排列组合典型题解

合集下载

排列组合经典题型及解法

排列组合经典题型及解法

排列组合是组合数学中的一个重要概念,涉及到对一组对象进行排列或组合的方式。

下面列举几个经典的排列组合题型及解法:
1. 排列问题:
-题型:从n个不同元素中选取m个元素,有多少种排列方式?
-解法:使用排列数的公式P(n, m) = n! / (n-m)!,其中n!表示n 的阶乘。

2. 组合问题:
-题型:从n个不同元素中选取m个元素,有多少种组合方式?
-解法:使用组合数的公式C(n, m) = n! / (m!(n-m)!),其中n!表示n的阶乘。

3. 重复排列问题:
-题型:从n个元素中选取m个元素进行排列,允许元素重复,有多少种排列方式?
-解法:使用重复排列数的公式P'(n, m) = n^m,其中^n表示n的m次方。

4. 重复组合问题:
-题型:从n个元素中选取m个元素进行组合,允许元素重复,有多少种组合方式?
-解法:使用重复组合数的公式C'(n, m) = C(n+m-1, m),其中C(n, m)表示组合数。

5. 圆排列问题:
-题型:将n个不同的物体围成一个圆圈,有多少种不同的排列方式?
-解法:使用圆排列数的公式P(n) = (n-1)!。

以上是一些常见的排列组合题型及其解法。

在实际问题中,可能会出现更加复杂和变化的情况,需要根据具体问题进行分析和推导解法。

(完整版)经典排列组合问题100题配超详细解析

(完整版)经典排列组合问题100题配超详细解析

1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55—n ,那么可知下标的值为69—n ,共有69—n-(55—n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C 。

38种 D 。

108种 【答案】B【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21—n )……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21—n)……(100—n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5。

7中选两个数字,组成无重复数字的四位数。

其中偶数的个数为 ( ) A 。

56 B. 96 C. 36 D 。

360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( )A. 280种B. 240种 C 。

排列组合典型题大全包括答案

排列组合典型题大全包括答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客〞,能重复的元素看作“店〞,那么通过“住店法〞可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例 1】〔1〕有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2〕有 4 名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3〕将 3 封不同的信投入 4 个不同的邮筒,那么有多少种不同投法?【解析】:〔1〕34〔 2〕43〔 3〕43【例2】把 6 名实习生分配到7 个车间实习共有多少种不同方法?【解析】:完成此事共分 6 步,第一步;将第一名实习生分配到车间有7 种不同方案,第二步:将第二名实习生分配到车间也有7 种不同方案,依次类推,由分步计数原理知共有76 种不同方案.【例3】 8 名同学争夺 3 项冠军,获得冠军的可能性有〔〕A、83 B、38 C、A8 3 D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8 名学生看作8 家“店〞,3 项冠军看作 3 个“客〞,他们都可能住进任意一家“店〞,每个“客〞有8 种可能,因此共有83种不同的结果。

所以选 A1、 4 封信投到 3 个信箱当中,有多少种投法?2、 4 个人争夺 3 项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、 4 个同学参加 3 项不同的比赛(1〕每位同学必须参加一项比赛,有多少种不同的结果?(2〕每项竞赛只许一名同学参加,有多少种不同的结果?4、 5 名学生报名参加 4 项比赛,每人限报 1 项,报名方法的种数有多少?又他们争夺这 4 项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10 瓶汽水的方法有多少种?6、〔全国 II文〕5位同学报名参加两个课外活动小组, 每位同学限报其中的一个小组, 那么不同的报名方法共(A)10 种(B) 20 种(C) 25 种(D) 32种7、 5 位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,那么不同的负责方法有多少种?8、 4 名不同科目的实习教师被分配到 3 个班级,不同的分法有多少种?思考: 4 名不同科目的实习教师被分配到 3 个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 .【例 1】A, B,C , D , E五人并排站成一排,如果A, B 必须相邻且B在A的右边,那么不同的排法种数有【解析】:把 A, B 视为一人,且B固定在A的右边,那么此题相当于4 人的全排列, A44 24 种例 2. 7 人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法 .解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合典型题大全含答案.

排列组合典型题大全含答案.

>排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果)(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种-不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果(2)每项竞赛只许一名同学参加,有多少种不同的结果4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少又他们争夺这4项比赛的冠军,获得冠军的可能性有多少5、甲乙丙分10瓶汽水的方法有多少种。

6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共 (A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.]【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合典型题大全

排列组合典型题大全

排列组合典型题大全一•可重复的排列求幕法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1 )有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)34(2)43(3)43【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有76种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 83B 、38C、乓‘ D 、C8‘【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有83种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25 种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列•一【例1】代B,C,D,E五人并排站成一排,如果代B必须相邻且B在A的右边,那么不同的排法种数有_______________【解析】:把代B视为一人,且B固定在A的右边,则本题相当于4人的全排列,A4二24种例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法•解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合经典题型及解析

排列组合经典题型及解析

排列组合经典题型及解析1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60种 B 、48种 C 、36种 D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.`例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( ) A 、24种 B 、60种 C 、90种 D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种, … 选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、4441284C C C 种 B 、44412843C C C 种C 、4431283C C A 种D 、444128433C C C A 种答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种,答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( ) A 、210种 B 、300种 C 、464种 D 、600种 ]解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B. (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种 解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

排列组合常见题型及解题策略(详解)

排列组合常见题型及解题策略(详解)

排列组合常见题型及解题策略一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复, 把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类 问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同报名方法(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法【解析】:(1)43(2)34 (3)34【例2】 把6名实习生分配到7个车间实习共有多少种不同方法【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、38B 、83C 、38AD 、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的 结果。

所以选A 二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A 种【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432种, 其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A 种【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为5256A A =3600【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。

排列组合典型例题

排列组合典型例题

典型例题一例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个). ∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.典型例题二例2 三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法. (2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法. (3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. (4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法.解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.典型例题三例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

排列组合的试题及答案高中

排列组合的试题及答案高中

排列组合的试题及答案高中一、选择题1. 从5个不同的小球中取出3个进行排列,共有多少种不同的排列方式?A. 20种B. 60种C. 120种D. 240种2. 有5个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排法?A. 48种B. 60种C. 120种D. 240种二、填空题3. 用0,1,2,3,4这五个数字组成没有重复数字的三位数,其中个位数字为1的共有多少个?4. 某班有10名同学,需要选出3名代表,有多少种不同的选法?三、解答题5. 某公司有10名员工,需要选出5名员工组成一个工作小组,要求其中至少有1名女性员工。

