练习
教材练习1.2.1
用符号“ ”、“ ”、“ ”或“ ”填空:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(果集合B是集合A的子集,并且集合A中至少有一个元素不属于集合B,那么把集合B叫做集合A的真子集.
巩固知识典型例题
例5用适当的符号填空:
{1,3,5}{1,2,3,4,5,6};
{3,-3};
{2}{x| |x|=2}; 2N;
a{a}; {0};
.
解 ;
{x|x2=9}={3,-3};
因为 ,所以 ;
2∈N; a∈{a}; ;
因为 =,所以 .
运用知识强化练习
用适当的符号填空:
(完整版)集合间的基本关系试题(含答案),推荐文档
一、选择题1.对于集合A ,B ,“A ⊆B ”不成立的含义是( )A .B 是A 的子集B .A 中的元素都不是B 的元素C .A 中至少有一个元素不属于BD .B 中至少有一个元素不属于A[答案] C[解析] “A ⊆B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C.2.集合M ={(x ,y )|x +y <0,xy >0},P ={(x ,y )|x <0,y <0}那么( )A .P MB .M PC .M =PD .M P [答案] C[解析] 由xy >0知x 与y 同号,又x +y <0∴x 与y 同为负数∴⎩⎨⎧ x +y <0xy >0等价于⎩⎪⎨⎪⎧x <0y <0∴M =P . 3.设集合A ={x |x 2=1},B ={x |x 是不大于3的自然数},A ⊆C ,B ⊆C ,则集合C 中元素最少有( )A .2个B .4个C .5个D .6个[答案] C[解析] A ={-1,1},B ={0,1,2,3},∵A ⊆C ,B ⊆C ,∴集合C 中必含有A 与B 的所有元素-1,0,1,2,3,故C 中至少有5个元素.4.若集合A ={1,3,x },B ={x 2,1}且B ⊆A ,则满足条件的实数x 的个数是()A.1 B.2C.3 D.4[答案] C[解析]∵B⊆A,∴x2∈A,又x2≠1∴x2=3或x2=x,∴x=±3或x=0.故选C.5.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是()A.M P B.P MC.M=P D.M、P互不包含[答案] D[解析]由于两集合代表元素不同,因此M与P互不包含,故选D.6.集合B={a,b,c},C={a,b,d};集合A满足A⊆B,A⊆C.则满足条件的集合A的个数是()A.8 B.2C.4 D.1[答案] C[解析]∵A⊆B,A⊆C,∴集合A中的元素只能由a或b构成.∴这样的集合共有22=4个.即:A=∅,或A={a},或A={b}或A={a,b}.7.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则()A.M=N B.M NC.M N D.M与N的关系不确定[答案] B[解析]解法1:用列举法,令k=-2,-1,0,1,2…可得M={…-34,-14,14,34,54…},N={…0,14,12,34,1…},∴M N,故选B.解法2:集合M的元素为:x=k2+14=2k+14(k∈Z),集合N的元素为:x=k4+1 2=k+24(k∈Z),而2k+1为奇数,k+2为整数,∴M N,故选B.[点评]本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k是任意整数,则k+m(m是一个整数)也是任意整数,而2k+1,2k-1均为任意奇数,2k为任意偶数.8.集合A={x|0≤x<3且x∈N}的真子集的个数是()A.16 B.8C.7 D.4[答案] C[解析]因为0≤x<3,x∈N,∴x=0,1,2,即A={0,1,2},所以A的真子集个数为23-1=7.9.(09·广东文)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()[答案] B[解析]由N={x|x2+x=0}={-1,0}得,N M,选B.10.如果集合A满足{0,2}A⊆{-1,0,1,2},则这样的集合A个数为() A.5 B.4C.3 D.2[答案] C[解析] 集合A 里必含有元素0和2,且至少含有-1和1中的一个元素,故A ={0,2,1},{0,2,-1}或{0,2,1,-1}.二、填空题11.设A ={正方形},B ={平行四边形},C ={四边形},D ={矩形},E ={多边形},则A 、B 、C 、D 、E 之间的关系是________.[答案] A D B C E[解析] 由各种图形的定义可得.12.集合M ={x |x =1+a 2,a ∈N *},P ={x |x =a 2-4a +5,a ∈N *},则集合M 与集合P 的关系为________.[答案] M P[解析] P ={x |x =a 2-4a +5,a ∈N *}={x |x =(a -2)2+1,a ∈N *}∵a ∈N * ∴a -2≥-1,且a -2∈Z ,即a -2∈{-1,0,1,2,…},而M ={x |x =a 2+1,a ∈N *},∴M P .13.用适当的符号填空.(∈,∉,⊆,⊇,,,=) a ________{b ,a };a ________{(a ,b )};{a ,b ,c }________{a ,b };{2,4}________{2,3,4};∅________{a }.[答案] ∈,∉,,, *14.已知集合A =⎩⎨⎧⎭⎬⎫x |x =a +16,a ∈Z , B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z }.则集合A ,B ,C 满足的关系是________(用⊆,,=,∈,∉,⃘中的符号连接A ,B ,C ).[答案] A B =C[解析] 由b 2-13=c 2+16得b =c +1,∴对任意c ∈Z 有b =c +1∈Z .对任意b ∈Z ,有c =b -1∈Z ,∴B =C ,又当c =2a 时,有c 2+16=a +16,a ∈Z .∴A C .也可以用列举法观察它们之间的关系.15.(09·北京文)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,那么k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有______个.[答案] 6[解析] 由题意,要使k 为非“孤立元”,则对k ∈A 有k -1∈A .∴k 最小取2.k -1∈A ,k ∈A ,又A 中共有三个元素,要使另一元素非“孤立元”,则其必为k +1.所以这三个元素为相邻的三个数.∴共有6个这样的集合.三、解答题16.已知A ={x ∈R |x <-1或x >5},B ={x ∈R |a ≤x <a +4},若AB ,求实数a 的取值范围.[解析] 如图∵A B ,∴a +4≤-1或者a >5.即a ≤-5或a >5.17.已知A ={x |x <-1或x >2},B ={x |4x +a <0},当B ⊆A 时,求实数a 的取值范围.[解析] ∵A ={x |x <-1或x >2},B ={x |4x +a <0}={x |x <-a 4},∵A ⊇B ,∴-a 4≤-1,即a ≥4,所以a 的取值范围是a ≥4.18.A ={2,4,x 2-5x +9},B ={3,x 2+ax +a },C ={x 2+(a +1)x -3,1},a 、x ∈R ,求:(1)使A ={2,3,4}的x 的值;(2)使2∈B ,B A 成立的a 、x 的值;(3)使B =C 成立的a 、x 的值.[解析] (1)∵A ={2,3,4} ∴x 2-5x +9=3解得x =2或3(2)若2∈B ,则x 2+ax +a =2又B A ,所以x 2-5x +9=3得x =2或3,将x =2或3分别代入x 2+ax +a=2中得a =-23或-74(3)若B =C ,则⎩⎪⎨⎪⎧x 2+ax +a =1①x 2+(a +1)x -3=3② ①-②得:x =a +5 代入①解得a =-2或-6此时x =3或-1.*19.已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集,若各元素都减2后,则变为B 的一个子集,求集合C .[解析] 由题设条件知C ⊆{0,2,4,6,7},C ⊆{3,4,5,7,10},∴C ⊆{4,7},∵C ≠∅,∴C ={4},{7}或{4,7}.。
集合间的基本关系练习题及答案
1.集合{a,b}的子集有()A.1个B.2个C.3个D.4个【解析】集合{a,b}的子集有Ø,{a},{b},{a,b}共4个,故选D.2.下列各式中,正确的是()A.23∈{x|x≤3} B.23∉{x|x≤3} C.23⊆{x|x≤3} D.{23≤3【解析】23表示一个元素,{x|x≤3}表示一个集合,但23不在集合中,故23∉{x|x≤3},A、C不正确,又集合{23{x|x≤3},故D不正确.3.集合B={a,b,c},C={a,b,d},集合A满足A⊆B,A⊆C.则集合A的个数是________.【解析】若A=Ø,则满足A⊆B,A⊆C;若A≠Ø,由A⊆B,A⊆C知A是由属于B且属于C的元素构成,此时集合A可能为{a},{b},{a,b}.4.已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,求实数a的取值集合.【解析】将数集A表示在数轴上(如图所示),要满足A⊆B,表示数a的点必须在表示4的点处或在表示4的点的右边,所以所求a的集合为{a|a≥4}.一、选择题(每小题5分,共20分)1.集合A={x|0≤x<3且x∈Z}的真子集的个数是()A.5 B.6 C.7 D.8【解析】由题意知A={0,1,2},其真子集的个数为23-1=7个,故选C.2.在下列各式中错误的个数是()①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1}A.1 B.2 C.3 D.4【解析】①正确;②错.因为集合与集合之间是包含关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.3.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.C..A⊆B【解析】如图所示,,由图可知,故选C.4.下列说法: ①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若,则A ≠Ø.其中正确的有( )A .0个B .1个C .2个D .3个【解析】 ①空集是它自身的子集;②当集合为空集时说法错误;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此,①②③错,④正确.故选B.二、填空题(每小题5分,共10分)5.已知2-x +a =0},则实数a 的取值范围是________. 【解析】 ∵2-x +a =0},∴方程x2-x +a =0有实根,∴Δ=(-1)2-4a ≥0,a ≤14.6.已知集合A ={-1,3,2m -1},集合B ={3,m2},若B ⊆A ,则实数m =________.【解析】 ∵B ⊆A ,∴m2=2m -1,即(m -1)2=0∴m =1,当m =1时,A ={-1,3,1},B ={3,1}满足B ⊆A.【答案】 1三、解答题(每小题10分,共20分)7.设集合A ={x ,y},B ={0,x 2},若A =B ,求实数x ,y.【解析】 从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A =B ,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去.(2)当y =0时,x =x2,解得x =0或x =1.由(1)知x =0应舍去.综上知:x =1,y =0.8.若集合M ={x|x2+x -6=0},N ={x|(x -2)(x -a)=0},且N ⊆M ,求实数a 的值.【解析】 由x2+x -6=0,得x =2或x =-3.因此,M ={2,-3}.若a =2,则N ={2},此时;若a =-3,则N ={2,-3},此时N =M ;若a ≠2且a ≠-3,则N ={2,a},此时N 不是M 的子集,故所求实数a 的值为2或-3.9.(10分)已知集合M ={x|x =m +16,m ∈Z },N ={x|x =n 2-13,n ∈Z },P ={x|x =p 2+16,p ∈Z },请探求集合M 、N 、P 之间的关系. 【解析】 M ={x|x =m +16,m ∈Z }={x|x =6m +16,m ∈Z }.N ={x|x =n 2-13,n ∈Z } =⎩⎨⎧⎭⎬⎫x|x =3n -26,n ∈Z P ={x|x =p 2+16,p ∈Z } ={x|x =3p +16,p ∈Z }.∵3n -2=3(n -1)+1,n ∈Z .∴3n -2,3p +1都是3的整数倍加1,从而N =P.而6m +1=3×2m +1是3的偶数倍加1, ∴=P .。
集合间的基本关系(经典练习及答案详解)
