数值方法简明教程作业集答案
数值分析简明教程第二版课后习题答案(供参考)
0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
数值方法简明教程作业集答案
数值计算方法简明教程第一章1 *1x =1.7; *2x =1.73; *3x =1.732 。
2.3. (1) ≤++)(*3*2*1x x x e r 0.00050; (注意:应该用相对误差的定义去求) (2) ≤)(*3*2*1x x x e r 0.50517; (3) ≤)/(*4*2x x e r 0.50002。
4.设6有n 位有效数字,由6≈2.4494……,知6的第一位有效数字1a =2。
令3)1()1(1*1021102211021)(-----⨯≤⨯⨯=⨯=n n r a x ε 可求得满足上述不等式的最小正整数n =4,即至少取四位有效数字,故满足精度要求可取6≈2.449。
5. 答:(1)*x (0>x )的相对误差约是*x 的相对误差的1/2倍;(2)n x )(* 的相对误差约是*x 的相对误差的n 倍。
6. 根据********************sin 21)(cos 21sin 21)(sin 21sin 21)(sin 21)(c b a c e c b a c b a b e c a c b a a e c b S e r ++≤ =******)()()(tgc c e b b e a a e ++ 注意当20*π<<c 时,0**>>c tgc ,即1*1*)()(--<c tgc 。
则有)()()()(****c e b e a e S e r r r r ++<7.设20=y ,41.1*=y ,δ=⨯≤--2*001021y y 由 δ1*001*111010--≤-=-y y y y ,δ2*111*221010--≤-=-y y y yδ10*991*10101010--≤-=-y y y y即当0y 有初始误差δ时,10y 的绝对误差的绝对值将减小1010-倍。
而11010<<-δ,故计算过程稳定。
《数值分析简明教程》(第二版)王能超课后习题答案
532 a= = 0.9726 547 b = 285 = 0.05 2 ( f , ϕ1 ) = 369321.5 ,解之得 5696 ,∴ y = 0.9726 + 0.05 x .
yn = yn −1 + hf ( xn −1 , yn −1 ) = yn −1 + h ⋅ ( axn −1 + b)
故 yn −1 = yn −2 + h ⋅ ( axn − 2 + b)
LL y1 = y0 + h ⋅ ( ax0 + b)
将上组式子左右累加,得
yn = y0 + ah( x0 + L + xn −2 + xn −1 ) + nhb = ah(0 + h + 2h L + ( n − 2) h + (n − 1) h) + nhb
第一章 题 12 给定节点 x0 = −1 , x1 = 1 , x2 = 3 , x3 = 4 ,试分别对下列函数导出拉格朗日插 值余项: (1) (1) (2) (2) 解 (1) f
(4)
f ( x) = 4 x3 − 3 x + 2 f ( x) = x 4 − 2 x3 ( x) = 0 ,
1.5
5 ≈ × 9
8 8 5 8 + × + × 2 2 3 9 4 + ( 0 + 1) 9 3 4+− + 1 4+ + 1 5 5 = 3.141068 .