如果公司中有5名女性员工和5名男性员工,问有多少种不同的组合方式?6. 某校有5个社团,每个学生最多可以参加2个社团,问有多少种不同的参加方式?答案一、选择题1. 答案:B解析:从5个不同的小球中取出3个进行排列,使用排列公式A_{5}^{3} = 5 × 4 × 3 = 60。

2. 答案:A解析:将甲乙两人看作一个整体,有4!种排法,再将甲乙两人内部排列,有2!种排法,所以总共有4! × 2! = 48种排法。

二、填空题3. 答案:18解析:首先确定百位,有4种选择(不能选0和1),然后确定十位,有3种选择(不能与百位相同),最后确定个位为1,所以共有 4 × 3 = 12种。

但是,由于0不能作为百位,所以需要减去3种情况,最终答案为 12 - 3 = 9种。

4. 答案:120解析:从10个人中选出3个人,使用组合公式 C_{10}^{3} = 10! / (3! × (10 - 3)!) = 120。

三、解答题5. 答案:252种解析:首先计算所有可能的组合数,即 C_{10}^{5} = 252。

然后计算没有女性员工的组合数,即 C_{5}^{5} = 1。

所以至少有1名女性员工的组合数为 252 - 1 = 251。

高考排列组合典型例题

高考排列组合典型例题

排列组合典型例题例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数.分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是2、4、6、8的四位偶数〔这是因为零不能放在千位数上〕.由此解法一与二.如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅〔个〕. ∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:)(283914A A A -⋅个 ∴ 没有重复数字的四位偶数有22961792504)(28391439=+=-⋅+A A A A 个.解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有281515A A A ⋅⋅个干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个〔包括0在〕,百位,十位从余下的八个数字中任意选两个作排列,有281414A A A ⋅⋅个∴ 没有重复数字的四位偶数有2296281414281515=⋅⋅+⋅⋅A A A A A A 个.解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.没有重复数字的四位数有39410A A -个.其中四位奇数有)(283915A A A -个∴ 没有重复数字的四位偶数有2296=个说明:这是典型的简单具有限制条件的排列问题,上述四种解法是根本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.典型例题二例2 三个女生和五个男生排成一排〔1〕如果女生必须全排在一起,可有多少种不同的排法.〔2〕如果女生必须全分开,可有多少种不同的排法.〔3〕如果两端都不能排女生,可有多少种不同的排法.〔4〕如果两端不能都排女生,可有多少种不同的排法.解:〔1〕〔捆绑法〕因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法. 〔2〕〔插空法〕要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.〔3〕解法1:〔位置分析法〕因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. 解法2:〔间接法〕3个女生和5个男生排成一排共有88A 种不同的排法,从中扣除女生排在首位的7713A A ⋅种排法和女生排在末位的7713A A ⋅种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有6623A A ⋅种不同的排法,所以共有1440026623771388=+-A A A A A 种不同的排法.解法3:〔元素分析法〕从中间6个位置中挑选出3个来让3个女生排入,有36A 种不同的排法,对于其中的任意一种排活,其余5个位置又都有55A 种不同的排法,所以共有144005536=⋅A A 种不同的排法,〔4〕解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法.解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.说明:解决排列、组合〔下面将学到,由于规律一样,顺便提及,以下遇到也同样处理〕应用问题最常用也是最根本的方法是位置分析法和元素分析法.假设以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.假设以元素为主,需先满足特殊元素要求再处理其它的元素.间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快. 捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.典型例题三例3 排一有5个歌唱节目和4个舞蹈节目的演出节目单。

排列组合练习题及问题详解

排列组合练习题及问题详解

排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是( )A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 ( )A.12个B.13个C.14个D.15个答案:1、2936C = 2、2972A = 3、选 B. 设男生n 人,则有2138390n n C C A -=。

4、2258m nm A A +-= 选C.二、相邻问题:1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法?2. 有8本不同的书, 其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( ) A.720 B.1440 C.2880 D.3600 答案:1.242448A A = (2) 选B 3253251440A A A = 三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个? 3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有( )A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是 ( )A.28种B.84种C.180种D.360种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A 6828C = 四、定序问题:1. 有4名男生,3名女生。

排列组合典型例题(带详细答案)

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法(2)如果女生必须全分开,可有多少种不同的排法(3)如果两端都不能排女生,可有多少种不同的排法(4)如果两端不能都排女生,可有多少种不同的排法例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种(2)歌唱节目与舞蹈节目间隔排列的方法有多少种例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法例77名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法例8计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n mn m n A A A ;例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数(2)可以组成多少个无重复数字且被3整除的三位数1、解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法.(4)3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。

排列组合常见题型及解答

排列组合常见题型及解答

一.可重复的摆列求幂法:重复摆列问题要划分两类元素:一类能够重复,另一类不可以重复,把不能重复的元素看作“客” ,能重复的元素看作“店” ,则经过“住店法”可顺利解题,在这种问题使用住店办理的策略中,重点是在正确判断哪个是底数,哪个是指数【例 1】( 1)有 4 名学生报名参加数学、物理、化学比赛,每人限报一科,有多少种不一样的报名方法(2)有 4 名学生参加抢夺数学、物理、化学比赛冠军,有多少种不一样的结果(3)将 3 封不一样的信投入 4 个不一样的邮筒,则有多少种不一样投法【分析】:(1)( 2)( 3)【例 2】把6名实习生疏派到7 个车间实习共有多少种不一样方法【分析】:达成此事共分 6 步,第一步;将第一名实习生疏派到车间有7 种不一样方案,第二步:将第二名实习生疏派到车间也有7 种不一样方案,挨次类推,由分步计数原理知共有种不一样方案 .【例 3】 8 名同学抢夺 3 项冠军,获取冠军的可能性有()A、B、C、D、【分析】:冠军不可以重复,但同一个学生可获取多项冠军,把8 名学生看作8 家“店”, 3 项冠军看作 3 个“客”,他们都可能住进随意一家“店” ,每个“客”有 8 种可能,所以共有种不一样的结果。