集合间的基本关系1.(2020年福建高一期中)现有四个判断:2⊆{1,2};∅∈{0};{ 5 }⊆Q ;∅{0}.其中正确的个数是( )A .2B .1C .4D .3 【答案】B 【解析】元素与集合之间不能用包含关系,故2⊆{1,2}错误;∅与{0}是集合之间的关系,不能用“∈”,故∅∈{0}错误;因为 5 ∉Q ,所以{5}⊆Q 错误;空集是任何非空集合的真子集,故∅{0}正确.故选B .2.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅【答案】B 【解析】因为A ⊇B ,所以⎩⎪⎨⎪⎧ a -1≤3,a +2≥5.所以3≤a ≤4. 3.(2021年北京期末)下列正确表示集合M ={x |x 2-x =0}和N ={-1,0,1}关系的Venn 图是( )A BC D 【答案】D 【解析】由x 2-x =0,解得x =0或1,所以M N .故选D .4.(2020年铜仁高一期中)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪ 62+x ∈N ,则集合B 的子集个数为( ) A .3B .4C .8D .16【答案】D 【解析】根据题意,集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪ 62+x ∈N ={-1,0,1,4},有4个元素,其子集有24=16个.故选D .5.(2021年昆明期中)下列各式中,正确的个数是( )①{0}∈{0,2,4};②{0,2,4}⊆{4,2,0};③∅⊆{0,2,4};④∅={0};⑤{0,2}={(0,2)};⑥0={0}.A.1 B.2C.3 D.4【答案】B【解析】对于①,是集合与集合的关系,应为{0}{0,2,4};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,2}是含有两个元素0与2的集合,而{(0,2)}是以有序数组(0,2)为元素的单元素集合,所以{0,2}与{(0,2)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③正确.6.用符号“∈”或“⊆”填空:若A={2,4,6},则4______A,{2,6}______A.【答案】∈⊆【解析】因为集合A中有4这个元素,所以4∈A,因为2∈A,6∈A,所以{2,6}⊆A.故答案为∈,⊆.7.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为________.【答案】6【解析】集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.8.已知集合A={x|x<3},集合B={x|x<m},且A⊆B,则实数m满足的条件是________.【答案】m≥3【解析】将数集A在数轴上表示出来,如图所示,要满足A⊆B,表示数m的点必须在表示3的点处或在其右边,故m≥3.9.设集合A={1,3,a},B={1,a2-a+1},且B⊆A,求a的值.解:因为B⊆A,所以a2-a+1=3或a2-a+1=a.当a2-a+1=3时,解得a=-1或a=2.经检验,满足题意.当a2-a+1=a时,解得a=1,此时集合A中的元素1重复,故a=1不合题意.综上所述,a=-1或a=2.B级——能力提升练10.(多选)图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,则()A.A为小说B.B为文学作品C .C 为散文D .D 为叙事散文【答案】AB 【解析】由Venn 图可得A B ,C D B ,A 与D 之间无包含关系,A 与C 之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A 为小说,B 为文学作品,C 为叙事散文,D 为散文.11.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间的关系是( )A .A ⊆BB .A =BC .A BD .A B【答案】D 【解析】对于x =3k (k ∈Z ),当k =2m (m ∈Z )时,x =6m (m ∈Z );当k =2m -1(m ∈Z )时,x =6m -3(m ∈Z ).由此可知A B .12.(2020年太原高一期中)设集合A ={a ,b },B ={0,a 2,-b 2},若A ⊆B ,则a -b =( )A .-2B .2C .-2或2D .0【答案】C 【解析】因为集合A ={a ,b },B ={0,a 2,-b 2},且A ⊆B ,易知a ≠0且b ≠0.当 ⎩⎪⎨⎪⎧ a =a 2,b =-b 2时,因为a ≠0且b ≠0,所以⎩⎪⎨⎪⎧ a =1,b =-1,此时集合A ={1,-1},集合B ={0,1,-1},符合题意,所以a -b =2;当⎩⎪⎨⎪⎧ a =-b 2,b =a 2时,因为a ≠0且b ≠0,所以⎩⎪⎨⎪⎧a =-1,b =1,此时集合A ={1,-1},集合B ={0,1,-1},符合题意,所以a -b =-2.综上所求,a -b =2或-2.故选C .13.(2020年宁波高一期中)已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |y =12x +3∈Z ,则列举法表示集合A =________,集合A 的真子集有________个.【答案】{0,1,3,9} 15 【解析】因为集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪ y =12x +3∈Z ,所以列举法表示集合A ={0,1,3,9},集合A 的真子集有24-1=15个.故答案为{0,1,3,9},15.14.(2020年安康高一期中)定义集合运算:A ⊗B ={z |z =x +y ,x ∈A ,y ∈B },设A ={0,1},B ={2,3},则集合A ⊗B 的真子集的个数为________.【答案】7 【解析】因为A ⊗B ={z |z =x +y ,x ∈A ,y ∈B },A ={0,1},B ={2,3},所以集合A ⊗B ={2,3,4},所以集合A ⊗B 的真子集的个数为23-1=7.15.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.解:(1)若A B ,由图可知a >2.故a 的取值范围为{a |a >2}.(2)若B ⊆A ,由图可知1≤a ≤2.故a 的取值范围为{a |1≤a ≤2}.C 级——探究创新练16.已知集合P ={x |x 2-3x +b =0},Q ={x |(x +1)(x 2+3x -4)=0}.(1)若b =4,是否存在集合M 使得PM ⊆Q ?若存在,求出所有符合题意的集合M ,若不存在,请说明理由;(2)P 能否成为Q 的一个子集?若能,求出b 的值或取值范围,若不能,请说明理由. 解:(1)因为集合Q ={x |(x +1)(x 2+3x -4)=0}={x |(x +1)(x +4)(x -1)=0}={-1,1,-4}, 当b =4时,集合P =∅,再由 P M ⊆Q 可得,M 是Q 的非空子集,共有 23-1=7 个,分别为{-1},{1},{-4},{-1,1},{-1,4},{1,4},{-1,1,-4}.(2)因为P ⊆Q ,对于方程x 2-3x +b =0,当P =∅,Δ=9-4b <0时,有b >94. 当P ≠∅,Δ=9-4b ≥0时,方程x 2-3x +b =0有实数根,且实数根是-1,1,-4中的数, 若-1是方程x 2-3x +b =0的实数根,则有b =-4,此时P ={-1,4},不满足P ⊆Q ,故舍去;若1是方程x 2-3x +b =0的实数根,则有b =2,此时P ={1,2},不满足P ⊆Q ,故舍去; 若-4是方程x 2-3x +b =0的实数根,则有b =-28,此时P ={-4,7},不满足P ⊆Q ,故舍去.综上可得,实数b 的取值范围为⎩⎨⎧⎭⎬⎫b ⎪⎪b >94.。
高一数学知识讲学专题01 集合 集合间的关系 集合的运算(word档含答案解析)
专题一集合、集合与集合的关系、集合的运算知识精讲一知识结构图二.学法指导1.判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.2. 集合中的元素具有三个特性,求解与集合有关的字母参数值(范围)时,需借助集合中元素的互异性来检验所求参数是否符合要求.3.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识.4.利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合(含参数),另一个为静集合(具体的),解答时常借助数轴来建立变量间的关系,需特别注意端点问题.5.求集合并集的两种基本方法:(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴分析法求解.6.求集合交集的方法为:(1).定义法,(2)数形结合法.(2).若A,B是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.三.知识点贯通知识点1 元素与集合相关概念(1)集合中元素的特性:确定性、互异性和无序性.例1.考察下列每组对象,能构成集合的是()①中国各地最美的乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④知识点二元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.(3)常见的数集及表示符号例题2:已知集合A含有两个元素1和a2,若a∈A,求实数a的值.知识点三集合间的关系1.判断集合关系的方法.1观察法:一一列举观察.2元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.3数形结合法:利用数轴或Venn图.2.集合A中含有n个元素,则有(1)A的子集的个数有2n个.(2)A的非空子集的个数有2n-1个.(3)A的真子集的个数有2n-1个.(4)A的非空真子集的个数有2n-2个.3.空集是任何集合的子集,因此在解A⊆B(B≠∅)的含参数的问题时,要注意讨论A=∅和A≠∅两种情况,前者常被忽视,造成思考问题不全面.例题3 .已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.知识点四集合的运算1.由所有属于集合A或属于集合B的元素组成的集合叫A与B的并集,记作A∪B;符号表示为A∪B={x|x∈A或x∈B}2.并集的性质A∪B=B∪A,A∪A=A,A∪∅=A,A⊆A∪B.3.对于两个给定的集合A、B,由所有属于集合A且属于集合B的元素组成的集合叫A与B 的交集,记作A∩B。
集合间的关系(精炼)(解析版)
1.2 集合间的关系【题组一 集合关系的判断】1.(2020·浙江高一课时练习)下列关系中,正确的个数是( ). ①{}00∈;②∅ {0},;③{}(){}0,10,1⊆;④(){}(){},,a b b a =.A .1B .2C .3D .4【答案】B【解析】对于①,0是集合{}0中的元素,即{}00∈,故正确; 对于②,空集是任何非空集合的真子集,故∅ {0},故正确; 对于③,集合{}0,1中的元素为0,1,集合(){}0,1中的元素为()0,1,故错误;对于④,集合(){},a b 中的元素为(),a b ,集合(){},b a 中的元素为(),b a ,故错误.故选:B2.(2020·浙江高一课时练习)设,x y ∈R ,{(,)|}A x y y x ==,(,)|1y B x y x ⎧⎫==⎨⎬⎩⎭,则A ,B 的关系是________. 【答案】B A【解析】由集合{(,)|}A x y y x ==可得集合A 中元素代表直线y x =上所有的点,由(,)|1y B x y x ⎧⎫==⎨⎬⎩⎭,∵1y x =可化为(0)y x x =≠,可得集合B 中元素代表y x =上除去(0,0)点的两条射线,则可得集合B 是集合A 的真子集,即B A.故答案为:B A. 3.(2020·浙江高一单元测试)已知集合1A={x|x=(21),}9k k Z +∈,41B={x|x=,}99k k Z ±∈,则集合A ,B 之间的关系为________. 【答案】A=B【解析】对于集合A ,k=2n 时,()14141,999n x n n Z =+=+∈ , 当k=2n -1时,()141421,999n x n n Z =-+=-∈ 即集合A=41,99n x x n Z ⎧⎫=±∈⎨⎬⎩⎭ ,由B=41,99k x x k Z ⎧⎫=±∈⎨⎬⎩⎭可知A=B ,故填:A=B. 【题组二 (真)子集的个数】1.(2020·湖南天元株洲二中高二月考(文))下列集合中,是集合{}2|5A x x x =<的真子集的是( ) A .{}2,5 B .()6+∞, C .()0,5 D .()1,5【答案】D【解析】(0,5)A =, 真子集就是比A 范围小的集合;故选D2.(2020·湖南雁峰衡阳市八中高一月考)集合{}2x x <的真子集可以是( ) A .[)2,+∞ B .(),2-∞ C .(]0,2 D .{}1,0,1-【答案】D【解析】因为{}2|2x x ∉<,则可排除A,C ;由(){},22x x -∞=<,可排除B ;故选:D.3.(2020·全国高三月考(文))已知集合{|(1)(3)0}A x x x =-+≤,则下列集合中是集合A 的真子集...的是( )A .1{|}3x x ≤≤-B .{|13}x x -≤≤C .{0,1,2,3}D .{2,0,1}-【答案】D【解析】因为{|(1)(3)0}{|31}A x x x x x =-+≤=-≤≤,由集合的子集和真子集的概念知选项D 正确.故选:D.4.(2019·全国高三二模(文))集合{2,1,1},{4,6,8},{|,,}A B M x x a b b B x B =--===+∈∈,则集合M 的真子集的个数是 A .1个 B .3个 C .4个 D .7个【答案】B【解析】由题意,集合{2,1,1},{4,6,8}A B =--=,,x A ∈ 则{}{|,,,}4,6M x x a b x A b B x B ==+∈∈∈=, 所以集合M 的真子集的个数为2213-=个,故选B .5.(2020·陕西新城西安中学高三一模(文))已知集合M 满足{}1,2M ⊆ {}1,2,3,4,则集合M 的个数是( ) A .4B .3C .2D .1【答案】B【解析】由于集合M 满足{}1,2M ⊆ {}1,2,3,4,所以集合M 的可能取值为{}{}{}1,2,1,2,3,1,2,4,共3种可能.故选:B6.(2020·全国高一月考)若集合{}1,2A =,{}0,1,2,3,4B =,则满足A M B ⊆⊆的集合M 的个数为( )A .3B .4C .7D .8【答案】D【解析】集合{}1,2A =,{}0,1,2,3,4B =,则满足A M B ⊆⊆的集合M 有:{}1,2、{}0,1,2、{}1,2,3、{}1,2,4、{}0,1,2,3、{}0,1,2,4、{}1,2,3,4、{}0,1,2,3,4,共8个.故选:D. 【点睛】本题考查集合子集的列举,属于基础题.7.(2019·五华云南师大附中高三月考(文))已知集合41M x x N x ⎧⎫=>∈⎨⎬⎩⎭,,则M 的非空子集的个数是( ) A .15 B .16C .7D .8【答案】C【解析】{}1,2,3M =,所以M 的非空子集为{}{}{}{}{}{}{}1,2,3,1,2,1,3,2,3,1,2,3共7个,故选C.8.(2020·浙江高一课时练习)已知A ⊆{0,1,2,3},且A 中至少有一个奇数,则这样的集合A 共有( ) A .11个 B .12个C .15个D .16个【答案】B【解析】根据题意,分A 中有1个奇数或2个奇数两种情况讨论,由排列组合知识易得每种情况下的集合A 数目,由分步计数原理计算可得答案解:根据题意,A 中至少有一个奇数,包含两种情况,A 中有1个奇数或2个奇数,若A 中含1个奇数,有C 21×22=8, A 中含2个奇数:C 22×22=4,由分类计数原理可得.共有8+4=12种情况;故选B . 【题组三 集合相等与空集】1.下列集合中表示同一集合的是( )A .(){}3,2M =,(){}2,3N =B .{}3,2M =,{}2,3N =C .(){},1M x y x y =+=,{}1N y x y =+= D .{}1,2M =,(){}1,2N =【答案】B【解析】对于A 选项,点()3,2和点()2,3不是同一个点,则M N ;对于B 选项,集合M 和N 中的元素相同,则MN ;对于C 选项,集合M 为点集,集合N 为数集,则M N ; 对于D 选项,集合M 为数集,集合N 为点集,则M N .