数值分析简明教程第二版课后习题答案(供参考)
0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=-K x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=-K x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=-K x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
林福民《《数理方法简明教程》第四章课后习题答案
z的负一次幂所对应的系数之和为: 1 1 1 1 ... 4! 5! 6! 7! 1 1 1 1 1 1 1 1 1 1 1 1 ( ...) ( ) 0! 1! 2! 3! 4! 5! 6! 7! 0! 1! 2! 3! 1 1 1 1 1 e 1 ( ) e 1 0! 1! 2! 3! 3 Re sf (0)
d 2a 1 cos
2
2
d (2 ) d 0 2a 1 cos 2a 1 cos(2 )
d 1 dz z z 1 ( 2a 1 )iz 2
d 1 2 a sin 2 0
2
2
2a 1 cos 2
0 c
dz 2 i Re sf ( zi ) 1 [ 4 a 2 ( z z )] iz c
f ( z)
1 1 2 z[( z z ) 4a 2] z (4a 2) z 1
1
z 2a 1 (2a 1) 2 1
z 2a 1 (2a 1) 2 1 1
Re sf ( z )
1 2 (2a 1) 2 1
a sin
0
2
d
2
2 i Re sf ( zi )
(2a 1) 1
2
2 a2 a
(4) (光信息 1001
许世松输入)
解:
f ( z)
(1) k k n 3 z n! n 0 k 0
留数是洛朗级数展开中负一次幂所对应的系数,即
数值分析简明教程(第二版)课后习题答案
0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
数值分析简明教程课后习题答案
;
。
【解】(1)令时等式精确成立,可列出如下方程组:
解得:,即:,可以验证,对公式亦成立,而对不成立,故公式(1)具有3次代数精度。
(2)令时等式精确成立,可列出如下方程组:
解得:,即:,可以验证,对公式亦成立,而对不成立,故公式(2)具有3次代数精度。
(3)令时等式精确成立,可解得:
即: ,可以验证,对公式亦成立,而对不成立,故公式(3)具有2次代数精度。
由三点公式(51)、(52)和(53)可知,,则
2、(p.96,习题25)设已给出的数据表,
x
1.0
1.1
1.2
f(x)
0.2500
0.2268
0.2066
试用三点公式计算的值,并估计误差。
【解】已知,用三点公式计算微商:
,
用余项表达式计算误差
3、(p.96,习题26)设,分别取步长,用中点公式(52)计算的值,令中间数据保留小数点后第6位。
;
(2),而,实际误差为:。
由,可知,则余项表达式
1.4 曲线拟合
1、(p.57,习题35)用最小二乘法解下列超定方程组:
【解】构造残差xx函数如下:
,
分别就Q对x和y求偏导数,并令其为零:
:,
:,
解方程组(1)和(2),得
2、(p.57,习题37)用最小二乘法求形如 的多项式,使之与下列数据相拟合。
,,取;
,,取;
【解】(1);
(2)。
2、(p.124,题2)取,用xx方法求解初值问题,。
【解】xx格式:;化简后,,计算结果见下表。
n
0
1
2
3
xn
0.0
0.2
《数值分析简明教程》第二版(王能超编著)课后习题答案高等教育出版社
《数值分析简明教程》第⼆版(王能超编著)课后习题答案⾼等教育出版社0.1算法1、(p.11,题1)⽤⼆分法求⽅程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】由⼆分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取⾃然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即⾄少需2、(p.11,题2)证明⽅程210)(-+=x e x f x在区间[0,1]内有唯⼀个实根;使⽤⼆分法求这⼀实根,要求误差不超过21021-?。
【解】由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-?+=e f ,082110)1(1>+=-?+=e e f ,即0)1()0(⼜010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯⼀实根.由⼆分法的误差估计式211*1021212||-++?=≤=-≤-εk k k a b x x ,得到1002≥k .两端取⾃然对数得6438.63219.322ln 10ln 2=?≈≥k ,因此取7=k ,即⾄少需⼆分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有⼏位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-?=<=- x e ,所以7.21=x 有两位有效数字;因为12102105.000828.0||-?=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-?=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
数值分析简明教程 - 课后答案
0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
数值分析简明教程课后习题答案(第二版)
0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
数值分析简明教程(第二版)课后习题答案
0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
林福民《数理方法简明教程》课后习题第七章答案
u x ,t
An n
1
根据初始条件
ut
t 0
0, 可知 Bn 0
4
∴
u x, t An cos kn at cos kn l x
n 1
∴
An
k
0
l
F0
l 0
cos k l x dx
2 n
F0 X cos k n l x dx SY
x 0
…… ………… …④
T t a 2T t 0
先求解④,在讨论 0 及 >0 后发现,只有当 >0 时, X x 才有可能 存在非零解(过程见课本 P82—P83,类似过程)当 >0 时,由于边界条 件存在第三类边界条件,因此 X x 的形式要比以前所讲的复杂。即同 时存在 cos 、 sin 项,这时 X x 的通解可以写成
,但这样代入方程会出现 ,原方程及边
通解为: (这一行不清晰)
化简为: 边界条件: , 初始条件:
5
, .