所以选 A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,看作一个大元素参加摆列.【例 1】 A,B,C,D,E五人并排站成一排,假如A,B 一定相邻且 B 在 A 的右侧,那么不一样的排法种数有【分析】:把 A,B 视为一人,且 B 固定在 A 的右侧,则此题相当于 4 人的全摆列,种【例 2】( 2009 四川卷理) 3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两头, 3 位女生中有且只有两位女生相邻,则不一样排法的种数是()A. 360B. 188C. 216D. 96【分析】:间接法 6位同学站成一排, 3位女生中有且只有两位女生相邻的排法有,,此中男生甲站两头的有,切合条件的排法故共有288三.相离问题插空法:元素相离(即不相邻)问题,可先把无地点要求的几个元素全摆列,再把规定的相离的几个元素插入上述几个元素的空位和两头.【例 1】七人并排站成一行,假如甲乙两个一定不相邻,那么不一样的排法种数是【分析】:除甲乙外,其余 5 个摆列数为种,再用甲乙去插 6 个空位有种,不一样的排法数是【例 2】书架上某层有 6 本书,新买 3 本插进去,要保持原有 6 本书的次序,有种不一样的插法(数字作答)【分析】:【例 3】高三(一)班学要安排毕业晚会的 4 各音乐节目, 2 个舞蹈节目和 1 个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不一样排法的种数是【分析】:不一样排法的种数为=3600【例 4】某工程队有 6 项工程需要独自达成,此中工程乙一定在工程甲达成后才能进行,工程丙必须在工程乙达成后才能进行,有工程丁一定在工程丙达成后立刻进行。

高考排列组合典型例题

高考排列组合典型例题

排列组合典型例题例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是2、4、6、8的四位偶数〔这是因为零不能放在千位数上〕.由此解法一与二.如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,那么千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅〔个〕. ∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:)(283914A A A -⋅个∴ 没有重复数字的四位偶数有22961792504)(28391439=+=-⋅+A A A A 个.解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有281515A A A ⋅⋅个干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个〔包括0在〕,百位,十位从余下的八个数字中任意选两个作排列,有281414A A A ⋅⋅个∴ 没有重复数字的四位偶数有2296281414281515=⋅⋅+⋅⋅A A A A A A 个.解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.没有重复数字的四位数有39410A A -个. 其中四位奇数有)(283915A A A -个∴ 没有重复数字的四位偶数有28393939283915394105510)(A A A A A A A A A +--⨯=---283954A A +=2828536A A +=2841A =2296=个说明:这是典型的简单具有限制条件的排列问题,上述四种解法是根本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.典型例题二例2 三个女生和五个男生排成一排〔1〕如果女生必须全排在一起,可有多少种不同的排法?〔2〕如果女生必须全分开,可有多少种不同的排法?〔3〕如果两端都不能排女生,可有多少种不同的排法?〔4〕如果两端不能都排女生,可有多少种不同的排法?解:〔1〕〔捆绑法〕因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.〔2〕〔插空法〕要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.〔3〕解法1:〔位置分析法〕因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法.解法2:〔间接法〕3个女生和5个男生排成一排共有88A 种不同的排法,从中扣除女生排在首位的7713A A ⋅种排法和女生排在末位的7713A A ⋅种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有6623A A ⋅种不同的排法,所以共有1440026623771388=+-A A A A A 种不同的排法.解法3:〔元素分析法〕从中间6个位置中挑选出3个来让3个女生排入,有36A 种不同的排法,对于其中的任意一种排活,其余5个位置又都有55A 种不同的排法,所以共有144005536=⋅A A 种不同的排法,〔4〕解法1:因为只要求两端不都排女生,所以如果首位排了男生,那么未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法.解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.说明:解决排列、组合〔下面将学到,由于规律一样,顺便提及,以下遇到也同样处理〕应用问题最常用也是最根本的方法是位置分析法和元素分析法.假设以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.假设以元素为主,需先满足特殊元素要求再处理其它的元素.间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快. 捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.典型例题三例3 排一有5个歌唱节目和4个舞蹈节目的演出节目单。

第50讲 排列组合(解析版)

第50讲 排列组合(解析版)