故选:B.2.已知集合2{0,1,}=A a ,{1,0,23}=+B a ,若A B =,则a 等于( ) A .-1或3 B .0或-1C .3D .-1【答案】C【解析】由于A B =,故223a a =+,解得1a =-或3a =.当1a =-时,21a =,与集合元素互异性矛盾,故1a =-不正确.经检验可知3a =符合.故选C.3.已知,a b R R ,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192020a b +=( )A .2-B .1-C .1D .2【答案】B 【解析】∵{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,又0a ≠,00b b a ∴=⇒=,2{,0,1}{,,0}a a a ∴=,211a a =⇒=±当1,0a b ==时,,,1{1,0,1}b a a ⎧⎫=⎨⎬⎩⎭,不符合集合元素的互异性,故舍去; 当1,0a b =-=时,{1,0,1}{1,1,0}-=-,符合题意.∴201920201a b +=-.故选:B4.已知集合{}1,2A =,()(){}|10,B x x x a a R =--=∈.若A B =,则a 的值为( ) A .2 B .1 C .-1 D .-2【答案】A【解析】由题意得()(){}{}|10,1,B x x x a a R a =--=∈=,因为A B =,所以2a =. 故选:A5.(2020·上海市进才中学高二期末)已知集合{}121Q x k x k =+≤≤-=∅,则实数k 的取值范围是________. 【答案】(),2-∞ 【解析】{}121Q x k x k =+≤≤-=∅,121k k ∴+>-,解得2k <.因此,实数k 的取值范围是(),2-∞.故答案为:(),2-∞. 【题组四 已知集合关系求参数】1.(2020·全国高一)已知集合2{|}A x x x ==,{1,,2}B m =,若A B ⊆,则实数m 的值为( )A .2B .0C .0或2D .1【答案】B【解析】由题意,集合2{|}{0,1}A x x x ===,因为A B ⊆,所以0m =,故选B. 2.(2020·浙江高一单元测试)若{}2{1,4,},1,A x B x ==且B A ⊆,则x =( ). A .2± B .2±或0C .2±或1或0D .2±或±1或0【答案】B【解析】因为B A ⊆,所以24x =或2x x =,所以2x =±、1或0. 根据集合中元素的互异性得2x =±或0.故选:B3.(2019·浙江南湖嘉兴一中高一月考)设集合{}{}|32,|2121A x x B x k x k =-≤≤=-≤≤+,且A B ⊇,则实数k 的取值范围是____________. 【答案】1|12k k ⎧⎫-≤≤⎨⎬⎩⎭【解析】:依题意可得13211{{1121222k k k k k ≥--≤-⇒⇒-≤≤+≤≤.4.(2020·天津市第五中学高二期中)已知集合{}2|20,A x ax x a a R =++=∈,若集合A 有且仅有两个子集,则a 的值是( )A .1B .1-C .0,1D .1-,0,1【答案】D【解析】集合A 有且仅有两个子集,即为∅和集合A 本身,故集合A 中的元素只有一个,即方程220ax x a ++=只有一个解,当0a =时, 原方程为20x =,即0x =,符合题意; 当0a ≠时,令22240a ∆=-=,1a ∴=± 综上,1a =-,0a =或1a =可符合题意故选D5.(2020·辉县市第二高级中学高二月考(文))已知集合{}|25A x x =-≤≤,{}|121B x m x m =+<<-,若B A ⊆,则实数m 的取值范围是____. 【答案】(],3-∞【解析】根据题意得:当 B =∅时,121m m +≥-,即2m ≤.当B ≠∅时,12112215m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得23m <≤.综上,3m ≤.故答案为:(],3-∞.6.(2020·全国高一){}223|0 A x x x =--=,{}|1B x ax ==,若B A ⊆,则实数a 的值构成的集合M =______________【答案】11,0,3⎧⎫-⎨⎬⎩⎭【解析】∵B A ⊆,{}{}22|1,330 A x x x =--=-=若0a =,则B =∅,满足题意, 当0a ≠,{}1|1B x ax a ⎧⎫===⎨⎬⎩⎭,,∴11a =-或13a=, ∴1a =-或13a =∴B A ⊆∴综上所述11,0,3M ⎧⎫=-⎨⎬⎩⎭故答案为:11,0,3⎧⎫-⎨⎬⎩⎭.7.(2020·全国高一)若集合A 满足{}121,3,,A x y x N y N x **≠⎧⎫⊆⊂=∈∈⎨⎬⎩⎭,则集合A 的个数有_______个. 【答案】15 【解析】因为{}12,,1,2,3,4,6,12x y x N y N x **⎧⎫=∈∈=⎨⎬⎩⎭, {}121,3,,A x y x N y N x **≠⎧⎫⊆⊂=∈∈⎨⎬⎩⎭, 所以集合A 中含有1,3这两个元素,那么集合A 的个数就相当于集合{}2,4,6,12的真子集个数,即42115-=个.故答案为:158.(2020·浙江高一课时练习)已知集合{|12},{|||1}A x ax B x x =<<=<,是否存在实数a ,使得A B ⊆.若存在,求出实数a 的取值范围;若不存在,请说明理由. 【答案】存在;0a =或2a ≥或2a ≤-.【解析】∵{}|11B x x =-<<,而集合A 与a 的取值范围有关. ①当0a =时,A =∅,显然A B ⊆.②当0a >时,12A x x a a ⎧⎫=<<⎨⎬⎩⎭, ∵A B ⊆,如图1所示,∴11,21,aa⎧-⎪⎪⎨⎪⎪⎩∴2a ≥.③当0a <时,21A xx a a ⎧⎫=<<⎨⎬⎩⎭,∵A B ⊆,如图2所示,∴11,21,aa⎧⎪⎪⎨⎪-⎪⎩∴2a -.综上可知,所求实数a 的取值范围为0a =或2a ≥或2a ≤-.9.(2020·浙江高一单元测试)设集合A {x |a 1x 2a,a R}=-<<∈,不等式2x 2x 80--<的解集为B .()1当a 0=时,求集合A ,B ;()2当A B ⊆时,求实数a 的取值范围.【答案】(1)A={x|-1<x<0},B={Xx|-2<x<4};(2)a≤2. 【解析】(1)当0a =时,{}10A x x =-<<2280x x --< {}24B x x ⇒=-<<(2)若A B ⊆,则有:①当A =∅,即21a a ≤-,即1a ≤-时,符合题意,②当A ≠∅,即21a a >-,即1a >-时,有1224a a -≥-⎧⎨≤⎩ 12a a ≥-⎧⇒⎨≤⎩解得:12a -<≤ 综合①②得:2a ≤10(2020·全国高一课时练习)若关于x 的方程2210x x m +-+=的解集为空集,试判断关于x 的方程2121x mx m ++=的解集情况.【答案】两个不等的实数根【解析】∵方程2210x x m +-+=的解集为空集, ∴此方程的判别式2241(1)0m ∆=-⨯⨯-+<, 解得0m <.而方程2121x mx m ++=的根的判别式2241(121)484m m m m '∆=-⨯⨯-=-+.∵0m <,∴20,480m m >->. ∴24840m m -+>,即0'∆>,∴方程2121++=有两个不等的实数根,x mx m即方程的解集中含有两个元素.。
1.2 集合间的基本关系知识题型总结【新教材】人教A版(2019)高中数学必修第一册(含答案)
1.2 集合间的基本关系知识题型总结1.子集的概念2.真子集的概念3.集合相等的概念如果集合A的任何一个元素是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么,集合A与集合B相等,记作A=B.也就是说,若A⊆B且B⊆A,则A=B.4.空集的概念【题型1 子集、真子集的概念】【方法点拨】①集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B,这是判断A⊆B的常用方法.②不能简单地把“A⊆B”理解成“A是B中部分元素组成的集合”,因为若A=∅时,则A中不含任何元素;若A=B,则A中含有B中的所有元素.③在真子集的定义中,A⫋B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.【例1】(2020秋•宁县校级月考)对于集合A,B,“A⊆B”不成立的含义是()A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A【分析】“A⊆B”不成立,是对命题的否定,任何的反面是至少,即可得到结论.【解答】解:∵“A⊆B”成立的含义是集合A中的任何一个元素都是B的元素,∴不成立的含义是A中至少有一个元素不属于B,故选:C.【点评】本题考查集合的包含关系,考查命题的否定,属于基础题.【变式1-1】(2020秋•海淀区期末)已知集合U={1,2,3,4,5,6},A={1,2,3},集合A与B的关系如图所示,则集合B可能是()A.{2,4,5}B.{1,2,5}C.{1,6}D.{1,3}【分析】根据Venn图表达集合的关系可得集合A与集合B的关系,然后根据选项找符号条件的即可.【解答】解:由图可知B⊆A,而{1,3}⊆{1,2,3}.故选:D.【点评】本题主要考查了集合之间的关系,弄清元素与集合的隶属关系以及集合之间的包含关系是解题的关键.【变式1-2】(2020秋•东湖区校级期中)下列各式:①{a}⊆{a}②Ø⊊{0}③0⊆{0}④{1,3}⊊{3,4},其中正确的有()A.②B.①②C.①②③D.①③④【分析】根据子集,真子集的定义,以及元素与集合的关系即可判断每个式子的正误,从而找到正确选项.【解答】解:任何集合是它本身的子集,∴①正确;空集是任何非空集合的真子集,∴②正确;0表示元素,应为0∈{0∈},∴③错误;1∉{3,4},∴{1,3}不是{3,4}的真子集,∴④错误;∴正确的为①②.故选:B.【点评】考查任何集合和它本身的关系,空集和任何非空集合的关系,以及元素与集合的关系,真子集的定义.【变式1-3】[多选题]下列命题中,正确的有()A.空集是任何集合的真子集;B.若A⫋B,B⫋C,则A⫋C;C.任何一个集合必有两个或两个以上的真子集;D.如果不属于B的元素也不属于A,则A⊆B【分析】根据集合的相关知识,可以进行判断.【解答】解:空集是不是空集的真子集,A错;真子集具有传递性,B对;空集没有真子集,C错;如果不属于B的元素也不属于A,则A⊆B,D对,故选:BD.【点评】本题考查集合的相关知识,属于基础题.【题型2 集合的相等与空集】【方法点拨】①利用集合相等的定义和集合中的元素的性质去解题.②利用空集的定义去解题.【例2】(2020秋•雨花区校级月考)[多选题]下列选项中的两个集合相等的有()A.P={x|x=2n,n∈Z},Q={x|x=2(n+1),n∈Z}B.P={x|x=2n﹣1,n∈N*},Q={x|x=2n+1,n∈N+}C.P={x|x2﹣x=0},Q={x|x=1+(−1)n2,n∈Z}D.P={x|y=x+1},Q={(x,y)|y=x+1}【分析】利用集合相等的定义和集合中的元素的性质,对各个选项逐个判断即可.【解答】解:选项A :因为集合P ,Q 表示的都是所有偶数组成的集合,所以P =Q ; 选项B :集合P 中的元素是由1,3,5,…,所有正奇数组成的集合,集合Q 是由3,5,7…,所有大于1的正奇数组成的集合,即1∉Q ,所以P ≠Q ;选项C :集合P ={0,1},集合Q 中:当n 为奇数时,x =0,当n 为偶数时,x =1,所以Q ={0,1},则P =Q ;选项D :集合P 表示的是数集,集合Q 表示的是点集,所以P ≠Q ; 综上,选项AC 表示的集合相等, 故选:AC .【点评】本题考查了集合相等的性质,考查了学生对集合的元素的理解,属于基础题.【变式2-1】(2020秋•五华区校级期中)已知集合A ={1,a ,b },B ={a 2,a ,ab },若A =B ,则a 2021+b 2020=( ) A .﹣1B .0C .1D .2【分析】根据集合元素的互异性得到关于a 的方程组{1=ab b =a 2或{1=a 2b =ab ,通过解方程组求得a 、b 的值,则易求a 2021+b 2020的值.【解答】解:由题意得①组{1=ab b =a 2或②{1=a 2b =ab,由②得a =±1,当a =1时,A ={1,1,b },不符合,舍去; 当a =﹣1时,b =0,A ={1,﹣1,0},B ={﹣1,1,0},符合题意. 由①得a =1,舍去, 所以a =﹣1,b =0. ∴a 2021+b 2020=﹣1. 故选:A .【点评】本题考查了集合相等的应用,注意要验证集合中元素的互异性,属于基础题. 【变式2-2】(2020秋•武邑县校级期末)下列四个集合中,是空集的是( ) A .{x |x +3=3} B .{(x ,y )|y 2=﹣x 2,x ,y ∈R } C .{x |x 2≤0}D .{x |x 2﹣x +1=0,x ∈R }【分析】根据空集的定义,分别对各个选项进行判断即可.【解答】解:根据题意,由于空集中没有任何元素,对于选项A ,x =0; 对于选项B ,(0,0)是集合中的元素;对于选项C,由于x=0成立;对于选项D,方程无解.故选:D.【点评】本题考查了集合的概念,是一道基础题.【变式2-3】(2020春•保定期中)如果A={x|ax2﹣ax+1<0}=∅,则实数a的取值范围为()A.0<a<4B.0≤a<4C.0<a≤4D.0≤a≤4【分析】由A=∅得不等式ax2﹣ax+1<0的解集是空集,然后利用不等式进行求解.【解答】解:因为A={x|ax2﹣ax+1<0}=∅,所以不等式ax2﹣ax+1<0的解集是空集,当a=0,不等式等价为1<0,无解,所以a=0成立.当a≠0时,要使ax2﹣ax+1<0的解集是空集,则{a>0△=a2−4a≤0,解得0<a≤4.综上实数a的取值范围0≤a≤4.故选:D.【点评】本题主要考查一元二次不等式的应用,将集合关系转化为一元二次不等式是解决本题的关键.【题型3 集合间关系的判断】【方法点拨】①列举法:用列举法将两个集合表示出来,再通过比较两集合中的元素来判断两集合之间的关系.②元素特征法:根据集合中元素满足的性质特征之间的关系判断.③图示法:利用数轴或Venn图判断两集合间的关系.【例3】(2021春•江油市校级期末)在下列选项中,能正确表示集合A={﹣2,0,2}和B={x|x2+2x=0}关系的是()A.A=B B.A⊆B C.A⊋B D.A⊊B【分析】先求出集合B,然后利用两个集合之间的关系进行判断即可.【解答】解:解方程x2+2x=0,得x=0或x=﹣2,所以B={﹣2,0},又A={1﹣2,0,2},所以A⊋B.故选:C .【点评】本题考查了集合之间关系的判断,属于基础题.