依据边界条件得:
=cos
,把
展为傅里叶级数:
通解的傅里叶级数形式为: 把上两式代入方程得
=
( 比较两边得:
(
) ( )
(此处一行不清晰) 根据拉普拉斯变换,则(与书上 93 页相同,区别在一个为(n+1/2) ) ,一个为 n
2 8h n n n l 3 x x cos x 2sin l l l l n
n l x 2 cos l n
3
x 0
l
8h 8h 16h n 1 n 1 n 1 1 1 1 3 3 n n n 0 n 2k k 1, 2 32h k 0,1, 2 (2k 1)3 3 n 2k 1
数值分析简明教程(第二版)课后习题答案
0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
数值分析简明教程(第二版)课后习题答案
数值分析简明教程(第二版)课后习题答案0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x ex f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x,71.22=x,x 2=2.71,718.23=x各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=-K xe ,所以7.21=x有两位有效数字; 因为12102105.000828.0||-⨯=<=-K xe ,所以71.22=x亦有两位有效数字; 因为3310210005.000028.0||-⨯=<=-K xe ,所以718.23=x有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
数值分析简明教程第二版(王超能)习题答案24页全解word版[1]
数值分析简明教程第二版(王超能)习题答案24页全解0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=-K x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=-K x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=-K x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.选取插值节点为:=1.4、=1.5、=1.6,1.9447。
3.利用,并注意 当时,对,,故有
而时,,故有 ,
4. ==
5. 用反插值法得根的近似值=0.7092;
6. 令 可求得0.2498(或0.2289)。
2. 解:(1)左矩形公式
第六章
将f(x)在a处展开,得 两边在[a,b]上积分,得 由于(x-a)在[a,b]上不变号,故有,使 从而有 (2)右矩形公式 将f(x)在b处展开,并积分,得 (3)中矩形公式 将f(x)在处展开,得 两边在[a,b]上积分,得
3. 解:(1)求积公式中含有三个待定参数A-1、A0、A1,故令求积公式 对f(x)=1、x、x2准确成立,即 解得 A-1=A1=h/3, A0=4h/3 显然所求的求积公式(事实上为辛浦生公式)至少具有两次代数精确 度。又有 故 具有三次代数精确度。 (2)求积公式中含有两个待定参数x1、x2,当f(x)=1时,有 故令求积公式对x、x2准确成立,即: 解得, 显然 当求积节点取x1=0.68990,x2=-0.12660或x1=-0.28990,x2=0.52660时, 求积公式具有两次代数精确度。 (3)求积公式中含有一个待定参数α,当f(x)=1、x 时,有 故令求积公式对f(x)=x2成立,即: 得 α=1/12。 显然: 故具有三次代数精确度。
4. 解:函数值表格
x 1 7/6
8/6
9/6
10/6 11/6
2
f(x) 0 0.15415 0.28768 0.40547 0.51083 0.60614 0.69315
T6=1/2×1/6[0+2×(0.15415+0.28768+0.40547+0.51083+0.60614)+0.69315]≈0.38514 S3=1/6×1/3[0+4×(0.15415+0.40547+0.60614)+2×(0.28768+0.51083)+0.69315]≈0.38629
欧拉预-校法
3. 计算结果如下: (8.32)的
0.1 0.2 0.3
(8.34)的
4.计算结果如下: 四阶R-K解
(8.37)的
0.1
0.2
0.3
0.4
0.5
5.参照欧拉预-校格式的证明。 6. 对在,,处进行Lagrange插值,得插值多项式, 然后在区间上积分,
即可得到所要结果。 7. ,,,。
2
0.46559
0.005
3
0.46557
0.00002
根的近似值为0.4656。 6.