第50讲 排列组合参考答案与试题解析一.选择题(共6小题)1.(2021春•夏津县校级期中)有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有( )不同的装法. A .240B .120C .600D .360【解答】解:第一步从5个球中选出2个组成复合元共有2510C =种方法.第二步,再把4个元素装入4个不同的盒内有4424A =种方法, 根据分步计数原理装球的方法共有1024240⨯=种方法. 故选:A .2.(2021•铁东区校级三模)已知5辆不同的白颜色和3辆不同的红颜色汽车停成一排,则白颜色汽车至少2辆停在一起且红颜色的汽车互不相邻的停放方法有()A .1880B .1440C .720D .256【解答】解:由题意可知,白颜色汽车按3,2分为2组,先从5辆白色汽车选3辆全排列共有35A 种,再将剩余的2辆白色汽车全排列共有22A 种,再将这两个整体全排列,共有22A 种,排完后有3个空,3辆不同的红颜色汽车插空共有33A 种,由分步计数原理得共有有322352231440A A A A =种, 故选:B .3.(2021春•杭州月考)有来自甲乙丙三个班级的5位同学站成一排照相,其中甲班2人,乙班2人,丙班1人,则仅有一个班级的同学相邻的站法种数有( ) A .96B .48C .36D .24【解答】解:根据题意,分2种情况讨论: ①,甲班的2名同学相邻,先将这2名同学看成一个整体,考虑2人之间的顺序,有222A =种情况, 将这个整体与丙班的1人全排列,有222A =种情况,排好后有3个空位可用, 在3个空位中任选2个,安排乙班的2人,有236A =种情况, 则甲班的2名同学相邻的站法有22624⨯⨯=种; ②,乙班的2名同学相邻,同理有24种站法; 则仅有一个班同学有的相邻站法有48种;故选:B .4.(2021春•张家港市期中)5名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有( ) A .60种B .90种C .150种D .240种【解答】解:根据题意,分2步进行分析: ①将5名同学分为3组,若分为1、2、2的三组,有2215312215C C C A =种分组方法, 若分为1、1、3的三组,有3510C =种分组方法, 则有101525+=种分组方法,②将分好的三组安排到3个小区,有336A =种情况, 则有256150⨯=种不同的安排方法, 故选:C .5.(2021•西湖区校级模拟)将8本不同的书全部分发给甲、乙、丙三名同学,每名同学至少分到一本,若三名同学所得书的数量各不相同,且甲同学分到的书比乙同学多,则不同的分配方法种数为( ) A .1344B .1638C .1920D .2486【解答】解:8本不同的书全部分发给甲、乙、丙三名同学,每名同学至少分到一本,若三名同学所得书的数量各不相同,则有(1,2,5),(1,3,4)两种分组的方法, 由于甲同学分到的书比乙同学多,当乙分的1本时,此时的种数为12328772()896C C C A += 当丙分的1本时,此时的种数为123877()448C C C +=, 故不同的分配方法种数为8964481344+=种, 故选:A .6.(2021•镇海区校级模拟)在新冠病毒疫情爆发期间,口罩成为了个人的必需品.已知某药店有4种不同类型的口罩A ,B ,C ,D ,其中D 型口罩仅剩1只(其余3种库存足够).今甲、乙等5人先后在该药店各购买了1只口罩,统计发现他们恰好购买了3种不同类型的口罩,则所有可能的购买方式共有( ) A .330种B .345种C .360种D .375种【解答】解:根据题意可能的购买方式有如下两种:①5人中有人购买D 型口罩,有121322534324()210C C C C A C +=种购买方式;②5人中没有人购买D 型口罩,有1223354253()1502!C C C C A +=种购买方式;综合①②知共有210150360+=种购买方式. 故选:C .二.填空题(共24小题)7.(2021春•湖南月考)从1,3,5,7中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 396 个没有重复数字的四位偶数.(用数字作答) 【解答】解:根据题意,分2种情况讨论:①从0,2,4,6中任取2个数字中没有0,有22133423216C C C A =个四位偶数; ②从0,2,4,6中任取2个数字中含有0,有1213234232()180C C C A A ⨯-=个四位偶数; 则有216180396+=个四位偶数; 故答案为:396.8.(2021•西湖区校级模拟)某公司有9个连在一起的停车位,现有5辆不同型号的轿车需停放,若停放后恰有3个空车位连在一起,则不同的停放方法有 3600 种.【解答】解:根据题意,某公司有9个连在一起的停车位,现有5辆不同型号的轿车需停放,则有4个空位: 分2步进行分析:①,5辆不同型号的车需停放,共有55120A =种方法, ②,要求剩余的4个车位中恰有3个连在一起,利用插空法,有2630A =种方法, 则不同的停放方法有120303600⨯=种; 故答案为:3600.9.7人排队,其中甲、乙、丙3人顺序一定,共有 840 不同的排法. 【解答】解:根据题意,假设有7个位置,对应7个人,先在7个位置中任取4个,安排除甲、乙、丙之外的4人,有47840A =种情况, 由于甲、乙、丙3人顺序一定,在剩余3个位置安排3人即可,有1种情况, 则共有8401840⨯=种不同的排法; 故答案为:840.10.(2021春•徐汇区校级期末)7个人站成一排,其中甲一定站在最左边,乙和丙必须相邻,一共有 240 种不同的排法.【解答】解:由题意知本题是一个排列组合及简单计数问题, 甲要站在最左边,剩下6个位置,6个人排列, 乙和丙必须相邻,∴把乙和丙看成一个元素,同另外4个人排列,乙和丙之间也有一个排列,根据乘法原理知共有5252240A A =种结果, 故答案为:24011.把6名学生分到一个工厂的三个车间实习,每个车间2人,若甲必须分到一车间,乙和并不能分到三车间,则不同的分法有 9 种.【解答】解:先安排进二车间实习的人,有233C =种方法,再安排进一车间的人有13C 种方法,余下的2人进三车间.所以共有21339C C =种分法. 故答案为:912.(2021•浙江二模)给如图染色,满足条件每个小方格染一种颜色,有公共边的小方格颜色不能相同,则用4种颜色染色的方案有 252 种,用5种颜色染色的方案共有 种.【解答】解:(1)根据题意,若用4种颜色染色时,先对A 、B 区域染色有1143C C 种,再对C 染色:①当C 同B 时,有1122C C 种; ②当C 同A 时,有111322C C C +种;③当C 不同A 、B 时,有111232()C C C +种;综合①②③共有11111111114322322232[()]252C C C C C C C C C C ++++=种.