【变式3-1】(2021•市中区校级模拟)设集合P ={y |y =x 2+1),M ={x |y =x 2+1},则集合M 与集合P 的关系是( ) A .M =PB .P ∈MC .M ⫋PD .P ⫋M【分析】由函数得:P ={y |y ≥1},M =R ,即P ⫋M ,得解 【解答】解:因为y =x 2+1≥1, 即P ={y |y ≥1}, M ={x |y =x 2+1}=R , 所以P ⫋M , 故选:D .【点评】本题考查了集合的表示及函数,属简单题.【变式3-2】(2020春•九龙坡区校级期中)已知集合A ={x |x 2﹣2x ﹣3≤0},集合B ={x ||x ﹣1|≤3},集合C ={x|x−4x+5≤0},则集合A ,B ,C 的关系为( ) A .B ⊆AB .A =BC .C ⊆BD .A ⊆C【分析】解出不等式,从而得出集合A ,B ,C ,再根据子集的定义判断A ,B ,C 的关系. 【解答】解:∵x 2﹣2x ﹣3≤0,即(x ﹣3)(x +1)≤0, ∴﹣1≤x ≤3,则A =[﹣1,3], 又|x ﹣1|≤3,即﹣3≤x ﹣1≤3, ∴﹣2≤x ≤4,则B =[﹣2,4], ∵x−4x+5≤0⇔{(x −4)(x +5)≤0x +5≠0, ∴﹣5<x ≤4,则C =(﹣5,4], ∴A ⊆C ,B ⊆C , 故选:D .【点评】本题主要考查集合间的基本关系的判断,考查一元二次不等式、绝对值不等式、分式不等式的解法,属于基础题.【变式3-3】(2020秋•湖北期中)[多选题]集合M ={x |x =2k ﹣1,k ∈Z },P ={y |y =3n +1,n ∈Z },S ={z |z =6m +1,m ∈Z }之间的关系表述正确的有( )A.S⊆P B.S⊆M C.M⊆S D.P⊆S【分析】根据题意判断集合M,P,S表示的意义,进行判断.【解答】解:M={x|x=2k﹣1,k∈Z}表示被2整除余1的数的集合;P={y|y=3n+1,n∈Z}表示被3整除余1的数的集合;S={z|z=6m+1,m∈Z}={z|z=3×(2m)+1,m∈Z}={z|z=2×(3m)+1,m∈Z},表示被6整除余1的集合;故S⫋P,S⫋M.故S⊆P,S⊆M,正确,即AB正确.故选:AB.【点评】本题考查了集合的交集、补集问题,属于基础题.【题型4 有限集合子集、真子集的确定】【方法点拨】①确定所求集合,是子集还是真子集.②合理分类,按照子集所含元素的个数依次写出.③注意两个特殊的集合,即空集和集合本身.空集是任何集合的子集,是任何非空集合的真子集.假设集合A中含有n个元素,则有:①A的子集的个数为2n个;②A的真子集的个数为2n-1个;③A的非空真子集的个数为2n-2个.【例4】(2020秋•南昌县校级月考)已知集合M={2,4,8},N={1,2},P={x|x=ab,a∈M,b∈N},则集合P的子集个数为()A.4B.6C.16D.63【分析】由集合M={2,4,8},N={1,2},P={x|x=ab,a∈M,b∈N},求出集合P,由此能求出集合P的子集个数.【解答】解:集合M={2,4,8},N={1,2},P={x|x=ab,a∈M,b∈N},∴P={1,2,4,8},∴集合P的子集个数为:24=16.故选:C.【点评】本题考查集合的子集个数的求法,考查子集的定义等基础知识,考查运算求解能力,是基础题.【变式4-1】(2020秋•南沙区校级月考)已知集合A={x|x2﹣3x+2=0},B={x|0<x<6,x∈N},则满足A⊆C⊆B的集合C的个数为()A.4B.8C.7D.16【分析】求出集合A={x|x2﹣3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5},由此利用列举法能求出满足A⊆C⊆B的集合C的个数.【解答】解:集合A={x|x2﹣3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5},∴满足A⊆C⊆B的集合C有:{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共8个.故选:B.【点评】本题考查满足条件的集合的个数的求法,是基础题,解题时要认真审题,注意子集定义、列举法的合理运用.【变式4-2】(2020秋•临猗县校级月考)已知集合A={x|x2﹣3x+2=0},B={x|0<x<6,x∈N},则满足A⫋C⊆B的集合C的个数为()A.4B.7C.8D.16【分析】求出集合A={x|x2﹣3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5},由此利用列举法能求出满足A⫋C⊆B的集合C的个数.【解答】解:集合A={x|x2﹣3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5},∴满足A⫋C⊆B的集合C有:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.故选:B.【点评】本题考查满足条件的集合的个数的求法,是基础题,解题时要认真审题,注意子集定义、列举法的合理运用.【变式4-3】(2020秋•海曙区校级期中)已知集合A={x|(a﹣1)x2+3x﹣2=0},若A的子集个数为2个,则实数a=.【分析】推导出(a﹣1)x2+3x﹣2=0只有一个实数解,当a﹣1=0时,a=1,(a﹣1)x2+3x﹣2=0即3x﹣2=0,当a﹣1≠0时,(a﹣1)x2+3x﹣2=0只有一个实数根,△=9+8(a﹣1)=0,由此能求出实数a 的值.【解答】解:∵集合A ={x |(a ﹣1)x 2+3x ﹣2=0},且A 的子集个数为2个, ∴(a ﹣1)x 2+3x ﹣2=0只有一个实数解,当a ﹣1=0时,a =1,(a ﹣1)x 2+3x ﹣2=0即3x ﹣2=0,解得x =23, 当a ﹣1≠0时,(a ﹣1)x 2+3x ﹣2=0只有一个实数根, △=9+8(a ﹣1)=0,解得a =−18. ∴实数a 的值为1或−18. 故答案为:1或−18.【点评】本题考查实数值的求法,考查子集定义等基础知识,考查运算求解能力,是基础题. 【题型5 利用集合间的关系求参数】 【方法点拨】①当集合为连续数集时,常借助数轴来建立不等关系求解,此时应注意端点处是实点还是虚点.②当集合为不连续数集时,常根据集合包含关系的意义,建立方程求解,此时应注意分类讨论思想的运用. 【例5】(2020秋•南开区校级月考)设集合A ={x |﹣1≤x +1≤6},B ={x |m ﹣1<x <2m +1},若A ⊇B ,则m 的取值范围是 .【分析】B ⊆A ,则说明B 是A 的子集,然后分m ≤﹣2和m >﹣2两种情况求出m 的取值范围. 【解答】解:∵A ={x |﹣1≤x +1≤6}={x |﹣2≤x ≤5}, 当m ﹣1≥2m +1,即m ≤﹣2时,B =∅满足B ⊆A . 当m ﹣1<2m +1,即m >﹣2时,要使B ⊆A 成立, 需 {m −1≥−22m +1≤5,可得﹣1≤m ≤2,即﹣1≤m ≤2,综上,m ≤﹣2或﹣1≤m ≤2时有B ⊆A . 故答案为:{m |m ≤﹣2或﹣1≤m ≤2}.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用. 【变式5-1】(2020秋•武汉期中)已知关于x 不等式x 2﹣2mx +m +2≤0(m ∈R )的解集为M . (1)[1,2]⊆M ,求实数m 的取值范围;(2)当M 不为空集,且M ⊆[1,4]时,求实数m 的取值范围.【分析】(1)由题意得到关于m 的不等式组,求解不等式组确定实数m 的取值范围即可; (2)由题意分类讨论即可求得实数m 的取值范围.【解答】解:(1)由题意[1,2]⊆M 可知,令 f (x )=x 2﹣2mx +m +2,则{f(1)≤0f(2)≤0△>0,解得:m ≥3.(2)∵M 不为空集,且M ⊆[1,4],当△>0 时,则{ f(1)≥0f(4)≥0△>01≤m ≤4,解得:2≤m ≤187,当△=0 时,m =2也符合题目要求: 综上:2≤m ≤187. 【点评】本题主要考查集合的包含关系,分类讨论的数学思想,二次方程根的分布等知识,意在考查学生的转化能力和计算求解能力.【变式5-2】(2020秋•南阳期中)集合A ={x |﹣3≤x ≤7},B ={x |m +1≤x ≤2m ﹣1}. (1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.【分析】(1)根据B ⊆A 可讨论B 是否为空集:B =∅时,m +1>2m ﹣1;B ≠∅时,{m +1≤2m −1m +1≥−32m −1≤7,解出m 的范围即可;(2)根据题意可知A ∩B =∅,讨论B 是否为空集:B =∅时,m <2;B ≠∅时,{m ≥2m +1>7或{m ≥22m −1<−3,然后解出m 的范围即可. 【解答】解:(1)∵B ⊆A ,∴①B =∅时,m +1>2m ﹣1,解得m <2; ②B ≠∅时,{m ≥2m +1≥−32m −1≤7,解得2≤m ≤4,综上,实数m 的取值范围为(﹣∞,4]; (2)由题意知,A ∩B =∅, ①B =∅时,m <2;②B ≠∅时,{m ≥2m +1>7或{m ≥22m −1<−3,解得m >6,∴实数m 的取值范围为(﹣∞,2)∪(6,+∞).【点评】本题考查了描述法的定义,子集的定义,空集的定义,分类讨论的思想,考查了计算能力,属于基础题.【变式5-3】(2020春•荔湾区校级期中)已知不等式x2﹣(a+1)x+a≤0的解集为A.(1)若a=2,求集合A;(2)若集合A是集合{x|﹣4≤x≤2}的真子集,求实数a的取值范围.【分析】(1)代入a的值,根据一元二次不等式的解法即可求解;(2)对a分类讨论,进而可以确定集合A,再根据集合的子集关系即可求解.【解答】解:(1)由题意,当a=2时,不等式x2﹣(a+1)x+a≤0,即x2﹣3x+2≤0,解得1≤x≤2,所以集合A={x|1≤x≤2};(2)设集合B={x|﹣4≤x≤2},由x2﹣(a+1)x+a≤0,可得(x﹣1)(x﹣a)≤0,当a<1时,不等式(x﹣1)(x﹣a)≤0的解集{x|a≤x≤1},由已知A⊆B可得a≥﹣4,所以﹣4≤a<1;当a=1时,不等式(x﹣1)(x﹣a)≤0的解集{x|x=1},满足题意;当a>1时,不等式(x﹣1)(x﹣a)≤0的解集{x|1≤x≤a},由A⊆B可得a≤2,所以1<a≤2;综上可得﹣4≤a≤2,即实数a的取值范围为[﹣4,2].【点评】本题考查了求解一元二次不等式以及子集的应用,考查了分类讨论思想,属于基础题.【题型6 集合间关系中的新定义问题】【例6】(2020秋•沭阳县期中)已知非空集合A,若对于任意x∈A,都有4x∈A,则称集合A具有“反射性”.则在集合{1,2,4,8}的所有子集中,具有“反射性”的集合个数为.【分析】利用列举法能求出在集合{1,2,4,8}的所有子集中,具有“反射性”的集合个数.【解答】解:在集合{1,2,4,8}的所有子集中,具有“反射性”的集合有:{1,4},{2},{1,2,4},∴在集合{1,2,4,8}的所有子集中,具有“反射性”的集合个数为3.故答案为:3.【点评】本题考查集合的子集中具有“反射性”的集合个数的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.【变式6-1】(2020秋•山东期中)若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合A={﹣1,2},B={x|ax2=2,a ≥0},若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为 . 【分析】讨论a =0和a >0,求得集合B ,再由新定义,得到a 的方程,即可解得a 的值. 【解答】解:集合A ={﹣1,2}, B ={x |ax 2=2,a ≥0}, 若a =0,则B =∅, 即有B ⊆A ;若a >0,可得B ={−√2a ,√2a },不满足B ⊆A ;若A ,B 两个集合有公共元素,但互不为对方子集,可得√2a =2或−√2a =−1,解得a =12或a =2.综上可得,a =0或12或2;故答案为:{0,12,2}.【点评】本题考查集合的运算以及包含关系,考查新定义的理解和运用,运用分类讨论的思想方法是解题的关键,属于中档题.【变式6-2】(2020秋•南昌县校级月考)若x ∈A ,则1x∈A ,就称A 是伙伴关系集合,集合M ={﹣1,0,12,2,3}的所有非空子集中具有伙伴关系的集合的个数是( ) A .1B .3C .7D .31【分析】由定义求出集合A 中的元素可为﹣1,2与12必然同时出现,然后利用n 集合的非空子集个数为2n ﹣1.【解答】解:∵﹣1∈A ,1−1=−12∈A 则12∈A12∈A 则2∈A∴A ={﹣1}或A ={2,12}或A ={﹣1,2,12} 故选:B .【点评】本题考查集合与元素的关系,注意运用列举法,属于基础题.【变式6-3】(2021春•如皋市校级月考)对于任意两个数x ,y (x ,y ∈N *),定义某种运算“◎”如下:①当{x =2m ,m ∈N ∗y =2n ,n ∈N ∗或{x =2m −1,m ∈N ∗y =2n −1,n ∈N ∗时,x ◎y =x +y ;②当{x =2m ,m ∈N ∗y =2n −1,n ∈N ∗时,x ◎y =xy .则集合A ={(x ,y )|x ◎y =10}的子集个数是( ) A .214个B .213个C .211个D .27个【分析】利用列举法分别针对两种情况列出A 中对应的元素即可求解. 【解答】解:①若x ,y 同为奇数或偶数时; ∵x ◎y =x +y =10,∴同时为偶数时:(2,8),(4,6),(6,4),(8,2);同时为奇数时:(1,9),(3,7),(5,5),(7,3),(9,1); ②当x 为偶数,y 为奇数时; ∵x ◎y =xy .∴(2,5),(10,1)∴综上所诉:集合A 中共含有11个元素,故其子集个数为:211个. 故选:C .【点评】本题考查了集合子集的个数问题,考查学生的分析能力,属于基础题.。
高中数学必修一1.2 集合间的基本关系-单选专项练习(人教A版,含答案及解析)