证明:
当时,当时,
因此,对于,当时,,牛顿迭代法收敛,当时,
,从起,牛顿序列收敛到。
第三章 1. x1=2,x2=1,x3=1/2 2. 3. L = , U =
y1 =14, y2 = 10, y3 = 72 x1 =1, x2 =2, x3 =3 4. x1≈-4.00, x2≈3.00, x3≈2.00 5. B的特征值为:0,0,0,ρ(B)=0<1 (E-B1)-1B2的特征值为:0,2,2,ρ[(E-B1)-1B2]=2>1. 6. x(5)=(0.4999, 1.0004, -0.4997)T 7.∣a∣>2
4.设有位有效数字,由2.4494……,知的第一位有效数字=2。 令 可求得满足上述不等式的最小正整数=4,即至少取四位有效数字,故
满足精度要求可取2.449。
5. 答:(1) ()的相对误差约是的相对误差的1/2倍; (2) 的相对误差约是的相对误差的倍。
6. 根据 =
注意当时,,即。 则有
7.设,, 由,
即当有初始误差时,的绝对误差的绝对值将减小倍。而,故计算过程稳 定。
8. 变形后的表达式为: (1)= (2)= (3) (4)==
1.绝对误差限, 对分8次
n
隔根区间
第二章
1
[1.5,2.5]
2.0
2
[2.0,2.5]
2.25
3
[2.25,2.5]
2.375
4
[2.25,2.375]
2.3125
5 [2.25,2.3125] 2.28125
5. 解:
令,得N≥2.54. 取N=3,则至少要取2N+1=7个节点处的函数值。
6. 解:按照事后误差估计公式 计算列表如下:
等
k分 2k
0 1 0.92073549
1 2 0.93979328
0.94614588
2 4 0.94451352 0.00157341 0.94608693 0.00000393<10-5
数值计算方法简明教程
第一章 1 =1.7; =1.73; =1.732 。
2. 有效数字 的位数
1
四位
2
三位
3
四位
4
四位
5
六位
注:本题答案中相对误差限是用定义所求得的结果,也可以用相对误差 限与有效数字的关系求得。
3. (1) 0.00050; (注意:应该用相对误差的定义去求) (2) 0.50517; (3) 0.50002。
6 [2.28125,2.3125] 2.296875
7 [2.296875,2.3125] 2.3046875
8
[2.296875, 2.30078125
2.3046875]
满足精度要求的根近似值为2.30。
的符号 + + +
2. (1) 隔根区间[0, 0.8]; (2) 等价变形 ; 迭代公式。 (3) 收敛性论证:用局部收敛性定理论证。 (4) 迭代计算:
7. 解:采用极坐标系,令x=2cos,y=sin,则椭圆的周长为
由于,因此I有一个整数,故要求结果有四位有效数字,需截断误差 ≤1/2×10-3。列表计算如下:
k 等分2k
01 12 24 38 4 16
2.356194 2.419921 2.422103 2.422112 2.422112
2.441163 2.422830 2.422115 2.422112
详解: 由题义知,所采用的是三点等距插值,由误差公式: 令 由 得: 得 的驻点为:
故, 所 = ,
2. 正规方程组为 = ,
3. 取对数
相应的正规方程组为 = ,
4.正规方程组为 = ,
第五章
1. 解:运用梯形公式: 误差: 运用辛浦生公式: 误差:
3.5615
6
3.5615
相应近似特征向量为 = 2258 , 1268 , 2258 ) ,( )
3 8 0.94569086 0.00039245<10-3 0.94608331 0.00000024
因此,由梯形公式得I≈T8=0.94569086,精确到10-3;由辛浦生公式得到 I≈S2=0.94608693,精确到10-5。若取I≈S4=0.94608331,则精确到10-6。 精确到10-3的结果为 I≈0.946.
0
0.4
1
0.4700
2
0.4253
3
0.4541
4
0.4356
5
0.4475
6
0.4399
7
0.4448
8
0.4416
9
0.4436
10
0.4423
11
0.4432
满足要求的近似根为0.443。
3. (1) ; (2) ; (3) ;
4. 牛顿迭代公式为: 列表计算
n
0
0.4
1
0.47013
0.07
第八章 1.
u=u
0
(1 , 1 , 1)
4.0000
1
(4 , 2 , 4)
3.5000
2
( 14 , 8 , 14 )
3.5714
3 4
( 50 , 28 , 50 ) ( 178 , 100 , 178 ) ( 634 , 356 , 634 )
3.5600 3.5618
5
( 2258 , 1268 , 2258 )
故取I=2.422113,周长为l =4I=9.688。
2.421608 2.422067 2.422112
2.422074 2.422113
8.(1):取h=0.1,三点公式取,得 (2):取h=0.2, 三点公式取,得 注:精确解为。
第七章
1. 计算结果为:
2. 计算结果如下: 梯形法
0.1 0.2 0.3