(2)根据题意,若用5种颜色染色时,先对A 、B 区域染色有1154C C 种,再对C 染色: ①当C 同B 时,有1133C C 种;②当C 同A 时,有111433C C C +种;③当C 不同A 、B 时,有11113423()C C C C +种; 综合①②③,共有1111111111154334333423[()]1040C C C C C C C C C C C ++++=种. 故填:252,1040.13.从给定的六种不同颜色中选用若干种颜色,将一个正方体的六个面染色,每个面恰染一种颜色,每两个具有公共棱的面染成不同的颜色.则不同的染色方法共有 230 种.(注:如果我们对两个相同的正方体染色后,可以通过适当的翻转,使得两个正方体的上、下、左、右、前、后六个对应面的染色都相同,那么,我们就说这两个正方体的染色方案相同.) 【解答】解:由题意,至少3种颜色:6种颜色全用:上面固定用某色,下面可有5种选择,其余4面有(41)!6-=种方法,共计30种方法;用5种颜色:上下用同色:6种方法,选4色:45(41)!30C -=;630290⨯÷=种方法;.用4种颜色:226490C C =种方法. 用3种颜色:3620C =种方法. ∴共有230种方法故答案为:230.14.(2021•宁波期末)如图,对“田”字型的四个格子进行染色.每个格子均可从红、黄、蓝三种颜色中选一种,每个格子只染一种颜色,且相邻的格子不能都染红色,则满足要求的染色方法有 56 种.【解答】解:根据题意,分3种情况讨论:①,若4个格子中没有一格染红色,每格都染黄或蓝,有4216=种不同染法:②,若4个格子中恰有一格染红色,4格中选一格染红,其余3格染黄或蓝,有34232⋅=种不同染法;③,若4个格子中恰有两格染红色,有2种情况,其余2格染黄或蓝,有2228⋅=种不同所以不同染法. 共有56种染法, 故答案为:56.15.(2021春•孝南区校级期中)正五边形ABCDE 中,若把顶点A 、B 、C 、D 、E 染上红、黄、绿、黑四种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有 276 种.【解答】解:由题意知本题需要分类来解答, 首先A 选取一种颜色,有4种情况. 如果A 的两个相邻点颜色相同,3种情况; 这时最后两个边有2339A +=种情况;如果A 的两个相邻点颜色不同,236A =种情况;这时最后两个边有22237A ++=种情况. ∴方法共有4(3967)276⨯+⨯=种.故答案为:27616.从0,1,2,3,4,5,6,7,8,9这10个数中取出3个数,使其和为不小于10的偶数,不同的取法有51种.【解答】解:从这10个数中取出3个偶数的方法有35C种,取出1个偶数,2个奇数的方法有1255C C种,而取出3个数的和为小于10的偶数的方法有(0,2,4),(0,2,6),(0,1,3),(0,1,5),(0,1,7),(0,3,5),(2,1,3),(2,1,5),(4,1,3),共有9种,故不同的取法有1050951+-=种故答案为:5117.(2021春•丽水期末)某城市街区如图所示,其中实线表示马路,如果只能在马路上行走,则从A点到B点的最短路径的走法有7种.【解答】解:要从A点到B点,至少需要走2条向下的路和3条向右的路,若下图,我们只需要从这5步路中选出其中2步走向下的路即可走到B点,故有2510C=条最短路径,要从A点到C点,至少需要走1条向下的路和2条向右的路,只需要从这3步路中选出其中1步走向下的路即可走到C点,故有133C=条最短路径故从A点到B点的最短路径的走法有1037-=种,故答案为:718.(2021春•田家庵区校级期中)来自甲、乙、丙三个班的5名同学站成一排照相,其中甲班有2人,乙班有2人,丙班有1人,仅有一个班同学有的相邻站法有48种.【解答】解:根据题意,分2种情况讨论:①,甲班的2名同学相邻,先将这2名同学看成一个整体,考虑2人之间的顺序,有222A=种情况,将这个整体与丙班的1人全排列,有222A=种情况,排好后有3个空位可用,在3个空位中任选2个,安排乙班的2人,有236A=种情况,则甲班的2名同学相邻的站法有22624⨯⨯=种;②,乙班的2名同学相邻,同理有24种站法;则仅有一个班同学有的相邻站法有48种;故答案为:48.19.(2021•浙江期中)高三年级有3名男生和3名女生共六名学生排成一排照相,要求男生互不相邻,女生也互不相邻,且男生甲和女生乙必须相邻,则这样的不同排法有40种(用数字作答).【解答】解:根据题意,分2种情况讨论:①,六名学生按男女男女男女排列,若男生甲在最左边的位置时,女生乙只能在其右侧,有1种情况,剩下的2名男生和女生都有222A=种情况,此时有1224⨯⨯=种安排方法,若男生甲不在最左边的位置时,女生乙可以在其左侧与右侧,有2种情况,剩下的2名男生和女生都有222A=种情况,此时有222216⨯⨯⨯=种安排方法;则此时有41620+=种安排方法;②,六名学生按女男女男女男排列,同理①,也有20种安排方法,则符合条件的安排方法有202040+=种;故答案为:40.20.(2021•浙江模拟)将A,B,C,D,E,F六个字母排成一排,其中A,B相邻,且C,D在A,B的两侧,则不同的排法共有80种.(用数字作答)【解答】解:根据题意,分3步进行分析:①A,B相邻,将AB看成一个整体,考虑其间的顺序,有2种情况,②将C,D安排在A,B的两侧,有2种情况,③四人排好后,有4个空位可用,在4个空位中任选一个,安排E,有4种情况,五人排好后,有5个空位可用,在5个空位中任选一个,安排E,有5种情况,则有224580⨯⨯⨯=种情况,故答案为:8021.(2021•椒江区校级模拟)某学校将一块长方形空地分成如图所示的八块,计划在这八块空地上种花.已知空地1,2上已经种了a花,其余空地需从A,B,C,D,E这5种花中选择若干种进行种植,要求每块空地只种一种花,且有公共顶点的两块空地种的花不能相同,则不同的种植方案有1080种.【解答】解:若选用4种花,则不同的种植方案有4522480A ⨯⨯=种,若选用5种花,则不同的种植方案有4152(12)600A C +⨯=种, 故不同的种植方案共有4806001080+=种, 故答案为:1080.22.(2021•温州模拟)有10个相同的小球,现全部分给甲、乙、丙3人,若甲至少得1球,乙至少得2球,丙至少得3球,则他们所得的球数的不同情况有 15 种. 【解答】解:先将6个球按甲1个,乙2个,丙3个进行分派; 剩余的4个球随机的分派给三个人,每个人可分可不分球; 相当于四个完全一样的东西形成的六个空中插入两个隔板; 即有2615=种;故他们所得的球数的不同情况有15种. 故答案为:15.23.(2012春•南岗区校级月考)5本不同的书,分给三名同学,每人至少一本,则不同的分配方法种数为 150 .