1.2 集合间的基本关系1.已知集合{}21,A x =,则下列说法正确的是A .{}1A ∈B .1A ⊆C .1A -∉D .{}A ∅⊆ 2.已知集合16A x x k k N ⎧⎫==+∈⎨⎬⎩⎭,,123m B x x m N ⎧⎫==-∈⎨⎬⎩⎭,,126n C x x n N ⎧⎫==+∈⎨⎬⎩⎭,,则集合、、A B C 的大小关系是( )A .A CB B .C A B C .A B C =D .A B C3.设集合{21,},{2,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,则( ) A .M N B .M N ⊆C .N M ⊆D .M N ⋂=∅4.已知集合2{1,}A x x =+,{1,2,3}B =,且A B ⊆,则实数x 的值是A .-1B .1C .3D .4 5.集合{}2*70,A x x x x N =-<∈,则集合*6,B y N y A y ⎧⎫=∈∈⎨⎬⎩⎭的子集个数为( ) A .4个 B .8个 C .15个 D .16个6.集合{}{},1,,1,2,P x Q y ==其中{},1,2,3,,9x y ∈⋅⋅⋅,且P Q ⊆,把满足上述条件的一对有序整数对(),x y 作为点,这样的点的个数是 ( )A .9B .14C .15D .217.已知集合{}221,M y y x x x R ==--∈,{}24P x x =-≤≤,则集合M 与集合P 的关系是( )A .P MB .P M ∈C .M PD .M P 8.已知A B ⊆,A C ⊆,{}1,2,3,5B =,{}0,2,4,8C =,则A 可以是 A .{}1,2 B .{}2,4 C .{}2D .{}4 9.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( )A .AB = B .A BC .B AD .A B =∅10.设集合{}1,2A =,则下列正确的是A .1A ∈B .1A ∉C .{}1A ∈D .1A ⊆11.设集合{}4A x x =≤,a = )A .a A ∉B .a A ⊆C .{}a A ⊆D .{}a A ∈12.已知12|,01A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,{}|1,B y y kx x A ==+∈,若A B ⊆,则实数k 的取值范围为 A .1k =- B .1k <-C .10k -≤≤D .1k ≤- 13.设集合{}|12A x x =<≤,{}|B x x a =<,若A B ⊆,则a 的取值范围是 A .{}|1a a ≥ B .{}|1a a ≤ C .{}|2a a ≥D .{}2a a > 14.定义集合运算A◇B=c|c=a+b,a∈A,b∈B},若A=0,1,2},B=3,4,5},则集合A◇B 的子集个数为( )A .32B .31C .30D .1415.已知“非空集合M 的元素都是集合P 的元素”是假命题,给出下列四个命题:①M 的元素不都是P 的元素;②M 的元素都不是P 的元素;③存在x P ∈且x M ∈;④存在x M ∈且x P ∉;这四个命题中,真命题的个数为( ).A .1个B .2个C .3个D .4个16.已知集合{}24A x x =≤<,{}3B x a x a =-<≤+,若A B A =,则a 取值范围是( )A .()2,-+∞B .(],1-∞-C .[)1,+∞D .()2,+∞17.已知集合(){},A x y y x ==,()21,45x y M x y x y ⎧⎫-=⎧⎪⎪=⎨⎨⎬+=⎩⎪⎪⎩⎭,则下列结论中正确的是A .M A =B .M A ⊆C .()1,1A ⊆D .M A ∈18.已知集合{}1,2,4A =,{B x x =是8的正约数},则A 与B 的关系是.A .AB = B .A BC .A BD .A B =∅19.已知集合{3A x x =>或}1x <,{}0B x x a =-<,若B A ⊆,则实数a 的取值范围为()A .()3,+∞B .[)3,+∞C .(),1-∞D .(],1-∞20.{}{}2|60,|10A x x x B x mx =+-==+=,且A B A ⋃=,则m 的取值范围是A .11,32⎧⎫-⎨⎬⎩⎭B .110,,32⎧⎫--⎨⎬⎩⎭ C .110,,32⎧⎫-⎨⎬⎩⎭ D .11,32⎧⎫⎨⎬⎩⎭参考答案1.C详解:试题分析:集合与集合关系为“包含”、“含于”,元素与集合关系为“属于”、“不属于”,故选C.考点:元素与集合、集合与集合的关系.2.A3.B4.B5.D6.B详解:解:根据题意,若P Q ⊆,有2种情况:①、x≠y,则必有x=2,y 可取的值为3、4、5、6、7、8、9,共7种情况,即(x ,y )有7种情况,②、x=y ,此时x 、y 可取的值为3、4、5、6、7、8、9,共7种情况,即(x ,y )有7种情况,则(x ,y )有7+7=14种情况,故答案为14, 选B7.D8.C详解:∵A B ⊆,A C ⊆,∴把选项代入检验即可,只有集合{}2符合题意,故选C9.C10.A详解:试题分析:由{}1,2A =可知1,2是集合中的元素,元素与集合间的关系是∈,所以1A ∈ 考点:集合和元素的关系11.C12.D13.D详解:根据已知A B ⊆以及子集的性质可知,当2a >时,A B ⊆,故2a >,故选D.14.A15.B16.C17.B18.B19.D20.C详解:由题意{}3,2,A A B A B A =-⋃=∴⊆ 当11,0,,3,,3B m B m m φφ==≠-=-=时当时由得由112,.2m m -==-得 所以,m 的取值范围为110,,32⎧⎫⎨⎬⎩⎭【参考解析】1.2.解析:列举出集合A,B,C 即得三个集合的关系.详解: 由题得1171319=,,,,66666A x x k k N ⎧⎫⎧⎫==+∈⎨⎬⎨⎬⎩⎭⎩⎭,, 1112710={,,,,}2336366m B x x m N ⎧⎫==-∈-⎨⎬⎩⎭,,, 11271013={,,,}2663666n C x x n N ⎧⎫==+∈⎨⎬⎩⎭,,,. 所以A C B .故选A点睛:本题主要考查集合的表示和集合的关系的判断,意在考查学生对这些知识的理解掌握水平.3.解析:先判断出M 为奇数集,N 为整数集,从而可判断两者之间的关系.详解:∵集合{21,}M xx k k Z ==+∈∣,故M 为奇数集. 而{2,}N xx k k Z ==+∈∣,故N 为整数集, ∴M N ⊆.故选:B.点睛:本题考查集合的包含关系,一般根据集合元素的特征确定出两个集合的包含关系,本题属于基础题.4.解析:已知集合的元素,根据集合间的包含关系A B ⊆即可求参数详解:由A B ⊆,知21x B +∈且x B ∈经检验1x =符合题意∴1x =故选:B点睛:本题考查了集合间的基本关系,利用包含关系求参数5.解析:先求出A ,再找出A 中6的正约数,可确定集合B ,进而得到答案.详解:集合2{|70A x x x =-<,{}**}|07,{1x N x x x N ∈=<<∈=,2,3,4,5,6}*6{|,}{1B y N y A y=∈∈=,2,3,6}, 故B 有4216=个子集,故选:D .点睛:本题考查的知识点是子集与真子集,求出集合B 是解答的关键,属于基础题.6.7.解析:首先,化简集合M ,就是求解函数221y x x =--,x ∈R 的值域,然后,利用集合之间的基本关系进行判断即可.详解:解:由集合M 得2221(1)2y x x x =--=--,x ∈R2y ∴-,{|2}M y y ∴=-,{}24P x x =-≤≤,M P ∴,故选:D .点睛:本题重点考查集合之间的基本关系,属于基础题,注意落实集合M 的元素取值情形. 8.9.解析:由题意得出Z A ⊆,而集合BZ ,由此可得出A 、B 的包含关系. 详解: 由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则B Z ,因此,B A .故选:C.点睛:本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题. 10.114,依次判断选项即可. 详解:对选项A4<,所以a A ∈,故A 错误.对选项B ,⊆用于集合与集合之间,故B 错误.对选项C 4<,所以{}a A ⊆,故C 正确.对选项D ,∈用于元素与集合之间,故D 错误.故选:C点睛:本题主要考查集合间的包含关系,同时考查了元素与集合的关系,属于简单题.12.解析:首先求出集合A ,分类讨论0k =,0k <,0k >情况下的B 集合,从而求出满足A B ⊆的实数k .详解:由题可得{}12|,01|01A y y x x y y ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,当0k =时,{}{}|1,1B y y kx x A ==+∈=,不满足A B ⊆,舍去,当0k <时,{}{}|1,|11B y y kx x A y k y ==+∈=+≤≤,由于A B ⊆,所以10k +≤,解得:1k ≤-, 当0k >时,{}{}|1,|11B y y kx x A y y k ==+∈=≤≤+,由于11k +>,所以不满足A B ⊆,舍去, 综述所述,实数k 的取值范围为1k ≤-故答案选D点睛:本题考查集合间的关系,涉及一次函数的值域,属于基础题13.14.解析:∵A=0,1,2},B=3,4,5}.又∵A◇B=c|c=a+b,a∈A,b∈B},∴A◇B=3,4,5,6,7}由于集合A◇B 中共有5个元素故集合A◇B 的所有子集的个数为25=32个 故选A15.解析:根据题意,由子集的定义分析M 、P 元素的关系分析4个命题是否正确,综合即可得答案.详解:根据题意,“非空集合M 的元素都是集合P 的元素”是假命题.则其否定为真, 则非空集合M 的元素不都是集合P 的元素,据此分析4个命题:①M 的元素不都是P 的元素,正确,②M 的部分元素可以为P 的元素,不正确,③可能M 的元素都不是P 的元素,故存在x P ∈且x M ∈,不正确,④存在x M ∈且x P ∉,正确,其中正确的命题有2个,故选:B .16.解析:由条件可知A B ⊆,列不等式求a 的取值范围.详解:由A B A =知A B ⊆,故234a a -<⎧⎨+≥⎩,解得1a ≥. 故选:C .17.解析:化简集合M ,最后根据集合的相等关系、子集关系、属于关系的概念选出正确答案.详解:因为(){}21,(1,1)45x y M x y x y ⎧⎫-=⎧⎪⎪==⎨⎨⎬+=⎩⎪⎪⎩⎭,所以M A ⊆,故本题选B. 点睛:本题考查了集合表示方法中的列举法,考查了集合之间的子集关系.18.解析:化简集合B ,比较A ,B 中的元素,即可判断A ,B 的关系.详解:{|B x x =是8的正约数}{1,2,4,8}=,又集合{1,2,4}A =,A B ∴.故选B .点睛:本题考查集合的包含关系及集合的基本运算,属于基础题.19.解析:由题得{}B x x a =<,根据已知得1a ≤.详解: 由题得{}B x x a =<,因为B A ⊆,所以1a ≤.故选:D点睛:本题主要考查根据集合的包含关系求参数,意在考查学生对该知识的理解掌握水平. 20.。
(新教材学案)第1章1.2集合间的基本关系含答案
1.2集合间的基本关系学习任务核心素养1.理解集合之间的包含与相等的含义.(重点)2.能识别给定集合的子集、真子集,会判断集合间的关系.(难点、易混点) 3.在具体情境中,了解空集的含义.(难点)1.通过对集合之间包含与相等的含义以及子集、真子集概念的理解,培养数学抽象素养.2.借助子集和真子集的求解,培养数学运算素养.一所学校中,所有同学组成的集合记为A,而高一年级同学组成的集合为B,你觉得集合A和B之间有怎样的关系?你能从集合元素的角度分析它们的关系吗?知识点1子集、真子集、集合的相等(1)Venn图用平面上封闭曲线的内部代表集合,这种图称为Venn图.(2)两个集合之间的关系①子集.②集合相等.③真子集.(3)子集的性质①任何一个集合是它本身的子集,即A⊆A.②对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.1.(1)任何两个集合之间是否有包含关系?(2)符号“∈”与“⊆”有何不同?[提示](1)不一定.如集合A={0,1,2},B={-1,0,1},这两个集合就没有包含关系.(2)符号“∈”表示元素与集合间的关系;而“⊆”表示集合与集合之间的关系.1.已知集合P={-1,0,1,2},Q={-1,0,1},则()A.P∈Q B.P⊆QC.Q P D.Q∈PC[∵-1,0,1均在集合P、Q中,而2∈P且2∉Q,∴Q P,结合选项可知C正确.]2.已知集合A={x|x2-3x+2=0},B={1,2},C={x|x<8,x∈N},用适当的符号填空:(1)A________B;(2)A________C;(3){2}________C;(4)2________C.(1)=(2)(3)(4)∈[集合A为方程x2-3x+2=0的解集,即A={1,2},而C={x|x<8,x∈N}={0,1,2,3,4,5,6,7}.故(1)A=B;(2)A C;(3){2}C;(4)2∈C.](1)方程x2+1=0的实数根组成的集合如何表示?(2)你认为可以规定∅是任意一个集合的子集吗?知识点2空集(1)定义:不含任何元素的集合叫做空集,记为∅.(2)规定:空集是任何集合的子集.2.∅与0,{0},{∅}有何区别?[提示]∅与0∅与{0}∅与{∅} 相同点都表示无的意思都是集合都是集合不同点∅是集合;0是实数∅不含任何元素;{0}含一个元素0∅不含任何元素;{∅}含一个元素,该元素是∅关系0∉∅∅{0}∅{∅} 空集是任何非空集合的真子集.3.思考辨析(正确的画√,错误的画×)(1)∅和{∅}都表示空集.()(2)任何集合都有子集和真子集.()(3)集合{x|x2+1=0,x∈R}=∅.()[答案](1)×(2)×(3)√4.下列四个集合中,是空集的为()A.{0}B.{x|x>8,且x<5}C.{x∈N|x2-1=0}D.{x|x>4}B[满足x>8且x<5的实数不存在,故{x|x>8,且x<5}=∅.]类型1子集、真子集的个数问题【例1】(对接教材P8例题)填写下表,并回答问题:集合集合的子集子集的个数∅{a}{a,b}{a,b,c}由此猜想:含n个元素的集合{a1,a2,…,a n}的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?[解]集合集合的子集子集的个数∅∅ 1{a}∅,{a} 2{a,b}∅,{a},{b},{a,b} 4{a,b,c}∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}8由此猜想:含n个元素的集合{a1,a2,…,a n}的所有子集的个数是2n,真子集的个数是2n-1,非空真子集的个数是2n-2.子集、真子集个数有关的4个结论假设集合A中含有n个元素,则有(1)A的子集的个数有2n个;(2)A的非空子集的个数有2n-1个;(3)A的真子集的个数有2n-1个;(4)A的非空真子集的个数有2n-2个.[跟进训练]1.已知集合M满足:{1,2}M⊆{1,2,3,4,5},写出集合M所有的可能情况.[解]由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.类型2集合间关系的判断【例2】判断下列各组中集合之间的关系:(1)A={x|x是12的约数},B={x|x是36的约数};(2)A={x|x是平行四边形},B={x|x是菱形},C={x|x是四边形},D={x|x 是正方形};(3)A={x|-1<x<4},B={x|x<5}.[解](1)因为若x是12的约数,则必定是36的约数,反之不成立,所以A B.(2)由图形的特点可画出Venn图如图所示,从而D B A C.