【解答】解:将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有3353C A 种分法,分成2、2、1时,有22353322C C A A 种分法,所以共有223335353322150C C C A A A +=种方案, 故答案为:150.24.(2021春•渝中区校级期中)方程11x y z ++=的非负整数解共有 78 组. 【解答】解:根据题意,对于方程11x y z ++=,将11看成11个“1”,11个“1”中间有12个空,从12个空中选两个空进行插板,或从12个空中选1个空插2个板,即可以将11个“1”分为三组,每一组对应“1”的数目,依次为x 、y 、z 的数值,则有21212121378C C C +==种分组方法,方程18x y z ++=的非负整数解有78组, 故选:78.25.(2021春•河西区期中)现用5种颜色,给图中的5个区域涂色,要求相邻的区域不能涂同一种颜色,则不同的涂色方法共有420.【解答】解:可以同色的区域为BD,CE,若都不同色,则有55120A=,若只有BD同色,则有45120A=,若只有CE同色,则有45120A=,若BD,CE两个同色,则有3560A=,共有12012012060420+++=,故答案为:420.26.(2004•浦东新区校级模拟)将红、黄、绿三种不同的颜色均涂入图中五个区域中,每个区域涂一种颜色,且相邻的区域不能涂同一种颜色,不同的涂色方法共有42种.(三种颜色必须用全,以数字作答)【解答】解:由题意,不妨从左至右按15-编号,由于三种颜色必须用全,第一步涂一号有三种涂法,第二步涂二号有二种涂法第三步涂三号时可分为两类研究,若三号与一号同则后两框必一框涂色与一号二号不同,与若三号与一号不同,由于三种颜色已全部用上,故后两框涂色只需要满足同色不相邻即可故总的涂色方法为32(111112122)42⨯⨯⨯⨯+⨯⨯+⨯⨯=种故答案为4227.(2017春•和平区期末)一名同学想要报考某大学,他必须从该校的7个不同专业中选出5个,并按第一志愿、第二志愿、⋯第五志愿的顺序填写志愿表.若A专业不能作为第一、第二志愿,则他共有1800种不同的填法(用数字作答).【解答】解:根据题意,分2步进行分析:①、由于A专业不能作为第一、第二志愿,需要在除A之外的6个专业中,任选2个,作为第一、二志愿,有2630A=种填法,②、第一二志愿填好后,在剩下的5个专业中任选3个,作为第三四五志愿,有3560A=种填法,则该学生有30601800⨯=种不同的填法;故答案为:1800.28.(2021•西湖区校级模拟)杭州亚运会启动志愿者招募工作,甲、乙等6人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者.若甲不能参加A,B项目,乙不能参加B,C项目,那么共有52种不同的选拔志愿者的方案.(用数字作答)【解答】解:根据题意,分4种情况讨论:①甲乙都不参加志愿活动,在剩下4人中任选3人参加即可,有3424A=种选拔方法,②甲参加乙不参加志愿活动,甲只能参加C项目,在剩下4人中任选2人参加A、B项目即可,有2412A=种选拔方法,③乙参加甲不参加志愿活动,乙只能参加A项目,在剩下4人中任选2人参加B、C项目即可,有2412A=种选拔方法,④甲乙都参加志愿活动,甲只能参加C项目,乙只能参加A项目,在剩下4人中任选1人参加B项目,有144A=种选拔方法,则有241212452+++=种选拔方法;故答案为:5229.(2021•海淀区校级三模)从4男2女共6名学生中选出队长1人、副队长1人、普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有168种不同的选法.(用数字作答)【解答】解:根据题意,分2步进行分析:①,先从4男2女共6名学生选出4人,要求至少有1名女生,有446414C C-=种情况,②,在选出的4人中任选1人,作为队长,剩余3人中选出1人作为副队长,剩下2人作为队员,有114312C C=种情况,则有1412168⨯=种不同的选法;故答案为:168.30.某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地区至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有30种.【解答】解:因为甲和丙同地,甲和乙不同地,所以有2、2、1和3、1、1两种分配方案,①2、2、1方案:甲、丙为一组,从余下3人选出2人组成一组,然后排列:共有:233318C A⨯=种;②3、1、1方案:在丁、戊中选出1人,与甲丙组成一组,然后排列:共有:132312C A⨯=种;所以,选派方案共有181230+=种.三.解答题(共10小题)31.现有8个人(5男3女)站成一排.(1)女生必须排在一起,共有多少种不同的排法? (2)其中甲必须站在排头有多少种不同排法?(3)其中甲、乙两人不能排在两端有多少种不同的排法? (4)其中甲、乙两人不相邻有多少种不同的排法? (5)其中甲在乙的左边有多少种不同的排法? (6)其中甲乙丙不能彼此相邻,有多少种不同排法? (7)男生在一起,女生也在一起,有多少种不同排法? (8)第3和第6个排男生,有多少种不同排法? (9)甲乙不能排在前3位,有多少种不同排法? (10)女生两旁必须有男生,有多少种不同排法?【解答】解:(1)根据题意,先将3名女生看成一个整体,考虑三人之间的顺序,有33A 种情况,将这个整体与5名男生全排列,有66A 种情况,则女生必须排在一起的排法有3636A A 种; (2)根据题意,甲必须站在排头,有1种情况, 将剩下的7人全排列,有77A 种情况, 则甲必须站在排头有77A 种排法;(3)根据题意,将甲乙两人安排在中间6个位置,有26A 种情况, 将剩下的6人全排列,有66A 种情况,则甲、乙两人不能排在两端有2666A A 种排法;(4)根据题意,先将出甲乙之外的6人全排列,有66A 种情况,排好后有7个空位, 则7个空位中,任选2个,安排甲乙二人,有27A 种情况, 则甲、乙两人不相邻有2676A A 种排法;(5)根据题意,将8人全排列,有88A 种情况, 其中甲在乙的左边与甲在乙的右边的情况数目相同, 则甲在乙的左边有8812A 种不同的排法; (6)根据题意,先将出甲乙丙之外的5人全排列,有55A 种情况,排好后有6个空位,则6个空位中,任选3个,安排甲乙丙三人,有36A 种情况, 其中甲乙丙不能彼此相邻有5356A A 种不同排法;(7)根据题意,先将3名女生看成一个整体,考虑三人之间的顺序,有33A 种情况, 再将5名男生看成一个整体,考虑5人之间的顺序,有55A 种情况, 将男生、女生整体全排列,有22A 种情况,则男生在一起,女生也在一起,有235235A A A 种不同排法; (8)根据题意,在5个男生中任选2个,安排在第3和第6个位置,有222525C A A =种情况, 将剩下的6人全排列,有66A 种情况,则第3和第6个排男生,有2656A A 种不同排法;(9)根据题意,将甲乙两人安排在后面的5个位置,有25A 种情况, 将剩下的6人全排列,有66A 种情况,甲乙不能排在前3位,有2656A A 种不同排法;(10)根据题意,将5名男生全排列,有55A 种情况,排好后除去2端有4个空位可选,在4个空位中任选3个,安排3名女生,有34A 种情况, 则女生两旁必须有男生,有5354A A 种不同排法. 