(3)易知A中的元素都是B中的元素,但存在元素,如-2∈B,但-2∉A,故A B.判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.提醒:若A⊆B和A B同时成立,则A B更能准确表达集合A,B之间的关系.[跟进训练]2.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()B[解x2-x=0得x=1或x=0,故N={0,1},易得N M,其对应的Venn 图如选项B所示.]类型3 由集合间的关系求参数【例3】 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B A ,求实数m 的取值范围.判断B 是否是空集,由此借助数轴分类求解实数m 的取值范围.[解] (1)当B =∅时, 由m +1>2m -1,得m <2. (2)当B ≠∅时,如图所示.∴⎩⎨⎧m +1≥-2,2m -1<5,2m -1≥m +1或⎩⎨⎧m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3. 综上可得,m 的取值范围是{m |m ≤3}.若本例条件“A ={x |-2≤x ≤5}”改为“A ={x |-2<x <5}”,其他条件不变,求m 的取值范围.[解] (1)当B =∅时,由m +1>2m -1,得m <2. (2)当B ≠∅时,如图所示,∴⎩⎨⎧m +1>-2,2m -1<5,m +1≤2m -1,解得⎩⎨⎧m >-3,m <3,m ≥2,即2≤m <3,综上可得,m 的取值范围是{m |m <3}.利用集合的关系求参数问题(1)利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合(含参数),另一个为静集合(具体的),解答时常借助数轴来建立变量间的关系,需特别注意端点问题.(2)空集是任何集合的子集,因此在解A⊆B(B≠∅)的含参数的问题时,要注意讨论A=∅和A≠∅两种情况,前者常被忽视,造成思考问题不全面.[跟进训练]3.已知集合A={x|x2+x-6=0},B={x|mx+1=0},B A,求m的值.[解]A={x|x2+x-6=0}={-3,2}.因为B A,所以B={-3}或B={2}或B=∅.当B={-3}时,由m·(-3)+1=0,得m=1 3.当B={2}时,由m·2+1=0,得m=-1 2.当B=∅时,m=0.综上所述,m=13或m=-12或m=0.1.下列六个关系式:①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}.其中正确的个数是()A.1B.3C.4D.6C[①②⑤⑥正确,③④错误,故选C.]2.集合{1,2}的子集有()A.4个B.3个C.2个D.1个A[集合{1,2}的子集有∅,{1},{2},{1,2},共4个.]3.已知集合A={x|1≤x<6},B={x|x+3≥4},则A与B的关系是() A.A B B.A=BC.B A D.B⊆AA[∵A={x|1≤x<6},B={x|x≥1},∴A B.故选A.]4.已知集合A={3,m},B={3,4},若A=B,则实数m=________.4[由A=B可知,m=4.]5.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.(1)若A B,则a的取值范围为________;(2)若B⊆A,则a的取值范围为________.(1){a|a>2}(2){a|1≤a<2}[(1)若A B,则集合A中的元素都在集合B中,且B中有不在A中的元素,则a>2.(2)若B⊆A,则集合B中的元素都在集合A中,则a≤2.因为a≥1,所以1≤a≤2.]回顾本节知识,自我完成以下问题:1.两个集合间的基本关系有哪些,如何判断两个集合间的关系?[提示]两个集合间的基本关系有子集、真子集和相等.常借助元素分析法及数轴法分析两个集合间的关系.2.空集同任意集合A之间存在怎样的关系?[提示](1)∅⊆A,(2)∅A(A≠∅).3.包含关系与属于关系的使用条件分别是什么?[提示]包含关系是集合与集合间的关系,而属于关系是元素与集合的关系,两者不可混用.。
(复习指导)第一章第一讲 集合的概念与运算含答案
第一章集合与常用逻辑用语第一讲集合的概念与运算知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE知识梳理知识点一集合的基本概念一组对象的总体构成一个集合.(1)集合中元素的三大特征:确定性、互异性、无序性.(2)集合中元素与集合的关系:对于元素a与集合A,a∈A或a∉A,二者必居其一.(3)常见集合的符号表示.数集自然数集正整数集整数集有理数集实数集符号N N*Z Q R(4)集合的表示法:列举法、描述法、Venn图法、区间表示法.(5)集合的分类:集合按元素个数的多少分为有限集、无限集,有限集常用列举法表示,无限集常用描述法表示.知识点二集合之间的基本关系关系定义表示相等集合A与集合B中的所有元素都相同A=B子集A中的任意一个元素都是B中的元素A⊆B真子集A是B的子集,且B中至少有一个元素不属于A A B注意:(1)空集用∅表示.(2)若集合A中含有n个元素,则其子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.(3)空集是任何集合的子集,是任何非空集合的真子集.(4)若A⊆B,B⊆C,则A⊆C.知识点三集合的基本运算符号语言交集A∩B 并集A∪B 补集∁U A图形语言意义A∩B={x|x∈A且x∈B}A∪B={x|x∈A或x∈B}∁U A={x|x∈U且x∉A}重要结论1.A∩A=A,A∩∅=∅.2.A∪A=A,A∪∅=A.3.A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.4.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为1或-1或0.(×)(2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.(×)(3)方程x -2 022+(y+2 023)2=0的解集为{2 022,-2 023}.(×)(4)若A∩B=A∩C,则B=C.(×)(5)设U=R,A={x|lg x<1},则∁U A={x|lg x≥1}={x|x≥10}.(×)题组二走进教材2.(必修1P 5B1改编)若集合P={x∈N|x≤ 2 022},a=45,则(D)A.a∈P B.{a}∈PC.{a}⊆P D.a∉P[解析]452=2 025>2 022,∴a∉P,故选D.3.(必修1P7T3(2)改编)若A={x|x=4k-1,k∈Z},B={x=2k-1,k∈Z},则集合A与B 的关系是(B)A.A=B B.A BC.A B D.B⊆A[解析]因为集合B={x|x=2k-1,k∈Z},A={x|x=4k-1,k∈Z}={x|x=2(2k)-1,k∈Z},集合B表示2与整数的积减1的集合,集合A表示2与偶数的积减1的集合,所以A B,故选B.题组三走向高考4.(2020·新高考Ⅱ,1,5分)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B =(C)A.{1,8} B.{2,5}C.{2,3,5} D.{1,2,3,5,7,8}[解析]∵A={2,3,5,7},B={1,2,3,5,8},∴A∩B={2,3,5},故选C.5.(2020·新高考Ⅰ,1,5分)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( C ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4}D .{x |1<x <4}[解析] 已知A ={x |1≤x ≤3},B ={x |2<x <4},在数轴上表示出两个集合,由图易知A ∪B ={x |1≤x <4}.故选C .6.(2020·天津,1,5分)设全集U ={-3,-2,-1,0,1,2,3},集合A ={-1,0,1,2},B ={-3,0,2,3},则A ∩(∁U B )=( C )A .{-3,3}B .{0,2}C .{-1,1}D .{-3,-2,-1,1,3}[解析] 因为U ={-3,-2,-1,0,1,2,3},B ={-3,0,2,3},所以∁U B ={-2,-1,1},又A ={-1,0,1,2},所以A ∩(∁U B )={-1,1},故选C .考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU 考点一 集合的基本概念——自主练透例1 (1)(多选题)已知集合A ={x |x =3k +1,k ∈Z },则下列表示正确的是( ABD )A .-2∈AB .2 022∉AC .3k 2+1∉AD .-35∈A(2)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( C ) A .1 B .3 C .6D .9(3)已知集合A ={a +2,(a +1)2,a 2+3a +3},若1∈A ,则2 020a 的值为1;若1∉A ,则a 不可能取得的值为-2,-1,0,-1+52,-1-52.[解析] (1)当-2=3k +1时,k =-1∈Z ,故A 正确;当2 022=3k +1时,k =67323∉Z ,故B 正确;∵k ∈Z ,∴k 2∈Z ,显然3k 2+1∈A ,当-35=3k +1时,k =-12∈Z ,故D 正确.故选A 、B 、D .(2)当x =0时,y =0;当x =1时,y =0或y =1; 当x =2时,y =0,1,2.故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)}, 即集合B 中有6个元素.(3)若a +2=1,则a =-1,A ={1,0,1},不合题意;若(a +1)2=1,则a =0或-2,当a =0时,A ={2,1,3},当a =-2时,A ={0,1,1},不合题意;若a 2+3a +3=1,则a =-1或-2,显然都不合题意;因此a =0,所以2 0200=1.∵1∉A ,∴a +2≠1,∴a ≠-1;(a +1)2≠1,解得a ≠0,-2;a 2+3a +3≠1解得a ≠-1,-2.又∵a +2、(a +1)2、a 2+3a +3互不相等,∴a +2≠(a +1)2得a ≠-1±52;a +2≠a 2+3a+3得a ≠-1;(a +1)2≠a 2+3a +3得a ≠-2;综上a 的值不可以为-2,-1,0,-1+52,-1-52.名师点拨 MING SHI DIAN BO(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)集合中元素的互异性常常容易忽略,特别是含有字母的集合,在求出字母的值后,要注意检验集合中元素是否满足互异性.分类讨论的思想方法常用于解决集合问题.考点二 集合之间的基本关系——师生共研例2 (1)(2021·新高考八省联考)已知M ,N 均为R 的子集,且∁R M ⊆N ,则M ∪(∁R N )=( B )A .∅B .MC .ND .R(2)(多选题)已知集合A =⎩⎨⎧⎭⎬⎫-13,12,B ={x |ax +1=0},且B ⊆A ,则实数a 的可能取值为( BCD )A .-3B .-2C .0D .3(3)设集合M =⎩⎨⎧⎭⎬⎫x |x =k 3+16,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 6+23,k ∈Z ,则下面正确的是( B ) A .M =N B .MNC .NMD .M ∩N =∅[解析] (1)如图,∁R M ⊆N ,显然(∁R N )⊆M ,∴M ∪(∁R N )=M ,故选B .(2)本题考查集合之间的关系.由题知B ⊆A ,B ={x |ax +1=0},所以B =⎩⎨⎧⎭⎬⎫-13,⎩⎨⎧⎭⎬⎫12,∅.当B =⎩⎨⎧⎭⎬⎫-13时,-13a +1=0,解得a =3;当B =⎩⎨⎧⎭⎬⎫12时,12a +1=0,解得a =-2;当B =∅时,a =0.综上可得实数a 的可能取值为3,0,-2,故选B 、C 、D .(3)解法一:(列举法),由题意知 M =⎩⎨⎧⎭⎬⎫…,-12,-16,16,12,56,76,…N =⎩⎨⎧⎭⎬⎫…,-16,0,16,13,12,23,56,…显然M N ,故选B .解法二:(描述法) M =⎩⎨⎧⎭⎬⎫x |x =2k +16,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =k +46,k ∈Z∵2k +1表示所有奇数,而k +4表示所有整数(k ∈Z ) ∴MN ,故选B .名师点拨 MING SHI DIAN BO 判断集合间关系的3种方法 列举法根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.(如第(3)题解法一)结构法从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.(如第(3)题解法二)数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.(1)集合M =⎩⎨⎧⎭⎬⎫x |x =n 2+1,n ∈Z ,N =⎩⎨⎧⎭⎬⎫y |y =m +12,m ∈Z ,则两集合M ,N 的关系为( D )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M(2)(多选题)(2020·湖南长郡中学模拟改编)已知集合M ={y |y =x -|x |,x ∈R },N =⎩⎨⎧⎭⎬⎫y |y =⎝⎛⎭⎫12x ,x ∈R ,则下列结论不正确的是( ABD ) A .M =N B .N ⊆M C .M =∁R ND .(∁R N )∩M =∅(3)已知集合A ={x ∈R |x 2-3x +2=0},B ={x ∈N |0<x <5},则满足条件A ⊆C ⊆B 的集合C 的个数为4.(4)已知集合A ={x |x 2-2 023x +2 022<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是[2_022,+∞).[解析] (1)由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ),当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ),∴N ⊆M ,故选D .(2)由题意得y =x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,∴M =(-∞,0],N =(0,+∞),∴M =∁R N .故选A 、B 、D . (3)由题意可得,A ={1,2},B ={1,2,3,4}.又∵A ⊆C ⊆B ,∴C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},∴有4个. (4)由x 2-2 023x +2 022<0,解得1<x <2 022, 故A ={x |1<x <2 022}.又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 022.考点三 集合的基本运算——多维探究 角度1 集合的运算例3 (1)(2020·课标Ⅱ)已知集合U ={-2,-1,0,1,2,3},A ={-1,0,1},B ={1,2},则∁U (A ∪B )=( A )A .{-2,3}B .{-2,2,3}C .{-2,-1,0,3}D .{-2,-1,0,2,3}(2)(2020·课标Ⅱ)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( D ) A .∅B .{-3,-2,2,3}C .{-2,0,2}D .{-2,2}(3)(2021·浙江杭州模拟)已知全集U =R ,集合A ={x |x 2-3x +2<0},集合B = {x |log 3(x +1) <1},则A ∪B =(-1,2),( ∁R A )∩B =(-1,1].[解析] (1)∵A ={-1,0,1},B ={1,2},∴A ∪B ={-1,0,1,2},又∵集合U ={-2,-1,0,1,2,3},∴∁U (A ∪B )={-2,3}.故选A .(2)由已知得A ={x |-3<x <3,x ∈Z }={-2,-1,0,1,2},B ={x |x <-1或x >1,x ∈Z },∴A ∩B ={-2,2}.故选D .(3)依题意可知,A ={x |1<x <2},B ={x |0<x +1<3}={x |-1<x <2},所以A ∪B =(-1,2),∁R A ={x |x ≤1或x ≥2},所以(∁R A )∩B =(-1,1].角度2 利用集合的运算求参数例4 (1)已知集合A ={x |x 2-3x <0),B ={1,a },且A ∩B 有4个子集,则实数a的取值范围是( B )A .(0,3)B .(0,1)∪(1,3)C .(0,1)D .(-∞,1)∪(3,+∞)(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}≠∅,若A ∩B =B ,则实数m 的取值范围为[2,3].[解析] (1)因为A ∩B 有4个子集,所以A ∩B 中有2个不同的元素,所以a ∈A ,所以a 2-3a <0,解得0<a <3.又a ≠1,所以实数a 的取值范围是(0,1)∪(1,3),故选B .(2)由A ∩B =B 知,B ⊆A .又B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3,则实数m 的取值范围为[2,3].[引申1]本例(2)中若B ={x |m +1≤x ≤2m -1}情况又如何? [解析] 应对B =∅和B ≠∅进行分类. ①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,由例得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为(-∞,3].[引申2]本例(2)中是否存在实数m ,使A ∪B =B ?若存在,求实数m 的取值范围;若不存在,请说明理由.[解析] 由A ∪B =B ,即A ⊆B 得⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3,不等式组无解,故不存在实数m ,使A ∪B =B . [引申3]本例(2)中,若B ={x |m +1≤x ≤1-2m },AB ,则m 的取值范围为(-∞,-3].[解析] 由题意可知⎩⎪⎨⎪⎧m +1≤-2,1-2m ≥5,解得m ≤-3.名师点拨 MING SHI DIAN BO集合的基本运算的关注点1.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. 2.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.3.注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 4.根据集合运算结果求参数,先把符号语言译成文字语言,然后应用数形结合求解. 〔变式训练2〕(1)(角度1)(2020·北京,1,4分)已知集合A ={-1,0,1,2},B ={x |0<x <3},则A ∩B =( D )A .{-1,0,1}B .{0,1}C .{-1,1,2}D .{1,2}(2)(角度1)设全集U =R ,集合A ={x |0≤x ≤2},B ={y |1≤y ≤3},则(∁U A )∪B =( D ) A .(2,3] B .(-∞,1]∪(2,+∞) C .[1,2)D .(-∞,0)∪[1,+∞)(3)(角度2)已知集合A ={x |x <a },B ={x |x 2-3x +2<0},若A ∩B =B ,则实数a 的取值范围是( D )A .a <1B .a ≤1C .a >2D .a ≥2[解析] (1)集合A 与集合B 的公共元素为1,2,由交集的定义知A ∩B ={1,2},故选D . (2)∁U A ={x |x <0或x >2},则(∁U A )∪B ={x |x <0或x ≥1},故选D .(3)集合B ={x |x 2-3x +2<0}={x |1<x <2},由A ∩B =B 可得B ⊆A ,作出数轴如图,可知a ≥2.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG集合中的新定义问题例5 定义集合的商集运算为A B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =m n ,m ∈A ,n ∈B ,已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2-1,k ∈A ,则集合⎝⎛⎭⎫B A ∪B 中的元素个数为( B ) A .6 B .7 C .8D .9[解析] 由题意知,B ={0,1,2},B A =⎩⎨⎧⎭⎬⎫0,16,14,13,12,1,则⎝⎛⎭⎫B A ∪B =⎩⎨⎧⎭⎬⎫0,16,14,13,12,1,2,共有7个元素.名师点拨 MING SHI DIAN BO集合新定义问题的“3定”(1)定元素:确定已知集合中所含的元素,利用列举法写出所有元素.(2)定运算:根据要求及新定义运算,将所求解集合的运算问题转化为集合的交集、并集与补集的基本运算问题,或转化为数的有关运算问题.(3)定结果:根据定义的运算进行求解,利用列举法或描述法写出所求集合中的所有元素. 〔变式训练3〕(2021·江西九江联)设A ,B 是非空集合,定义A ⊗B ={x |x ∈(A ∪B )且x ∉(A ∩B )}.已知M ={y |y =-x 2+2x ,0<x <2},N ={y |y =2x -1,x >0},则M ⊗N =⎝⎛⎦⎤0,12∪(1,+∞) [解析] M ={y |y =-x 2+2x ,0<x <2}=(0,1],N ={y |y =2x -1,x >0}=⎝⎛⎭⎫12,+∞,则M ∪N =(0,+∞),M ∩N =⎝⎛⎦⎤12,1,所以M ⊗N =⎝⎛⎦⎤0,12∪(1,+∞).。
【精品推荐】高中数学北师大版必修一课后训练1.2集合的基本关系 Word版含答案
课后训练基础巩固1.下列命题:①空集是任何集合的真子集;②若A B ,B C ,则A C ;③任何一个集合必有两个或两个以上的子集;④如果凡不属于B 的元素也不属于A ,则A ⊆B .其中,正确的是( ).A .①②B .②③C .②④D .③④2.下列各式中,正确的个数是( ).①∅={0};②∅⊆{0};③∅∈{0};④0={0};⑤0∈{0};⑥{1}∈{1,2,3};⑦{1,2}⊆{1,2,3};⑧{a ,b }⊆{b ,a }A .1B .2C .3D .43.已知集合A ={x |-1<x <2},B ={x |0<x <1},则( ).A .A =B B .A BC .B AD .A ⊆B4.若集合A ={1, 3,x },B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数是( ).A .1B .2C .3D .45.集合A ={1,2,3}的真子集的个数为( ).A .6B .7C .8D .96.已知集合M ={x |5<x <10},集合P ={x |x <m +1},且M ⊆P ,则实数m 的取值范围是( ).A .m ≥9B .m >9C .m ≥4D .m >4能力提升7.集合,+=5p A t t p q p q q +⎧⎫==∈⎨⎬⎩⎭N 其中,且,的所有真子集个数为( ). A .3 B .7 C .15 D .318.已知集合,3k A x x k ⎧⎫==∈⎨⎬⎩⎭Z ,,6k B x x k ⎧⎫==∈⎨⎬⎩⎭Z ,则( ). A .A B B .A BC .A =BD .A 与B 无公共元素9.设A 是非空集合,对于k ∈A ,如果1A k∈,那么称集合A 为“和谐集”,在集合111,0,,,1,2,3,432M ⎧⎫=-⎨⎬⎩⎭的所有非空子集中,是和谐集的集合的个数为( ). A .3 B .7 C .15 D .3110.设含有4个元素的集合的全部子集数为S ,其中由2个元素组成的子集数为T ,则T S的值为________. 11.已知三元素集合A ={x ,xy ,x -y },B ={0,|x |,y },且A =B ,求x 与y 的值.12.已知A ={x ||2x -3|<a },B ={x ||x |≤10},且A B ,求实数a 的取值范围.13.已知集合A ={x |ax 2+2x +1=0,a ,x ∈R }至多有一个真子集,求a 的取值范围.14.若不等式x -10>0或x +2<0成立时,不等式x -m >1或x +m <1(m >0)不恒成立,且若不等式x-m>1或x+m<1(m>0)成立时,不等式x-10>0或x+2<0成立,求实数m的取值范围.参考答案1.C 点拨:①错误,∅∅不成立;②正确,真子集满足传递性;③错误,空集的子集只有它本身;④正确,画出Venn 图可直观地看出集合A 与B 的关系为A ⊆B .2.D 点拨:由集合的性质以及元素与集合、集合与集合的关系可知正确的有②⑤⑦⑧.3.C 点拨:将集合A ,B 的元素在数轴上表示出来(如图),显然,B 中元素都在A 中,而A 中元素不都在B 中,由真子集的定义知B 是A 的真子集,即B A .4.C 点拨:由B ⊆A 可知,集合B 中的元素都在集合A 中,所以x 2=3或x 2=x ,解得x =x =0或x =1.当x =1时,不满足集合中元素的互异性,故舍去.所以实数x 的值有3个.5.B 点拨:23-1=7.6.A 点拨:由M ⊆P ,将集合M ,P 在数轴上表示出来(如图),显然有m +1≥10成立,所以m ≥9.7.C 点拨:1234,,,4321A ⎧⎫=⎨⎬⎩⎭,真子集的个数为24-1=15. 8.A 点拨:∵2,6k A x x k ⎧⎫==∈⎨⎬⎩⎭Z ,,6k B x x k ⎧⎫==∈⎨⎬⎩⎭Z , ∴A B . 9.C 点拨:由和谐集的定义知,该集合中可以含有元素-1,1,13和3,12和2,所以共有和谐集的集合的个数为24-1=15.10.38点拨:含有4个元素的集合的全部子集数S =24=16,其中由2个元素组成的子集数T =6,则63168T S ==. 11.解:∵0∈B ,A =B ,∴0∈A .∵x ≠xy ,∴x ≠0.又∵0∈B ,y ∈B ,∴y ≠0,从而x -y =0,x =y ,此时A ={x ,x 2,0},B ={0,|x |,x },∴x 2=|x |,则x =0(舍去)或x =1(舍去)或x =-1.经检验:x =-1,y =-1.12.解:B ={x |-10≤x ≤10},当A B 时,A =∅或A ≠∅.①若A =∅,显然a ≤0.②若A ≠∅,则33,022a a A x x a ⎧-+⎫=<<>⎨⎬⎩⎭.∵A B ,∴310,2310,2a a -⎧≥-⎪⎪⎨+⎪≤⎪⎩, 解得a ≤17,此时0<a ≤17.综上可知,实数a 的取值范围是a ≤17.13.解:集合A 至多有一个真子集,则集合A 可能有一个真子集,可能无真子集,故分两种情况.(1)当A 无真子集时,A =∅,故关于x 的方程ax 2+2x +1=0无实根,∴a ≠0且Δ=4-4a <0,即a >1.(2)当A 只有一个真子集时,A 为单元素集,这时有两种情况:①当a =0时,2x +1=0,∴12x =-,12A ⎧⎫=-⎨⎬⎩⎭符合题意. ②当a ≠0时,Δ=4-4a =0,∴a =1,此时x =-1,A ={-1},符合题意. 综上知a 的取值范围是a ≥1或a =0.14.解:设不等式x -10>0或x +2<0的解集为A ,不等式x -m >1或x +m <1(m >0)的解集为B ,即A ={x |x >10或x <-2},B ={x |x >m +1或x <1-m ,m >0}.依题意得:当x ∈B 时,x ∈A ,即B ⊆A .又存在x 0∈A ,使x 0∉B ,则B A .在数轴上作出包含关系图形:由图可知12,110,m m -≤-⎧⎨+≥⎩即3,9,m m ≥⎧⎨≥⎩∴m ≥9. ∴所求实数m 的取值范围为m ≥9.点拨:把不等式的问题转化为两个集合的子集关系问题,利用数轴作出包含关系图形,可清晰地看到实数m 满足的条件.。
集合运算的方法-高中数学常见题型解法归纳反馈训练 (word版含答案)