32.把6名实习生分配到7个车间实习,共有多少种不同的分法?【解答】解:6名实习生分配到7个车间实习,每名实习生有7种分配方法,共有67种不同的分法.33.8人排成两排,每排4人,下列各有多少种不同的排法? (1)甲、乙在前排两端,丙在后排左端; (2)甲、乙在前排,丙在后排.【解答】解:(1)先排前排,除甲乙丙外选2人排在甲乙之间,再排后排,丙在后排左端,把剩下的3人全排列,故有223253240A A A =种; (2)先排前排,除甲乙丙外选2人和甲乙全排列,再排后排,丙和剩下的3人全排列,故有2445445760C A A =种; 34.设有99本不同的书(用排列数、组合数作答).(1)分给甲、乙、丙3人,甲得96本,乙得2本,丙得1本,共有多少种不同的分法? (2)分给甲、乙、丙3人,甲得93本,乙、丙各得3本,共有多少种不同的分法? (3)平均分给甲、乙、丙3人,共有多少种不同的分法?(4)分给甲、乙、丙3人,一人得96本,一人得2本,一人得1本,共有多少种不同的分法?(5)分给甲、乙、丙3人,一人得93本,另两人各得3本,共有多少种不同的分法? (6)分成3份,一份96本,一份2本,一份1本,共有多少种不同的分法?(7)平均分成3份,共有多少种不同的分法?(8)分成3份,一份93本,另两份各3本,共有多少种不同的分法?【解答】解:(1)甲得96本,有方法9699C 种;乙得2本,有方法23C 种;丙得1本.有方法1种,不同的分法共有962993C C (种); (2)与(1)类似,不同的分法共有93339363C C C (种); (3)不同的分法共有333333996633C C C 种; (4)先把99本不同的书分成3份,一份96本,一份2本,一份1本;再将甲、乙、丙3人全排列,这是因为3人中谁都有得到96本、2本、1本的可能,不同的分法共有96239933()C C A (种);(5)99本不同的书,分给甲、乙、丙3人,一人得93本,另两人各得3本,3人中,谁都有得到93本的可能,不同的分法共有933339963322C C C A A ⋅(种). (6)99本不同的书,分成3份,一份96本,一份2本,一份1本,3份的数量互不相同,不同的分法共有962993C C (种); (7)99本不同的书,平均分成3份,每份33本.本问题是典型的平均分组问题,要排除重复,不同的分法共有33333339966333()C C C A ÷(种);(8)99本不同的书,分成3份,一份93本,另两份各3本,两份3本的有重复,不同的分法共有9333299632()C C C A ÷(种).35.本4本不同的书,下列情况各有多少种不同的分法? (1)分成2堆,一堆1本,一堆3本; (2)分成2堆,每堆2本.【解答】解:(1)由题意可得,144C =; (2)由题意可得,2242226C C A =.36.(1)4本不同的书平均分成2堆,有多少种不同的分法?平均分给2个人有多少种不同的分法?(2)4本不同的书分成2堆,每堆至少1本,有多少种不同的分法?分给2个人,每人至少1本,有多少种不同的分法?【解答】解:4本不同的书平均分成2堆,有2242223C C A =(种)分法;4本不同的书平均分给2个人,先分组有2242223C C A =(种)分法, 将分好的2组全排列,对应2个人,有222A =(种)情况, 则有326⨯=(种)不同的分法.(2)4本不同的书分成2堆,每堆至少1本,有2种情况:1本和3本,各2本,因此共有22314241227C C C C A +=(种)分法, 分配给2个人,每人至少1本,有223124241222()14C C C C A A +=(种)分法. 37.有12本不同的书.(1)分给甲、乙、丙、丁四人,每人3本,有几种分法? (2)若4堆依次为1本,3本,4本,4本,有几种分法? (3)若平均分成3堆,有几种方法(只要求列出算式)? 【解答】解:(1)根据题意,分4步分析:①,在12本书中取出3本,分给甲,有312C 种取法,②,在剩下的9本书中取出3本,分给乙,有39C 种取法,③,在剩下的6本书中取出3本,分给丙,有36C 种取法,④,将最后的3本书交给丁,有33C 种情况,则一共有333312963C C C C 种分法; (2)根据题意,分3步分析:①,在12本书中取出1本,作为第一堆,有112C 种取法, ②,在剩下的11本书中取出3本,作为第二堆,有311C 种取法,③,在剩下的8本书中取出4本,作为第三堆,剩下的4本作为第四堆,有4812C 种分法;则一共有1341211812C C C 种分法;(3),根据题意,将12本不同的书,平均分成3堆,每堆有4本,则有444128433C C C A 种不同的分法. 38.(2021春•翠屏区校级期中)由数字0,1,2,3,4.回答下列问题: (1)从中任取两个数,求取出的两个数之积恰为偶数的不同取法有多少种? (2)可组成多少个无重复数字的五位数自然数?(3)在无重复数字的五位数的自然数中,任取两个数,求取出的两个数都是偶数的概率.【解答】解:(1)两个数的积是偶数,则其中至少有一个偶数,分两类,第一类只有一个偶数有11326C C =种,第二类都是偶数有233C =种,根据分类计算原理得,639+=种; (2)0是特殊元素不能排在首位,所以先排首位,然后再排另外四位,有144496A A =个; (3)第一类0在末尾时有4424A =个,第二类0不在末尾时,末尾只能从2,4选一个,再排首位,首位不能是0,有11323336A A A =个,无重复数字的五位数的自然数中 偶数共有243660+=,(2)可知可组成96个无重复数字的五位数自然数,设取出的两个数都是偶数的概率为P (A ),则P (A )26029659152C C ==.39.某城市由n 条东西方向的街道和m 条南北方向的街道组成一个矩形街道网,要从A 处走到B 处,使所走的路程最短,有多少种不同的走法?【解答】解:由题意知本题是一个分步计数问题,将相邻两个交点之间的街道称为一段,那么从A 到B 需要走(2)n m +-段,而这些段中,必须有东西方向的(1)n -段,其余的为南北方向的(1)m -段,∴共有1122m n m n m n C C --+-+-=种走法.40.用4种不同的颜色给图中的A ,B ,C ,D 四个区域涂色,要求每个区域只能涂一种颜色. (1)有多少种不同的涂法?(2)若相邻区域不能涂同一种颜色,有多少种不同的涂法?【解答】解:(1)分4步,依次为A ,B ,C ,D 各个区域,分别有4种涂法,共有44256=种不同的涂法,(2)由可分4步进行,第一步:A 有4种涂法,第二步B 有3种涂法,第三步C 有2种涂法,第四步D 有2种涂法有432248⨯⨯⨯=种不同的涂。

排列组合典型例题(带详细答案)

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种?例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?学校专业1 1 22 1 23 1 2例77名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法?例8计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n mn m n A A A ;例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?1、解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法.(4)3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合典型题解“十法”
一、特殊元素(位置)——“优先法”
把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。

例1、6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?
解法1:(元素分析法):
解法2:(位置分析法):
例2、用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中偶数共有()
A.24
B.30
C.40
D.60
例3、在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有_____个.
例4、将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有种?
练习:(1)0,1,2,3,4,5这六个数字可组成多少个无重复数字的五位数?
(2)0,1,2,3,4,5可组成多少个无重复数字的五位奇数?
(3)五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有种。

二、相邻问题——“捆绑法”
对于要求某几个元素必须排在一起的问题,可用“捆绑法”:可先将相邻的元素“捆绑”在一起,看作一个“大”的元(组),与其它元素排列,然后再对相邻的元素(组)内部进行排列。

例5、7人站成一排照相,要求甲,乙,丙三人相邻,分别有多少种站法?
例6、5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?
练习:求不同的排法种数:
(1)6男2女排成一排,2女相邻;
(2)4男4女排成一排,同性者相邻;
三、不相邻问题——“插空法”
元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。

例7、7人排成一排,甲、乙、丙3人互不相邻有多少种排法?
引申:
(1)三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法?
(2)三个男生,四个女生排成一排,男生之间、女生之间不相邻,有几种不同排法?
例8、(熄灯问题)某城市新建的一条道路上有12只路灯,为节约用电而不影响照明,可以熄灭其中三盏灯,但是两端的灯不能熄灭,也不能熄灭相邻的两盏灯,熄灯方法共有 种。

A. 312C
B. 38C
C. 39C
D. 311C
例9、用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有___个.(用数字作答) 练习:求不同的排法种数:
(1)6男2女排成一排,2女不能相邻;
(2)4男4女排成一排,同性者不能相邻.
四、 定序问题——“除法”
对于在排列中,当某些元素次序一定时,可用此法。

解题方法是:先将n 个元素进行全排列有A n n 种,m m n ()≤个元素的全排列有A m m
种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,则有A A n n m
m 种排列方法。

例10、有4名男生,3名女生。

3名女生高矮互不等,将7名学生排成一行,要求从左到右,女生从矮到高排列,有多少种排法?
例11、由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?
例12、6个人排队,甲、乙、丙三人按“甲---乙---丙”顺序排的排队方法有多少种?
例13、某班新年联欢会原定的5个节目已排成节目单,开演前有增加了2个新节目,如果将这两节目插入节目单中,那么不同的插法种数为______.
点评: 排列与组合的根本区别是元素之间有否顺序.若元素之间交换次序后是两种不同的情形,则是排列问题;若元素之间交换次序后是相同的情形,则是组合问题;另外若元素之间已经规定了顺序,则仍是组合问题。

练习:三个男生,四个女生排成一排,其中甲、乙、丙三人的顺序不变,有几种不同排法?
五、 指标问题——“隔板法”
解决指标分配、相同的元素分割、不定方程的正整数解的个数等. 如n 个相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从n-1个间隙里选m-1个结点剪成m 段(或者看作插入m -1块隔板),有1
1--m n C 种方法.
例14、有10个三好学生名额,分配到6个班,每班至少1个名额,共有多少种不同的分配方案?
例15、方程12=+++w z y x 有多少组正整数解?
引申:(1)求不等式10<++z y x 的正整数解的个数。

(2)方程84321=+++x x x x 的非负整数解的组数是多少?
例16、把9个相同小球放入其编号为1、2、3的三个箱子里,要求每个箱子放球的个数不小于其编号数,则不同的放球方法共有______种.
例17、某校准备参加2005年高中数学联赛,把10个选手名额分配到高三年级的8 个教学班,每班至少一个名额,则不同的分配方案共有___种.
练习:(1)将10个学生干部的培训指标分配给7个不同的班级,每班至少分到一个名额,不同的分配方案共有 种。

(2)不定方程107321=++++x x x x 的正整数解共有 组
六、 分排问题——“直排法”
对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。

例17、9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种? 例18、7个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?
七、 重复问题——“求幂法”
解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解。

例19、七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有( )
A. 57
B. 75
C. 57A
D. 57C
练习:在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( )种.
(A )34A (B )34 (C )43 (D )
34C
八、 复杂问题——“排除法”
对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。

在应用此法时要注意做到不重不漏。

例20、某班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?
例21、四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有
A. 150种
B. 147种
C. 144种
D. 141种
点评:为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或
计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数.
例22、将A 、B 、C 、D 、E 、F 六个不同的电子元件在线路上排成一排组成一个电路,如果元件A 不排在始端,元件B 不排在末端,那么这六个电子元件组成不同的电路的种数是_ . 练习:(1) 五人从左到右站成一排,其中甲不站排头,乙不站第二个位置,那么不同的站法有
(2) 6个同学和2个老师排成一排照相, 2个老师站中间,学生甲不站排头,学生乙不站排尾,共有多少种不同的排法?
九、 分配问题——“分组法”
关于将n 个元素分成m 个组的分法种数,我们有下面的结论:
(1)若k 1+ k 2+ k 3+ ……+k m =n 且k 1,k 2,k 3, ……k m 互不相等,
则将n 个元素分成m 个组(其中第一个组k 1个元素,第二个组k 2个元素,第n 个组k m 个元
素)的不同分法种数为m m k
k k k k n k k n k n C C C C 321211--- (2)若将n 个元素平均分成m 个组,每组k 个元素(n=mk ),则所有不同的分法种数为k k k
k k k m k km A C C C )1(- (注:关于部分平均分组问题的分组方法数,要视具体要求而定。


例23、将6本不同的书分别按下面的方式分配,共有多少种不同的分配方法?
⑴分给学生甲3 本,学生乙2本,学生丙1本;
⑵分给甲、乙、丙3人,其中1人得3本、1人得2 本、1 人得1 本;
⑶分给甲、乙、丙3人,每人2本;
⑷分成3堆,一堆3 本,一堆2 本,一堆1 本;
⑸分成3堆,每堆2 本。

⑹分给分给甲、乙、丙3人,其中一人4本,另两人每人1本;
⑺分成3堆,其中一堆4本,另两堆每堆1本。

十、 探寻规律——“枚举法”
题中附加条件增多,直接解决困难时,用实验逐步寻求规律有时也是行之有效的方法。

把符合条件的安排不重复、不遗漏的一一列举出来,是最简单、最原始但也是最基本的计数方法.教材中多次应用到,高考中也常用枚举法解决问题.
例24、某电脑用户计划使用不超过500元的资金购买单价分别60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方法有( )
A .5种
B .6种
C .7种
D .8种
例25、将数字1,2,3,4填入标号为1,2,3,4的四个方格内,每个方格填1个,则每个方格的标号与所填的数字均不相同的填法种数有( )
A.6
B.9
C.11
D.23
例26、从1到100的一百个自然数中,每次取出两个数,使其和大于100,这样的取法共有多少种?。

相关文档
最新文档