【知识要点】 一、集合间的基本关系1、子集对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,也说集合A 是集合B 的子集,记为A ⊆B 或B ⊇A .如:集合{x |x 1}<就是集合{x |x 3}<的子集. 2、真子集对于两个集合A 与B ,如果A B ⊆,且集合B 中至少有一个元素不属于集合A ,则称集合A 是集合B 的真子集.记为A B ⊂或B A ⊃.如:集合{1,2,3}就是集合{1,2,3,4}的真子集. 3、相等关系如果集合A 是集合B 的子集,且集合B 是集合A 的子集,此时,集合A 与集合B 中的元素是一样的,因此集合A 与集合B 相等.记作A =B .二、集合的运算1、交集的定义:一般地,由所有属于A 且属于B 的元素所组成的集合叫做A 、B 的交集. 记作A ∩B (读作” A 交B ”),即A ∩B ={x|x ∈A ,且x ∈B }.2、并集的定义:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 、B 的并集.记作:A ∪B (读作” A 并B ”),即A ∪B ={x|x ∈A ,或x ∈B }.3、交集与并集的性质:A ∩A =A A ∩φ= φ A ∩B =B ∩A ; A ∪A =A A ∪φ= A A ∪B = B ∪A .4、全集与补集(1)全集:如果集合含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U 来表示.(2)补集:设U 是一个集合,A 是U 的一个子集,由U 中所有不属于A 的元素组成的集合,叫做U 中子集A 的补集. 记作:{|}U C A x x U x A =∈∉且三、集合的运算常用的有三种方法:列举法、维恩图和数轴.四、涉及集合的关系(子集、真子集和相等)和运算(交集、并集和补集),不要遗忘了空集这个特殊的集合.空集是任何集合的子集,是任何非空集合的真子集.如:A B ⊆,则A 有可能是空集;A B ⊂()B φ≠则B 也有可能是空集.五、集合的运算要注意灵活运用维恩图和数轴,一般情况下,有限集的运算用维恩图分析,无限集的运算用数轴,这实际上是数形结合的思想的具体运用.六、集合的运算注意端点的取等问题,最好是直接代入原题检验.【方法讲评】【例1】已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A .3 B.6C.8D.10【点评】由于集合A 的元素个数很少,集合B 的元素又与集合A 的元素有关系,所以采用列举法解答,直观准确.【反馈检测1】定义集合运算:,设A ={1,2},B ={3,6},则集合的所有元素之和为 .【例 2】设全集{|010,}U x x x N *=<<∈,若{3}A B = ,{1,5,7}U A C B = , U U C A C B{9}=,集合A = ,B =________.【点评】由于本题涉及有限集合的运算,并且关系较为复杂,所以选择维恩图解答更方便快捷. 【反馈检测2】如图,已知U ={1,2,3,4,5,6,7,8,9,10}, 集合A ={2,3,4,5,6,8},B ={1,3,4,5,7},C ={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为 .【例3】集合2{|560}A x x x =+-≤,2{|30}B x x x =+>,求,A B A B .【点评】(1)数轴是集合运算常用的工具,运用它解题时,要注意等号,即注意点的实心和空心问题.(2)利用数轴解答集合的运算,实际上就是数形结合思想的体现.在今后的数学学习中要注意体会数学思想在解题中的应用和作用.【反馈检测3】已知集合2{|60}A x x x =+-≥,2{|650}B x x x =-+<,{|12}C x m x m =-≤≤ (1)求A B ,()R C A B ;(2)若B C C = ,求实数m 的取值范围.高中数学常见题型解法归纳及反馈检测第87讲:集合运算的方法参考答案【反馈检测1答案】21【反馈检测1详细解析】当x=1,y=3时,z=3;当x=1,y=6时,z=6;当x=2,y=3时,z=6;当x=2时,z=12.由题得,故集合的所有元素之和为21.故答案为21.【反馈检测2答案】{2,8}U A C C B =【反馈检测2详细解析】由题得阴影部分表示的集合为{2,8}U A C C B = .【反馈检测3答案】(1){|25}A B x x =≤< ,(){|35}R C A B x x =-<< ;(2)5(,1)(2,)2-∞- .。
(完整word版)高一数学集合知识点归纳及典型例题,推荐文档
高一数学集合知识点归纳及典型例题一、、知识点:本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。
在进行集合间的运算时要注意使用Venn图。
本章知识结构1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。
理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。
我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。
理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。
几个常用数集N、N*、N+、Z、Q、R要记牢。
3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如{1,2,3,…,n,…}●注意a与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。
但关键点也是难点。
学习时多加练习就可以了。
另外,弄清“代表元素”也是非常重要的。
如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。
4、集合之间的关系●注意区分“从属”关系与“包含”关系“从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn 图描述集合之间的关系是基本要求。
1.1.2 集合间的基本关系练习题及答案解析
1.下列六个关系式,其中正确的有()①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}.A.6个B.5个C.4个D.3个及3个以下解析:选C.①②⑤⑥正确.2.已知集合A,B,若A不是B的子集,则下列命题中正确的是()A.对任意的a∈A,都有a∉BB.对任意的b∈B,都有b∈AC.存在a0,满足a0∈A,a0∉BD.存在a0,满足a0∈A,a0∈B解析:选C.A不是B的子集,也就是说A中存在不是B中的元素,显然正是C选项要表达的.对于A和B选项,取A={1,2},B={2,3}可否定,对于D选项,取A={1},B={2,3}可否定.3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥2 B.a≤1C.a≥1 D.a≤2解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.解析:∵Δ=9-4(2-a2)=1+4a2>0,∴M恒有2个元素,所以子集有4个.答案:41.如果A={x|x>-1},那么()A.0⊆A B.{0}∈AC.∅∈A D.{0}⊆A解析:选D.A、B、C的关系符号是错误的.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A⊆B解析:选C.利用数轴(图略)可看出x∈B⇒x∈A,但x∈A⇒x∈B不成立.3.定义A-B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.BC.{2} D.{1,7,9}解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.4.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∅,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},则A*B的子集的个数是()A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( )A .A ⊆B B .B ⊆AC .A ∈BD .B ∈A解析:选D.∵B 的子集为{1},{2},{1,2},∅,∴A ={x |x ⊆B }={{1},{2},{1,2},∅},∴B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|y x=1},则A 、B 间的关系为________. 解析:在A 中,(0,0)∈A ,而(0,0)∉B ,故B A .答案:B A8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则a 的值为________.解析:A ⊇B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:①若⎩⎪⎨⎪⎧ a +b =ac a +2b =ac2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性,故a ≠0,c 2-2c +1=0,即c =1;当c =1时,集合B 中的三个元素也相同,∴c =1舍去,即此时无解.②若⎩⎪⎨⎪⎧a +b =ac 2a +2b =ac ,消去b 得2ac 2-ac -a =0, 即a (2c 2-c -1)=0.∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0.又∵c ≠1,∴c =-12. 11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.解:(1)若A B ,由图可知,a >2.(2)若B ⊆A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且BA ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}. ∵B A ,∴mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时,由m ·(-3)+1=0,得m =13; 当mx +1=0的解为2时,由m ·2+1=0,得m =-12; 当mx +1=0无解时,m =0.综上所述,m =13或m =-12或m =0.。
(完整word版)高等数学教材word版(免费下载)
目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (10)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑵、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课堂例题】
例1.设A, B,C 是三个集合,若 A B 且B C ,试证A C .
例2.试判定下列两个集合的包含关系或相等关系并简述理由
⑵{x|x 5}
{x|x 6};
例3.求出所有符合条件的集合 C
(1)C {1,2,3};
⑵ C u{a, b};
(3){1,2,3} uC {123,4,5}.
(选用)例4.已知A {x|x 2k 1,k Z }, B {x|x 是被4除余3的整数},判断A,B 之间
的关系并证明之.
(1)
{x| 2 x 3};
⑶{n | n 是12的正约
数} {1,2,3,4,6,8,12}
;
⑷{n|n 是4的正整数倍}
{n|n 2k,k Z }.
【知识再现】 1. 对于两个集合 A 与B , (1) ________________________ 如果 记作 _________ 或 ________ ,读作 (2) ________________________ 如果A 是B 的子集并且 __________ 相等,记作 __________________ ; (3) ________________________ 如果A 是B 的子集并且 __________ B 的真子集,记作 _____________ 2. 空集 是 _____________________
【基础训练】 1.(1)下列写法正确的是( ) (A) u{0} (B) 0 u .或 ________ 的子集;空集 ____ ,那么集合A 叫做集合 或者 __________________ ;
,那么集合 ,那么集合 B 的子集,
A 与集合
B A 叫做集合
{0}
( D) 0
(2)下列四个关于空集的命题中:①空集没有子集;②任何集合至少有两个子集;③空集是 任何集合的真子集;④若 A ,则A (C) .其中正确的个数是( ) (A)0 ( B)
2.用恰当的符号填空(,, (C) (D)3 (1){1,3,5} {5,1,3}; ⑵{x|(x 3)(x 2) 0} {x|- x
⑶{x|x 2} {x|x 2};⑷{x|x n
2,
n Z} {x|x 3 0};
1,n Z}. 2
3. (1)已知{x, y} {2 x,2x } 2 (2){1, 3, x} {1,x },则实数 x _______________
4.
指出下列各集合之间的关系,并用 文氏图表示: A {x|x 是平行四边形} , B {x|x 是菱形}, C {x|x 是矩形} , D {x|x 是正方形} ,则x 5.类比“ ”、“ ”的定义,请给出符号“ / ”的定义: _________ ,则称集合 A 不是集合B 的子集,
B ” . {024,8}, 如果 __________________ 用符号“ A / B ”表示, 6.已知集合M 满足M 写出所有符合条件的集合 读作“ A 不包含于 {0,123,4}且 M M . 2 3x a 0},
7.已知 A {1}, B {x| x ①若A u B ,求实数a 的值;②是否存在实数
a 使得A B ?
c … m 1 FI Q {q|q - 3,m Z}, R
判断集合P,Q,R 之间的关系并证明.
【温故知新】
11.用列举法表示"mathematics
”中字母构成的集合;
【巩固提高】
2
8.已知{0, a ,a b} {a,-,1},求实数 a, b .
a
9.已知集合M 解集为N ,且N {x| x 6
求实数 0},关于 a 的值. y 的方程ay 2
0的
(选做)10.已知集合P
{Pl P
1
n —,n 6 Z},
6,s
{r|r
用描述法表示集合{ 2,2,6,10,14,18, L }.
【课堂例题答案】
例1.证:任取x A,因为A B,所以x B,因为x A C证毕.
例 2.,,,
例 3.(1) ,{1},{2},{3},{ 1,2},{2,3},{ 1,3},{ 1,2,3}
⑵,{a},{b}
(3){1,2,3,4},{ 1,2,3,5},{ 123,4,5}
【知识再现答案】
1.(1)若集合A中的
任意元素都属于集合 B , A
⑵B是A的子集,A B
(3) B中至少有一个集合不属于 A , A茌B, B
2.任何集合;任何非空集合.
【习题答案】
1. A, B
2.,,,
B且B C,所以x C , 因此
B,B A , A包含于B , B包含于
3.(1) 1,1 ; (2){ ^/3,73,0}
2
5.集合A中至少有一个元素不属于集合
6.
7.
8.
B
,{0},{2},{4},{0,2},{0,4},{2,4},{0,
2,4}
2,
1,b 0
不存在
{0, 1,|}
10. P u Q R
9
.
证明: P {Pl
p 6n 1
6
,n Z}, Q {q|q
3m 2
m Z}, R {r|r
3s 1
Z} 任取
任取
任取
6 6
3m 2 3(m 1) 1
6 6
3s 1 3(s 1) 2
6 6 ,
x
,所以
x
6n 1 3(2n 1)2,所以
因此
在集合Q中取m
2 2
2,因此3
所以x Q ,
Q,但是2
3
因此P
因此Q
因此R
也」无整数解,所以
6
因此P u Q R 证毕
11. {m,a,t,h,e,i,c,s},{ x| x 2 2k,k N}。